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Abstract

In this paper, we explore identification and efficient semapzetric estimation of
a class of nonlinear panel data index models with small-Tickvincludes a class of
single-index panel discrete-choice models. The modelalfor the inclusion of pre-
determined variables, lagged dependent variables, antl@rametric specification of
the individual-specific effects. The paper provides a fdawpnsistent, asymptotically
normal and efficient estimator for the finite-dimensionalgpaeters, and a consistent
estimator of the unknown index function. The estimator tyed in this paper may
be computed with any smoother, be it sieves or kernel smothiée propose a pow-
erful new kernel-based modified backfitting algorithm to pore the estimator. The
algorithm fully implements the identifying restrictions$ the model. We study the
small sample properties of the estimator via Monte Carlbrigpies. The results indi-
cate that the estimator performs well in recovering thediditnensional parameters of
interest. The simulation results also show that, in smatias, the estimator outper-
forms more parametric models with various mis-specificetiof the index function.
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1 Introduction

This paper is concerned with identification and estimatiothe following semiparametric
regression model

Yit:th(XitB—f-f(Zi))—l-Sit (i:]-?“'?N?t:l?”'?T)? (11)

wherex;; is aK-dimensional vector of random variables that may contays laf the de-
pendent variable as well as other predetermined variahlesanL-dimensional vector of
time-constant random variables; agdis an individual-time specific idiosyncratic shock
assumed to be mean independent of the other explanatogblesi The parameters of
interestard, ®:={d;, t=1 ---, T} andf, wheref is aK-dimensional vector, thé’s
are strictly increasing and smooth unknown functions, firglan unknown function.

The estimator developed in this paper builds on previoukwbChamberlain[(1980),
Newey (1994a), Chen (1998), and Arellano and Carfasco j2@®8ame a few), concern-
ing the estimation of binary choice panel data models witiMdual-specific effects. The
common strategy of these papers, as well as ours, is to inmpss&ctions on the condi-
tional distribution of the individual-specific effects,ratitioned on the observed regressors.
However, the estimator developed here differs in a variétyays. Our own interest goes
beyond the binary choice framework. Any model that can begmted in the form of equa-
tion (I.1) can be estimated using the algorithm developéaigpaper. In the next section,
we provide two examples of how equati@n{1.1) may be derivaa fmore familiar single-
index panel data models. The assumptions required on tivedoél specific effects will
depend on the nature of the observed regressors.

The estimator proposed in this paper treats both the indetifins®; and the function
f as unknown functions. The models proposed in Chamberl&80)lassumes that the
index function®; is known, and thaf (z) is known up to a set of finite dimensional pa-
rameters._Newey (1994a) extends this framework to allow torbe an unknown function,
while maintaining the parametric specification of the infiexction. These models assume
that the the explanatory variables are all strictly exogsnorhe model presented in this
paper is therefore an extension of the model presenied irefdE@894a) to allow for prede-
termined variables and an unspecified time specific indegtiom. In the discrete choice



framework, Chenl (1998) also extends the framework of NewW®@4a) by relaxing the
parametric specification of the index function, but mamsahe assumption that all of the
explanatory variables are strictly exogenous. Includaggked-dependent variables into the
set of regressors requires stronger assumptions on thenslaip between the individual
specific effects and the regressors, as discussed in theewkin. Arellano and Carrasco
(2003) develops a panel data discrete choice model thavsfior the individual specific
effect to be related to the explanatory variables in a lessicgive way than suggested in
this paper. They also allow for all the explanatory varialitebe predetermined. However
the model presented by Arellano and Carrasco (2003) rexjthia the index function is
known.

Semiparametric panel data models specified similar to equ@f.1) with an unknown
index function can be estimated by a series or sieve minimistarite estimator (see
Newey and Powell (2003), Ai and Chen (2003), and Chen (200Gayle and Viauroux
(2007) show that the resulting estimator of the finite dinemal parameters ar¢/N-
consistent with a Gaussian limiting distribution. In thesger, we present a general min-
imum distance estimator and a kernel-based algorithm topatenthis estimator. The
algorithm may also be implemented using sieve based smmothEhe algorithm pre-
sented here adopts the backfitting algorithm_of Buja el &8¢9)IMammen et all (1999)
and Mammen et all. (2001) to the panel data context. A key sidrmprovided by our algo-
rithm is the estimation of additive models with monotone poments, where the additive
components are specified as the difference between two mo&cbmponents. We pro-
vide sufficient conditions under which the algorithm comges. We show that the resulting
estimator of3 is v/N-consistent with a Gaussian limiting distribution. The gssmametric
efficiency bound is derived and we show that the proposethasir achieves this bound.

The paper provides two Monte Carlo exercises that confirncdingergence rate of the
proposed estimator. In the first exercise, the dependerablarns continuous, all the ex-
planatory variables are strictly exogenous, and the indegtfon is asymmetric about zero.
We show that wrongly assuming a symmetric index functiorhsaga “stretched” normal
distribution function significantly biases the estimatéthe finite dimensional parameters.
The second exercise simulates a dynamic probit model witonoiitional heteroskedas-
ticity. The proposed model also works well in this enviromtye@nd outperforms a model
where the index function is known, but the error term is as=iito be homoskedastic.



The rest of paper is organized as follows: the following isectmotivates equation
(@T.1) by describing how it is derived from various economiod®ls. Section 3 discusses
identification while Section 4 presents the estimator. iBe& presents the algorithm used
to compute the estimate. Section 6 derives the large samppegies of the estimator
and propose estimators of the asymptotic variances anég@gweterivatives. Section 7
is devoted to the Monte carlo simulations and Section 8 cwmied. All the proofs and
auxiliary lemmas are to be found in the appendix of the paper.

2 The Model

In this section, we discuss two examples of how equalfiaf) (& derived from more prim-
itive models. The first example discusses relaxing the ilogakity assumption in the clas-
sical Mincer wage regression, and the second example is andgrpanel data discrete-
choice model.

EXAMPLE 1. Semiparametric panel data Mincerian wage equation withisarametric
individual effects Consider the wage equation fdrindividuals observed ovélr consecu-
tive time periods

INWi = R(B1St + B2Eit + BsEZ +XitBa+ 1) +ur (i=1,---,N; t=1---,T), (2.1)

where for individuali in periodt, W; is the average hourly wage rat8; is the level of
completed schoolings;; is the level of labor market experience, agdare other observed
individual-time varying characteristics. Thg's as well asS; andE;; may be predeter-
mined in that they may be partially determined by laggedesfu;;. In this contexty; is
interpreted is the individual’s time invariant, unobsehability. To keep things simple, as-
sume thati; has zero mean and is mean independent of all the explanatoaples] The
restriction ofi, t =1,---, T to the identity function results in the popular log-lineangl
data wage equation (see Altug and Miller (1990) and Altug Milter (1998)for example).

Assume that there exists a set of proxdesuch that the individual specific effect can be

1This assumption abstracts away from sample selectionderaions where the distribution of observed
wages is potentially different from the wage offer disttibu.



decomposed gs = f(z) + Vi, wherey; is independent of (i, St,Eit), t =0,---,T). One
alternative is to specify; to be the time average of the strictly exogenous explanatory
variables (see_Mundlak (1978), Newey and McFadden (1994),@Gayle and Viauroux
(2007)). However this choice leads to a time inconsistemoplem where it is not clear
how to treat a new year of observation, Say- 1 given that the model, anflz) in partic-

ular, is estimated with the firgt cross sections. An alternative that avoids this problem is
to assume that is composed of time invariant measures of ability such asn@Axmed
Forces Qualification Test (AFQT) scores. Equatlonl(2.1)mamritten as

E[INWk |St, Eit, %, 2,Vi] = R(B1St + B2Eit + B3EZ +%itBa+ T (z) + V). (2.2)

Assume that the density of, fy is continuous. This density is not a function of the ex-
planatory variables by assumption. We can therefore iategyuty; in equation[[ZR) to
get

E[INW|St, Eit, X, 2] = Pt(BaSt + B2Eit + BsEf +%itBa+ f(z)). (2.3)

By definingeit := InW — E[InW |St, Eit, X, z] we obtain equatiori(1l.1).

