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Abstract

In this paper, we explore identification and efficient semiparametric estimation of
a class of nonlinear panel data index models with small-T, which includes a class of
single-index panel discrete-choice models. The model allows for the inclusion of pre-
determined variables, lagged dependent variables, and a nonparametric specification of
the individual-specific effects. The paper provides a root-N consistent, asymptotically
normal and efficient estimator for the finite-dimensional parameters, and a consistent
estimator of the unknown index function. The estimator developed in this paper may
be computed with any smoother, be it sieves or kernel smoothers. We propose a pow-
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1 Introduction

This paper is concerned with identification and estimation of the following semiparametric

regression model

yit = Φt (xit β+ f (zi))+ εit (i = 1, · · · ,N, t = 1, · · · ,T), (1.1)

wherexit is a K-dimensional vector of random variables that may contain lags of the de-

pendent variable as well as other predetermined variables;zi is anL-dimensional vector of

time-constant random variables; andεit is an individual-time specific idiosyncratic shock

assumed to be mean independent of the other explanatory variables. The parameters of

interest areβ, Φ := {Φt , t = 1, · · · , T} and f , whereβ is aK-dimensional vector, theΦt ’s

are strictly increasing and smooth unknown functions, andf is an unknown function.

The estimator developed in this paper builds on previous work of Chamberlain (1980),

Newey (1994a), Chen (1998), and Arellano and Carrasco (2003) (to name a few), concern-

ing the estimation of binary choice panel data models with individual-specific effects. The

common strategy of these papers, as well as ours, is to imposerestrictions on the condi-

tional distribution of the individual-specific effects, conditioned on the observed regressors.

However, the estimator developed here differs in a variety of ways. Our own interest goes

beyond the binary choice framework. Any model that can be presented in the form of equa-

tion (1.1) can be estimated using the algorithm developed inthis paper. In the next section,

we provide two examples of how equation (1.1) may be derived from more familiar single-

index panel data models. The assumptions required on the individual specific effects will

depend on the nature of the observed regressors.

The estimator proposed in this paper treats both the index functionsΦt and the function

f as unknown functions. The models proposed in Chamberlain (1980) assumes that the

index functionΦt is known, and thatf (zi) is known up to a set of finite dimensional pa-

rameters. Newey (1994a) extends this framework to allow forf to be an unknown function,

while maintaining the parametric specification of the indexfunction. These models assume

that the the explanatory variables are all strictly exogenous. The model presented in this

paper is therefore an extension of the model presented in Newey (1994a) to allow for prede-

termined variables and an unspecified time specific index function. In the discrete choice
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framework, Chen (1998) also extends the framework of Newey (1994a) by relaxing the

parametric specification of the index function, but maintains the assumption that all of the

explanatory variables are strictly exogenous. Including lagged-dependent variables into the

set of regressors requires stronger assumptions on the relationship between the individual

specific effects and the regressors, as discussed in the nextsection. Arellano and Carrasco

(2003) develops a panel data discrete choice model that allows for the individual specific

effect to be related to the explanatory variables in a less restrictive way than suggested in

this paper. They also allow for all the explanatory variables to be predetermined. However

the model presented by Arellano and Carrasco (2003) requires that the index function is

known.

Semiparametric panel data models specified similar to equation (1.1) with an unknown

index function can be estimated by a series or sieve minimum distance estimator (see

Newey and Powell (2003), Ai and Chen (2003), and Chen (2007)). Gayle and Viauroux

(2007) show that the resulting estimator of the finite dimensional parameters are
√

N-

consistent with a Gaussian limiting distribution. In this paper, we present a general min-

imum distance estimator and a kernel-based algorithm to compute this estimator. The

algorithm may also be implemented using sieve based smoothers. The algorithm pre-

sented here adopts the backfitting algorithm of Buja et al. (1989) Mammen et al. (1999)

and Mammen et al. (2001) to the panel data context. A key extension provided by our algo-

rithm is the estimation of additive models with monotone components, where the additive

components are specified as the difference between two monotone components. We pro-

vide sufficient conditions under which the algorithm converges. We show that the resulting

estimator ofβ is
√

N-consistent with a Gaussian limiting distribution. The semiparametric

efficiency bound is derived and we show that the proposed estimator achieves this bound.

The paper provides two Monte Carlo exercises that confirm theconvergence rate of the

proposed estimator. In the first exercise, the dependent variable is continuous, all the ex-

planatory variables are strictly exogenous, and the index function is asymmetric about zero.

We show that wrongly assuming a symmetric index function such as a “stretched” normal

distribution function significantly biases the estimates of the finite dimensional parameters.

The second exercise simulates a dynamic probit model with unconditional heteroskedas-

ticity. The proposed model also works well in this environment, and outperforms a model

where the index function is known, but the error term is assumed to be homoskedastic.
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The rest of paper is organized as follows: the following section motivates equation

(1.1) by describing how it is derived from various economic models. Section 3 discusses

identification while Section 4 presents the estimator. Section 5 presents the algorithm used

to compute the estimate. Section 6 derives the large sample properties of the estimator

and propose estimators of the asymptotic variances and average derivatives. Section 7

is devoted to the Monte carlo simulations and Section 8 concludes. All the proofs and

auxiliary lemmas are to be found in the appendix of the paper.

2 The Model

In this section, we discuss two examples of how equation (1.1) is derived from more prim-

itive models. The first example discusses relaxing the log-linearity assumption in the clas-

sical Mincer wage regression, and the second example is a dynamic panel data discrete-

choice model.

EXAMPLE 1. Semiparametric panel data Mincerian wage equation with semiparametric

individual effects. Consider the wage equation forN individuals observed overT consecu-

tive time periods

lnWit = Ft(β1Sit +β2Eit +β3E2
it +xit β4 +µi)+uit (i = 1, · · · ,N; t = 1, · · · ,T), (2.1)

where for individuali in periodt, Wit is the average hourly wage rate,Sit is the level of

completed schooling,Eit is the level of labor market experience, andxit are other observed

individual-time varying characteristics. Thexit ’s as well asSit andEit may be predeter-

mined in that they may be partially determined by lagged values ofuit . In this context,µi is

interpreted is the individual’s time invariant, unobserved ability. To keep things simple, as-

sume thatuit has zero mean and is mean independent of all the explanatory variables.1 The

restriction ofFt , t = 1, · · · , T to the identity function results in the popular log-linear panel

data wage equation (see Altug and Miller (1990) and Altug andMiller (1998)for example).

Assume that there exists a set of proxieszi such that the individual specific effect can be

1This assumption abstracts away from sample selection considerations where the distribution of observed
wages is potentially different from the wage offer distribution.
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decomposed asµi = f (zi)+vi , wherevi is independent of((xit ,Sit ,Eit ), t = 0, · · · ,T). One

alternative is to specifyzi to be the time average of the strictly exogenous explanatory

variables (see Mundlak (1978), Newey and McFadden (1994), and Gayle and Viauroux

(2007)). However this choice leads to a time inconsistency problem where it is not clear

how to treat a new year of observation, sayT +1 given that the model, andf (zi) in partic-

ular, is estimated with the firstT cross sections. An alternative that avoids this problem is

to assume thatzi is composed of time invariant measures of ability such as IQ and Armed

Forces Qualification Test (AFQT) scores. Equation (2.1) canbe written as

E[lnWit |Sit ,Eit ,xi ,zi ,vi] = Ft(β1Sit +β2Eit +β3E2
it +xit β4+ f (zi)+vi). (2.2)

Assume that the density ofvi , fv is continuous. This density is not a function of the ex-

planatory variables by assumption. We can therefore integrate outvi in equation (2.2) to

get

E[lnWit |Sit ,Eit ,xi ,zi] = Φt(β1Sit +β2Eit +β3E2
it +xit β4+ f (zi)). (2.3)

By definingεit := lnWit −E[lnWit |Sit ,Eit ,xi ,zi] we obtain equation (1.1).

EXAMPLE 2. Dynamic panel data binary choice model with semiparametricindividual

effects. For the second example, consider the model forN individuals observed overT

consecutive time periods

yit = 1{αyit−1+wit γ+µi −uit ≥ 0} (i = 1, · · · ,N; t = 1, · · · ,T), (2.4)

wherewit is a set of strictly exogenous variables. Definewi := (wi0, · · · ,wiT ). Assume

that uit is distributed according to the cdfΦt , which is not a function of(yit−1,wi ,µi).

This assumption is substantive as it rules out conditional heteroskedasticity ofuit condi-

tional on(yit−1,wi ,µi). However, it does allow for unconditional heteroskedasticity. Under

homoskedasticity, Manski (1987) derives an estimator under weaker assumptions on the

individual-specific effect. Honoré and Kyriazidou (2000)extends the model of Manski

(1987) to include the lagged dependent variable. However, the resulting estimators are not√
N-consistent, and the asymptotic distribution is generallyunknown.

The suggestion of this paper is to assume that there exists a set of strictly exogenous

time-invariant regressorszi such thatµi := f (zi). This is a stronger assumption than the one
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made in Example 1, in that the model does not allow for the existence of the pure random

effectsvi . To is why, note that the lagged dependent variableyit−1 would necessarily depend

on vi , which would violate the independence assumption requiredto derive the estimator.

The assumption made here implies that

yit = 1{αyit−1+wit γ+ f (zi)−uit ≥ 0} (i = 1, · · · ,N; t = 1, · · · ,T). (2.5)

Definingxit := (yit−1,wit ) andεit := yit −E[yit |xit ,zi ] obtains equation (1.1). The estimator

derived in this paper uses only the information provided in equation (1.1). The resulting

minimum distance estimator therefore does not require modeling the initialization ofyit .

This implies that the resulting estimator is not subject to the initial conditions problem (see

Honore and Tamer (2006)) in that it is robust to mis-specification of the distribution ofyi0

conditioned onµi .

These two examples show that under certain assumptions and by appropriately defining

zi , equation(1.1) is implied by a variety of models that are popular in applied work. Equa-

tion (1.1) is also of interest in its own right. It extends theGLM model of Chen (1995) by

relaxing the parametric specification of the link function.

