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Abstract. In this paper, we consider K finite populations of boundedly
rational agents whose preferences and information differ. Each period agents
are randomly paired to play some coordination games.
We show that several “special” (fixed) agents lead the coordination. In a

mistake-free environment, all connected fixed agents have to coordinate on the
same strategy. In the long run, as the probability of mistakes goes to zero, all
agents coordinate on the same strategy. The long-run outcome is unique, if all
fixed agents belong to the same population.

1. Introduction

Numerous studies have shown the importance of social interactions and neighborhood
effects in explaining phenomenon such as levels of education, income, production,
crime, arising of gangs, ghettos and so on.1 Therefore, the incorporation of social
interactions on behavior is of primary interest. In particular, the influence that some
agents exert on others can have a profound impact on the selection of economic
outcomes.
In this paper, we consider a coordination problem among heterogeneous agents.

Our objective is to analyze the importance of information flows among agents and
see whether or not heterogeneous agents are able to find a way to coordinate and on
what outcomes. In every day life, social norms, national traditions, and focal points
ease agents’ coordination problems. For example, when facing the choice of driving
on the right or the left side of the road, an agent follows the social norm adopted in
her country. Therefore, it is natural to assume that agents can use their neighbors
and own past experience for guidance in future coordination.
We consider K finite populations of agents, each of which represents a group of

agents who share common preferences. Each period, all agents are randomly paired
to play some K ×K coordination games. Each population prefers to coordinate on
its preferred strategy. By preferred strategy we mean that when two agents from the

1See e.g Becker (1991), Benabou (1993), Glaeser, Sacerdote, and Scheinkman (1996), Jankowski
(1991), Venkatesh (1997) among many others.
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same population are matched, a unique Pareto efficient outcome can be obtained if
both agents coordinate on the so-called preferred strategy. If the matching involves
two agents from different populations and the two of them coordinate, several Pareto
efficient outcomes can be reached. The information available to each agent differs from
one agent to the other. In order to capture this asymmetry, we define a neighbor
as an agent from whom one can sample information about past plays, whereas a
stranger is an agent one does not have any information about. A convenient way to
represent these relationships is as follows. A directed link from agent i to agent j is
an information flow from agent i to agent j, as in Bala and Goyal (1998, 2000) and
Masson (2005). It means that agent j considers agent i as a neighbor. If the link
between agent i and agent j is mutual, as in Jackson and Wolinsky (1996), it means
that both agents consider each other as neighbors. Note that contrarily to what is
commonly assumed in the literature on social interactions, we do not impose that
neighbors share common preferences (are from the same population).
When an agent faces a neighbor, she can access her opponent’s past plays and

payoffs. We assume that she samples some of her opponent’s past plays and plays
a myopic best response to this sample that she considers as her opponents’ strategy
distribution for the current period. This approach is common in the literature, see
Kandori, Mailath, and Rob (1993), Young (1993, 1998) among many others. However,
the situation differs when an agent is matched with a stranger. In that case, the
agent does not have any information about her opponent. The only information
at her disposal comes from a sample of her neighbors’ past plays. In this case, we
assume that the decision rule the agent uses satisfies the following requirements: the
decision rule can either select a strategy present in the sample or a best response
against some subsample.2 Our motivation for this approach is intuitive: if an agent
does not know anything about her current opponent, she may believe that one of her
neighbors could have played against her current opponent in the past. Therefore,
any past experience from her neighbors could indeed carry some useful information.
Notice that any imitation rule and any belief-based rule satisfy our requirement.
The main question we answer in this paper is how coordination arises among

agents with different preferences when the game they play is what Schelling calls “a
mixture of mutual dependence and conflict of partnership and competition.”3 Our
model encompasses many situations. For example, consider a Battle of the Sexes
game where men and women from different finite populations are paired to play
each period. Note that any two agents can be matched each period. A question is

2Note that the “or” is not exclusive. The strategy present in the sample can also be a best
response against some subsample.