EXAMPLE 2. Dynamic panel data binary choice model with semiparametritividual
effects For the second example, consider the modelNandividuals observed oveF
consecutive time periods

Vi = 1{ayit—1+Wity+ 4 — Ui > 0} i=1---,N; t=1..-T), (2.4)

wherew; is a set of strictly exogenous variables. Defige= (wig,---,wit). Assume
that uy is distributed according to the cdf;, which is not a function oflyit_1, Wi, 14).
This assumption is substantive as it rules out conditioetétoskedasticity ofi; condi-
tional on(yit—1, Wi, I4). However, it does allow for unconditional heteroskedatstit/nder
homoskedasticity, Manski (1987) derives an estimator umggker assumptions on the
individual-specific effect.| Honoré and Kyriazidou (2008¥tends the model af Manski
(1987) to include the lagged dependent variable. Howelvendsulting estimators are not
v/N-consistent, and the asymptotic distribution is genenatiignown.

The suggestion of this paper is to assume that there exigsda strictly exogenous
time-invariant regressogs such thapy := f(z). This is a stronger assumption than the one



made in Example 1, in that the model does not allow for thetemize of the pure random
effectsy;. To is why, note that the lagged dependent variggpla would necessarily depend
onv;, which would violate the independence assumption requoeaterive the estimator.
The assumption made here implies that

yir = L{ayit—1 +Wiry+ f(z) —ur > 0} (i=1---,N; t=1..-T). (2.5)

Definingxit := (Yit—1, Wit ) andeir :=Yit — E[Yit|Xit, z] obtains equatiori{(1l.1). The estimator
derived in this paper uses only the information providedqoation [1.]l). The resulting
minimum distance estimator therefore does not require tivagéhe initialization ofy;.
This implies that the resulting estimator is not subjechinitial conditions problem (see
Honore and Tamer (2006)) in that it is robust to mis-spedificeof the distribution ofy;g
conditioned ony.

These two examples show that under certain assumptionsyaaqgpbopriately defining
z, equation[L.J) is implied by a variety of models that are popular in appliextkv Equa-
tion (I.]) is also of interest in its own right. It extends taBeM model ofi Chen|(1995) by
relaxing the parametric specification of the link function.

Returning to equatiori_(1.1), define the conditioning veetpr= (Xi,z). By taking
conditional expectations of; conditioned orw;; in equation[(T.I1) we obtain

Pe:=E(yi [W) =P (B+f(z)), (=21--- N t=1..-T). (2.6)

We formalize the monotonicity constraint on the index fumecthat will be maintained in
this paper in the following assumption.

Assumption 2.1.Fort =1,---, T, the index functiorp; : R — R is strictly increasing.

Under assumptioh 2.1 the index function can be inverted. neefie inverse index
function¢yo := tDt‘Ol. Equation[[Z6) implies that

dio(Pt) =%tBo+ fo(z), (i=1,---,N; t=1,..-T), (2.7)



which in turn implies
Aloio(Pr)] = OxitBo, (i=1,---,N; t=2,---T), (2.8)

whereA[d1o(Pt)] := ¢to(Pt) — ¢t—1,0(Pt—1) andAxitBo := (XitBo — Xit—1Bo). The time in-
variant restriction orfo(z) is implicitly imposed by the first differencing of equatida ),
and will therefore not need to be made explicit in estimatiSimce fo(z) will not be es-
timated jointly with the other parameters of the model, tbmputational cost due to the
possibly large dimension @f is incurred only once in the estimation gt

3 Identification

Define¢ := (¢1,---,dT). The parameter vector we are interested in identifying stk
by = (B,¢, f). The goal of the section is to prove that under a set of assangythere is
a unique parameter vectog = (Bo, o, fo) that satisfies equation(2.6). Ligt|| be a norm
onRK. The restrictions are formally stated in the the followirsgamption.

Assumption 3.1. 1. For at least one k [1,---,K], Xk is not contained in;z Without
loss of generality, let k= K.

2. rank E[AX Axit]) = K.

3. [IBll = 1and Ei¢(R)] = O.

Assumptior-31L]1 is satisfied if the set of regressors coreedetermined variables
andz is composed of all strictly exogenous variables for indiahi. It is also satis-
fied if z is composed of time invariant characteristic of the indist] as discussed in the
first example. In the case where all the explanatory vargaate strictly exogenous, this
assumption means that one of the regressors is excludedzrom similar conditional
independence assumption is used. in Honoré and | ewbellj26@btain identification of
their finite dimensional parameter vector. Honoré and Ledin2002) impose no other re-
strictions on the dependence between the individual ediedthe other regressors. The es-
timator proposed in this paper therefore makes more rég&iassumptions on the depen-
dence between the individual effect and the other regresban the estimator developed
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inHonoré and Lewbell (2002). However, the estimator pegubin this paper provides a
convenient framework for predictions and simulations (itaned on the observables).
As shown in_Newey (1994a), this conditional independensearaption is not needed if it
is assumed that the index function is known.

Part[2 of assumption3.1 is the full rank assumption neededémntification of the
modelrt It requires thak; does not contain time-constant random variables. Howdwer,
effect of time-constant random variables can be contrdgtety including them irg.

Part[3 of assumption 3.1 are the scale and location norntialimarequired for point
identification of the modett. The assumption thd3|| = 1 fixes the scale of the parameter
in the model. This normalization is frequent in single indegdels (see¢_Manski, 1985
and/ Manski; 1987 for example). An alternative normalizat{see Horowilz} 1992 and
Ichimura, 1993) is to assume that the first componeng;dias a probability distribution
conditional on the remaining components that is absolweftinuous with respect to the
Lebesgue measure, and then assume|fhat= 1. Identification of the model can also
be proven under this alternative normalization. The assieamphat E[¢(F)] = O fixes
the location of thep’s and f. This is one of many alternative normalizations that can be
imposed. This particular normalization is chosen becatisei® easy to implement in
proposed algorithm.

Assume that the parameter vecter satisfies the restrictions in Assumptionl3.1. Let
the alternative modet; = (31, @1, f1) be observationally equivalent 1 in that

Pt = @1 (%itBr+ fi(z)), (i=21,---,N; t=1..-T). (3.1)

The identification theorem is stated as follows.

Theorem 3.2. (Identification) If (i) (®g, t =1,---, T) satisfy assumptidnd.1, arfd)
satisfies assumpti@nB.1, thBe= 1, fo = f1, andfort=1,--- T, ¢t 0= ¢t 1.

Proof. See appendix’All O



4 The Estimator

Suppose a sample df independent realizationyi,xt,zt=1,---,T; i=1--- N) are
drawn from the distribution of th& x (K + L + 1)-dimensional random matrigy, X, z)
with supporty x x x z, wherey C R, x C ®K, andz C ®-. Let andw := (x,2) and
let f(w) be the probability density function of the distribution @ition defined orx x z
with respect some dominating measure.

Because the predicted outconf@s:= E[yi|wit] = /(Y f(y, Wit )v(dy))/ fw(wit) has the
density densityfy, in the denominatorf,, must be bounded away from zero. We therefore
impose a fixed trimming condition by defining the compact stibgs C x x z where
fw(w) is bounded away from zero am . This fixed trimming condition imply that there is
a compact connected subgetC R in which all theP's lie. Let/\gz(:/() ={fecc?x):
| flls2 < €2 < o}, where| - [|s2 is the supremum Sobolev norm (see Newey (1994b)), and
S« be a compact subset Aﬁz(:/(), composed of strictly increasing functions. Define the
functionA asa:= (ay,...,ar) — Aa:=(ap—ay,...,ar —ar_1)’ and let

5 = {a—Af(a))acOT, f(a) = (fi(ay) - fr(ar)), f:0— 0O},
Feo = {a—Of(@)eF|fiesgt=1,--T}.

Assume thaBg := (B, $o)’ € © 1= B x F¢, wheres C 0K is compact and convex with
non-empty interior. We remark that the vecttxf3 is an element of the space, and
Ald(P)] = (¢2(P2) = ¢1(P1), ---, ¢7(Pr) —d7-1(Pr-1))" is an element ofrc. We further
require that the induced density(P) also be bounded away from zero @n This holds in
general given boundedness conditiondgandy (see Mood et all (1974), sections 5 and 6
for detailed discussions). Define the indicator functigr= 1{wi € W }, lett; := |‘|tT:1Tit
and define the residual vectptw,8) := (A[$p(P)] — AXB). Let 8 minimize the following
objective function

Qo(8) := E [tp(w,0)'[5] Lp(w, e)], (4.1)

whereX is a (T — 1)-dimensional symmetric, positive definite weighting mafior any
givenw. In generalé will be set valued. However, the identification results afaren{ 3P
imply that the transformatio6g := (B/a,{(¢t —¢c)/a, t=1,---,T}), wherea:= ||B|| and
¢ = E[1idi(Py)], mapsé onto a singleton.