Returning to equation (1.1), define the conditioning vectorwit := (xit ,zi). By taking

conditional expectations ofyit conditioned onwit in equation (1.1) we obtain

Pit := E(yit | wi) = Φt(xit β+ f (zi)), (i = 1, · · · ,N; t = 1, · · ·T). (2.6)

We formalize the monotonicity constraint on the index function that will be maintained in

this paper in the following assumption.

Assumption 2.1.For t = 1, · · · ,T, the index functionΦt : R −→ R is strictly increasing.

Under assumption 2.1 the index function can be inverted. Define the inverse index

functionϕt0 := Φ−1
t0 . Equation (2.6) implies that

ϕt0(Pit ) = xit β0+ f0(zi), (i = 1, · · · ,N; t = 1, · · ·T), (2.7)
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which in turn implies

∆[ϕt0(Pit )] = ∆xit β0, (i = 1, · · · ,N; t = 2, · · ·T), (2.8)

where∆[ϕt0(Pit )] := ϕt0(Pit )−ϕt−1,0(Pit−1) and∆xit β0 := (xit β0−xit−1β0). The time in-

variant restriction onf0(zi) is implicitly imposed by the first differencing of equation (2.7),

and will therefore not need to be made explicit in estimation. Since f0(zi) will not be es-

timated jointly with the other parameters of the model, the computational cost due to the

possibly large dimension ofzi is incurred only once in the estimation ofPi .

3 Identification

Defineϕ := (ϕ1, · · · ,ϕT). The parameter vector we are interested in identifying is denoted

by π = (β,ϕ, f ). The goal of the section is to prove that under a set of assumptions, there is

a unique parameter vectorπ0 = (β0,ϕ0, f0) that satisfies equation (2.6). Let‖ · ‖ be a norm

onR
K. The restrictions are formally stated in the the following assumption.

Assumption 3.1. 1. For at least one k∈ [1, · · · ,K], xik is not contained in zi . Without

loss of generality, let k= K.

2. rank(E[∆x′it ∆xit ]) = K.

3. ‖β‖ = 1 and E[ϕ(Pi)] = 0.

Assumption 3.1.1 is satisfied if the set of regressors contain predetermined variables

and zi is composed of all strictly exogenous variables for individual i. It is also satis-

fied if zi is composed of time invariant characteristic of the individual, as discussed in the

first example. In the case where all the explanatory variables are strictly exogenous, this

assumption means that one of the regressors is excluded fromzi . A similar conditional

independence assumption is used in Honoré and Lewbell (2002) to obtain identification of

their finite dimensional parameter vector. Honoré and Lewbell (2002) impose no other re-

strictions on the dependence between the individual effectand the other regressors. The es-

timator proposed in this paper therefore makes more restrictive assumptions on the depen-

dence between the individual effect and the other regressors than the estimator developed
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in Honoré and Lewbell (2002). However, the estimator proposed in this paper provides a

convenient framework for predictions and simulations (conditioned on the observables).

As shown in Newey (1994a), this conditional independence assumption is not needed if it

is assumed that the index function is known.

Part 2 of assumption 3.1 is the full rank assumption needed for identification of the

modelπ. It requires thatxit does not contain time-constant random variables. However,the

effect of time-constant random variables can be controlledfor by including them inzi .

Part 3 of assumption 3.1 are the scale and location normalizations required for point

identification of the modelπ. The assumption that‖β‖= 1 fixes the scale of the parameter

in the model. This normalization is frequent in single indexmodels (see Manski, 1985

and Manski, 1987 for example). An alternative normalization (see Horowitz, 1992 and

Ichimura, 1993) is to assume that the first component ofxit has a probability distribution

conditional on the remaining components that is absolutelycontinuous with respect to the

Lebesgue measure, and then assume that|β1| = 1. Identification of the model can also

be proven under this alternative normalization. The assumption that E[ϕ(Pi)] = 0 fixes

the location of theϕ’s and f . This is one of many alternative normalizations that can be

imposed. This particular normalization is chosen because of it is easy to implement in

proposed algorithm.

Assume that the parameter vectorπ0 satisfies the restrictions in Assumption 3.1. Let

the alternative modelπ1 = (β1,Φ1, f1) be observationally equivalent toπ0 in that

Pit = Φt1(xit β1+ f1(zi)) , (i = 1, · · · ,N; t = 1, · · ·T). (3.1)

The identification theorem is stated as follows.

Theorem 3.2. (Identification) If(i) (Φt1, t = 1, · · · ,T) satisfy assumption 2.1, and(ii) π1

satisfies assumption 3.1, thenβ0 = β1, f0 = f1, and for t= 1, · · · ,T, ϕt,0 = ϕt,1.

Proof. See appendix A.1
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4 The Estimator

Suppose a sample ofN independent realizations(yit ,xit ,zi t = 1, · · · ,T; i = 1, · · · ,N) are

drawn from the distribution of theT × (K + L + 1)-dimensional random matrix(y,x,z)

with supportY ×X ×Z , whereY ⊆ R, X ⊆ R
K , andZ ⊆ R

L. Let andw := (x,z) and

let fw(w) be the probability density function of the distribution function defined onX ×Z
with respect some dominating measure.

Because the predicted outcomesPit := E[yit |wit ] =
∫

(y f(y,wit )v(dy))/ fw(wit ) has the

density densityfw in the denominator,fw must be bounded away from zero. We therefore

impose a fixed trimming condition by defining the compact subset W ⊂ X × Z where

fw(w) is bounded away from zero onW . This fixed trimming condition imply that there is

a compact connected subsetK ⊂ R in which all theP’s lie. Let Λ2
c2

(K ) := { f ∈ C 2(K ) :

‖ f‖s,2 ≤ c2 < ∞}, where‖ · ‖s,2 is the supremum Sobolev norm (see Newey (1994b)), and

SK be a compact subset ofΛ2
c2

(K ), composed of strictly increasing functions. Define the

function∆ asa := (a1, . . . ,aT)′ 7−→ ∆a := (a2−a1, . . . ,aT −aT−1)
′ and let

F :=
{

a 7→ ∆ f (a)|a∈ ℜT , f (a) = ( f1(a1) · · · , fT(aT))′, ft : ℜ 7→ ℜ
}

,

Fc := {a 7→ ∆ f (a) ∈ F | ft ∈ SK , t = 1, · · · ,T} .

Assume thatθ0 := (β′
0,ϕ0)

′ ∈ Θ := B ×Fc, whereB ⊆ ℜK is compact and convex with

non-empty interior. We remark that the vector∆xβ is an element of the spaceF , and

∆[ϕ(P)] := (ϕ2(P2)−ϕ1(P1), · · · , ϕT(PT)−ϕT−1(PT−1))
′ is an element ofFc. We further

require that the induced densityfP(P) also be bounded away from zero onK . This holds in

general given boundedness conditions onfw andy (see Mood et al. (1974), sections 5 and 6

for detailed discussions). Define the indicator functionτit = 1{wit ∈W }, let τi := ∏T
t=1τit

and define the residual vectorρ(w,θ) := (∆[ϕ(P)]−∆xβ). Let θ̆ minimize the following

objective function

Q0(θ) := E
[

τρ(w,θ)′ [Σ]−1ρ(w,θ)
]

, (4.1)

whereΣ is a (T − 1)-dimensional symmetric, positive definite weighting matrix for any

givenw. In general,̆θ will be set valued. However, the identification results of theorem 3.2

imply that the transformationθ0 := (β̆/a,{(ϕ̆t −ct)/a, t = 1, · · · ,T}), wherea := ‖β̆‖ and

ct := E[τiϕ̆t(Pit )], mapsθ̆ onto a singleton.
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Estimation ofθ0 from the sample analog of equation (4.1) is infeasible because the

predicted outcomesPit are unknown. To overcome this problem, we replacePit with

a consistent kernel estimator̂Pit . Let σ1 be a positive constant. Define the function

Kit (w) := σ−(K+L)
1 K1(σ−1

1 (w−wit )), whereK1 is a Kernel. Letqit = (1,yit ) and define

γ̂(w) = (γ̂1(w), γ̂2(w)) by

γ̂(w) := (NT)−1
N

∑
i=1

T

∑
t=1

qit Kit (w).

Then the estimated conditional mean is defined byP̂it = γ̂2(wit )/γ̂1(wit ), and the estimate

of the probability density function (pdf) ofw, fw(w) is f̂w(w) = γ̂1(w). We assume also

thatW is chosen so that the estimated densityf̂w(w) is bounded away from zero onW .

To our knowledge, there exists no estimator defined as the infimum of a sample ana-

log to equation (4.1) that uses kernels to estimate the indexfunctions. There are now well

established methods for estimatingθ0 using sieves as the smoother for the infinite dimen-

sional parameters (see Newey and Powell (2003), Ai and Chen (2003), and Chen (2007)

for examples). These SMD estimators also have the desirableproperty of semiparametric

efficiency given appropriate choice of the weighting matrix. In this section, we propose an

estimator that is based purely on kernels that also achievesthe semiparametric efficiency

bound. Indeed, the estimator presented in this section can be implemented with any type

of smoother as discussed in Mammen et al. (2001). In order to define the estimator, let

F N := {m= (mi , i = 1, · · · ,N) : mi ∈ F },
F N

m := {m∈ F N : mi does not depend oni},
F N

c :=
{

m∈ F N
m : mi ∈ Fc

}

.

We remark that the vector(xiβ, i = 1, · · · ,N) is an element ofF N. F N is a vector space

when endowed with the operations “+” and “·” defined as

m+g := (mi +gi , i = 1, · · · ,n), for m,g∈ F ,

α ·m := (αmi , i = 1, · · · ,n), for α ∈ R, m∈ F .

Define ωit (P) := σ−1
2 K2(σ−1

2 (P̂it −P)), whereσ2 is a positive constant andK2 is a ker-
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nel. Then f̂t(Pt) := N−1 ∑N
i=1 ωit (Pt) is the estimated marginal density ofPt . Let ωi(P) :=

∏T
t=1 ωit (Pt). The estimated joint density ofP=(P1, · · · ,PT) is given by f̂ (P) := N−1∑N

i=1ωi(P).

Define the inner product onF N by

〈m,g〉T :=
∫

1
N

N

∑
i=1

τim
i(P)′Wgi(P)ωi(P)dP,

for some positive definite matrixW. This inner product induces the following semi-norm

onF N

‖m‖2
T :=

∫

1
N

N

∑
i=1

τim
i(P)′Wmi(P)ωi(P)dP.

