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Abstract

We experimentally study decentralized organizational learning. Our objective is
to understand how learning members of an organization cope with the confounding
effects of the simultaneous learning of others. We test the predictions of a stylized,
rational agent model of organizational learning that provides sharp predictions as to
how learning members of an organization might cope with the simultaneous learning
of others as a function of fundamental variables, e.g., firm size and the discount factor.
While the problem of learning while others are learning is quite difficult, we find support
for the comparative static predictions of the model’s unique symmetric equilibrium.
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“If one’s own actions are embedded in an ecology of the actions of many others
(who are simultaneously learning and changing), it is not easy to understand
what is going on. The relationship between the actions of individuals in the or-
ganization and overall organizational performance is confounded by simultaneous
learning of other actors.” —Daniel A. Levinthal and James G. March (1993, p.
97).

In this paper we experimentally study decentralized organizational learning. We look at

teams, the smallest organizational unit and formulate a team—learning problem that is de-

centralized in that members of the team make their decisions independently. Team members

have common interests and their objective is to discover through trial and error which of the

combinations of team members’ actions yield a positive payoff, without being able to either

communicate with other team members or to observe their actions.

We are interested in how learning members of a team cope with the confounding effects

of the simultaneous learning of other team members.1 This issue is a recurrent theme in

the literature on organizational learning, e.g., Pertti H. Lounamaa and James G. March

(1987) and Daniel A. Levinthal and James G. March (1993). It arises because, unless there

is either unrestricted communication or perfect observability, it can be difficult to attribute

success or failure to combinations of actions taken by different members of the organiza-

tion. For example, innovations in a firm’s research and development department may be

falsely regarded as ineffective, only because they are not effectively communicated to and

matched by changes in the marketing department. Indeed, Clayton M. Christensen (1997)

documents how a lack of communication between engineers and marketing departments at

companies manufacturing computer disk drives led to the failure of some of the more estab-

lished manufacturers. Similar failures to communicate, e.g., between nurses and physicians

or within nursing teams, are cited by Amy C. Edmondson (2004) for the frequent lack of

learning from failure in healthcare organizations. One of the key findings from Edmondson’s

empirical study is that “process failures in hospitals have systemic causes, often originat-

ing in different groups or departments from where the failure is experienced, and so learning

from them requires cross departmental communication and collaboration.” Our experimental

team—learning task captures this lack of communication and observability as starkly as pos-

1An organization is any collection of individuals linked by a common purpose, Douglass C. North (1994).
This includes naturalistic organizations (like firms, plants), but also teams, and groups (within a firm). In
our experimental investigation, we focus on groups of agents in the laboratory. As Linda Argote (1999, p. 99)
notes, “understanding how groups or teams learn to work effectively together provides the micro foundation
for organizational learning because groups or teams are the building blocks of most organizations.”
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sible. Furthermore, we compare multiplayer team—learning with individual learning, where

communication and observability constraints are removed.

Much of the work on organizational learning follows Herbert A. Simon’s (1947) and

Richard M. Cyert and March’s (1963) views that the organization is composed of boundedly

rational agents. The question then is how such organizations perform as a function of certain

exogenously specified individual learning rules. For example, Richard H. Day and E. Herbert

Tinney (1968) study decentralized learning in a firm with two independent decision makers

who respond to success or failure by modifying their decision rules until a satisficing criterion

is met. Day and Tinney examine the roles of “caution,” “daring” and “failure response” and

show that “learning - tempered by caution in response to failure” can eventually solve the

firm’s problem. Outside of economics, computer scientists have shown considerable interest

in boundedly rational concurrent learning in multi-agent environments.2

Our approach toward obtaining theoretical predictions, based on Andreas Blume and

April M. Franco (2007), is novel in the organizational learning literature as we consider fully

rational agents and use an explicit game theoretic framework. Rather than exogenously

specifying individual learning rules, we predict learning behavior and tie our predictions to

parameters governing individual preferences as well as to properties of organizations. Thus,

by contrast with the bounded rationality approach where the focus is on learning an equilib-

rium, we investigate learning in equilibrium. Using the terminology of Day and Tinney, we

can predict agents’ “caution,” “daring” and “failure response” from their equilibrium val-

ues. This novel approach complements the traditional approach to decentralized learning in

organization theory and multi-agent learning in computer science of exogenously specifying

learning rules for individual agents. Our model yields sharp, testable predictions about be-

havior in the organization and about how this behavior varies with the fundamental variables

that characterize the organization.3

Our focus is on a benchmark environment characterized by decentralized learning. In

this benchmark environment, there is no room for explicit coordination, and due to limited

2For example, Sandip Sen and Mahendra Sekaran (1998) investigate reinforcement learning in multi-agent
systems.

3Fully rational learning in strategic settings is also investigated in the literature on many-agent versions
of the multi-armed bandit problem, Patrick Bolton and Christopher Harris (1999), games with unknown
payoff distributions, Thomas Wiseman (2005), and the literature on informational herding, e.g., Abhijit V.
Banerjee (1992) and Sushil Bikchandani, David Hirshleifer and Ivo Welch (1992). Our environment differs
from those examined in these papers due to our focus on how agents with common interests coordinate their
learning activities when there are constraints on their ability to communicate and to observe each others’
actions.
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information feedback, there is little room for tacit coordination. This implements some of

the important hurdles faced by Jacob Marschak’s (1960) “several-person firm,” where each

decision maker “decides about different things and on the basis of different information.”