Estimation of6y from the sample analog of equatidn{4.1) is infeasible beeahe
predicted outcome®; are unknown. To overcome this problem, we replégewith
a consistent kernel estimaté’&. Let o1 be a positive constant. Define the function
Kit (w) := GI(KH_)Kl(O'Il(W—Wit)), whereK; is a Kernel. Letqgy = (1,yit) and define

Y(wW) = (Ja(w), ¥2(w)) by
N T
Yw) = (NT)l-;;q"K"(W)'

Then the estimated conditional mean is defined®by= Y2(wit) /¥1(wit ), and the estimate
of the probability density function (pdf) ofi, fy(w) is fw(w) = J1(W). We assume also
that is chosen so that the estimated dengjgfw) is bounded away from zero om .

To our knowledge, there exists no estimator defined as thaunfi of a sample ana-
log to equation[{4]1) that uses kernels to estimate the ifidetions. There are now well
established methods for estimatiBgusing sieves as the smoother for the infinite dimen-
sional parameters (see Newey and Powell (2003), Ai and C2@®3), and Chen (2007)
for examples). These SMD estimators also have the desipabperty of semiparametric
efficiency given appropriate choice of the weighting mathixthis section, we propose an
estimator that is based purely on kernels that also achieesemiparametric efficiency
bound. Indeed, the estimator presented in this section eamplemented with any type
of smoother as discussed.in Mammen étlal. (2001). In ordegfinelthe estimator, let

fN — {m:(mi,i:l,---,N)ZmiGT},
#N := {me #N:m does not depend d,
s = {megNin e},
We remark that the vectdxi3, i = 1,---,N) is an element off N. # N is a vector space

when endowed with the operations™and “.” defined as

m+g = (rni+gi,i:l,---,n>,f0rm,g€_‘]:,
a-m = (am,i=1,---,n), foraeR me 7.

Define wy (P) := 0, *K2(0, (Pt — P)), whereoy is a positive constant ani; is a ker-



nel. Thenﬂ(H) =N-1 zi’\'zlwit(Pt) is the estimated marginal density®f Let wy(P) :=
Mi_; @t (R). The estimated joint density 8= (Py, -, Pr) is given byf(P) :=N-13N , wi(P).
Define the inner product os N by

mgT_/ Zf' PYWd (P)cx (P)dP,

for some positive definite matr/. This inner product induces the following semi-norm
N
on¥

mi3 = [ 5 Zf' P)Wni(P)ca (P)P

Define the sample residual vector of functigs, P, 0) := (A[¢(P)] — AxB), and le c ©
be the solution to

BnngN mln/N T,p (wi,P,8)'S"p(w;, P,0)wy (P)dP, (4.2)

where$ is a consistent estimator &f Again, 6 will typically be set valued. The fea-
sible semiparametric minimum distance estimatoB®fs given by8 := (BN/aN,{(Ebt -
cnt)/an,t=1,--+,T}), whereay := ||Bu|| anden = N71 3 it (Pr).

Remark4.1 It is not obvious that the solutio defined in [4P) exists, and if it does,
whether it is unique. We therefore state the following lemma

Lemma4.2 The minimization probleni{4.2) has a unique solution.

Proof. See appendixAl2. O

Remark4.3. For the semi-norm defined above to be well-defined, we redfudtas; > O,
andwi; = 0 on a set of measure zero. An important consequence of thlisct®n is
that higher order kernels cannot be used in the definitiomof It would seem therefore
that the estimator of the finite dimensional parameter caobtain the parametric rate of
convergence. However, the proposed estimator works bycfirstentrating out the index
functions (estimating them as function ®f and then estimatB. This allows us to apply
Proposition 2 of Newey (1994a) concerning how estimatiothefnuisance parameter af-
fects the asymptotic variance of the estimator of the finiteethsional parameter, the result
being that is v/N-consistent.
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Remark4.4. In order to comput€4l2, a consistent estim&asf ¥ is required. This is
achieved by implementing a two step approach where in thesteps is replaced with the

(T — 1)-dimensional identity matrix. This obtains consistentreates of6y. These con-
sistent estimates are then used to consyethich is used in the second stage estimator.
Details of the construction are found in the next Section 6.

5 Computing the Estimator

It is possible to define a feasible empirical analog[ial(4y jrbplementing the method
series or sieve estimation developed in_by Newey and Fo@@@l}),[Ai and Chen (2003)
and.Chenl|(2007). To the best of our knowledge however, thesebben no work in the
econometrics literature that shows how to compute panal @gttmators such as equation
#.2) using kernel estimators with monotonicity and additiconstraints. Since kernel es-
timation is still the workhorse in the nonparametric litewra, we find it pertinent to present
such a method. The method presented in this section devaltgehnique that makes use
of the method of alternating projections (Bauschke and Bonw1995; Deutsch, 2001)
and backfitting algorithm developed lin_Hastie and Tibshi(A886),|Buja et al.|(1989),
Mammen et al.|(1999) and Mammen et al. (2001). To begin, weogmpghe restrictions
on the kerneK; that will be needed for the derivation of the algorithm andgtove its
convergence.

Assumption 5.1.For d > 2, Ky(s) is differentiable of order d, the d-th derivatives bounded
uniformly, Kx(s) is zero outside a bounded sei(K) > 0, [Kx(s)ds= 1, [sKx(s)ds=0,
and [ |Ka(s)[?ds < o.

We begin by defining the projection &g onto 7N for a fixedB. This projection is
defined as the fixed point to a backfitting algorithm. Proposit ofMammen et all (2001)
suggests that this projection can be decomposed into tassading projections. The first
is the projection of\xB onto the set [, ¢2 to obtain theT — 1-dimensional unconstrained

estimatomi{B) := (rx(B), - - - , v (B))’ defined by

o : L o e dia Al
M) —arg min_ / 2, (= AxB)E M B (P)dP

11



The solution can be computed for edeimdividually, suggesting the following minimiza-
tion problem

M(P;B) =arg_ min % iti(m—AxiB)’i1(rﬁ—Axi[3)oq(P), (5.1)

e x| 1C

with the solution given by(P,B) := N-1 SN, 1A% Buy (P)/ fp(P),t =2,---, T.

We next define the empirical projection estimatpy, §2) as minimizers of

Ie(B) B2+ Bl = [ (e(PiB) — G2+ 822 (P)aR 52)

with the solution characterized by the following:

Y f( f(P)
452—/”12( P, /<T> (P1) S dP_o,

_ f(P) f(P)
(151_/(132(P2) f\l(Pl dP /mz P B 2<P2)dP,1,

wheredP_; is the Lebesgue measure on the ve¢Ryr s#t). Straightforward calculations
show that this system of equations reduces to

iy wiz(Pz) wi2(P2)

§o= Ni;T'AX'ZB 7Py (/f[)l (Pr)wiq (P )dF’l) YR
N N

= %i;n (/452 (P2)wi(P )dPZ) 1(<P1>) lt |2[3wi1((ljl))

To minimize computation costs, we will approximated,(Py)wi1(P1)dP) by ¢1(R1).
Under Assumptiof Bl1, Gayle (2008) shows that the diffeeanadhese two quantities is

op(1). We also approximate/ §2(P2)wi2(P2)dP) by §2(R2). With these approximations
we have the following solutions

$2(P) = {INyTivia(P)- (AxB+$a(Ra))/ fa(Po), 5.3)
Pr(Pr) = F3Nimiwn(Pr)- (B2(P2) —Axi2B)/ fi(Py). '

The third step is to project these solutions into the spadeanéasing functions. The

12



results of Brunk|(1958), arid Mammen et al. (2001) imply that

05(P) = infyu>psup,<p %ﬁi—s

. v’ d (5.4)
¢1(P) = infy>psup,p —ﬁ—k]uﬁl(f)( )(ss >
For fixed3, the backfitting algorithm therefore works as follows.
Inner Backfitting Algorithm (IBA)
Step 1.0btain an initial estimatof®*(?(P), i = 1,--- ,N).
Step 2. Apply the following loop:
Doforr>1
D)y = AsNitwa(P)- (BxaB+ 01 Y (RY)/ fa(P)
+[r] _ J&u015(9) fa(s)ds
61(P) = infrsucp 4G
*|I *|r *|I
(P = 6P~ &5 05" (Pa)
(5.5)
PP = fshitea(P)- (cg?m Ax2B)/ f1(P)
0Py = infsz>SuICh<PJHq5 f(lzf)l( 91
") = 6P~ F510," (Py)

until convergence iri$3, ¢3) is reached.
Convergence of the IBA is stated in the following theorem.

Theorem 5.2. (Convergence of IBA) Suppose that the assumptions of &d1 Fibén there
exists a solutiorid;, $%) of the system of equatiods(b.5).