Define the sample residual vector of functionsρ(wi,P,θ) :=(∆[ϕ(P)]−∆xiβ), and letθ̆∈Θ
be the solution to

min
θ∈Θ

Q̂N(θ) = min
θ∈Θ

∫

N−1
N

∑
i=1

τiρ(wi ,P,θ)′Σ̂−1ρ(wi ,P,θ)ωi(P)dP, (4.2)

whereΣ̂ is a consistent estimator ofΣ. Again, θ̆ will typically be set valued. The fea-

sible semiparametric minimum distance estimator ofθ0 is given byθ̂ := (β̆N/aN,{(ϕ̆t −
cN,t)/aN, t = 1, · · · ,T}), whereaN := ‖β̆N‖ andcN,t := N−1 ∑i τiϕ̆t(P̂it ).

Remark4.1. It is not obvious that the solutioňθ defined in (4.2) exists, and if it does,

whether it is unique. We therefore state the following lemma.

Lemma4.2. The minimization problem (4.2) has a unique solution.

Proof. See appendix A.2.

Remark4.3. For the semi-norm defined above to be well-defined, we requirethatωit ≥ 0,

and ωit = 0 on a set of measure zero. An important consequence of this restriction is

that higher order kernels cannot be used in the definition ofωit . It would seem therefore

that the estimator of the finite dimensional parameter cannot obtain the parametric rate of

convergence. However, the proposed estimator works by firstconcentrating out the index

functions (estimating them as function ofβ) and then estimateβ. This allows us to apply

Proposition 2 of Newey (1994a) concerning how estimation ofthe nuisance parameter af-

fects the asymptotic variance of the estimator of the finite dimensional parameter, the result

being thatβ̂ is
√

N-consistent.
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Remark4.4. In order to compute 4.2, a consistent estimatorΣ̂ of Σ is required. This is

achieved by implementing a two step approach where in the first stepΣ̂ is replaced with the

(T −1)-dimensional identity matrix. This obtains consistent estimates ofθ0. These con-

sistent estimates are then used to constructΣ̂, which is used in the second stage estimator.

Details of the construction are found in the next Section 6.

5 Computing the Estimator

It is possible to define a feasible empirical analog to (4.1) by implementing the method

series or sieve estimation developed in by Newey and Powell (2003), Ai and Chen (2003)

and Chen (2007). To the best of our knowledge however, there has been no work in the

econometrics literature that shows how to compute panel data estimators such as equation

(4.2) using kernel estimators with monotonicity and additivity constraints. Since kernel es-

timation is still the workhorse in the nonparametric literature, we find it pertinent to present

such a method. The method presented in this section developsa technique that makes use

of the method of alternating projections (Bauschke and Borwein, 1996; Deutsch, 2001)

and backfitting algorithm developed in Hastie and Tibshirani (1986), Buja et al. (1989),

Mammen et al. (1999) and Mammen et al. (2001). To begin, we impose the restrictions

on the kernelK2 that will be needed for the derivation of the algorithm and toprove its

convergence.

Assumption 5.1.For d≥ 2, K2(s) is differentiable of order d, the d-th derivatives bounded

uniformly, K2(s) is zero outside a bounded set, K2(s) ≥ 0,
∫

K2(s)ds= 1,
∫

sK2(s)ds= 0,

and
∫

|K2(s)|2ds< ∞.

We begin by defining the projection of∆xβ ontoF N
c for a fixedβ. This projection is

defined as the fixed point to a backfitting algorithm. Proposition 1 of Mammen et al. (2001)

suggests that this projection can be decomposed into three cascading projections. The first

is the projection of∆xβ onto the set×T
s=1C

2 to obtain theT−1-dimensional unconstrained

estimatorm̂(β) := (m̂2(β), · · · ,m̂T(β))′ defined by

m̂(β) = arg min
m̃∈×T

s=1C
2

∫

1
N

N

∑
i=1

τi(m̃−∆xiβ)′Σ̂−1(m̃−∆xiβ)ωi(P)dP.
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The solution can be computed for eachP individually, suggesting the following minimiza-

tion problem

m̂(P;β) = arg min
m̃∈×T

s=1C
2

1
N

N

∑
i=1

τi(m̃−∆xiβ)′Σ̂−1(m̃−∆xiβ)ωi(P), (5.1)

with the solution given by ˆmt(P,β) := N−1 ∑N
i=1 τi∆xit βωi(P)/ f̂P(P), t = 2, · · · ,T.

We next define the empirical projection estimator(ϕ̆1, ϕ̆2) as minimizers of

‖m̂2(β)− ϕ̃2+ ϕ̃1‖2
T =

∫

[m̂2(P;β)− ϕ̃2+ ϕ̃1]
2 f̂ (P)dP, (5.2)

with the solution characterized by the following:

ϕ̆2 =
∫

m̂2(P;β)
f̂ (P)

f̂2(P2)
dP−2+

∫

ϕ̆1(P1)
f̂ (P)

f̂2(P2)
dP−2,

ϕ̆1 =
∫

ϕ̆2(P2)
f̂ (P)

f̂1(P1)
dP−1−

∫

m̂2(P;β)
f̂ (P)

f̂2(P2)
dP−1,

wheredP−t is the Lebesgue measure on the vector(Ps, s 6= t). Straightforward calculations

show that this system of equations reduces to

ϕ̆2 =
1
N

N

∑
i=1

τi∆xi2β
ωi2(P2)

f̂2(P2)
+

1
N

N

∑
i=1

τi

(

∫

ϕ̆1(P1)ωi1(P1)dP1

)

ωi2(P2)

f̂2(P2)
,

ϕ̆1 =
1
N

N

∑
i=1

τi

(

∫

ϕ̆2(P2)ωi2(P2)dP2

)

ωi1(P1)

f̂1(P1)
− 1

N

N

∑
i=1

τi∆xi2β
ωi1(P1)

f̂1(P1)
.

To minimize computation costs, we will approximate(
∫

ϕ̆1(P1)ωi1(P1)dP1) by ϕ̆1(Pi1).

Under Assumption 5.1, Gayle (2008) shows that the difference in these two quantities is

oP(1). We also approximate(
∫

ϕ̆2(P2)ωi2(P2)dP2) by ϕ̆2(Pi2). With these approximations

we have the following solutions

ϕ̆2(P2) = 1
N ∑N

i=1 τiωi2(P2) · (∆xi2β+ ϕ̆1(Pi1))/ f̂2(P2),

ϕ̆1(P1) = 1
N ∑N

i=1 τiωi1(P1) · (ϕ̆2(Pi2)−∆xi2β)/ f̂1(P1).
(5.3)

The third step is to project these solutions into the space ofincreasing functions. The

12



results of Brunk (1958), and Mammen et al. (2001) imply that

ϕ∗
2(P) = infv≥Psupu≤P

∫ v
s=u ϕ̆2(s) f̂2(s)ds
∫ v
s=u f̂2(s)ds

,

ϕ∗
1(P) = infv≥Psupu≤P

∫ v
s=u ϕ̆1(s) f̂1(s)ds
∫ v
s=u f̂1(s)ds

.
(5.4)

For fixedβ, the backfitting algorithm therefore works as follows.

Inner Backfitting Algorithm (IBA)

Step 1.Obtain an initial estimator(ϕ∗[0](Pi1), i = 1, · · · ,N).

Step 2.Apply the following loop:

Do for r ≥ 1

ϕ̆[r]
2 (P) = 1

N ∑N
i=1 τiωi2(P) · (∆xi2β+ϕ∗[r−1]

1 (Pi1))/ f̂2(P)

ϕ∗[r]
2 (P) = infv≥Psupu≤P

∫ v
s=u

˜ϕ[r]
2(s) f̂2(s)ds

∫ v
s=u f̂2(s)ds

ϕ∗[r]
2 (P) = ϕ∗[r]

2 (P)− 1
N ∑N

i=1 ϕ∗[r]
2 (P2i)

ϕ̆[r]
1 (P) = 1

N ∑N
i=1 τiωi1(P) · (ϕ∗[r]

2 (Pi2)−∆xi2β)/ f̂1(P)

ϕ∗[r]
1 (P) = infv≥Psupu≤P

∫ v
s=u ϕ̆[r]

1 (s) f̂1(s)ds
∫ v
s=u f̂1(s)ds

ϕ∗[r]
1 (P) = ϕ∗[r]

1 (P)− 1
N ∑N

i=1 ϕ∗[r]
1 (P1i)

(5.5)

until convergence in(ϕ∗
2,ϕ

∗
1) is reached.

Convergence of the IBA is stated in the following theorem.

Theorem 5.2. (Convergence of IBA) Suppose that the assumptions of 5.1 hold. Then there

exists a solution(ϕ∗
1,ϕ

∗
2) of the system of equations (5.5).

Proof. See appendix A.3.

Given the estimates(ϕ∗
1,ϕ

∗
2), and for fixedβ, estimates of(ϕ∗

t , t = 3, · · · ,T) are derived

by similiar computations as follows:

ϕ̆t(P) = 1
N ∑N

i=1τiωi2(P) · (∆xitβ+ϕ∗
t−1(Pi1))/ f̂2(P),

ϕ∗
t (P) = infv≥Psupu≤P

∫ v
s=u ϕ̆t(s) f̂2(s)ds
∫ v

s=u f̂2(s)ds
,

(5.6)

13



followed by the mean normalization. Given estimates ofϕt , t = 1, · · · ,T, the next step is to

project this solution (an element ofFc) ontoxB . This amount to substituting the∆ϕ∗
t (P)’s

into (5.2) and solving the problem forβ. This stage of the problem has a closed form

solution given as follows:

β̆ =

[

N

∑
i=1

τi∆x′iΣ̂
−1∆xi

]−1[ N

∑
i=1

τi∆x′iΣ̂
−1∆[ϕ∗(P̂i)]

]

. (5.7)

For an arbitrary initial choice ofβ, sayβ̆[0], the outer backfitting algorithm therefore works

as follows.

Outer Backfitting Algorithm (OBA)

Do for s≥ 1

Step 1.Compute the updated estimates(ϕ∗[s]
1 ,ϕ∗[s]

2 ) by implementing the IBA initialized by

ϕ∗[s−1]
1 andβ fixed atβ̆[s−1].