3See Schelling (1960, 1971).
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whether men and women coordinate on the same strategy? Another example where
agents might find it difficult to coordinate is when they are faced with the choice of a
product. In the academic world, for example, where coauthoring makes it critical to
coordinate, which of SWP4 or LaTex should be used for the first draft of a paper. One
might prefer LaTex but accommodate SWP’s coauthors and the question is: why?
What is more important for coordination: the proportion of agents sharing similar
preferences, or the information agents can access?
Our main result shows that there exist some “special” agents leading the coordi-

nation. Similar agents and their impact on the social behavior of others have been
observed by Glaeser, Sacerdote, and Scheinkman (1996) in a study on crime. They
called them Fixed agents. Bala and Goyal (1998) also studied these peculiar agents,
and called them the members of the royal family.
Our first result shows that connected fixed agents have to coordinate on the same

strategy choice in the short run. This prediction is independent from the decision rule
agents use when they are matched with a stranger and might lead to the existence of
segregated neighborhoods where agents from the same neighborhood play the same
strategy.5 This result implies that within the following common information struc-
tures: complete, all links are double-sided, directed star, directed wheel, and directed
chain, all agents play the same strategy in the short run.
If there is a small probability that agents can make their choices at random, we

obtain a sharp prediction as this probability goes to zero. In particular, if all agents
use the following imitation rule: imitate the strategy which gives the highest payoff
in the sample, all agents coordinate on the same strategy in this noisy environment.6

Moreover, if all fixed agents are from the same population (members of the same
royal family), the long-run (noisy) outcome is unique: all agents coordinate on the
preferred strategy of the royal family. Our assumption that imitation is a sensible rule
to use when access to information is limited is supported by experimental evidence
(see Huck, Normann, and Oechssler, 1999) and Hayek’s theory of cultural evolution.7

Theoretical analysis and impact of imitation rules are presented by Robson and Vega-
Redondo (1996) and Josephson and Matros (2004).
The paper is organized as follows. A detailed description of the model is given in

Section 2. Short run predictions are presented in Section 3. Section 4 describes the
long-run outcomes and Section 5 concludes.

4Scientific WorkPlace.
5See Schelling (1971) for the first discussions about segregated neighborhoods.
6We modify the imitation rule to take into account heterogeneity among agents. We assume that

an agent imitates a strategy which gives the highest payoff to an agent from the same population.
This is always possible since an agent can imitate herself.

7See Hayek (1988).
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2. The Model

The following subsections characterize the concepts of heterogenous populations, in-
formation structure, decision rules and Markov process used in the paper.

2.1. Heterogenous Populations and Payoffs Matrices. Suppose that there
existK finite populations with nk ≥ 1 agents in population k, such that n1+...+nK =
2n, for k = 1, ...,K. Time is discrete, and in each period, all agents are randomly
paired to play some K ×K coordination games. Each agent from population k faces
the following payoff matrix

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak11 ak12 ... ak1k ... ak1K
ak21 ak22 ... ak2k ... ak2K
...

...
...

...
akk1 akk2 ... akkk ... akkK
...

...
...

...
akK1 akK2 ... akKk ... akKK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where akhh > aklh for all h, k, l = 1, ..., K, h 6= l; and akkk > akll for any k 6= l. The
first condition akhh > a

k
lh insures that agents favor coordination. The second condition

akkk > a
k
ll stipulates that an agent from population k prefers to coordinate on strategy

k. Therefore, an agent plays different coordination games with agents from different
populations. In particular, each population k has a preferred strategy k that leads to
a unique Pareto Efficient outcome when two agents from this population are matched.
This is the case when two men are matched in the Battle of the Sexes game. In this
situation, both men have a preferred strategy which is to “go to a soccer match”. On
the other hand, when two agents from different populations are matched, there are
at least two Pareto Efficient outcomes. This corresponds to the case where a woman
and a man are matched in the Battle of the Sexes game.
Denote a pure strategy x ∈ {1, ..., K} of an agent from population k by a vector

x = (0, ..., 0, 1, 0, ..., 0). Suppose that an agent from population k is matched with an
agent from population l. If the agent from population k plays strategy x ∈ {1, ...,K}
and the agent from population l plays strategy y ∈ {1, ...,K}, then the two agents
obtain the following payoffs

πk (x, y) = πk (x,y) = xA
kyT

and
πl (y, x) = πl (y,x) = yA

lxT .