Organizations have a multitude of coping strategies for dealing with the problems arising

from decentralized decision making (and dispersed information). Nevertheless, some of the

decision making in an organization will remain decentralized. Also, we are likely to better

understand the coping strategies and their value, by first studying the extreme of no explicit

coordination.

In the theoretical analysis for our environment, decentralization is captured through

explicit constraints on agents’ equilibrium strategies. We base our predictions on those

equilibria that make no initial role distinctions among agents, on the grounds that such role

distinctions are unlikely to be achieved without some explicit coordination mechanism. This

approach, which models absence of a common language that could be used to distinguish roles

by requiring that strategies respect the symmetries of players and actions, was pioneered by

Vincent P. Crawford and Hans Haller (1990) and further developed by Blume (2000), Francis

Kramarz (1996), V. Bhaskar (2000) and Steve Alpern and Diane J. Reyniers (2000).4 In

future work we intend to use this benchmark environment as a platform for investigating

routines, communication, information systems, culture, etc. in organizations. For example,

in our environment, there are efficient routines that rely on role distinctions among agents.

Our principal experimental finding is that in their own learning behavior agents appear

to take into account the confounding effects of the simultaneous learning of others. The

data suggest that agents’ learning behavior is sensitive to both group size and induced time

preference. The direction of these comparative statics effects, although not their magnitude,

is as predicted by theory.

The paper is organized as follows. In Section 2 we briefly review the theory that motivates

our experiment and describe the behavior predicted by theory. In Section 3 we describe

our experimental design. Section 4 summarizes our predictions and Section 5 reports the

aggregate experimental results. In section 6 we examine the extent to which three different

behavioral models might explain our aggregate findings, and in section 7 we briefly explore

individual behavior. Conclusions are offered in section 8.

4In the experimental literature symmetry constraints of this type have been studied by Blume, Douglas
V. DeJong, Yong-Gwan Kim and Geoffrey B. Sprinkle (1998, 2001), Blume and Uri Gneezy (2000, 2001),
and Roberto A. Weber and Colin F. Camerer (2001). Weber and Camerer use a language construction
experiment to study conflicting organizational cultures in the laboratory.
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I. A Model of Decentralized Learning

Our experimental treatments implement a class of learning situations analyzed in Blume

and Franco (2007). They consider a game in which a collection of agents jointly try to find

an optimal action combination in the face of limited information feedback, without being

able to communicate and without reliance on a priori role distinctions. In this section we

describe this game and the solution of the game that gives us our experimental predictions.

In the search-for-success game, n players repeatedly play a stage game in which each

player has an identical number, m, of actions. All action combinations are either failures

or successes. The (normalized) payoff for each player in the organization from a failure is

zero and from a success is one. There are k success profiles and the remaining profiles are

failures. Each assignment of the k successes to profiles is equally likely. Players know k but

not the assignment of successes to profiles.

In the repeated game the random assignment of successes to action profiles is determined

once-and-for-all before the first play of the game. The stage game is repeated in rounds

t = 1, . . . , T, until either a success is played once or the time horizon T is reached. Players

only observe their own actions and their own payoffs, not the actions of the other players.

Players maximize the expected present discounted value of future payoffs with discount

factor δ, where δ > 0. In the experiment it is convenient to permit values of δ > 1 in order

to generate salient payoff differences; this can be interpreted as the learning task becoming

more productive over time.

Decentralization is captured through a symmetry constraint on agents’ joint strategies. In

our setting players are a priori identical, i.e. they have identical action sets, information, and

payoff functions. Furthermore, there is no pre-play communication or alternative mechanism

that could help to desymmetrize players. Since there is nothing that distinguishes players

a priori, we believe it is natural to expect that players hold identical beliefs about each

other at the beginning of the games. Specifically, we study optimal symmetric strategies

and symmetric equilibrium strategies in the repeated game. This approach was pioneered

by Crawford and Haller (1990).

In the general framework, one can show that for any set of parameters and any length of

the game, optimal symmetric strategies exist and that optimal symmetric strategies are Nash

equilibria. One can also show that optimal symmetric strategies are complex. There does not

exist a symmetric public Nash equilibrium. In the infinite horizon game, any length of time
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before a success is found has positive probability. Optimal symmetric strategies can never

be either completely deterministic or completely random. A central property of a solution

is that agents invest in desymmetrization. In particular, they sacrifice current payoffs in

order to increase the likelihood of reaching an asymmetric history: Even before players have

exhausted all of their actions, they will with positive probability return to action profiles

they have visited before.

For the purpose of the experiment, we will focus on three—round versions of the game

in which each agent has m = 2 actions. In that case one can show that the game has

a unique symmetric Nash equilibrium. As in the general case, in this equilibrium both

random switching and deterministic switching are part of the equilibrium strategy. Blume

and Franco (2007) show that the unique symmetric Nash equilibrium has the following form:

In the first round, agents randomize uniformly over their two actions. In the second round

they switch to a different action with probability

p∗(δ, n, k) =
2µ

1

( 1−δδ )(
2n−2

2n−1−k)+1

¶ 1
n−1

+ 2

,

which depends on the discount factor δ, the number of agents n, and the number of success

profiles, k. In the third round they switch with probability q0 = 1, if they didn’t switch in

the previous round, and with probability q1 = 0.5 if they did switch in the previous round.