Proof. See appendixAl3. O

Given the estimate@7, ¢5), and for fixed3, estimates of¢p;, t =3,---,T) are derived
by similiar computations as follows:

$(P) = AN tiwna(P)- (AxB+di 1(P1))/f2(P),

' 5.6
¢?<P) = Inf\/zpsunj %)_ds, ( )

13



followed by the mean normalization. Given estimate¢of = 1,---, T, the next step is to
project this solution (an element gt) ontoxs. This amount to substituting thp; (P)’s
into (&2) and solving the problem f@. This stage of the problem has a closed form
solution given as follows:

N 1
thiAx{ilei]

B=

_iriAxfiilAW(ﬁ)}] . (5.7)

For an arbitrary initial choice d3, sayﬁ[o}, the outer backfitting algorithm therefore works
as follows.

Outer Backfitting Algorithm (OBA)

Dofors>1

Step 1.Compute the updated estima(ﬁ[s},q);[s]) by implementing the IBA initialized by
¢:5 andp fixed atpls-Y.

Step 2.Compute the updated estimates{qﬁ[s], t=3,.--,T) by implementing the system

E39).
Step 3.Updatep using equatiori(517), i.e.,

N [irimﬁilﬂ [4)*[5](!5.)}] :

~ N ~
Bl = [anézlmq

until convergence i is reached.

The final step in computing the estimator is to impose the atimation constraints.
Fora:.= ||B|| the normalized estimates of the parameters of the modehazn gny = B/é
andd; =¢; /4, t=1,--- | T.

To see that the sequen{é[s],A[d)*[s]],sz 0} defined by the OBA does converge, note

that the solution is characterized by the system of equsition

Alg*(P)] = arg_inf [|AXB—m(P)]lr,

@ = arg inf la—A¢" (P

14



This makes it clear that the iteration of the OBA defines aesenf alternating projections
between two convex and closes setsand 7 N. This intuition is formally stated in the
following theorem.

Theorem 5.3. (Convergence of the OBA) Suppose the assumptidng of 5.1Tiwd there
exists a solution of the OBA.

Proof. See appendix’Al4. O

The final issue to cover is that of obtaining estimates of taghting matrixs. Assum-
ing that this can be calculated from consistent estimat@sanid¢, we propose a two-step
procedure similar to that of the two-step efficient GMM estior. The first stage replaces
the weighting matrix with the identity matrix to obtain iiaik consistent estimates ffand
¢. These first-stage estimates are then used to compute aragstf the weighting matrix,
which is used in the second stage to obtain the second-sstigeator of the parameters
of interest. In the next section, we derive the efficient Waigg matrixZ and a propose a
consistent estimator of this weighting matrix that can begoted from initial consistent
estimates of and¢.

6 Asymptotic properties of the estimator

In order to derive the asymptotic properties of the estimaome regularity conditions
must be imposed. We turn first to the nuisance parameterysstiaige kernel estimator of
Pto=E[yit|wit]. We impose conditions that ensure uniform convergencesaftimparamet-
ric estimatePyo. Defineyop := (Y10, Y20) Whereyig := fw(Wit) andyzo := fu (Wit ) E[Vit |Wit].
ClearlyPio = Y20/Y10- We make the following assumptions

Assumption 6.1. 1. K;(u) is differentiable of order &> 2, the derivatives d are bounded,
K1(u) is zero outside a bounded s¢t; (u)du= 1, there is a positive integer m such that
forall j <m, [Ki(u) [®,f;:1u]du: 0. 2. There is a version gf(w) that is continuously
differentiable to order d with bounded derivatives on anropet containingw’ . 3. There
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is p> 4 such that E||||"] <  and E[||§||P|w] fo(w) is bounded. 4. The bandwidth =
o1(N) satisfies N-?/Pgk*-/InN — 0, /NoF™ — 0, andy/NInN/(Na¥-+2) — 0

Assumptior G611l ensures that the nuisance paramBtersnverges to the true condi-
tional expectation at a fast enough rate to ensdikeconvergence of the finite dimensional
parameter estimafé This result is proven and discussed in Newey and McFadd#jl
and Newey|(1994b). Defing o(P; B) := E[AX|P],t = 2,---, T. We require the following
assumptions on th& o and the bandwidtly.

Assumption 6.2.1. Fort=2,---, T and fixed3 € 3, there is a version of f(P; B) that is
continuously differentiable to ord& with bounded derivatives on an open set containing
w.2 Fort= 2, , T, E[||AX|t||2] < 00, 3.00 — O0and m;—+1 — 00 as N— oo,

AssumptiorL &P is standard in the nonparametric literatm@btain consistency of the
estimators of nonparametric componeptgSee Pagan and Ullah (1999) and Hardle ét al.
(2004) for discussions). Define the distamoen © as follows:

.
di(B,9), (a,W)] == [|B-afl +;||<&(P) — W (P)lls2

where| - ||k is the Euclidean norm ol and || - ||s2 is the supremum Sobolev norm of
smoothness 2. In what follows, we denote the first stage am'rrby(ﬁ, ®) and the second
stage estimator b§f3, §). We now state the consistency and asymptotic normalityréms.

Theorem 6.3. Let the assumptiods 2 1B 1H.116.1, 6.2 be satisfleeh - Bo,
andfort=1,---,T, ||6:(P) — dr.o(P)||s2 — O.

Proof. See AppendikAl. 0
Define
0B R 0 O 0
| O HaR) 6aFy -0 0 | on
| o 00—t (R )
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&t := Vit — Pt andg; := (gj1,---,&7)". The weighting matrix that is used to define the
second stage estimatords= E[R(P)&ie/R(R)’]. The proposed estimator faris given by

N
Fi= o S RAEERE), 62)
1=
where, analogously,
—0_1(R1)  Bi(F) o - 0 0 ]
A 0 —¢! (P r (P 0 0
R( I) _ . qjtfl( |2) qjtfl( I3> ' ' , (63)
. O 0 0 - =7 4(R1-1) 67(Rr)]

&t :=Yi — Py, andg; := (&1, - ,&7)’. The proof of the asymptotic properties of the second
stage estimator requires the following lemma.

Lemma 6.4. Let assumptions 2.3, B[1.16.1, 6.2 be satisfied. [JHer 0, ands
P

— 2.

Proof. See AppendikAl6. O

We now state the consistency theorem for the second stageethe

Theorem 6.5. Let the assumptiols 2 I B 1H9116.1, 6.2 be satisfied T Bo,
andfort=1,---,T, ||6¢(P) — dr.o(P)||s2 — O.

Proof. See AppendikAl7. O

Finally, we state the theorem defining asymptotic normalitiyoth the first and second
stage finite dimensional estimators.

Theorem 6.6. If the assumptions2.L 31, H[1.16.1, 6.2 are satistieah t
VN(B-Bo) <= N(0, V1),
VN(B - Bo) - N(0, V),
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where
V1 := [E[tihighio]] _1E[Tihi/ozflhi0] [E[tihighio]] _17
Vo = [E[tMoz thl] *.
and ho ;= f—BMo(F’uo; Bo) — AX;

Proof. See AppendikAlS. O

6.1 Semiparametric Efficiency Bound

We now tackle the question of whether the proposed estirnoatbe finite-dimensional pa-
ramete is efficient. The model for which we compute the efficiency hais the implied
model given in equatiori.(1.1). Chamberlain (1993) showsiadels defined in section
[ are not efficient when no restrictions are made on the indegtion and the individ-
ual specific effects. The assumptions made in this modelrerefore substantive from
this point of view. The variance bound that we compute foragigm (1.1) is the one that
would be attained within an SMD framework. This is not sy given proposition 1
of Newey (1994a), which states that the asymptotic variafitee semiparametric estima-
tor depends on the nonparametric function that is beingneséid, and not on the type of
smoother used to estimate estimate it. Thus our estimatomgwork is as efficient as any
competing extremum estimator for the condition giveriidlflbut retains the property that
it is independent of the choice of smoother. This resulth@ifollowing theorem.

Theorem 6.7. The estimatof& of the finite dimensional parametrdeveloped in section
A is semiparametric efficient with variance bound given gotlen{6.5.