Step 2.Compute the updated estimates of(ϕ∗[s]
t , t = 3, · · · ,T) by implementing the system

(5.6).

Step 3.Updateβ using equation (5.7), i.e.,

β̆[s] =

[

N

∑
i=1

τi∆x′i Σ̂
−1∆xi

]−1[ N

∑
i=1

τi∆x′iΣ̂
−1∆

[

ϕ∗[s](P̂i)
]

]

.

until convergence inβ is reached.

The final step in computing the estimator is to impose the normalization constraints.

For â := ‖β̆‖ the normalized estimates of the parameters of the model are given byβ̂ = β̆/â

andϕ̂t = ϕ∗
t /â, t = 1, · · · ,T.

To see that the sequence
{

β̆[s],∆[ϕ∗[s]],s≥ 0
}

defined by the OBA does converge, note

that the solution is characterized by the system of equations

∆[ϕ∗(P)] = arg inf
m∈F N

c

‖∆xβ̆−m(P)‖T ,

∆xβ̆ = arg inf
a∈xB

‖a−∆[ϕ∗(P)]‖T.

14



This makes it clear that the iteration of the OBA defines a series of alternating projections

between two convex and closes setsxB andF N
c . This intuition is formally stated in the

following theorem.

Theorem 5.3. (Convergence of the OBA) Suppose the assumptions of 5.1 hold. Then there

exists a solution of the OBA.

Proof. See appendix A.4.

The final issue to cover is that of obtaining estimates of the weighting matrixΣ̂. Assum-

ing that this can be calculated from consistent estimates ofβ andϕ, we propose a two-step

procedure similar to that of the two-step efficient GMM estimator. The first stage replaces

the weighting matrix with the identity matrix to obtain initial consistent estimates ofβ and

ϕ. These first-stage estimates are then used to compute an estimate of the weighting matrix,

which is used in the second stage to obtain the second-stage estimator of the parameters

of interest. In the next section, we derive the efficient weighting matrixΣ and a propose a

consistent estimator of this weighting matrix that can be computed from initial consistent

estimates ofβ andϕ.

6 Asymptotic properties of the estimator

In order to derive the asymptotic properties of the estimator, some regularity conditions

must be imposed. We turn first to the nuisance parameter, the first stage kernel estimator of

Pit0 = E[yit |wit ]. We impose conditions that ensure uniform convergence of the nonparamet-

ric estimateP̂it0. Defineγ0 := (γ10,γ20) whereγ10 := fw(wit ) andγ20 := fw(wit )E[yit |wit ].

ClearlyPit0 = γ20/γ10. We make the following assumptions

Assumption 6.1. 1. K1(u) is differentiable of order d≥ 2, the derivatives d are bounded,

K1(u) is zero outside a bounded set,
∫

K1(u)du= 1, there is a positive integer m such that

for all j < m,
∫

K1(u)[⊗ j
ℓ=1u]du= 0. 2. There is a version ofγo(w) that is continuously

differentiable to order d with bounded derivatives on an open set containingW . 3. There
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is p≥ 4 such that E[‖ỹ‖p] < ∞ and E[‖ỹ‖p|w] f0(w) is bounded. 4. The bandwidthσ1 =

σ1(N) satisfies N1−(2/p)σK+L
1 / lnN−→∞,

√
Nσ2m

1 −→ 0, and
√

N lnN/(NσK+L+2d
1 )−→ 0

Assumption 6.1 ensures that the nuisance parametersP̂i converges to the true condi-

tional expectation at a fast enough rate to ensure
√

N-convergence of the finite dimensional

parameter estimatêβ. This result is proven and discussed in Newey and McFadden (1994)

and Newey (1994b). Definemt,0(P;β) := E[∆xt |P], t = 2, · · · ,T. We require the following

assumptions on themt,0 and the bandwidthσ2.

Assumption 6.2.1. For t = 2, · · · ,T and fixedβ ∈ B , there is a version of mt,0(P;β) that is

continuously differentiable to order2 with bounded derivatives on an open set containing

W . 2. For t = 2, · · · ,T, E[‖∆xit‖2] < ∞. 3. σ2 → 0 and nσT+1
2 → ∞ as n→ ∞.

Assumption 6.2 is standard in the nonparametric literatureto obtain consistency of the

estimators of nonparametric componentsϕt (See Pagan and Ullah (1999) and Hardle et al.

(2004) for discussions). Define the distanced onΘ as follows:

d[(β,φ),(α,ψ)] := ‖β−α‖K +
T

∑
t=1

‖φt(P)−ψt(P)‖s,2

where‖ · ‖K is the Euclidean norm onℜK and‖ · ‖s,2 is the supremum Sobolev norm of

smoothness 2. In what follows, we denote the first stage estimator by(β̃, ϕ̃) and the second

stage estimator by(β̂, ϕ̂). We now state the consistency and asymptotic normality theorems.

Theorem 6.3. Let the assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 be satisfied. Thenβ̃ p−→ β0,

and for t= 1, · · · ,T, ‖ϕ̃t(P)−ϕt,0(P)‖s,2
p−→ 0.

Proof. See Appendix A.5.

Define

R(Pi) :=













−ϕ′
t−1(Pi1) ϕ′

t(Pi2) 0 · · · 0 0

0 −ϕ′
t−1(Pi2) ϕ′

t−1(Pi3) · · · 0 0
...

...
...

0 0 0 · · · −ϕ′
T−1(Pi,T−1) ϕ′

T(PiT )













, (6.1)
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εit := yit −Pit and εi := (εi1, · · · ,εiT )′. The weighting matrix that is used to define the

second stage estimator isΣ := E[R(Pi)εiε′iR(Pi)
′]. The proposed estimator forΣ is given by

Σ̂ :=
1
N

N

∑
i=1

R̂(P̂i)ε̂i ε̂′iR̂(P̂i)
′, (6.2)

where, analogously,

R̂(P̂i) :=













−ϕ̃′
t−1(P̂i1) ϕ̃′

t(P̂i2) 0 · · · 0 0

0 −ϕ̃′
t−1(P̂i2) ϕ̃′

t−1(P̂i3) · · · 0 0
...

...
...

0 0 0 · · · −ϕ̃′
T−1(P̂i,T−1) ϕ̃′

T(P̂iT )













, (6.3)

ε̂it := yit − P̂it , andε̂i := (ε̂i1, · · · , ε̂iT )′. The proof of the asymptotic properties of the second

stage estimator requires the following lemma.

Lemma 6.4. Let assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 be satisfied. Then‖Σ‖ < ∞, andΣ̂
p−→ Σ.

Proof. See Appendix A.6.

We now state the consistency theorem for the second stage theorem.

Theorem 6.5. Let the assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 be satisfied.Thenβ̂ p−→ β0,

and for t= 1, · · · ,T, ‖ϕ̂t(P)−ϕt,0(P)‖s,2
p−→ 0.

Proof. See Appendix A.7.

Finally, we state the theorem defining asymptotic normalityof both the first and second

stage finite dimensional estimators.

Theorem 6.6. If the assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 are satisfied, then

√
N(β̃−β0)

d−→ N(0,V1),

√
N(β̂−β0)

d−→ N(0,V2),
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where

V1 :=
[

E[τih
′
i0hi0]

]−1
E[τih

′
i0Σ−1hi0]

[

E[τih
′
i0hi0]

]−1
,

V2 :=
[

E[τih
′
i0Σ−1hi0]

]−1
,

and hi0 := ∂
∂β∆ϕ0(Pi0;β0)−∆xi

Proof. See Appendix A.8.

6.1 Semiparametric Efficiency Bound

We now tackle the question of whether the proposed estimatorof the finite-dimensional pa-

rameterβ is efficient. The model for which we compute the efficiency bound is the implied

model given in equation (1.1). Chamberlain (1993) shows that models defined in section

2 are not efficient when no restrictions are made on the index function and the individ-

ual specific effects. The assumptions made in this model are therefore substantive from

this point of view. The variance bound that we compute for equation (1.1) is the one that

would be attained within an SMD framework. This is not surprising given proposition 1

of Newey (1994a), which states that the asymptotic varianceof the semiparametric estima-

tor depends on the nonparametric function that is being estimated, and not on the type of

smoother used to estimate estimate it. Thus our estimation framework is as efficient as any

competing extremum estimator for the condition given in (1.1), but retains the property that

it is independent of the choice of smoother. This results in the following theorem.

Theorem 6.7. The estimator̂β of the finite dimensional parameterβ developed in section

4 is semiparametric efficient with variance bound given in theorem 6.6.

Proof. See Appendix A.9.

6.2 Estimating the asymptotic variance

In order to estimate the asymptotic variancesV1 andV2, one needs to obtain estimates ofhi0

in both cases, andΣ in the latter case. The feasible estimator ofΣ is already defined to bêΣ
in equation (6.2) and its convergence toΣ is already shown in Lemma 6.4. An estimator of
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hi0 = ∂
∂β∆ϕ0(Pi0;β0)−∆xi requires an estimator of∂∂β∆ϕ0(Pi0;β0). To this end, note that

the model (2.8) implies that fort = 2, · · · ,T,

∆ϕt0(Pit0;β0) = E[τi∆xit β0|Pit0,Pit−1,0] = E[∆xit |Pit0,Pit−1,0]β0.

This implies that an estimator of∂∂β∆ϕt0(Pit0;β0) can be defined as

∂
∂β

∆ϕ̂t(P̂it ; β̂) := Ê[τi∆xit |P̂it , P̂it−1],

whereÊ[·|P̂it , P̂it−1] is some estimator of the conditional expectation, such as a kernel es-

timator. Given the choice of this conditional expectationsestimator, and the convergence

results above, it is straightforward to show that∂
∂β∆ϕ̂t(P̂it ; β̂) = ∂

∂β∆ϕt0(Pit0;β0)+ oP(1),

t = 2, · · · ,T. Let ĥi = ∂
∂β∆ϕ̂(P̂i; β̂)−∆xi , then feasible estimators ofV1 andV2 are defined

as

V̂1 :=

[

N−1
N

∑
i=1

τi ĥ
′
i ĥi

]−1[

N−1
N

∑
i=1

τi ĥ
′
iΣ̂

−1ĥi

][

N−1
N

∑
i=1

τiĥ
′
i ĥi

]−1

,

and

V̂2 :=

[

N−1
N

∑
i=1

τiĥ
′
iΣ̂

−1ĥi

]−1

.