The intuition underlying this solution is easily understood in the two-player, two-action

case. Refer to the two players as player A and player B (only for record keeping purposes,

without implying any asymmetry among the players). In the third round, conditional on

not having switched before, it is clearly optimal for player A to switch with probability

q0 = 1 since this is the only way to be entirely sure that a new action combination will be

examined. Conditional on having switched before, player A faces two possibilities. The first

possibility is that player B has not switched. Then by the argument just given, player B will

switch in the third round with probability one, guaranteeing that a new action combination

will be examined, irrespective of player A’s choice. The other possibility is that player

B has switched. In that case if both players use identical switching probabilities q1, it

is easily seen that the value of this switching probability that maximizes the probability

of a novel action profile is q1 = 0.5. The remaining question is why agents randomize with

non-degenerate probabilities in the second round. Observe that there cannot be a symmetric

equilibrium in which both agents switch with probability one in round two. Otherwise player
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A could simply stay put in round two and then switch with probability one in round three.

This deviation would guarantee that in each round a novel action profile would be visited.

Therefore the deviation would be profitable, breaking the putative equilibrium. Since in this

game an optimal symmetric strategy has to be an equilibrium, this argument also shows that

probability-one switching in the second round cannot be optimal (provided that δ > 0).

From the explicit formula for p∗(δ, n, k) we can derive a number of interesting testable

comparative statics predictions: p∗(δ, n, k) is (1) strictly decreasing in δ, (2) strictly decreas-

ing in n, (3) strictly decreasing in n even if k
2n
is kept constant and (4) strictly increasing in

k.

II. Experimental Design

In our experiment participants repeatedly play a search-for-success game. Each experimental

session involved sixteen periods of play. In each period, subjects played a three-round search-

for-success game. Before the beginning of any period, participants are randomly (re)matched

into groups of fixed size. During a period, all participants belonging to the same group played

the three-round search-for-success game with one another.

We employ a 3 × 2 experimental design. The first treatment variable is the number of
individuals who participate as a team to play the search for success game, either 1 individual

“singles”, 2 individuals, “pairs” or 3 individuals, “triples”. This allows us to investigate (a)

the distinction between individual and organizational learning and (b) whether individual

learning within an organization is sensitive to the size of that organization. For each of these

three treatment variables, we consider a second treatment variable, the order in which we

vary the discount factor: eight periods with a high discount factor followed by eight periods

with a low discount factor (high-low), or the reverse order (low-high). The precise details of

our parameterization of the model and experimental design are provided in Table 1

Representatively for the six treatments consider the details of the pairs-low-high treat-

ment. In each of the two sessions of this treatment a cohort of 20 students were recruited

from the undergraduate population of the University of Pittsburgh. None of these students

had prior experience with any of the treatments in this experiment. The students were

randomly assigned to separate computer terminals and received written instructions. The

instructions for the experiment were read aloud to the students to make them common
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Design Team Size Treatments
Choice Singles Pairs Triples
Number of players on a team (n) 1 2 3
Number of action choices (m) 4 2 2
Number of success profiles (k) 1 1 2
Number of rounds per game (T ) 3 3 3
Number of sessions with low-high
order: δ = 0.5, δ = 6† 2 2 2
Number of sessions with high-low
order: δ = 6, δ = 0.5‡ 2 2 2
Number of subjects per session 10 20 15
Number of teams per session 10 10 5
Total number of subjects 40 80 60
Total number of teams 40 40 20

†Each session consists of eight 3-round periods with δ = 0.5 followed by eight 3-round periods with δ = 6.

‡Each session consists of eight 3-round periods with δ = 6 followed by eight 3-round periods with δ = 0.5.

Table 1: Characteristics of Experimental Sessions

information.5 Prior to the start of period 1, subjects were randomly matched into 10 pairs.

During period 1 each pair played a three-round search-for-success game in which each indi-

vidual chose between two actions, X and Y . Subjects were informed that their initial choice,

say (X,Y ), was payoff-irrelevant and only served to determine the remaining three profiles,

here (X,X), (Y,X), (Y, Y ), each of which was then equally likely to be the unique success

profile, k = 1.6 Players were informed of this procedure for selecting the success outcome,

but were not told which of the three outcomes had been chosen as the success outcome.

Consistent with the theory, players were not given any information about the choice of their

match in the first round or in any subsequent round of the game. They did, of course, know

the action they chose in each round. In the second round participants were prompted via

their computer terminal to enter the probability with which they would switch from their

first-round choice of X or Y to the other choice. Players could specify any probability in [0, 1]

(up to six digits) representing the probability with which they would like to switch. Players

5The instructions used in this treatment and the other five treatments (along with other supporting
materials) are provided in the web appendix to this paper.