The following example illustrates this point.
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Example. Battle of the Sexes.
Suppose that there are two populations: men and women. In each period, all

agents are randomly paired to play some 2× 2 coordination games. Each agent from
the men’s population has the following payoff matrix

Am =

Ã
2 0
0 1

!

and each agent from the women’s population has the following payoff matrix

Aw =

Ã
1 0
0 2

!
.

Let us call the first strategy, (1, 0), “go to a Soccer match,” and the second strategy,
(0, 1), “go to an Opera.”
Agents can be matched in three ways: man and man, woman and woman, and

man and woman. If two men are matched, they play the following coordination game

S O
S 2, 2 0, 0
O 0, 0 1, 1

Man vs Man

If two women are matched, they play the following coordination game

S O
S 1, 1 0, 0
O 0, 0 2, 2

Woman vs Woman

If a man is matched with a women, they play the following coordination game

S O
S 2, 1 0, 0
O 0, 0 1, 2

Man vs Woman

This example illustrates how the populations’ heterogeneity is introduced into
the payoffs matrices. We now focus on the information structure and adopt some
necessary terminology for the description of its asymmetry.
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2.2. Information Structure. At time t, each agent from population i chooses a
strategy xti from the set X = {1, ...,K} according to some behavioral rules (described
below) based on past plays’ available information. Therefore, the play at time t can
be defined as xt = (xt1, x

t
2, ..., x

t
2n), and the history of plays up to time t can be

represented by the sequence ht = (xt−m+1, ..., xt) of the last m plays.
Define the information structure hV, T i, where V is the set of agents and T is

the set of information links. Our information structure is similar to the information
structure in Bala and Goyal (1998) and Masson (2005). We call agents from whom
agent q can access past plays neighbors of agent q, and any other agent a stranger
to agent q. Denote by Nb(q) the set of neighbors of agent q; St(q) the set of strangers
of agent q; and A(q) the set of agents who can access agent q’s past plays. Note that
agents in Nb(q) do not need to share common preferences.
The dichotomy neighbor/stranger can be represented by a directed graph (the

information structure hV, T i) where a directed link (flow of information) from agent
q to agent g, {q → g} ∈ T , means that agent g can access information about past
plays of agent q, or q ∈ Nb (g) and g ∈ A (q). We assume that q ∈ Nb (q) for any q.
The following example illustrates the above definitions.

Example. Suppose that the information structure of the Battle of the Sexes
game is as in Figure 1 where agents 1 and 2 are men, and agents 3 and 4 are women.

 
1 2 3 4

Figure 1. Battle of the Sexes game. Information Structure 1.

For each agent q = 1, 2, 3, 4 we can define

Nb (1) = {1} , A (1) = {2} , St (1) = {2, 3, 4} ;

Nb (2) = {1, 2, 3} , A (2) = {3} , St (2) = {4} ;
Nb (3) = {2, 3, 4} , A (3) = {2} , St (3) = {1} ;
Nb (4) = {4} , A (4) = {3} , St (4) = {1, 2, 3} .

In the next subsection, we describe the decision rules agents are assumed to follow.
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2.3. Decision Rules. It is important to note that each agent has her own prefer-
ences (belongs to a particular population) as well as her own amount of information
(from a set of neighbors). Any two agents can be paired in each round and each
agent chooses her strategy as follows. Fix integers s and m, where 1 ≤ s ≤ m.
At time t + 1, each agent q inspects a sample (xt1 , ..., xts) of size s taken with-
out replacement from her neighbors’ history of size m of plays up to time t, where
t1, ..., ts ∈ {t−m+ 1, t−m+ 2, ..., t}. We assume that samples are drawn indepen-
dently across agents and time.
If an agents is matched with one of her neighbors, she has information about

her opponent past plays and plays the best reply against the opponent’s strategy
distribution in the sample. This approach is intuitive: agents are boundedly rational
and expect the play of the game to be “almost” stationary. See Kandori, Mailath,
and Rob (1993) and Young (1993, 1998) for discussions.
However, the situation is different if an agent is matched with a stranger. Since

no information is available about the opponent, the agent has to select a strategy
based on the available information about her neighbors. We assume that the decision
rule the agent uses in order to select a strategy satisfies the following requirement:
it can either select a strategy present in the sample or a best response against some
subsample. Our motivation for this approach is as follows: if an agent does not know
anything about her current opponent, she believes that one of her neighbors could
have played her current opponent in the past. Therefore, it is plausible to believe
that she considers her neighbor’s information as valuable for her current play. Note
that any imitation rule and any belief-based rule satisfy our requirement.