We end with the following proposition

Proposition 6.8. Let assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 be satisfied, and assume

Ê[τi∆xit |P̂it , P̂it−1] = E[τi∆xit |P̂it , P̂it−1]+oP(1). ThenV̂1
p−→V1 andV̂2

p−→V2.

6.3 Estimating marginal effects

Recall the model implies that the marginal effect of the covariates depends ont. The

estimated coefficientŝβ are not sufficient to characterize these marginal effects ofthe re-

gressors on the dependent variable. We therefore present feasible estimates of the marginal

effects that does not require estimation of the individual-specific effectsf0(zi). Differenti-
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ating equation (1.1) with respect toxit obtains

∂yit

∂xit
= Φ′

t0(xit β0+ f0(zi))β0

= (ϕ−1
t0 )′(ϕt0(Pit0))β0

=
1

ϕ′
t0(Pit0)

β0.

This implies that a feasible analog estimator of the averagetime-specific derivativeEt [τi∂yit/∂xit ]

can be obtained as

Êt [τi∂yit/∂xit ] =
1
N

N

∑
i=1

τi

ϕ̂′
t(P̂it )

β̂.

Likewise, a feasible estimator of the average marginal effect can be obtained as

Ê[τi∂yit/∂xit ] =
1

NT

N

∑
i=1

T

∑
t=1

τi

ϕ̂′
t(P̂it )

β̂.

The derivativeϕ̂′
t can be taken directly by applying the results of Delfour and Solesio

(1987). An alternative approach to estimating the derivative is to differentiate the equality

∆ϕt0(Pit0;β0) = E[τi∆xit β0|Pit0,Pit−1,0] to obtain

ϕ′
t0(Pit0) =

∂
∂P

(ϕt0(P;β0)−ϕt−1,0(Pit−1,0;β0))

∣

∣

∣

∣

P=Pit0

=
∂

∂P
E[τi∆xit β0|P,Pit−1,0]

∣

∣

∣

∣

P=Pit0

,

which by the analogy principle implies that an estimator of the derivative is given by

ϕ̂′
t(P̂it ) =

∂
∂P

Ê[τi∆xit β̂|P, P̂it−1]

∣

∣

∣

∣

P=P̂it

.

An immediate consequence of the above results is the following proposition.

Proposition 6.9. Let assumptions 2.1, 3.1, 5.1, 6.1, and 6.2 be satisfied, and assume that

∂
∂P

Ê[τi∆xit β̂|P, P̂it−1]

∣

∣

∣

∣

P=P̂it

=
∂

∂P
E[τi∆xit β̂|P, P̂it−1]

∣

∣

∣

∣

P=P̂it

+oP(1).

Then √
N(Ê[τi∂yit /∂xit ]−E[τi∂yit/∂xit ])

d−→ N(0,E[τi(ϕ′
t0(Pit0))

−1]2V2).
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7 Experimental Evidence

In this section, we examine the small sample properties of the estimator via Monte Carlo

experiments. Two model specifications are investigated: the first is a static panel data model

with a continuous dependent variable and an asymmetric index function. The results are

compared to the case where a known symmetric index function is assumed. The second

investigates the performance of the estimator for a dynamicpanel data probit model with

unconditional heteroskedasticity. The results in this second exercise is compared to the case

where the investigator correctly assume that the distribution of the error term is Gaussian,

but also assumes homoskedasticity of the error term.

7.1 Static panel data model

Consider the following data generating process:

yit = Φt(x1it β1+x2it β2 + f (zi))+vit , i = 1, · · · ,N, t = 1,2,3. (7.1)

In this model,x1it andx2it are both independently distribution asU(−5, 10), vit is indepen-

dently distributed asN(0, 2), andzi = (x2i1 +x2i2 +x2i3)/3. The index function is chosen

to be asymmetric about zero with range [0, 10]. Specifically,the index function is given

by:

Φt(x) =
10

1+exp(−x λ(x)
√

t)
, (7.2)

λ(x) = 0.2− 0.1
1+exp(−5x)

.

The individual specific function is given by:

f (zi) = 6

(

exp(zi)

1+exp(zi)
− 1

N

N

∑
i=1

exp(zi)

1+exp(zi)

)

. (7.3)

Finally, (β1, β2) = (0.6, 0.8). We perform 100 Monte Carlo replications of the model

with three sample sizes N: 100, 200, and 400. The mean bias andthe root mean squared

error (RMSE) are calculated for each sample size. We also perform the same Monte carlo
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Table 1: Small sample properties of the estimator of the static model.
β1 β2

Mean Bias RMSE Mean Bias RMSE
N=100
KMD 0.0061 0.0951 -0.0137 0.0746
EKMD -0.0026 0.0912 -0.0062 0.0680
RMD -0.0225 0.2630 -0.0521 0.2026
N=200
KMD 0.0085 0.0669 -0.0109 0.0527
EKMD -0.0071 0.0605 -0.0090 0.0469
RMD 0.0085 0.1843 -0.0444 0.1637
N=400
KMD 0.0044 0.0453 -0.0054 0.0347
EKMD -0.0016 0.0410 -0.0028 0.0309
RMD 0.0048 0.1407 -0.0236 0.1102

exercise under the assumption that the index function is given by 10Φ whereΦ in this case

is the standard normal CDF. The results are presented in Table 1. The first stage unrestricted

estimator is denoted by KMD, the second stage unrestricted estimator is denoted by EKMD,

and the restricted model is denoted by RMD.

The comparison between KMD and EKMD show that KMD always has ahigher mean

bias and RMSE for both parameters. However, while the difference in the mean bias is

substantial, the difference in the RMSE is relatively small. Table 1 also verifies
√

N-

convergence for both KMD and EKMD. The restricted estimatorRMD performs worse

than the unrestricted estimators. Indeed, the RMSE of the RMD is always 3 to 4 times

larger than the RME of the EKMD. The results also verifies thatlack of parametric rate of

convergence of the restricted model. Our experience from this exercise is that the algorithm

proposed in Section 5 converges fast, with the IBA converging typically in 1 to 3 iterations,

and the OBA converging in 3 to 5 iterations.
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Table 2: Small sample properties of the estimator of the dynamic probit model.
α β

Mean Bias RMSE Mean Bias RMSE
N=100
KMD 0.0509 0.3618 -0.1549 0.2335
EKMD -0.0043 0.4154 -0.1521 0.2564
RMD 0.1736 0.2806 -0.2429 0.3186
N=200
KMD 0.0081 0.2592 -0.0624 0.1515
EKMD -0.0889 0.2654 -0.0105 0.1395
RMD 0.1865 0.2746 -0.2349 0.2767
N=400
KMD -0.0284 0.1732 0.0035 0.1086
EKMD -0.0024 0.1444 -0.0177 0.1022
RMD 0.1060 0.1753 -0.1165 0.1687

7.2 Dynamic panel data probit model

For the second simulation exercise, consider the followingmodel:

yit = 1{αyit−1+βxit + f (zi)+uit > 0}, i = 1, · · · ,N; t = 1,2,3. (7.4)

Here,xit andzi are independently distributedN(0,1). The random shockuit is indepen-

dently distributedN(0, 0.3+0.1 · t). The process is initialized withyi0 = 0, and the indi-

vidual specific function is given by:

f (zi) =
exp(zi)

1+exp(zi)
−0.5. (7.5)

Again, we perform 100 Monte Carlo replications of the model with three sample sizes N:

100, 200, and 400. We also perform the same Monte Carlo exercise under the assumption

that the investigator knows thatuit is normally distributed, but incorrectly assumes the

distributionN(0, 0.5). Finally, the finite dimensional parameters are(α, β) = (0.6, 0.8).

The results are presented in Table 2. As in the previous exercise, the first stage unrestricted

estimator is denoted by KMD, the second stage unrestricted estimator is denoted by EKMD,

and the restricted model is denoted by RMD.
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The results in Table 2 indicate that the noise introduced by estimating the weighting

matrix results in the EKMD performing worse that KMD in very small samples (N=100).

The results also show that the gains in variance reduction from a parametric specification

of the index function may outweigh the increased bias for very small samples. However,

as the sample size grows, the EKMD performs uniformly betterthan both the KMD and

the RMD. The results of Table 2 again verifies
√

N-convergence of both the KMD and the

EKMD. The convergence of the algorithm is slightly slower for this exercise, with the IBA

converging typically in 2 to 4 iterations and the OBA converging in 3 to 6 iterations.

As expected all three estimators perform uniformly worse inestimating the dynamic

binary choice model than estimating the static model of the first Monte Carlo exercise.

However, the results show that the model does perform well inrecovering the finite di-

mensional parameters of interest. These exercises also highlight the potential severity of

incorrectly specifying the index function.

8 Conclusion

This paper investigates identification and estimation of a class of single-index panel data

models with semiparametric individual-specific effects. This class includes the semipara-

metric discrete-choice panel models with heteroskedasticerrors. The model allows for the

inclusion of predetermined variables, as well as lagged dependent variables. A stronger re-

striction on the individual-specific effects is needed in the latter case. We develop a general

minimum distance estimator of the finite and infinite parameters of interest. This estimator

extends the minimum distance estimator of Mammen et al. (2001) to the panel data frame-

work and has the advantage that the estimator can be computedwith either a sieve or a

kernel smoother. In the case where a kernel smoother is chosen, this paper provides a new

algorithm to compute the estimators that fully implements the restrictions of the model.