6The reason we made the first round payoff irrelevant is that we wanted to maximize the number of
observations we obtained on individual decisions regarding action choices in the search-for-success game.
While our decision to make the first round payoff irrelevant should not affect the second and third round
behavior of rational agents, it remains an open question whether this is in fact the case.
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were informed that a choice of 0 insured that no switch would occur, while a choice of 1

insured that a switch in action would definitely occur. A choice in (0, 1) meant that a switch

would occur if a random number drawn by the computer program was less than or equal to

the player’s chosen cut-off value; otherwise no switch would occur.7 After all players had

specified their round 2 switching probabilities, the computer program determined whether

each player switched or not. Each player was then informed of their own action choice for

round 2 and whether they and their partner had achieved the success outcome in round 2.

If the success profile was chosen, both participants in that pair received a payoff of $1, which

ended their search-for-success game for that period. Otherwise they proceeded to round

three and were prompted, via their computer monitor, to enter the probability with which

they switched their action from their second-round choice to the other choice. Following

submission of this probability, they were informed only of their own action choice for round

3. If a pair of players’ choices resulted in finding the success profile in the third round, both

received a payoff of δ$1 = $0.50 as we chose to set δ = 0.5 in this treatment. Otherwise both

received a payoff of $0. Following the third round of the first period that period was declared

over; all participants were randomly rematched into pairs and proceeded to play the same

three-round search-for-success game in period two in their new pairings. The computer

program ensured that a player’s match in the current three-round game (period) differed

from his match in the previous three-round game (period) and this fact was made known to

subjects. This pattern was repeated for eight periods. Following completion of the eighth

period, subjects were instructed that for the remaining eight periods (three-round games)

the discount factor would be raised to δ = 6 so that achievement of the success profile in

round two continued to pay $1 while a third-round success now paid $6. The change in δ was

not announced until the start of the ninth period. The new discount factor was in effect for

the remaining eight periods of the session (periods 9-16). At the end of the session, subjects

were paid their earnings from all 16 periods (3-round games) played in cash in addition to a

guaranteed $5 show-up fee.

The differences in the remaining five treatments were as follows (see also Table 1):

In the high-low treatments, the discount factor was 6 in the first eight periods and .5

in the second eight periods. In the singles treatments (n = 1), each individual plays

7While it was not necessary to provide subjects with a randomization device, and it may have encouraged
subjects to randomize more than they otherwise would have chosen to, we nevertheless thought the benefits
of providing such a device, given that the symmetric equilibrium typically involves playing a mixed strategy,
outweighed any costs.
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alone, and instead of choosing between actions X and Y he chooses among the profiles

(X,X), (X,Y ), (Y,X), (Y, Y ), that is m = 4 rather than 2. As in the pairs treatment there

is a single success outcome (k = 1) in the singles treatment. In the triples treatments (n = 3),

members of each three-player group choose between X and Y (m = 2) and, instead of one

success profile, there are two, k = 2; the latter choice keeps the ratio of k to mn constant

across treatments.

The average payoff across all treatments and all sessions earned by subjects, including

the $5 show up fee, was $25.37 for an experimental session that lasted approximately 75

minutes.

III. Predictions

In this section we describe the point predictions of the theory for our experimental treatments

and use these to formulate hypotheses regarding the comparative statics effects of changing

the number of players n and the discount factor δ, and about the relative magnitude of

conditional and unconditional switching probabilities.

For the singles treatment, the formula from section 2 does not apply, but the optimal

solution is easily derived. If an individual has not achieved a success in round two it is

clearly optimal to switch with probability one in round three, regardless of whether there

was a switch in round two or not, i.e. q0 = q1 = 1. Given these conditional switching

probabilities, the expected payoff from switching in round two equals 1
3
+ 2
3
δ 1
2
, where 1

3
is the

probability of a success in round two, and 1
2
is the probability of a success in round three

conditional on not having succeeded in round two. In contrast, the expected payoff from not

switching in round two equals 0 + 1
3
δ, which shows that with n = 1, switching is preferable

to not switching regardless of the discount factor. Therefore we have: For n = 1, k = 1 and

any positive δ, theory predicts the vector of switching probabilities (p, q0, q1) = (1, 1, 1).

For the pairs treatment the unconditional switching probability p can be calculated as a

function of δ from the formula in section 2. Recall the conditional switching probabilities

q0 = 1 and q1 = 0.5 in this case are independent of δ. This gives us: For n = 2, k = 1

and δ = 0.5 theory predicts the vector of switching probabilities (p, q0, q1) = (0.8, 1, 0.5). For

n = 2, k = 1 and δ = 6 theory predicts the vector of switching probabilities (p, q0, q1) =

(0.25, 1, 0.5).

For the triples treatment, we can once again calculate p from the formula in section 2
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and the conditional switching probabilities do not vary with δ. Therefore, in this case, theory

gives us the point predictions: For n = 3, k = 2 and δ = 0.5 theory predicts the vector of

switching probabilities (p, q0, q1) = (0.748, 1, 0.5). For n = 3, k = 2 and δ = 6 theory predicts

the vector of switching probabilities (p, q0, q1) = (0, 1, 0.5).