Proof. See AppendikAl. O

6.2 Estimating the asymptotic variance

In order to estimate the asymptotic variandgandV,, one needs to obtain estimatesf
in both cases, anB in the latter case. The feasible estimatoEads$ already defined to ke
in equation[{6R) and its convergencestis already shown in Lemnia®.4. An estimator of
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hio = 35A00(Po; Bo) — A% requires an estimator gkA¢o(Po; Bo). To this end, note that
the model[(ZB) implies that far=2,--- , T,

Adto(Pto; Bo) = E[Tidxit Bo|Pto, Pt—1,0] = E[AXit|Pto, Pt—1.0]Bo-
This implies that an estimator %%Adho(l:‘no; Bo) can be defined as

9

6BA¢t(|ﬁ't;é> ‘= E[tidxit [Py, Pr_1],

WhereE[-\lﬁ.t, FA‘.t,l] is some estimator of the conditional expectation, such ariaek es-
timator. Given the choice of this conditional expectatiestimator, and the convergence

results above, it is straightforward to show tlg%ﬂdit(lﬁ.t;ﬁ) = a%Ad)to(F’no; Bo) +op(1),
t=2....T. Leth = g—BAcb(lﬁ;[}) — Ax;, then feasible estimators ¥§ and\, are defined

as
N -1
N1 Tiﬁ{ﬁi]
2

\72 =

N

-1
N
N_li;TihfZ_lhi] [N_li;'[ihi/hi] ,
N -1
Nli;'[ihi/zlhi] .

We end with the following proposition

\71 =

and

Proposition 6.8. Let assumptionE2.1_3.L_b[1.716.1, 6.2 be satisfied, andnae
E[1i8%¢|Pr, P 1) = E[Tid [P, Py 1] + 0p(1). ThenVy -2 Vi andVz - Vs,

6.3 Estimating marginal effects

Recall the model implies that the marginal effect of the c@atas depends onh The
estimated coefficienté are not sufficient to characterize these marginal effectb®ofe-
gressors on the dependent variable. We therefore preseiblie estimates of the marginal
effects that does not require estimation of the individsyagcific effectsfp(z). Differenti-
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ating equation{111) with respect g obtains

g% Dy (Xt o+ fo(z)) Bo
It
= (") (t0(Pro))Bo
_
o(Pro)

This implies that a feasible analog estimator of the avetiage-specific derivative: [t;dyi /0|
can be obtained as

A 1 N Ti =2
Et[Tioyit /0%it] = NZ\WB

Likewise, a feasible estimator of the average marginatetfan be obtained as

R 1 N T T =
E[tidyit /0xit] = NT ;thB

The derivatived; can be taken directly by applying the resultsL.of Delfour antéSio
(1987). An alternative approach to estimating the denreas to differentiate the equality
Adto(Pro; Bo) = E[T1ildXit Bo|Pito, Pt—1,0] to obtain

0
= —E[1il&%it Bo|P, Pt —1,0] )

o(Pro) = %(q)to(P; Bo) — dt—1,0(Pt-1,0;Bo)) op,  OP PPy

which by the analogy principle implies that an estimatorhaf tlerivative is given by

A 0 - ~ R
6/ (Pr) = a—PE[TiAXitB\P, Pt_1]

P=Py
An immediate consequence of the above results is the fallgwroposition.

Proposition 6.9. Let assumptiors2.L 31, H[T1,16.1, 6.2 be satisfied, ssuhae that

a ~ ~
= a—PE[TiAXit[3|R Pt_1] A +0p(1).

0 -~ ~ A
—E[1i&%¢B|P, Pt—1]
op - HiA% | ot

P=P

Then
VN(E[Tidyit /0%ic] — E[Tidyie /0%it]) —= N(O, E[Ti(dfo(Pro)) "J2V2).
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7 Experimental Evidence

In this section, we examine the small sample propertiesetgtimator via Monte Carlo
experiments. Two model specifications are investigatefitst is a static panel data model
with a continuous dependent variable and an asymmetrixifdetion. The results are
compared to the case where a known symmetric index functi@ssumed. The second
investigates the performance of the estimator for a dyng@ane| data probit model with
unconditional heteroskedasticity. The results in thi®edexercise is compared to the case
where the investigator correctly assume that the disiobudf the error term is Gaussian,
but also assumes homoskedasticity of the error term.

7.1 Static panel data model
Consider the following data generating process:

Vi = Pr(xqitB1 + X B2+ f(z)) +vie, i=1,--- )N, t=123. (7.1)

In this modelx3it andxy;; are both independently distributionld$—5, 10), vi; is indepen-
dently distributed adl(0, 2), andz = (x2i1 + X2i2 + X2i3) /3. The index function is chosen
to be asymmetric about zero with range [0, 10]. Specific#lig,index function is given

by:

10
P = 1+ exp(—x A(x) V1)’ (7.2)
0.1

The individual specific function is given by:

o[ exp@) 1 exp(z)
f(Z')_6<1—|-exp(zi)_ﬁi_ 1-|—exp(zi)>' (7.3)

Finally, (B1, B2) = (0.6, 0.8). We perform 100 Monte Carlo replications of the model
with three sample sizes N: 100, 200, and 400. The mean biathamdot mean squared
error (RMSE) are calculated for each sample size. We aldorpethe same Monte carlo
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Table 1: Small sample properties of the estimator of theécstaddel.

B1 B2
Mean Bias RMSH Mean Bias RMSE

N=100
KMD 0.0061 0.0951 -0.0137 0.0746
EKMD | -0.0026 0.0917 -0.0062  0.068(
RMD -0.0225 0.263Q -0.0521 0.2026
N=200
KMD 0.0085 0.0669 -0.0109 0.0527
EKMD | -0.0071 0.0605 -0.0090 0.0469
RMD 0.0085 0.1843 -0.0444 0.16371
N=400
KMD 0.0044  0.0453 -0.0054 0.03471
EKMD | -0.0016 0.041Q -0.0028  0.0309
RMD 0.0048 0.1407 -0.0236  0.1107

exercise under the assumption that the index function erdoy 10P where® in this case
is the standard normal CDF. The results are presented ie Taflhe first stage unrestricted
estimator is denoted by KMD, the second stage unrestrict@tiator is denoted by EKMD,
and the restricted model is denoted by RMD.

The comparison between KMD and EKMD show that KMD always hhgjher mean
bias and RMSE for both parameters. However, while the diffee in the mean bias is
substantial, the difference in the RMSE is relatively smallble 1 also verifies/N-
convergence for both KMD and EKMD. The restricted estim&MD performs worse
than the unrestricted estimators. Indeed, the RMSE of th®RMalways 3 to 4 times
larger than the RME of the EKMD. The results also verifies taek of parametric rate of
convergence of the restricted model. Our experience fragrettercise is that the algorithm
proposed in Sectidd 5 converges fast, with the IBA convertypically in 1 to 3 iterations,
and the OBA converging in 3 to 5 iterations.
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Table 2: Small sample properties of the estimator of the dyag@robit model.

a B
Mean Bias RMSH Mean Bias RMSE

N=100
KMD 0.0509 0.361§ -0.1549 0.2335
EKMD | -0.0043 0.4154 -0.1521  0.2564
RMD 0.1736  0.2806 -0.2429 0.3186
N=200
KMD 0.0081 0.2592 -0.0624  0.1515
EKMD | -0.0889 0.2654 -0.0105 0.1395
RMD 0.1865 0.2746 -0.2349 0.2761
N=400
KMD -0.0284 0.1732 0.0035 0.1086
EKMD | -0.0024 0.1444 -0.0177 0.102Z
RMD 0.1060 0.1753 -0.1165 0.1687

7.2 Dynamic panel data probit model
For the second simulation exercise, consider the followmaglel:
i = H{ayi—1+PBx%t + f(z) +ur >0}, i=1---,N; t=123. (7.4)

Here,x; andz are independently distributed(0,1). The random shocki is indepen-
dently distributedN(0, 0.3+ 0.1-t). The process is initialized witiig = 0, and the indi-
vidual specific function is given by:

fz) = —2XP@) g (7.5)

1+exp(z)

Again, we perform 100 Monte Carlo replications of the modéhwhree sample sizes N:
100, 200, and 400. We also perform the same Monte Carlo eeeucider the assumption
that the investigator knows that; is normally distributed, but incorrectly assumes the
distributionN(0, 0.5). Finally, the finite dimensional parameters &oe 3) = (0.6, 0.8).
The results are presented in Table 2. As in the previous megttbe first stage unrestricted
estimator is denoted by KMD, the second stage unrestrictitiator is denoted by EKMD,
and the restricted model is denoted by RMD.
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The results in Table 2 indicate that the noise introduceddtymating the weighting
matrix results in the EKMD performing worse that KMD in vemnall samples (N=100).
The results also show that the gains in variance reductmm & parametric specification
of the index function may outweigh the increased bias foy wenall samples. However,
as the sample size grows, the EKMD performs uniformly bettan both the KMD and
the RMD. The results of Table 2 again verifigd-convergence of both the KMD and the
EKMD. The convergence of the algorithm is slightly slower tiois exercise, with the IBA
converging typically in 2 to 4 iterations and the OBA conveggin 3 to 6 iterations.