The algorithm is an extension of the backfitting algorithm proposed in Buja et al. (1989),

Mammen et al. (1999) and Mammen et al. (2001). The full algorithm is composed of an in-

ner backfitting algorithm and an outer backfitting algorithm. Convergence of this algorithm

is proved and our experience shows that both the inner and outer backfitting algorithms typ-

ically converge within 2-5 iterations. We show that the estimators of the finite dimensional
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parameters are
√

N-consistent and asymptotically normal. We show also that the estima-

tors of the infinite dimensional parameters are consistent.We derive the semiparametric

efficiency bound for this class of models and show that our estimator indeed achieves this

bound. Identification of the model does require that the individual-specific effect be inde-

pendent of one of the continuous explanatory variables given the other covariates. It may

be possible to relax this assumption under alternative restrictions of the form of the indi-

vidual specific effect. The paper provides a small Monte Carlo exercise that shows that the

estimator performs well is small samples. The simulation results verify
√

N-convergence

of the finite dimensional parameters and show that the model outperforms other models

that miss-specify the index function.

A LEMMA AND THEOREMS

A.1 Proof of Theorem 3.2

Proof. Equations (2.6) and (3.1) imply that

ϕ−1
t0 (xit β0+ f0(zi)) = ϕ−1

t1 (xit β1 + f1(zi)) ⇔
xit β0 + f0(zi) = ϕt0(ϕ−1

t1 (xit β1 + f1(zi))), (A.1)

Strict monotonicity of the index function implies that it isdifferentiable almost everywhere. Differ-

entiating equation (A.1) with respect to the continuous regressorxitK gives:

a :=
β0k

β1k
=

ϕ′
t0(ϕ

−1
t1 (xit β1 + f1(zi)))

ϕ′
t1(ϕ

−1
t1 (xit β1 + f1(zi)))

> 0, (A.2)

where the positive sign follows from the assumption that theindex function is strictly increasing.

We have from equation (A.2) thatϕ′
t0(Pit0) = aϕ′

t1(Pit0) which implies that:

ϕt0(Pit0) = aϕt1(Pit0)+ct . (A.3)
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By taking expectations of (A.3), Assumption 3.1.3 implies that ct = 0. Taking first difference of

equations (A.3) gives:

∆[ϕt0(Pit0)] = a∆[ϕt1(Pit0)]. (A.4)

Noting that equation (2.7) also holds forπ1, equation (A.4) implies

a∆[ϕt1(Pit0)] = ∆xit β0

a∆[ϕt1(Pit0)] = a∆xit β1. (A.5)

Equating the RHS of the equations in (A.5), pre-multiplyingby ∆x′it and taking expectations gives:

E[∆x′it ∆xit ]β0 = aE[∆x′it ∆xit ]β1. (A.6)

Then by the invertibility ofE[∆x′it ∆xit ] we have

β0 = aβ1. (A.7)

Equation (A.3) gives

xit β0 + f0(zi) = xit (aβ1)+a f1(zi). (A.8)

Substituting equation (A.7) into equation (A.8) gives

f0(zi) = a f1(zi). (A.9)

The assumption that‖β0‖ = ‖β1‖ = 1 implies from equation (A.7) that|a| = 1. But a > 0, which

implies thata = 1.

We first state and prove some lemmas that are needed for the existence and uniqueness of the

proposed estimator (4.2).

Lemma A.1. (i) The cartesian productS T
K :=

⊗T
j=1SK is compact in the sup-norm topology. (ii)

The spacesFc = {∆ϕ | ϕ ∈ S T
K } andF N

c = {(m, · · · ,m)′ |m∈ Fc}, where the vector in the last set

has N components, are compact in their respective sup-norm topologies.

Proof. Given thatSK is compact, claim (i) follows from Tychonov theorem on the compactness

of product spaces. Given thatS T
K is compact, and the operator∆ is (linear and) continuous in the

sup-norm,Fc is compact and, again by Tychonov theorem,F N
c is also compact.
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Lemma A.2. The objective function in the minimization problem (4.2),Q̂N(θ), is a uniformly con-

tinuous and strictly convex function ofθ.

Proof. The strict convexity follows from the observations that thefunction is strictly convex inρ
andρ is linear inθ. If θ converges uniformly toθ∗, thenρ converges uniformly toρ∗, whereρ∗

is obtained by substitutingθ∗ for θ in ρ. Hence, the objective function converges uniformly to

Q̂N(θ∗).

A.2 Proof of Lemma 4.2

Proof. By Lemma A.1 the setΘN is compact in the sup-norm topology. Since the functionalQN(θ)

is continuous (Lemma A.2), by Weierstrass theorem, it has a maximum and a minimum. Since it is

also strictly convex (Lemma A.2), the minimum is unique.

A.3 Proof of Theorem 5.2

Proof. First note that the projection of an elementh of the setϕ̃2 := {ϕ2 |ϕ2 ∈ SK } onto the set

a+ ϕ̃1 := {a+ ϕ1 |ϕ1 ∈ SK } for fixed a is equal toa plus the projection ofh−a onto the set̃ϕ1 :=

{ϕ1 |ϕ1 ∈ SK }. Hence, the backfitting algorithm is indeed a sequence of alternating projections

under the norm‖ · ‖2. Let Ta+ϕ̃1 andT ϕ̃2 denote the projectors ontoa+ ϕ̃1 andϕ̃2 respectively, as

defined by equations (5.2) to (5.4). The restrictions on the kernelK2 in Assumption 5.1 and the

monotonization step (equation (5.4)), along with Proposition 1 of Mammen et al. (2001) ensure that

the resulting projections do lie in their respective sets. Then for an arbitraryf0 ∈a+ ϕ̃1, the sequence

of alternating projections is given byQn f0 :=
(

Ta+ϕ̃1T ϕ̃2

)n
f0. Finally, given the compactness results

of Lemma A.1, Theorem 4 of Cheney and Goldstein (1959) shows that the sequenceQn f0 converges

to a fixed point whenn tends to infinity. The theorem is reproduced here for convenience.

Theorem 4. Let K1 and K2 be two closed convex sets in Hilbert space and Q the composition PlP2

of their proximity maps. Convergence of Qnx to a fixed point of Q is assured when either (a) one set

is compact, or (b) one set is finite dimensional and the distance between the sets is attained.
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A.4 Proof of Theorem 5.3

Proof. Given β andϕt−1, the projection the set̃ϕt := {ϕt |ϕt ∈ SK } is closed form and is imple-

mented by equation (5.6). Hence, steps 1 and 2 of OBA are projections of∆xβ onto the setF N
c .

Denote the corresponding projector asTF N
c

. Step 3 of the OBA is clearly a projection of∆ϕ ontoxB

under its respective norm. Denote the corresponding projector asTxB . This notation shows that the

OBA is indeed sequences of alternating projections under the norm‖ · ‖T . For an arbitraryb∈ B ,

the sequence of alternating projections is given byT nb :=
(

TxB TF N
c

)n
b. Given compactness ofF N

c

(Lemma A.1) and ofB , Theorem 4 of Cheney and Goldstein (1959) shows that the sequenceT nb

converges to a fixed point asn tends to infinity.

A.5 Proof of Theorem 6.3

In order to prove consistency of the first and second stage estimators, we first state and prove the

following auxiliary lemma.

Lemma A.3. Let W be a positive definite, symmetric with‖W‖ < ∞. LetŴ
p−→W as N→ ∞. Let

θ̌ := (β̌, ϕ̌) minimize the objective function

Q̃N :=
∫

N−1
N

∑
i=1

τiρ(wi,P,θ)′Ŵ−1ρ(wi,P,θ)ωi(P)dP

over the setΘ, andθ0 minimizeQ̃0 := E
[

τiρ(wi,θ)′W−1ρ(wi,θ)
]

overΘ. Let the assumptions 2.1,

3.1, 5.1, 6.1, and 6.2 be satisfied. Then

β̌ p−→ β0

‖ϕ̌(P)−ϕ0(P)‖s,2
p−→ 0

Proof. To begin, definẽωit (Pt) := σ−1
2 K2(σ−1

2 (Pit −Pt)), ω̃i(P) := ∏T
t=1 ω̃it (Pt), f̃P(P) := N−1∑N

i=1 ω̃i ,

m̂t(P,β) := N−1∑N
i=1τi∆xit βω̂i(P)/ f̂P(P), and m̃t(P,β) := N−1∑N

i=1 τi∆xit βω̃i(P)/ f̃P(P). Define

alsom̂(P,β) := (m̂2(P,β), · · · ,m̂T(P,β))′. Definem0(P,β) andm̃(P,β) analogously.

The law of iterated projections (Mammen et al. (2001)) implies thaťθ also minimizesQN(θ, P̂) :=
∫

(m̂(P,β)−∆ϕ(P))′Ŵ−1(m̂(P,β)−∆ϕ(P)) f̂ (P)dP, and thatθ0 also minimizesQ0(θ) := E[(m0(P,β)−
∆ϕ(P))′W−1(m0(P,β)−∆ϕ(P))]. DefineQN(θ,P) :=

∫

(m̃(P,β)−∆ϕ(P))′W−1(m̃(P,β)−∆ϕ(P)) f̃ (P)dP,
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and note thatQ0(θ0) = 0. We make the following claims:

supΘ |QN(θ,P)−Q0(θ)| P→ 0 (A.10)

supΘ |QN(θ, P̂)−QN(θ,P)| P→ 0 (A.11)

ϕ̌t ∈ SK wpa1, t = 1, · · · ,T (A.12)

Proof of claim A.10: Note that for eachθ ∈ Θ,

QN(θ,P) =

∫

(m̃(P,β)−m0(P,β))′W−1(m̃(P,β)−m0(P,β)) f̃ (P)dP

+

∫

(m0(P,β)−∆ϕ(P))′W−1(m0(P,β)−∆ϕ(P)) f̃ (P)dP

+ 2
∫

(m̃(P,β)−m0(P,β))W−1(m0(P,β)−∆ϕ(P)) f̃ (P)dP. (A.13)

Under assumptions 5.1 and 6.2, ˜m(P,β)−m0(P,β) and f̃ (P) converges in probability to 0 andf (P)

respective, and are both bounded. Thus application of the Lebesgue dominated convergence theo-

rem, the first and third terms of the RHS of equation (A.13) converges in probability to 0, and the

second term converges toQ0(θ). SinceΘ is compact, the convergence is uniform.