Inspired by these point predictions we formulate the following comparative statics

hypotheses: (1) Keeping the discount factor fixed, the second-round switching probability

p is decreasing in the number of players, n. This main hypothesis captures the idea that

learning individuals in an organization account for the simultaneous learning of others by

switching (exploring) less often as the team size grows. (2) Fixing the number of players at

either n = 2 or n = 3, the second-round switching probability p, is decreasing in the discount

factor δ. This second hypothesis tests whether variations in the payoff to achieving a success

affect subjects’ behavior; if the future matters little, then players should switch immediately

(in round 2) but otherwise it may pay to wait (until round 3). (3) The conditional switching

probabilities in round 3 (q0, q1) should be invariant to changes in n > 1 or the discount

factor. This third hypothesis is both a counterpoint to hypothesis 2 as well as a test of

individual rationality.

IV. Experimental Findings

In this section we report our main experimental findings and relate them to the theoretical

predictions.8 We start by examining the aggregate data on second-round switching proba-

bilities — the p’s. This addresses our central comparative statics hypotheses stated in the

previous section that the second-round switching probability is decreasing in organizational

size as well as in the discount factor. We then proceed with reporting the session level

data for the two-agent, three-agent and individual-agent treatments. Here, in addition to

the p’s, we report the conditional, third-round, switching probabilities, i.e. the probability

of switching in round three conditional on not having switched in round two, q0, and the

probability of switching in round three conditional on having switched in round two, q1. For

each number n = 1, 2, 3 of agents, we test for differences in the p’s between treatments with

different discount factors and for differences between q0 and q1. Then, fixing the discount

factor, we test for differences in the p’s and q’s between treatments. We then examine aggre-

gate behavior over time and ask whether behavior changes dramatically with changes in the

8All data from our experimental sessions are provided in the web appendix.
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δ Grouping (n) Predicted Session 1 Session 2 Session 3 Session 4 Mean 1—4
0.5 Singles 1.000 0.940 0.955 0.781 0.825 0.875
0.5 Pairs 0.800 0.657 0.561 0.555 0.767 0.635
0.5 Triples 0.750 0.465 0.486 0.514 0.622 0.522
6.0 Singles 1.000 0.816 0.861 0.761 0.759 0.799
6.0 Pairs 0.250 0.454 0.417 0.483 0.352 0.427
6.0 Triples 0.000 0.302 0.438 0.221 0.316 0.320

Table 2: Predicted and observed mean round-2 switching probabilities across treatments

discount factor and whether there is an order effect depending on the sequence of change in

the discount factor, high-low or low-high, in a session. Finally, we briefly examine individual

behavior.

A. Aggregate findings

Figure 1 here.

Figure 1 shows the second-round switching probabilities for each treatment. The top

panel displays the round-2 switching probabilities predicted by theory and the mean round-

2 switching probabilities of the subjects for the case where δ = 0.5 for individuals, pairs and

triples. The bottom panel does the same for δ = 6. The data averages reported in Figure 1

are over all 8 periods of all four sessions of a given treatment.

While the means of the observed round-2 switching probabilities do not coincide with

the theoretical predictions, the comparative statics predictions of the theory are supported

by the data. Our first main experimental finding is that, in line with our comparative

statics hypotheses, the observed round-two switching probability decreases as the size of the

organization increases. When δ = .5, the respective mean switching probabilities are 87.5

percent for singles (individuals) 63.5 percent for pairs and 52.2 percent for triples. When

δ = 6, the mean switching probability falls from 79.9 percent in the individual case to 42.7

percent in the pairs case and 32.0 percent in the triples case.

The results presented in Figure 1 are disaggregated by experimental session in Table 2.

Using the four session-level means for each treatment, a robust rank order test confirms

that round-2 switching probabilities are significantly lower in the pairs treatment than in
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the singles treatment (p ≤ .05) when δ = .5 or when δ = 6.9 Similarly, using the session

level data we also find that the round-2 switching probabilities are significantly lower in the

triples treatment than in the pairs treatment (p ≤ .05) when δ = .5 or when δ = 6. This

evidence suggests that participants take into account the confounding effects of simultaneous

learning.

Our second main experimental finding is that in line with our comparative statics hy-

potheses in the pairs and triples treatments, the observed second-round switching probabil-

ities decrease as we induce participants to be more patient by changing the discount factor

from 0.5 to 6. For the pairs treatment, the predicted probability of switching in the second

round is 80 percent when δ = 0.5 and falls to 25 percent when δ = 6. In the experimental

data, the mean second round switching probability is 63.5 percent when δ = 6 and falls to

42.7 percent when δ = 0.5. Using the four session-level means for each treatment given in

Table 1, this difference is significant (p = .05). Similarly, for the triples treatment, the pre-

dicted probability of switching in the second round is 75 percent when δ = 0.5 and falls to 0

percent when δ = 6. In the experimental data, the mean second round switching probability

is 52.2 percent when δ = 6 and falls to 32 percent when δ = 0.5. This difference is also

significant using the session-level data. (p = .05)

The third main experimental finding concerns the conditional probabilities of switching in

round 3 in the pairs and triples treatments. Recall that, regardless of the value of the discount

factor or whether players are matched in pairs or triples, the probability of switching in round

3 conditional on not having switched in round 2, q0 = 1.0, while the probability of switching

in round 3 conditional on having switched in round 2, q1 = 0.5. The mean observed values

of q0 and q1 in the four sessions conducted of the pairs and triples treatments are reported

in Table 3.