2.4. Markov Process. Let the sampling process begin in period t = m+1 from
some arbitrary initial sequence of m plays, hm. We define a finite Markov chain (call

it B0 ≡ BV,T ,m,s,0) on the state space
h
(X)2n

im
= H (of sequences of length m drawn

from the strategy space X), with the information structure hV,T i and an arbitrary
initial state hm. The process B0 moves from the current state h to a successor state
h0 in each period, according to the following transition rule. For each xi ∈ X, let
pi(xi | h) be the conditional probability that agent i chooses xi, given that the current
state is h. We assume that pi(xi | h) is independent from t.
The perturbed version of the above process can be described as follows. In each

period, there is a small probability ε > 0 that any agent experiments by choosing a
random strategy from X instead of applying the described rule. The event that one
agent experiments is assumed to be independent from the event that another agent
experiments. The resulting perturbed process is denoted by Bε ≡ BV,T ,m,s,ε. As we
will see below, the resulting process Bε is ergodic, making the initial state irrelevant
in the long run.
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3. Short Run

In order to characterize the short-run outcomes of the model, we first need to adopt
some terminology.

Definition 1. The information structure hV,T i is connected if for any two agents
q, g ∈ V there exists a sequence of agents f1, ..., fk ∈ V such that {fl − fl+1} ∈ T ,
l = 1, ..., k − 1, where link − is either link →, or link ←, or both; and q = f1 and
g = fk.

We assume that the information structure is connected for the remainder of the
paper. Next, we define some special agents, called fixed agents, who have the ability
to influence other agents. Formally,

Definition 2. q∗ is a fixed agent, if
(i) {q∗} = Nb (q∗), or
(ii) for any g ∈ Nb (q∗), there exists a sequence of agents g1, ..., gk such that

{gl → gl+1} ∈ T , l = 1, ..., k − 1, and g1 = q∗ and gk = g.

Denote by F ⊆ V the set of fixed agents. Fixed agents propagate information
within the information structure. For example, agents 1 and 4 are fixed agents and
agents 2 and 3 are not in Figure 1. The following Lemma establishes the existence of
fixed agents.

Lemma 1. Each information structure has a fixed agent.

Proof. Since each information structure is finite, the claim follows immediately.
End of proof.

Some information structures can have several fixed agents who might share infor-
mation.

Definition 3. Two fixed agents q∗ ∈ F and g∗ ∈ F are connected, if there exists a
sequence of agents q1, ..., qk such that {ql → ql+1} ∈ T , l = 1, ..., k − 1, and q1 = q∗
and qk = g

∗.

It is obvious that each agent in the sequence of agents q1, ..., qk is a fixed agent
too. The following example illustrates the definition.

Example. Suppose that the information structure in the Battle of the Sexes
game is as in Figure 2. Agents 2 and 3 are two connected fixed agents.
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1 2 3 4

Figure 2. Battle of the Sexes game. Information Structure 2.

It is important to note that there may exist many distinct groups of connected
fixed agents within the information structure. There are finitely many, 1 ≤ L < ∞,
disjoint groups of connected fixed agents. We denote such groups of connected fixed
agents by F1, ..., FL, where Fi ∩ Fj = ∅, for any i 6= j, and F1 ∪ ... ∪ FL = F .
Given that the information structures we consider can be very different from one

another, we cannot give a detailed description of all absorbing states and sets in
general, but we are able to identify larger sets each of which contains an absorbing
state or set. In the next section, we will show that this is nonetheless enough to
identify the stochastically stable outcomes.

3.1. General Information Structures. Whereas the previous definitions were
focused on the information structure, the following definition describes the important
states of the Markov process B0.

Definition 4. A partial convention, hy1,...,yL, is a set of states where all connected
fixed agents in group Fj played strategy yj for the last m periods in each state of the
set hy1,...,yL.