As expected all three estimators perform uniformly worsestimating the dynamic
binary choice model than estimating the static model of tret Monte Carlo exercise.
However, the results show that the model does perform wakkoovering the finite di-
mensional parameters of interest. These exercises albbdhigthe potential severity of
incorrectly specifying the index function.

8 Conclusion

This paper investigates identification and estimation ofaascof single-index panel data
models with semiparametric individual-specific effectislclass includes the semipara-
metric discrete-choice panel models with heteroskedastars. The model allows for the
inclusion of predetermined variables, as well as lagge@eéent variables. A stronger re-
striction on the individual-specific effects is needed ialditer case. We develop a general
minimum distance estimator of the finite and infinite pararseof interest. This estimator
extends the minimum distance estimator of Mammenlet al.1P@0the panel data frame-
work and has the advantage that the estimator can be comypitte@ither a sieve or a
kernel smoother. In the case where a kernel smoother is chthée paper provides a new
algorithm to compute the estimators that fully implemeis testrictions of the model.
The algorithm is an extension of the backfitting algorithragwsed irl_ Buja et all (1989),
Mammen et al. (1999) and Mammen et al. (2001). The full atgoriis composed of an in-
ner backfitting algorithm and an outer backfitting algoriti@onvergence of this algorithm
is proved and our experience shows that both the inner ard lbackfitting algorithms typ-
ically converge within 2-5 iterations. We show that therastiors of the finite dimensional
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parameters arg/N-consistent and asymptotically normal. We show also thatestima-
tors of the infinite dimensional parameters are consisté/d.derive the semiparametric
efficiency bound for this class of models and show that oumedor indeed achieves this
bound. Identification of the model does require that thevikdial-specific effect be inde-
pendent of one of the continuous explanatory variablesngilre other covariates. It may
be possible to relax this assumption under alternativeicésns of the form of the indi-
vidual specific effect. The paper provides a small Monte &€eaxiercise that shows that the
estimator performs well is small samples. The simulaticuits verify/N-convergence
of the finite dimensional parameters and show that the maatpleoforms other models
that miss-specify the index function.

A LEMMA AND THEOREMS

A.1 Proof of Theorem[3.2
Proof. Equations[(ZJ6) and(3.1) imply that

O it Bo+ fo(z)) = &g (XeB1+ f1(z)) &
xiBo+ fo(z) = Ow(dg'(Br+ fi(z))), (A.1)

Strict monotonicity of the index function implies that itdéfferentiable almost everywhere. Differ-
entiating equatiori{Al1) with respect to the continuousesgorxik gives:

oo Box _ 9io(0n (ubr+ f1(2)))

. POk 0. A2
Bic 00 0aBit 1(2)) (A2)

where the positive sign follows from the assumption thatitigex function is strictly increasing.
We have from equatioi{A.2) thét,(Pto) = ad;,(Pto) which implies that:

¢to(Pio) = adt1(Pio) + G- (A.3)
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By taking expectations of (Al3), Assumpti@nlBl1.3 implibaticc = 0. Taking first difference of
equations[[AR) gives:

Albio(Pro)] = aA[di(Pro)]- (A.4)

Noting that equatior{217) also holds fay, equation[[A#) implies

aA[b11(Pro)] = DxtPo
aA[dpt1(Pro)] = alxiPs. (A.5)

Equating the RHS of the equations In.(A.5), pre-multiplylmgAx; and taking expectations gives:
E [Ax; AXit |Bo = aE[Ax; AXit |B1. (A.6)
Then by the invertibility ofE [Ax, Ax;] we have
Bo = aPs. (A.7)

Equation [AB) gives
XitBo+ fo(z) = xit (aB1) +afi(z). (A.8)

Substituting equatiod {Al7) into equatidn_(A.8) gives
fo(z) =afi(z). (A.9)

The assumption thdffo|| = ||B1|| = 1 implies from equatior({Al7) thaa] = 1. Buta > 0, which
implies thata= 1. O

We first state and prove some lemmas that are needed for ttereoe and uniqueness of the
proposed estimatof (4.2).

Lemma A.l. (i) The cartesian produc;tyT( = -jr:]_.sy( is compact in the sup-norm topology. (ii)
The spaceg. = {Ad | ¢ € 5;} and 7N = {(m,---,m)’ [me 7.}, where the vector in the last set
has N components, are compact in their respective sup-nopoidgies.

Proof. Given thatsy is compact, claim (i) follows from Tychonov theorem on thengmctness
of product spaces. Given thaf( is compact, and the operataris (linear and) continuous in the
sup-norm,7. is compact and, again by Tychonov theorerg! is also compact. O
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Lemma A.2. The objective function in the minimization probldm4@|§q,(6), is a uniformly con-
tinuous and strictly convex function @f

Proof. The strict convexity follows from the observations that thection is strictly convex ip
andp is linear in8. If 8 converges uniformly t®*, thenp converges uniformly t@*, wherep*
is obtained by substituting* for 8 in p. Hence, the objective function converges uniformly to

Qn (7). 0

A.2 Proof of Lemmal4.2

Proof. By LemmdZAl the se®N is compact in the sup-norm topology. Since the functica(6)
is continuous (Lemmia’Al2), by Weierstrass theorem, it hasoeimum and a minimum. Since it is
also strictly convex (LemmiaA.2), the minimum is unique. O

A.3 Proof of Theorem[5.2

Proof. First note that the projection of an elemédmof the setd, := {$p2|d, € S4 } onto the set
a+®1:={a+d1|91 € s« } for fixedais equal toa plus the projection o — a onto the seb; :=
{01]91 € 54 }. Hence, the backfitting algorithm is indeed a sequence efradting projections
under the nornj| - ||2. Let 74,4, and 7y, denote the projectors ont+ §1 and§, respectively, as
defined by equation§(3.2) tb(5.4). The restrictions on tmdd K, in Assumptio 51l and the
monotonization step (equatidn{b.4)), along with Proposii of Mammen et all (2001) ensure that
the resulting projections do lie in their respective setserffor an arbitranyfy € a+ 1, the sequence
of alternating projections is given Iy fo := (7a;5,75,)" fo. Finally, given the compactness results
of LemmdAl, Theorem 4 of Cheney and Goldstein (1959) shbatthe sequend®" fo converges
to a fixed point whem tends to infinity. The theorem is reproduced here for corarere.

Theorem 4. Let K; and K, be two closed convex sets in Hilbert space and Q the commo$itr,
of their proximity maps. Convergence ofXJo a fixed point of Q is assured when either (a) one set
is compact, or (b) one set is finite dimensional and the destdretween the sets is attained. [
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A.4 Proof of Theorem[5.3

Proof. Given and¢;_1, the projection the sdfi; := {¢:|$: € S« } is closed form and is imple-
mented by equatiorf{3.6). Hence, steps 1 and 2 of OBA areqgti@js of AxB onto the setr .
Denote the corresponding projectorgs:. Step 3 of the OBA s clearly a projection & ontoxs
under its respective norm. Denote the corresponding gmjes7,,. This notation shows that the
OBA is indeed sequences of alternating projections undentiim|| - ||+. For an arbitranb € 3,
the sequence of alternating projections is giverriiy := (7y, T,;CN)n b. Given compactness gf\
(LemmaAl) and ofs, Theorem 4 of Cheney and Goldstein (1959) shows that theesegqu "b
converges to a fixed point asends to infinity. O

A.5 Proof of Theorem[6.3

In order to prove consistency of the first and second stagmatst's, we first state and prove the
following auxiliary lemma.

Lemma A.3. Let W be a positive definite, symmetric Wit/ || < c. Let\W P, W as N— . Let
0= (B,(’ﬁ) minimize the objective function

N _/N Tip(wi, P,8) W 1p(wi, P,8)ca (P)dP

over the se®, andBy minimizeQg := E [Tip(wi,e)’Wflp(wi,e)] over©@. Let the assumptios 2.1,
B E1[EN, and8l2 be satisfied. Then

B Bo
1B (P) — do(P)|ls2 — 0

Proof. To begin, definéx (R) := 0, Ka(0, (P —R)), & (P) == [l{_16x (R), fr(P) :=N"23N 6y,
m(PB) == N1yN, 18xB&x (P)/ fp(P), and i (P,B) := N~15N, 1A% Béx (P)/ fr(P). Define
alsom(P,B) := (rfm(P,B),--- ,mr(P,B))". Definemy(P, ) andni(P, 3) analogously.