Again, we see that while the point predictions of the theory are not borne out in the

experimental data, the comparative static predictions of the theory find strong support.

In particular, the conditional probability q0 is greater than q1 in both the pairs and the

triples treatments. Using the four session level means for q0 and the corresponding session

level means for q1 for the same treatment conditions (same δ, n), we can always reject the

null hypothesis that q0 = q1 in favor of the alternative that q0 > q1 (p ≤ .05). This ob-

served difference in switching probabilities conditional on having switched versus not having

9For a description of the robust rank order test, see Sidney Siegel and N. John Castellan Jr. (1988). We
used the robust rank order test for the other hypotheses tested in this section.
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Pr . δ Grouping (n) Predicted Session 1 Session 2 Session 3 Session 4 Mean All
q0 0.5 Pairs 1.0 0.568 0.556 0.518 0.497 0.535
q0 0.5 Triples 1.0 0.505 0.397 0.558 0.572 0.508
q0 6.0 Pairs 1.0 0.700 0.549 0.628 0.672 0.637
q0 6.0 Triples 1.0 0.583 0.577 0.686 0.666 0.628
q1 0.5 Pairs 0.5 0.272 0.401 0.313 0.314 0.325
q1 0.5 Triples 0.5 0.299 0.357 0.401 0.300 0.339
q1 6.0 Pairs 0.5 0.447 0.260 0.346 0.372 0.356
q1 6.0 Triples 0.5 0.298 0.303 0.290 0.332 0.306

Table 3: Predicted and observed mean conditional round-3 switching probabilities across
pairs and triples treatments

switched before (in both the pairs and triples treatments) is our third main experimental

finding. It supports the theoretical prediction that the third-round switching probability

when both actions have been taken previously is lower than when only one action has been

taken previously.

Our fourth main experimental finding concerns the effect of varying organization size

(n) on third-round switching probabilities. The third-round switching probabilities do not

appear to change as the size of the organization increases from two to three members.

Specifically, if we compare the four session mean values for q0 in the case of pairs (as reported

in Table 3) with the corresponding session mean values for q0 in the case of triples (for the

same value of δ = 0.5 or 6) we are unable to reject the null hypotheses that the means come

from the same distribution (both tests yield p-values > .10). Similarly, if we compare the

four session-level mean values for q1 in the case of pairs with the corresponding session mean

values for q1 in the case of triples (for the same value of δ = 0.5 or 6) we are also unable

to reject the null hypotheses that the means come from the same distribution (p > .10 for

both tests). This finding supports the theoretical prediction that round 3-behavior should

be invariant with respect to the size of the organization, i.e. whether n = 2 or n = 3.

Our fifth main experimental finding concerns the effect of varying the discount factor

on third-round switching probabilities. Support for the theoretical prediction that round 3

conditional probabilities are invariant to changes in the discount factor is mixed. On the one

hand, comparing the four session mean values of q0 when δ = 0.5 with the corresponding

values of q0 when δ = 6 (holding n fixed at either 2 or 3), we can reject the null hypothesis

that the q0 values come from the same distribution in favor of the alternative that q0 is higher

13



Pr . δ Predicted Session 1 Session 2 Session 3 Session 4 Mean All
q0 0.5 1.0 0.936 0.750 0.692 0.354 0.683
q1 0.5 1.0 0.947 0.955 0.880 0.937 0.930

q (uncond.) 0.5 1.0 0.943 0.944 0.841 0.780 0.877
q0 6.0 1.0 1.000 0.6890 0.739 0.442 0.717
q1 6.0 1.0 1.000 0.9400 0.849 0.975 0.941

q (uncond.) 6.0 1.0 1.000 0.889 0.804 0.788 0.870

Table 4: Predicted and observed mean conditional and unconditional round-3 switching
probabilities in the singles treatments

when δ = 6 than when δ = 0.5 (p ≤ .05 for both tests). On the other hand, comparing

the four session mean values of q1 when δ = 0.5 with the corresponding values of q1 when

δ = 6 (holding n fixed at either 2 or 3), we cannot reject the null hypothesis that these q1

values come from the same distribution (p > .10). The higher value of q0 when δ = 6 than

when δ = 0.5 is likely due to the difference in monetary rewards that players could earn by

achieving the success outcome in round 3 ($6 versus $0.50); this difference may have made

it more salient to players who had not switched in round 2 (and who had not yet achieved

a success) that their best response was to switch in round 3.

Our sixth main experimental finding is that in the singles treatments, somewhat anom-

alously, individuals sometimes fail to switch even though it is optimal to switch with proba-

bility 1 in both rounds 2 and 3 to one of the remaining unexplored cells. The mean round-2

switching probabilities from the 4 individual-treatment sessions were given earlier in Table 2.

There we see that when δ = 0.5, the average round-2 switching probability was .875 and

when δ = 6 it is a little lower, .799. While these data depart from the theoretical point

prediction of 1.0, the null hypothesis of no difference between the two treatments in the

round-2 switching probabilities cannot be rejected using the four session level observations.