Proof of claim A.11: For eachθ ∈ Θ we have that

QN(P̂,θ)−QN(P,θ) =
∫

(m̂(P,β)−∆ϕ(P))′(Ŵ−1−W−1)(m̂(P,β)−∆ϕ(P)) f̂ (P)dP

+

∫

(m̂(P,β)− m̃(P,β))′W−1(m̂(P,β)− m̃(P,β)) f̂ (P)dP

+

∫

(m̃(P,β)−∆ϕ(P))′W−1(m̃(P,β)−∆ϕ(P))( f̂ (P)− f̃ (P))dP.(A.14)

Define qit := (1 ∆xit β)′. Under assumptions 5.1 , 6.1 and 6.2 we have that| 1
N ∑i qit (ωi(P)−

ω̃i(P))| ≤ ( 1
N ∑i ‖qit‖2)1/2( 1

N ∑i |ωi(P)−ω̃i(P)|2)1/2 ≤C( 1
N ∑i ‖qit ‖2)1/2(NσT+1

2 )−1(
√

N‖P̂i−Pi‖2
s,2)

1/2

→ 0, which implies that|m̂(P,β)− m̃(P,β)| and| f̂ (P)− f̃ (P)| converge to zero in probability. This,

assumptions 5.1 , 6.1 and 6.2 and the Lebesgue dominated convergence theorem imply that the

second and third terms of equation (A.14) converge to 0 in probability. Similarly, the first term con-

verges to zero in probability by assumptions 5.1 , and 6.2, bythe Lebesgue dominated convergence

theorem, and by the consistency ofŴ for W. Thus we have that|QN(P̂,θ)−QN(P,θ)| converges to

zero in probability for anyθ ∈ Θ. SinceΘ is compact, the convergence is uniform overΘ.

Proof of claim A.12: To prove this claim, it is sufficient to consider the isotonickernel smoother

ϕ̌2. One obtains this monotone function from the unconstrainedestimate by replacing parts of the
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unconstrained smoother with finite constant pieces (Mammenet al. (2001)). These pieces clearly

satisfy the restrictions ofSK . Outside these intervals, assumptions 5.1, and 6.2 ensure that the

unconstrained smoother satisfies the restrictions ofSK wpa1.

Sinceθ̌ is the minimizer ofQN(θ, P̂), we have that

0 ≤ QN(θ̂, P̂) ≤ QN(θ0, P̂)

≤ |QN(θ0, P̂)−QN(θ0, P̂)|+ |QN(θ0, P̂)−Q0(θ0)|+Q0(θ0)

≤ sup
Θ

|QN(θ0, P̂)−QN(θ0, P̂)|+sup
Θ

|QN(θ0, P̂)−Q0(θ0)|+Q0(θ0)
P→ 0, (A.15)

by equations (A.10) and (A.11). Also,

0 ≤ Q0(θ̌)

= QN(θ̌,P)−QN(θ̌, P̂)+Q0(θ̌)−QN(θ̌,P)+QN(θ̌, P̂)

≤ sup
Θ

|QN(θ,P)−QN(θ, P̂)|+sup
Θ

|Q0(θ,P)−QN(θ,P)|+QN(θ̌, P̂)
P→ 0, (A.16)

by claims (A.10), (A.11), (A.12) and equation (A.15). Sincethe model is identified, for allδ > 0

there existsε > 0 such thatd[(β,ϕ),(β0,ϕ0)]> δ⇒Q0(β,ϕ)> ε, which implies that that Pr{d[(β̌, ϕ̌),(β0,ϕ0)]>

δ} ≤ Pr{(Q0(β̌, ϕ̌) > ε} −→ 0.

We are now in a position to prove Theorem 6.3.

Proof. By Lemma A.3, and settinĝW = W = IT−1, whereIT−1 is theT − 1-dimensional identity

matrix, we obtain the desired result.

A.6 Proof of Lemma 6.4

Proof. We have that‖Σ‖ ≤ E[‖Rεε′R′‖] ≤ E
[

‖R‖2‖ε‖2
]

≤ E
[

‖R‖4
]1/2

E
[

‖ε‖4
]1/2

< ∞ , where

the last inequality comes from the uniform boundedness ofΘ and Assumption 6.2. Defining

ûi := R̂(P̂i)ε̂i andui := Riεi, we have that‖∑N
i=1 ûi û′i/N−E[uiu′i ]‖ ≤ ‖∑N

i=1 ûi û′i/N−∑N
i=1 uiu′i/N‖+

‖∑N
i=1 uiu′i/N −E[uiu′i ]‖. The last term isoP(1) by the LLN. Also, we have that‖∑N

i=1(ûi û′i −
uiu′i)/N‖≤∑N

i=1‖ûi û′i −uiu′i‖/N≤∑N
i=1‖ûi −ui‖2/N+2∑N

i=1‖ui‖‖ûi −ui‖/N≤∑N
i=1‖ûi −ui‖2/N+

2
(

∑N
i=1‖ui‖2/N

)1/2(
∑N

i=1‖ûi −ui‖2/N
)1/2

. By adding and subtractinĝR(P̂i)εi, andR(P̂i)εi , and

by application of the triangle and Cauchy-Schwartz inequalities, we have that∑N
i=1‖ûi −ui‖2/N ≤

∑N
i=1(‖R̂(P̂i)‖‖P̂i −Pi‖+‖R̂(P̂i)−R(P̂i)‖‖εi‖+‖R(P̂i)−R(Pi)‖‖εi‖)2/N ≤C1∑N

i=1‖P̂i −Pi‖2/N+
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supP‖R̂(P)−R(P)‖∑N
i=1‖εi‖2/N+C2(∑N

i=1‖P̂i −Pi‖4/N)1/2(∑N
i=1‖εi‖4/N)1/2+2C1supP‖R̂(P)−

R(P)‖(∑N
i=1(‖P̂i −Pi‖2/N)1/2(∑N

i=1‖εi‖2/N)1/2+ C1C2(∑N
i=1(‖P̂i −Pi‖4/N)1/2 (∑N

i=1‖εi‖2/N)1/2,

where the constantC1 comes from the uniform boundedness ofR̂ andC2 comes from the uniform

Lipschitz condition. Assumptions 5.1, 6.1.1, and Theorem 6.3 imply that all the terms on the RHS

of the last inequality converge in probability to zero. Thus‖∑N
i=1 ûi û′i/N−∑N

i=1 uiu′i/N‖ = oP(1).

Furthermore,∑N
i=1‖ui‖2/N ≤C∑N

i=1‖εi‖2/N = Op(1) by Assumption 6.1.1. Thus‖∑N
i=1 ûi û′i/N−

E[uiu′i ]‖ = oP(1).

A.7 Proof of Theorem 6.5

Proof. SetŴ = Σ̂ andW = Σ. Then application of Lemmas 6.4 and A.3 obtains the desired result.

Lemma A.4. Consider the problem of Lemma A.3. Then under the conditionsof Lemma A.3

√
N(β̌−β0)

d−→ N(0,V),

where

V :=
[

E[τih
′
i0W

−1hi0]
]−1

E
[

τih
′
i0W

−1ΣW−1hi0
][

E[τih
′
i0W

−1hi0]
]−1

.

Proof. Note that the backfitting algorithm works by iteratively solving for ϕ given a fixedβ, and

then solving forβ. Thus we have that

g(wi ,β,ϕ) =
∂

∂β
Q0(wi ,β,ϕ)

and

ϕ = arg max
m∈Fc(β)

E[Q(xi,β,m)].

The notationFc(β) makes it explicit that the resulting estimatorϕ = ϕ(·;β) is a function of beta.

Proposition 2 of Newey (1994a) therefore implies that the estimation ofϕ can be ignored in calcu-

lating the asymptotic distribution of̌β. Therefore, in what follows, we ignore the estimation ofϕ in

the calculation of the asymptotic distribution ofβ̌.

Definehi0(P̂i;β) := ∂∆ϕ0(P̂i ;β)/∂β−∆xi. Theorem 3.2 implies that for any solutionβ to (4.2),

aβ is also a solution, including wherea = ‖β‖−1. By construction,̌β = β∗/‖β∗‖ ∈ int(B1). Taking
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a mean value expansion ofg(wi , β̌,ϕ0(P̂i ; β̌)) obtains

√
N(β̌−β0) = −

[

M̂1(β̄,W)+ M̂2(β̄,W)
]−1

[

1√
N

N

∑
i=1

τihi0(P̂i)
′W(∆x′iβ0−∆[ϕ0(P̂i)])

]

,

=
[

M̂1(β̄,W)+ M̂2(β̄,W)
]−1

[

1√
N

N

∑
i=1

τihi0(P̂i)
′W(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)])

]

,

where

M̂1(β̄,W) :=
1
N

N

∑
i=1

τihi0(P̂i ; β̄)′Whi0(P̂i ; β̄),

M̂2(β̄,W) :=
1
N

N

∑
i=1

τi
[

(∆[ϕ0(P̂i ; β̄)]−∆xiβ̄)W−1⊗ IT−1
]

[

∂
∂β

h0(P̂i; β̄)

]

,

β̄ ∈ (β0, β̌), and⊗ denotes the Kroneker product. The inverse term on the RHS exists with prob-

ability one becauseW is positive definite, and∆x and ∂
∂β h0(P̂i ;β) has full rank. Defineg(xi , γ̂i) :=

τihi0(P̂i)
′W(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)]). The rest of this section of the proof involves checking condi-

tions (i)-(iv) of Theorem 8.11 of Newey and McFadden (1994).Notice thatg(xi ,Pi0) = 0 implying

thatE[g(xi ,γi0)] = 0 andE[‖g(xi ,γi0)‖2] = 0. Linearizingg(xi , γ̂i) around(γi0) givesD(wi, γ̂−γ0) :=

τihi0(Pi0)WRi f−1(wi)Gi[γ̂(wi)− γ0(wi)], where

f−1(wi) := diag
(

f−1(wit ), t = 1, · · · ,T
)

Gi := diag((−Pit0 1), t = 1, · · · ,T)

γ0(wi) := (γ10(wi1),γ20(wi1), · · · ,γ10(wiT ),γ20(wiT ))

γ̂(wi) := (γ̂1(wi1), γ̂2(wi1), · · · , γ̂1(wiT ), γ̂2(wiT ))′.