A~

The law of |terated projections (Mammen et al. (2001)) nasplhaﬂ also minimizen (6, P) :=

J((P.B) — A9 (P)W((P, B) —A¢ (P)) f(P)dP, and thaBo also minimizeso(6) := [( (PB)-

A£G (P))W(mo(P,B) —A¢(P))]. DefineQn(6,P) := [ (M(P.B) —Ap(P))W*(M(P.B) —Ap(P)) f(P)dP
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and note thaQy(6p) = 0. We make the following claims:

SURs |Qn(8,P) — Qo(8)| = 0 (A.10)
SURy | QN (8,P) — Qu(8,P)| = 0 (A.11)
¢ €S wpal t=1---.T (A.12)

Proof of claim[A.I0: Note that for eacld € O,

QuE.P) = [ (P(P)~mo(R.B)W((P) - mo(RB) F(P)IP
+ [ (mo(PB) — 86(P) W (mo(R.B) — A0(P)) F(P)aP

+ 2 [ ((PB) -~ mo(PB)W (mo(RB) ~ 20 (P F(PIP.  (AL3)

Under assumptiods 3.1 andl6ra(P;B) — mo(P,B) and f (P) converges in probability to 0 ant(P)
respective, and are both bounded. Thus application of thedgtie dominated convergence theo-
rem, the first and third terms of the RHS of equatibn {A.13)veoges in probability to 0, and the
second term converges @(0). Since® is compact, the convergence is uniform.

Proof of claim [A&.11: For eachB € © we have that

QuP.8)—Qu(PO) = [ (M(RB)—A0(P) (W2 —W)(R(P.B) ~ A0(P) f(P)oP
+ [ (MR.B)—MPE)W X (R(P.B) ~ MR B) (PP
+ [ ((PR)-20(P)W LR ~ 26(P))(F(P) - F(P))dRAL4)

Define gi := (1 Ax:B)’. Under assumptions5.1[6.1 ahd16.2 we have tﬁegi it (i (P) —

@ (P < (% Zillae)Y2(% 3 IM(P)—Q(P)\Z)f/Z <C(g ZillaelP)2(Noz ™) 1 (VNIR —R[|2) 2
— 0, which implies thatm(P,B) — m(P,B)| and| f (P) — f(P)| converge to zero in probability. This,
assumption§ 5l1[ 8.1 abhd6.2 and the Lebesgue dominatedrgence theorem imply that the
second and third terms of equati@n(A.14) converge to 0 ibadity. Similarly, the first term con-
verges to zero in probability by assumptidnd 5.1 ,[anHl 6.2hey ebesgue dominated convergence
theorem, and by the consistencyMiffor W. Thus we have thaQy (P,8) — Qn(P,8)| converges to
zero in probability for an € ©. Since® is compact, the convergence is uniform o@er

Proof of claim [A12: To prove this claim, it is sufficient to consider the isotok@rnel smoother
$>. One obtains this monotone function from the unconstragstinate by replacing parts of the
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unconstrained smoother with finite constant pieces (Mamahah [2001)). These pieces clearly
satisfy the restrictions 08,. Outside these intervals, assumpti¢nd 5.1, [anH 6.2 enlatdhe
unconstrained smoother satisfies the restrictiorts,ofvpal.

Sincef is the minimizer ofQy (6, P), we have that

0

IN

Qn(B,P) < Qu(Bo,P)
|Qn (80, P) — Qn(B0,P)| + |Qn (B0, P) — Qo(B0)| + Qo(6o)
< S(LalplQN (60,P) — Qn(80,P)| + Sgpl Qn(80,P) — Qo(B0)| + Qo(B0) = 0,  (A.15)

IN

by equations[{A.10) and{A11). Also,

0 Qo(6)
= Qn(B,P) — Qn(8,P) +Qo(8) — Qn(B,P) + Qn(B,P)

< sgp\Qme,P)—QN(e,ﬁ)r+sgprQo<e,P>—QN<e,P>r+QN<é,f>>io, (A.16)

IN

by claims [AID), [A1L),[[AT2) and equation{Al15). Sirtbe model is identified, for ab > 0
there existg > 0 such that[(B,9), (Bo, $o)] > 0= Qo(B, ) > €, which implies that that I'{d[(B, $), (Bo,do)] >

8} < Pr{(Qo(B,§) >} — 0. 0
We are now in a position to prove Theor€ml6.3.

Proof. By LemmalA.B, and setting/ =W = I1_1, wherelr_; is the T — 1-dimensional identity
matrix, we obtain the desired result. O

A.6 Proof of Lemmal6.4

Proof. We have that|z| < E[||Ree’/R||] < E [|R|2€]?] < E[IRI*]Y?E[|le]*]"? < o , where
the last inequality comes from the uniform boundednes®aind Assumptiori_6l2. Defining
0 := R(P)& andu; ;= R, we have tha SN, Gia/ /N — E[u]|| < || SN, G0 /N— SN, ud /N +
| SN uu /N —E[uu]|. The last term isp(1) by the LLN. Also, we have thaf TN, (G —
L) /NJ| < S 100 — w1 /N < 30— 2N 250 16— /N < S 11— u[2/N+
Z(Zi'\‘:lHuiHZ/N)l/z(zi’\‘:l\mi —ui[[2/N)*?. By adding and subtractin&(P)s;, andR(P)g;, and
by application of the triangle and Cauchy-Schwartz ineitjgal we have thay N, |G — ui||?/N <
S IRPOIIR =R+ [RP) = RP) Il + [R(P) = RP)I[l&i)2/N < Co 34 IR —R|12/N+
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sups [R(P) —R(P)[| 3Ny [[&]12/N+Ca(5 14 1B — P [4/N)Y2(sN [l]14/N) Y2 +2Cs sups | R(P) -
ROP) (5411 = RIZ/N)2(5 Iy [l /N)Y/24 CCo(5 41— RI/N)Y2 (51 [ei2/N) Y2,
where the constar®; comes from the uniform boundednessRodindC, comes from the uniform
Lipschitz condition. Assumptiorfis 3 [T,_611 and Theorerf 6.3 imply that all the terms on the RHS
of the last inequality converge in probability to zero. THU8N; Gid/ /N — TN, uiul /N|| = op(1).
Furthermorey N, ||lui||2/N <C3N, |l&|?/N = Op(1) by Assumptiodi&liL. Thus| SN, Gl /N —
Efutf]|| = op(2). O

A.7 Proof of Theorem[6.5

Proof. SetW = 5 andW = 5. Then application of Lemmds 6.4 aidA.3 obtains the desesdllt:
]

Lemma A.4. Consider the problem of LemraA.3. Then under the conditbhemmdAl3
VN(B—Bo) ~ N(O,V),

where

V = [E[LhgWthi]] T E [thgWsWhio] [EftW hg]] .

Proof. Note that the backfitting algorithm works by iteratively\dah for ¢ given a fixedB, and
then solving for3. Thus we have that

0

g(Wi ) [37 q)) = O_BQO(Wi ) [37 q))

and

o =arg max E[Q(x;,B,m)].
me7¢(B)

The notationz(3) makes it explicit that the resulting estimatpr= ¢(-;3) is a function of beta.
Proposition 2 of Newey (1994a) therefore implies that theredion of ¢ can be ignored in calcu-
lating the asymptotic distribution (ﬁ]‘ Therefore, in what follows, we ignore the estimatiorpah
the calculation of the asymptotic distribution f&)f

Definehio(R; B) := 0Ado(R; B) /0B — Ax;. Theoren3R implies that for any solutirto @2),
aB is also a solution, including wheee= ||B||~2. By constructionf = B*/|IB*|| € int(B1). Taking
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~

a mean value expansion gfwi, B, do(P; B)) obtains
~ ~ —_ A — _ N A~ A
VN(B—-PBo) = — [Mi(B,W)+Mz(B,W)] ! [% _;Tihio(Pl)/W(AﬁBo - A[¢0(F’|)])] 7

= [Ma(B,W) +Ma(B.W)] [\/—ZT hio(R)'W(A[do(P )]—A[%(Ho)])],

where

VBwW) = o Zf' B100(:B)) - XBW o] | (AP

[ge ([30,[3), and® denotes the Kroneker product. The inverse term on the RHSsewith prob-
ability one becaus® is positive definite, andx and %ho(lﬁ.;ﬁ) has full rank. Defingy(x;, ;) :=
Tihio(R)'W(A[do(P)] — Aldo(Po)]). The rest of this section of the proof involves checking é¢ond
tions (i)-(iv) of Theorem 8.11 of Newey and McFadden (1994jtice thatg(x;, Po) = O implying
thatE [g(x;, Yio)] = 0 andE[||g(x;, Yio)||?] = 0. Linearizingg(x;, ¥) around(yo) givesD(W;,¥— o) :=
Tihio(Po)WR f (W) Gi[#(wi) — Yo(wi)], where

1 w) = diag(f1(wy),t=1,--,T)

G = diag(-Pwl),t=1--T)
YoWi) = (Yio(Wi1),Y20(Wi1)," -, Yio(WiT ), Yoo(WiT ))
Ywi) = (W), o(Wia), -, Ja(wir ), Ya(wir ).