(p > .05). This behavioral anomaly of not switching all the time in the singles treatments

may help explain the departures from the point predictions in the pairs and triples treat-

ments. It suggests that for some individuals the choice of switching probability is not guided

by rational deliberation. If these individuals randomly decide whether or not to switch, with

no bias either way, the observed second-round switching probabilities in the pairs and triples

treatments would be biased away from the point predictions in the direction of switching

with probability .5, and this is what we see in the data.
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The round 3 switching probabilities in the singles treatment are given in Table 4. For

comparison purposes, Table 4 provides the same conditional round 3 switching probabilities

that were reported and examined in the pairs and triples treatment (c.f. Table 3) even though

in the singles treatment, the prediction is that q0 = q1 = 1.0, i.e. the round 3 switching

probability is not conditional on whether a switch was made in round 2. We therefore

also report in Table 4 the unconditional round 3 switching probability, q.10 Whether we

look at the mean unconditional or the mean conditional probabilities, there is no significant

difference in the session-level means for q, q0 or q1 as δ is increased from 0.5 to 6 (p > .10),

consistent with theoretical predictions. On the other hand, holding δ fixed at 0.5 or 6, we

can reject the null of no difference in the conditional probabilities in favor of the alternative

that q1 > q0 (p ≤ .05). Interestingly, while in our data for the pairs and triples treatments,

second and third-round switching probabilities are negatively correlated as theory predicts,

in the singles treatment, these probabilities are positively correlated. It appears that, in the

singles treatment, having made one irrational decision increases the probability of making

another! However, caution is warranted in making much of this finding as the percentage

of the 10 players who chose not to switch in rounds 2 and/or 3 of the singles treatment is

always rather small (less than 20 percent of subjects on average).

Summarizing, our analysis of the session level mean switching probabilities provides clear

support for the claim that learning in organizations is quite different from individual learning;

it seems that in organizations players do take account of the fact that other players are

learning and adjust their probability of switching actions relative to the individual decision-

making environment. They also appear responsive to changes in the discount factor. These

results suggest that the assumption of fully rational, strategic agents provides a reasonable

benchmark for modeling decentralized organizational learning in contrast to the approach

that has been traditionally taken as noted in the introduction.

B. Behavior over time

Thus far we have reported on session-level mean observations across treatments. In this

section we provide a brief characterization of aggregate behavior over time.

10We have verified that subjects in the singles treatment were switching in round 3 to profiles they had
not previously played, e.g. if an individual played XX in round 1, and switched to XY in round 2, then a
“switch” in round 3 was either to YY or YX, and not back to XX. This was the case in 99.8 percent of
all reported instances of switching in round 3 of the singles treatment. This issue only arises in the singles
treatment, where subjects have four rather than two choices.
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Figures 2-3 here.

Our first finding is that, in the pairs and triples treatments, we often observe a sharp

jump in the aggregate round 2 switching probabilities when δ is switched from .5 to 6 (low-

high treatment) or from 6 to .5 (high-low treatment) that is consistent with theoretical

predictions. Figures 2-3 show the evolution of the mean round 2 switching probability over

periods 1-16 for the four pairs and four triples sessions, respectively. In these figures, sessions

1 and 3 involve the high-low treatment and sessions 2 and 4 involve the low-high treatment.

In Figure 2 we observe that in 3 out of 4 sessions, the mean value of p changes in the

predicted direction at the time that δ is changed. The one exception is pairs session number

3 where the predicted decline in round 2 switching probabilities beginning with period 9 is

not immediately apparent. In Figure 3, we observe that in all 4 sessions, the mean value of

p changes in the predicted direction at the time δ is changed.

A second finding is that there appears to be little evidence of any significant order effects

in the pairs treatments. In particular, the sequence of discount factors we use, low-high

(as in sessions 1 and 3) or high-low (as in sessions 2 and 4) does not appear to bias our

findings away from the equilibrium predictions in any systematic fashion that is apparent in

Figure 2. By contrast, in the triples treatment, there appears to be some evidence that the

sequence of discount factor choices may matter for how closely aggregate behavior adheres

to the comparative static predictions of the theory. In particular, in the low-high triples

sessions (numbers 1 and 3), consistent with the theory, there is a marked drop-off in the

round-2 switching probabilities from the first to the last 8 periods of each session. In the

high-low triples treatment, counter to the theory, there is much smaller change in the round-2

switching probabilities from the first to the last 8 periods of each session.11

Figure 4 here.

Figure 4 shows the evolution of the mean round 2 switching probability over periods

1-16 in the four singles sessions. In this treatment, there should be no change in round 2

switching behavior when δ is changed as the optimal strategy calls on players to switch with

probability 1.0 regardless of the value of δ. Here again, sessions 1 and 3 involved the low-high

treatment while sessions 2 and 4 involved the high-low treatment. In two of the four sessions,

11A more formal test of whether the sequence of discount factors matters in the triples treatment would
require more than the two observations that we have on the low-high and high-low treatments.
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numbers 1 and 2, there is a small change in the mean value of p following the change in the

discount factor, but it does not appear to be sustained beyond a couple of periods. Such

changes are less clear in the other two sessions, numbers 3 and 4. This is consistent with the

discussion surrounding Table 2, where we found that the session-level mean values for p in

the singles treatment when δ = 0.5 were not different from the session-level mean values for

p when δ = 6.