Note that agents from different groups of connected fixed agents could play dif-
ferent strategies in a partial convention, thus leading the non-fixed agents to play
different strategies. The following example illustrates how the strategies of non-fixed
agents can vary in partial conventions.

Example. Consider the Battle of the Sexes game with the information structure
from Figure 1. We assume that m = 2, s = 1. Suppose that agents 1 and 2 are from
the men’s population, and agents 3 and 4 are from the women’s population. Agents
are matched at random to play the 2×2 coordination games described in Section 2.1.
Note that agents 1 and 4 are fixed agents, but they are not connected. In a partial

convention, each fixed agent played the same strategy two times in the past. If both
fixed agents coordinated on strategy S, then the following set of states is a partial
convention:

hS,S = {(S, S) , (w, x) , (y, z) , (S, S)} ,
where w, x, y, z ∈ {S,O} and the first bracket represents the strategy choices of agent
1 in the last two periods, the second bracket shows the strategy choices of agent 2 in
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the last two periods, and so on. If both fixed agents coordinate on strategy O, then
the following set of states is a partial convention:

hO,O = {(O,O) , (w, x) , (y, z) , (O,O)} ,

where w, x, y, z ∈ {S,O}.
However, fixed agents who are not connected do not need to coordinate in a partial

convention. For example, agent 1 could play strategy S in the last two periods, and
agent 4 could play strategy O in the last two periods. The following set of states is
therefore also a partial convention:

hS,O = {(S, S) , (w, x) , (y, z) , (O,O)} ,

where w, x, y, z ∈ {S,O} . Analogously, if agent 1 played strategy O in the last two
periods, and agent 4 played strategy S in the last two periods, the following set of
states is also a partial convention:

hO,S = {(O,O) , (w, x) , (y, z) , (S, S)} ,

where w, x, y, z ∈ {S,O} .
Note that non-fixed agents 2 and 3 can switch from strategy S to strategy O

(and vice versa) in any partial convention. We will see below that partial conventions
contain either exactly one absorbing state or set of the unperturbed process B0. In
our example, the partial convention hS,S (hO,O) contains one absorbing state where
all agents play strategy S (O). And the partial convention hS,O (hO,S) contains one
absorbing set where non-fixed agents 2 and 3 can play either S or O. In this latter
case, the partial convention and the absorbing set do coincide.

We are now able to complete our study of the absorbing sets and states of the
process - short-run outcomes. An absorbing set of the unperturbed process B0 is a
minimal set of states such that there is zero probability for the process B0 of moving
from any state in the set to any state outside, and there is a positive probability for
the process B0 of moving from any state in the set to any other state in the set. A
singleton absorbing set is called an absorbing state.

Definition 5. A uniform convention, hx = hx,...,x, is a state where all agents
play the same strategy x.

Note that there exist K uniform conventions.

Proposition 1. Each uniform convention is an absorbing state.
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Proof. It is evident. End of proof.

We now state the main result of this subsection.

Proposition 2. Each partial convention contains a unique absorbing state or set.

Proof. Note that each agent in a group of connected fixed agents has to coordi-
nate on the same strategy for the last m periods in any absorbing set. Any partial
convention has this property. End of proof.

We can narrow down the short-run prediction for the following particular case.

Proposition 3. If all fixed agents are coordinated on the same strategy x in a par-
tial convention, then this partial convention contains the absorbing state, uniform
convention, hx.

Proof. It is evident. End of proof.

We now take a closer look at several information structures that have been of a
particular interest in the network literature.

3.2. Common Information Structures. If the information structure is such
that all agents are fixed and connected, or there is just one fixed agent, then the short-
run prediction is a state, uniform convention. There are several common information
structures where all agents are fixed and connected. For example, (1) if all directed
edges are double-sided (the information goes in both directions), (2) if the information
structure is a directed wheel, or (3) if the information structure is complete.

Definition 6. The connected information structure hV,T i is a directed wheel, if
any agent q ∈ V has exactly one agent who can access agent q’s past plays, kA(q)k = 1.

Definition 7. The information structure hV, T i is complete, if for any two agents
q, g ∈ V

{q → g} , {g → q} ∈ T .