Conditions (i) and (ii) of Theorem 8.11 ofNewey and McFadden(1994) are satisfied by noting that

boundedness of∆xi , of γ0 and its first two derivatives ofK , and ofW gives‖g(xi , γ̂i)−D(wi, γ̂− γ0)‖≤
b(w)‖γ̂(wi)− γ0(wi)‖2, with E[b(w)] < ∞, andD(w,γ) = τihi0(Pi0)

′WRi f−1(wi)Giγ≤ c(w)‖γ‖ with

E[c(w)2] ≤ ∞. Condition (iii) is also immediately satisfied by observingthat
∫

D(w,γ) fw(w)dw =
∫

ν(w)γ(w)dw, whereν(wi) := τihi0(Pi0)
′WRiGi. Given continuity ofv(w) onW and assumption

6.1.1, verification of conditions (iv) of Theorem 8.11 of Newey and McFadden (1994) is given in

the proof thereof. Therefore, by Theorem 8.11 of Newey and McFadden (1994)

1√
N

N

∑
i=1

g(wi , γ̂)
d−→ N(0,Ω),
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whereΩ = Var(δ(w)), andδ(w)= ν(w)q−E[ν(w)q]. Application of the law of iterated expectations

show thatE[ν(w)q] = 0. Also, straightforward calculations show thatν(wi)qi = τihi0(Pi0)IiWRiεi,

whereεi = (yi −Pi0). Therefore,Ω = E[τihi0(Pi0)
′WRiεiε′iR′

iWhi0(Pi0)]. By assumptionE[τiRiεiε′iR′
i |w] =

Σ(w)= Σ. By Applying the law of iterated expectations, we have thatΩ = E[τihi0(Pi0)
′WΣWhi0(Pi0)].

DefiningM(W) := E[h′i0Whi0], straightforward calculations show that

‖M̂1(β̄,W)−M(W)‖ ≤ ‖ 1
N ∑i τih′i0Whi0−E[h′i0Whi0]‖

+ 2
N ∑i ‖hi0‖‖W‖‖hi0(P̂i ; β̄)−hi0(P̂i ;β0)‖

+ 2
N ∑i ‖hi0‖‖W‖‖hi0(P̂i ;β0))−hi0‖

+ 1
N ∑i ‖hi0‖‖W‖‖hi0(P̂i ; β̄)−hi0(P̂i ;β0)‖‖hi0(P̂i;β0))−hi0‖

+ 2
N ∑i ‖hi0‖‖W‖‖hi0(P̂i ; β̄)−hi0(P̂i ;β0)‖2

+ 2
N ∑i ‖hi0‖‖W‖‖hi0(P̂i ;β0))−hi0‖2

(A.17)

By the LLN, the first term on the RHS of equation (A.17) isoP(1). Note that

‖hi0(P̂i ; β̄)−hi0(P̂i;β0)‖ = ‖ ∂
∂β

ϕ0(P̂i; β̄)− ∂
∂β

ϕ0(P̂i ;β0)‖,

which isoP(1) by the continuous mapping theorem and by the consistency ofβ̄ for β0. This and the

boundedness conditions onhi0 andW imply that the second and fifth terms on the RHS of equation

(A.17) areoP(1). Furthermore,

‖hi0(P̂i;β0))−hi0‖ = ‖ ∂
∂β

ϕ0(P̂i)−
∂

∂β
ϕ0(Pi0)‖,

which isoP(1) by the same conditions. This, along with the above convergence and boundedness

conditions imply that the third, fourth, and sixth terms on the RHS of equation (A.17) are alloP(1).

We thus have that

M̂1(β̄,W) = Eτi[h
′
i0Whi0]+oP(1).

Note also that

M̂2(β̄,W) ≤ 1
N ∑

i

τi‖
∂

∂β
ϕ0(P̂i; β̄)‖‖W‖‖I‖‖∆ϕ0(P̂i; β̄)−∆xiβ̄‖ = oP(1)

by the consistency theorem, and the boundedness conditionsonW and ∂
∂βϕ0(P̂i; β̄). Thus we have

thatM̂1(β̄,W)+ M̂2(β̄,W) = M(W)+oP(1).
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Since∑N
i=1g(wi , γ̂)/

√
N = OP(1), the Slutsky theorem gives

√
N(β̌−β0)

d−→ N(0,M(W)−1ΩM(W)−1).

A.8 Proof of Theorem 6.6

Proof. SettingW = I in Lemma A.4 obtains

√
N(β̄−β0)

d−→ N(0,V1),

whereV1 := [E[τih′i0hi0]]
−1E[τihi0(Pi0)

′Σ−1hi0(Pi0)] [E[τih′i0hi0]]
−1. SettingW = Σ−1 and expanding

aroundβ0 obtains

√
N(β̃−β0) =

[

M̂1(β̄,Σ−1)+ M̂2(β̄,Σ−1)
]−1

[

1√
N

N

∑
i=1

τihi0(P̂i)
′Σ−1(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)])

]

,

with
√

N(β̃−β0)
d−→ N(0,V2) by Lemma A.4). SettingW = Σ̂−1 and expanding aroundβ0 obtains

√
N(β̂−β0) =

[

M̂1(β̄, Σ̂−1)+ M̂2(β̄, Σ̂−1)
]−1

[

1√
N

N

∑
i=1

τihi0(P̂i)
′Σ̂−1(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)])

]

.

Note thatM̂1(β̄, Σ̂−1)− M̂1(β̄,Σ−1) ≤ N−1∑N
i=1 τi‖hi0(P̂i , β̄)‖2‖Σ̂−1 − Σ−1‖ ≤ N−1∑N

i=1C‖Σ̂−1 −
Σ−1‖= oP(1), andM̂2(β̄, Σ̂−1)−M̂2(β̄,Σ−1)≤N−1∑N

i τi‖ ∂
∂β ϕ0(P̂i; β̄)‖‖I‖‖∆ϕ0(P̂i ; β̄)−∆xiβ̄‖

∥

∥Σ̂−1−Σ−1
∥

∥≤
C‖Σ̂−1−Σ−1‖ = oP(1). Also,

vec
(

N−1/2∑N
i=1τihi0(P̂i)

′(Σ̂−1−Σ−1)(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)])
)

=
(

N−1/2∑N
i=1 τi[(∆[ϕ0(P̂i)]−∆[ϕ0(Pi0)])⊗hi0(P̂i)]

′)(vec[Σ̂−1−Σ−1]
)

.

Asymptotic normality of the first stage estimator implies that the first term on the RHS of the

equality in parenthesis isOp(1). The second term on the RHS of the equality in parenthesis isoP(1)

by Lemma 6.4. Thus Slutsky’s theorem implies that
√

N(β̂− β̃) = oP(1), which obtains

√
N(β̂−β0)

d−→ N(0,V2).
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A.9 Proof of Theorem 6.7

Proof. The proof of efficiency uses the results developed in Newey (1994a). To proceed, we first

set up the environment so that the results are directly applicable.

As noted in section 5, the objective function in (4.1) can be written by concentrating outϕ, and

writing ϕ as a function ofβ, ϕ(Pi0;β). The derivative of (4.1) with respect toβ is then given by

EQ
[

τihi(Pi0;β)[Σ(w)]−1[∆[ϕ0(Pi0;β)]−∆xiβ0
]

= EQ[m(xi ,β,ϕ,Pi0)] = 0,

wherehi := ∂
∂β∆ϕ(Pi0;β)−xi . Furthermore, the limit of our estimateϕ̂ maximizesEQ[S(xi ,β,ϕ,Pi)].

Thus by proposition 2 of Newey (1994a), the estimation ofϕ can be ignored in calculating the

asymptotic variance. So we work only withϕ(P;β) = ϕ0(P;β).

Let the distributionQ belong to a general family of distributionsQ . Define the parametric

submodelQ (η) := {Qη : Qη ∈ Q , Qη = Q0 at η = 0}. We assumefη to be a probability density

relative to a fixed measureν, the mapη 7→
√

fη(w) is continuously differentiable in a neighborhood

of 0, andη 7→
∫
[

(∂ fη/∂η)2/ fη
]

dν is finite and continuous in this neighborhood. Then by Lemma

1.9 of van der Vaart (1998),η 7→ Qη is a differentiable path. We use this differentiable path to

induce parametric submodels for the parameters thatβ̂ and P̂i are estimating. That is, we define

µ(η) = µ(Qη) := plim β̂ andPi(η) = Pi(Qη) := plim P̂i, whereµ(Qη) satisfies:

Eη[m(x,µ,P(η))] = 0 (A.18)

The rest of the proof involves finding the pathwise derivative d(w) satisfying ∂µ(η)
∂η = E[d(w)g(w)],

whereg(w) := ∂
∂η|η=0

ln fη(w) is the corresponding score. Then the variance bound for the estimation

of µ(η) is Var(d(w)). Differentiating equation (A.18) with respect toη and solving for∂µ(η)
∂η gives

∂µ(η)

∂η
= −M−1

{

E

[

∂
∂P

m̃(x,β0,P(η))
∂P(w,η)

∂η

]

+
∂

∂η
Eη [m̃(x,β0,P0)]

}

, (A.19)

whereM := ∂
∂βE[m(x,β0P0)] = E[h′i0{Σ(w)}−1hi0], which is invertible by assumption (3.1.3). From

equation (A.18), the last term on the RHS of equation (A.19) is zero. Definingδ(x) := ∂
∂Pm(x,β0,P(η))
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and applying the law of iterated expectations toP(w,η) = E[y|w] gives

∂µ(η)

∂η
= −M−1

{

∂
∂η

Eη[δ(w)(y−P0(w))]

}

= [−(M−1δ(w)(y−P0))S(w)] (A.20)

Thus givingd(w) = −M−1δ(w)(y−P0). Noting thatδ(wi) = τih′i0{Σ(w)}−1Ri, we have that

Var(d(w)) = E
[

τih
′
i0{Σ(w)}−1hi0

]−1
E
[

τihi0{Σ(w)}−1RΩR′{Σ(w)}−1hi0
]

E
[

τih
′
i0{Σ(w)}−1hi0

]−1
,

whereΩ = E[(y−P0)(y−P0)
′|w]. Note thatRΩR′ = E[R(y−P0)(y−P0)

′R′|w] = Σ(w). This gives

Var(d(w)) = E
[

τih
′
i0{Σ(w)}−1hi0

]−1
.

Finally, the assumption thatΣ(w) = Σ obtains the asymptotic variance ofβ̂ derived in theorem

6.6.
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