Conditions (i) and (ii) of Theorem 8.11lofNewey and McFad{E®94) are satisfied by noting that
boundedness dx;, of yp and its first two derivatives af , and ofW gives||g(x;, ;) — D(Wi, ¥ —Yo)|| <
b(w) [[J(wi) — Yo(wi) |, with E[b(w)] < e, andD(w,y) = Tihio(Po) W R f ~(wi)Giy < c(w) |y|| with
E[c(w)?] < . Condition (i) is also immediately satisfied by observithgt [ D(w,Y) fy,(W)dw =
Jv(w)y(w)dw, wherev(w;) := Tihjo(Po)'WRG;. Given continuity ofv(w) on % and assumption
[£7.1, verification of conditions (iv) of Theorem 8.11lof Newand McFadder (1994) is given in
the proof thereof. Therefore, by Theorem 8.11 of Newey an#adiden|(1994)

2

g(wi,§) — N(0,Q),

g~
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whereQ = Var(d(w)), andd(w) = v(w)g— E[v(w)g]. Application of the law of iterated expectations
show thatE[v(w)qg] = 0. Also, straightforward calculations show thetvi)g, = Tihio(Po)liW Rg;,
whereg; = (y; —Po). ThereforeQ = E[tihio(Po)'W Re&ig]RWho(Po)|. By assumptiorE [TiRig ][R |w] =
>(w) =Z. By Applying the law of iterated expectations, we have fBat E [t;hjo(Po)' WZW ho(Po)].
DefiningM (W) := E[h,W hg], straightforward calculations show that

[M2(B,W) = MW)[| - < [|§ i TiMoW ho — E[gW hol |
+ & i lIhol W] [[hio(R; B) — hio(R; Bo) |
+ Tz.uh.ouuwuuh.< '+ Bo)) — hioll ) (AL7)
+ 5 2 [hiollIW[l[Ihio(P:; B) — hio(R; Bo) [ i (R:; Bo)) — hiol|
+ 255 IhollIW/[]|hio(B; B) — hio(B:; Bo) |12
+ 2 i lIholl W] [[hio(R:; Bo)) — hiol|?

By the LLN, the first term on the RHS of equatidn (Al 17pjs(1). Note that

0 do(P;Bo)l,

Iho(B:B) — hio(P; Bo)H—H—¢o( B) — 3

which isop(1) by the continuous mapping theorem and by the consistenE;fmeo. This and the
boundedness conditions by andW imply that the second and fifth terms on the RHS of equation
(AI7) areop(1). Furthermore,

0 )
OB op
which isop(1) by the same conditions. This, along with the above conve@md boundedness

conditions imply that the third, fourth, and sixth terms ba RHS of equatiod{A17) are alp(1).
We thus have that

Ihio(R; Bo)) — hiol| = [| 55 00(P) — 25 o(Po) I,

Ml(B,W) =ETj [hllOWho] —I—Op(l).

Note also that

%Z —¢0 B 1111 A¢0 (P B) — AxB|| = op(1)

by the consistency theorem, and the boundedness condaronsand %q;o(ﬁ.;s). Thus we have
thatMy (B,W) 4+ M2(B,W) = M(W) + 0p(1).
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Sincey N ; g(wi,§)/v/N = Op(1), the Slutsky theorem gives

VN(B — Bo) ~2 N(O,M(W)~taM(W) ).

A.8 Proof of Theorem[6.6

Proof. SettingW = | in LemmdZA.2% obtains
\/N(E_ BO) i’ N(07V1)7

whereV; := [E[tihhio]] *E[Tihio(Po)’Z thio(Ro)] [E[Tihghio]] . SettingW = =~ and expanding
aroundpg obtains

~ A A —_ _ N A A~
VNB—Bo) = [Ma(B,= 1) +My(B,z )] [%Ni;ri hio(R)Z X A[do(P)] —A[¢0(F’|o)])] :
with v/N(B — Bo) LN N(0,V») by LemmdZAR). SettingV = >~ and expanding arourfgh obtains
VN(B—Bo) = [Ma(B,E7Y) + Ma(B,57Y)] [W;Ti hio(P)'S~X(A[¢o(R)] — A[¢0<P.o>]>] .

Note thatMs(B,5) —_'\7l1(5, = <Ny Hhio(ﬁhﬁ)”z”i__l I < NNt -
271 =op(1), andM2(B,5 1) — Ma(B,Z~1) <N~ 3N i[| 00 (R B) 111 A¢0(R; B) —AxiBl| =~ — =71 <
C|Z1— =1 =op(1). Also,

vec(N~25N  tihio(B) (271 — Z71)(A[do(R)] — Aldo(Ro)]) =
(N"25N [(Aldo(R)] — Aldo(Ro )])®hio(|§|)]/) (veds1—-35-1).

Asymptotic normality of the first stage estimator impliegttthe first term on the RHS of the
equality in parenthesis 8,(1). The second term on the RHS of the equality in parenthesis(ii§
by Lemmd&.H. Thus Slutsky’s theorem implies th@(ﬁ - f3) = op(1), which obtains

VN(B—Bo) 5 N(0,Va).
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A.9 Proof of Theorem[6.7

Proof. The proof of efficiency uses the results developed_in New894ih). To proceed, we first
set up the environment so that the results are directly caduk.

As noted in sectiofll5, the objective functionin{4.1) can bit@n by concentrating ou, and
writing ¢ as a function of3, ¢ (Po; B). The derivative of[(411) with respect fis then given by

Eq [tihi(Po; B)[Z(W)] M A[do(Po; B)] — AxiBo] = Eq[m(x, B,,Po)] =0,

whereh; := a%M)(P,o;B)—xi. Furthermore, the limit of our estimafemaximizesEq[S(x;, 3,9, R)].
Thus by proposition 2 of Newey (1994a), the estimationpatan be ignored in calculating the
asymptotic variance. So we work only wigh{P; B) = ¢o(P; B).

Let the distributionQ belong to a general family of distributiong. Define the parametric
submodelQ (n) := {Qy : Qy € Q, Qy = Qo atn =0}. We assumdf,, to be a probability density
relative to a fixed measurg the mam — \/W is continuously differentiable in a neighborhood
of 0, andn — [ [(9f/dn)?/f,] dv is finite and continuous in this neighborhood. Then by Lemma
1.9 oflvan der Vaert (1998)) — Qy is a differentiable path. We use this differentiable path to
induce parametric submodels for the parametersﬁhmdlﬁ. are estimating. That is, we define

u(n) = u(Qy) := plim B andR(n) = R(Qy) := plim P, wherep(Q,) satisfies:
En[m(x,,P(n))] =0 (A.18)

The rest of the proof involves finding the pathwise derivatiyw) satisfyinga‘g—(r?) = E[d(w)g(w)],
whereg(w) := ﬁnzoln fn (W) is the corresponding score. Then the variance bound forstiveation

of u(n) is Var(d(w)). Differentiating equatior[{A18) with respecttoand solving for%n”) gives

OH(n) 0 - Pwn)] . 8
Ls(nﬂ) _ _Ml{E{a_Pm(X’BO’Pm))% +%En[m(x,BO,Po)]}, (A.19)

whereM := %E[m(x, BoPo)] = E[ho{Z(w)}~thig], which is invertible by assumptiof(31.3). From
equation[{AIB), the last term on the RHS of equation (A.4@ro. Defining(x) := %m(x, Bo,P(Nn))
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and applying the law of iterated expectation$tev,n) = E[y|w] gives

AL = e { ey - R
= [~(M7*8(w)(y — Po))S(W)] (A.20)

Thus givingd(w) = —M~13(w)(y — Pp). Noting thatd(w;) = Tih{x{Z(w)}~IR;, we have that

Var(d(w)) = E [tiho{Z(w)} thio] " E [tihio{Z(W)} *RQR{Z (W)} hio] E [tiho{Z(w)} thi] ",
whereQ = E[(y— Py)(y— Py)’|w]. Note thatRQR = E[R(y — Py) (y— Po)'R|w] = Z(w). This gives
1

Var(d(w)) = E [t {Z(w)} hio] .

Finally, the assumption th&i(w) = X obtains the asymptotic variance fifderived in theorem
0.d. ]
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