Similarly, there are several information structures with just one fixed agent. For
example, (4) a directed star, or (5) a directed chain.

Definition 8. The connected information structure hV, T i is a directed star, if
there exists an agent q ∈ V such that every other agent g 6= q has exactly two
neighbors, Nb (g) = {g, q}, and Nb (q) = {q}.
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Definition 9. The connected information structure hV,T i is a directed chain, if
there exists an agent q ∈ V such that every other agent g 6= q has exactly two
neighbors, kNb (g)k = 2, and Nb (q) = {q}.

The following example illustrates the last definition.

Example. Suppose that the information structure is as in Figure 3. Agent 2 is
the fixed agent.

 
1 2 3 4

Figure 3. Battle of the Sexes game. Information Structure 3.

The following proposition gives the short-run outcomes for some common infor-
mation structures.

Proposition 4. Suppose that at least one of the following conditions holds

• all edges are double-sided,

• the information structure is a directed wheel,

• the information structure is complete,

• the information structure is a directed star,

• the information structure is a directed chain.
Then the Markov process B0 converges with probability one to a uniform con-
vention.

Proof. Note that when the first, second, or third condition holds, all agents are
connected fixed agents. If the forth, or fifth condition holds, there is a unique fixed
agent. The statement follows from Proposition 3. End of proof.
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4. Long Run

Many short-run outcomes are candidates for the long-run prediction when agents
can make mistakes. Following the literature, we describe properties of the unique
stationary distribution of the perturbed Markov process Bε. The main result of this
section is that only K states can be the long-run outcomes. These are the uniform
conventions.
We use the following definitions.

Definition 10. Stochastic Stability: A state h ∈ H is stochastically stable rela-
tive to the process Bε if limε→0 μ

ε
h > 0 where μ

ε is the unique stationary distribution
of the process Bε.

Definition 11. Resistance: For any two states h, h0 the resistance r(h, h0) is the
total number of mistakes involved in the transition from h to h0, if h0 is a successor
of h; otherwise r(h, h0) =∞.

A directed tree is a directed graph (V,E). The vertices, V , represent all possible
absorbing sets and the edges, E, represent the transition from one absorbing set to the
other. Each edge is assigned a weight which is equal to the corresponding resistance.
The resistance of such a directed tree is equal to the sum of the resistances of its
edges.
The stochastic potential ρ of an absorbing set is the minimum resistance of the

tree rooted at this absorbing set. We will use the following well-known result.

Theorem 1. The only stochastically stable sets of the perturbed Markov process Bε

are the absorbing sets with minimum stochastic potential.

We can now describe the long-run outcomes.

Theorem 2. For any absorbing set h ∈ H different from a uniform convention,
there exists a sample size s∗ and a uniform convention hx ∈ H, such that for any
s ≥ s∗ > m/2 ρ (h) > ρ (hx).

Proof. First, note that all connected fixed agents have to coordinate on the same
strategy in any absorbing set. Second, if all fixed agents coordinate on the same
strategy, the absorbing set is a uniform convention from Proposition 3. Third, it
takes at least two mistakes to leave any uniform convention. It is enough to show
now that it takes just one mistake to leave an absorbing set different from a uniform
convention. It becomes obvious once we see how to leave such a set where all but one
(connected) fixed agent(s) coordinate on one strategy.
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Consider an absorbing set h ∈ H different from a uniform convention. It must be
the case that at least two strategies are played by the fixed agents. Find a group of
connected agents, Fi, who are playing the most popular (among fixed agent) strategy,
x. Consider another set of fixed agents, Fj, who are playing another strategy, y. There
is a positive probability that all connected fixed agents in this set, Fj, are matched
with the fixed agents who play strategy x. Suppose that this matching takes place for
s− 1 periods. As a result, all connected fixed agents in Fj have s− 1 miscoordinated
plays. Suppose that one of the fixed agents in Fj, agent q, makes a mistake and
coordinates on the strategy x. There is a positive probability that she and every
member from the set A (q) sample her last s plays for the next s periods. Suppose
that all connected fixed agents from A (q) and agent q are matched with fixed agents
they consider strangers. This will lead to another absorbing set where more fixed
agents play strategy x. Continuing in this way, we can see that it takes one mistake
to move from one absorbing set to the next until we reach the uniform convention
hx. Hence, ρ (h) > ρ (hx). End of proof.

In a partial convention, connected fixed agents from the same group coordinate
on the same strategy. So, if not all fixed agents follow the same strategy and two
fixed agents from different groups who play different strategies are matched, only one
mistake is needed to have them both coordinating on the same strategy. Therefore, a
partial convention is never as stable as a uniform convention, since in order to leave
a uniform convention, two mistakes are needed.
From Theorem 2 it follows that a uniform coordination must be reached in the

long-run. But a sharper prediction can be obtained, if we assume that agents imitate
the most successful play in their samples when they are matched with strangers. Call
this Markov process BIε.

Theorem 3. Suppose that all fixed agents belong to the same population i and there
exist at least two distinct groups of fixed agents. Then there exists a sample size s∗,
such that for any s ≥ s∗, the perturbed process BIε converges with probability one
to a uniform convention hi...i.

Proof. We have to select the long-run outcome among different uniform con-
ventions from Theorem 2. Since all fixed agents are from the same population i,
they obtain the highest payoff if they coordinate on the strategy i. The imitation
rule drives the selection in favor of the uniform convention hi...i. Similar results were
obtained in Robson and Vega-Redondo (1996) and Josephson and Matros (2004).
Consider a uniform convention hj...j, j 6= i. It takes just two mistakes in order

to leave a uniform convention hj...j: two matched fixed agents from different groups
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switch from strategy j to strategy i. It is obvious that it requires more than two
mistakes to leave the uniform convention hi...i. End of proof.

The intuition for this result is as follows. Theorem 2 insures that only some
uniform conventions can be the long-run outcome. Therefore, if all fixed agents share
the same preferences (from the same population i), but coordinate on strategy j 6= i
in the uniform convention hj...j, it is easy to see that only two mistakes are needed
to leave the uniform convention hj...j. More precisely, two matched fixed agents from
distinct groups play strategy i by mistake and obtain the highest possible payoff.
Since agents use the imitation rule when matched with strangers, any other fixed
agent who can access this information will also play strategy i. Hence, the uniform
convention hi...i is the most stochastically stable.

Example. Consider the Battle of the Sexes game from the previous section where
the information structure is given by Figure 1. There are only two possible long-run
outcomes: all four players coordinate on a unique strategy, i.e. either all of them go
to a soccer match or all of them go to an opera. We have a unique long-run prediction
only if both fixed agents are from the same population.

Some information structures have a unique fixed agent. This fixed agent’s popu-
lation determines the long-run outcomes: a uniform convention where all agents play
the fixed agent’s preferred strategy.

Corollary 1. Suppose that the information structure hV,T i is either a directed star,
or a directed chain and the unique fixed agent is from population i. Then, there exists
a sample size s∗, such that for any s ≥ s∗, the perturbed process BIε converges with
probability one to a uniform convention hi.

Proof. Note that any directed star or/and any directed chain have just one fixed
agent. The corollary now follows from Theorem 3. End of proof.

5. Conclusion

In this paper we consider a population of heterogeneous agents who are randomly
paired each period to play some coordination games. We show that the short-run
predictions (mistake-free environment) depend on the information structure: con-
nected fixed agents have to coordinate on the same strategy. Whereas in the long
run, all agents coordinate on the same strategy. Moreover, the long-run prediction is
unique when all fixed agents belong to the same population.
It is interesting to see that despite the divergence of preferences, agents can agree

uniformly on one particular strategy in the long run. This coordination is obtained
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through the “fixed agents” highlighted by Glaeser, Sacerdote, and Scheinkman (1996)
in a study on criminal behavior.
The most important result of the paper is the fact that sharing common prefer-

ences with a majority of others does not insure a favorable outcome. What matters
most is not the number of agents in a population, but rather their “quality.” By
spreading widely their information, fixed agents insure that their preferences are ob-
served, directly or indirectly, by everyone and therefore influence the plays of others.
This is the reason why an agent’s location (her population) is less important than her
information. This also explains why a minority can sometimes impose its preferences.
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