With regard to the behavior of the mean values of q0 and q1, the prediction of the theory is

that these probabilities should remain invariant over time to changes in the discount factor in

all treatments. In the pairs and triples treatments, we should see q0 = 1 and q1 = 0.5, while

in the singles treatment, q0 = q1 = q = 1.0. Consistent with the discussion of Table 3, we do

not observe significant or sustained changes in the values of these conditional probabilities

when the discount factor changes, that is, the graphs look similar to the those for p in the

singles case.

Summarizing, the time path of the mean switching probabilities is sometimes volatile,

but appears to be broadly consistent with the predictions of the theory. In particular, there

appears to be a marked change in the round 2 switching probabilities immediately following

a change in the discount factor in most of the pairs and triples sessions. By contrast, there

appears to be little change in the round 2 switching probabilities in the singles treatments or

in the round 3 conditional switching probabilities following a change in the discount factor,

which is consistent with theoretical predictions.

V. Behavioral Models of Decision-Making

Thus far, our analysis of the experimental subjects’ switching behavior has been with refer-

ence to the Nash equilibrium point predictions under the maintained assumption of perfect

rationality. In this section we relax the latter assumption and consider the predictions of

three alternative models of boundedly rational decision-making. In particular, we consider:

1) an equilibrium-plus-noise model; 2) a more sophisticated, stochastic equilibrium model

of decision-making known as quantal-response equilibrium (QRE) (see, e.g., Richard D.

McKelvey and Thomas R. Palfrey (1995, 1998)); and finally, 3) a non-equilibrium model of

decision-making known as ‘step-’ or ‘level-k’ reasoning (see, e.g., Dale O. Stahl and Paul

W. Wilson (1994, 1995), Rosemarie Nagel (1995), Teck-Hua Ho, Camerer and Keith Weigelt

(1998), Miguel A. Costa-Gomes, Crawford and Bruno Broseta (2001), Costa-Gomes and
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Crawford (2006), and Crawford and Nagore Iriberri (2007)).

A. Equilibrium Plus Noise

Perhaps the simplest way of reconciling the model with the fact that there is noise in the

data is to consider a variant in which the predicted round 2 switching probability, p(η), is a

weighted average of the theoretical, equilibrium prediction p, and a purely random switching

probability of 1
2
, that is, the equilibrium-plus-noise model specifies that subjects switch in

round 2 with probability:

p(η) = ηp+ (1− η)
1

2
,

where η ∈ [0, 1]. If we further impose the (sensible) restriction that the weight assigned to
equilibrium, η, is the same for the conditional and unconditional switching probabilities of

round 3, we can estimate η using the method of maximum likelihood. Under the equilibrium-

plus-noise model, the predicted round 3 switching probability following no switch in round

2 is:

q0(η) = ηq0 + (1− η)
1

2
= η + (1− η)

1

2
=
1 + η

2
,

and the predicted round 3 switching probability following a switch in round 2 is:

q1(η) = ηq1 + (1− η)
1

2
= η

1

2
+ (1− η)

1

2
=
1

2
.

Since q1(η) does not depend on the parameter η, the corresponding factor in the likelihood

function is constant and can be ignored when maximizing the likelihood function.

To construct the likelihood function, let ω be the total number of round 2 observations,

ω0 the total number of round 3 observations following “no switch and no success in round

2” and ω1 the total number of round 3 observations following a “switch in round 2, but no

success in round 2.” Then denote by σ the actual number of round 2 switches, σ0 the actual

number of round 3 switches following “no switch and no success” in round 2 and σ1 the

actual number of round 3 switches following a “switch in round 2, but no success in round

2.” The likelihood function is then proportional to:

L̃(η) = p(η)σ(1− p(η))(ω−σ) × q0(η)
σ0(1− q0(η))

(ω0−σ0) × q1(η)
σ1(1− q1(η))

(ω1−σ1).

Since we can ignore the term that involves q1(η), we instead maximize

L(η) = p(η)σ(1− p(η))(ω−σ) × q0(η)
σ0(1− q0(η))

(ω0−σ0),
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LR Test Pr. LR Test
Treatment: Pairs p̂ q̂0 η̂ Statistic Stat. under H0

All periods, δ = 6 0.427 0.646 0.292 42.239 Pr < 0.001
First 4 periods, δ = 6 0.429 0.644 0.287 20.575 Pr < 0.001
Last 4 periods, δ = 6 0.426 0.649 0.298 21.680 Pr < 0.001
All periods, δ = 0.5 0.584 0.640 0.280 34.252 Pr < 0.001
First 4 periods, δ = 0.5 0.563 0.604 0.208 9.705 Pr = 0.002
Last 4 periods, δ = 0.5 0.607 0.678 0.356 27.111 Pr < 0.001

Table 5: Equilibrium-Plus-Noise Model, Pairs Treatment: Maximum Likelihood Estimates
and Likelihood Ratio Test Results

using pooled data from all sessions of a given treatment.

The results of this maximum likelihood (ML) estimation are given in Tables 5-6 which

report the estimated values p̂, q̂0, and η̂ using data from all eight periods, or for the first four

or the last four periods of all sessions of a treatment (δ value) in the pairs (Table 5) and triples

(Table 6) cases. Also reported are the results of a likelihood ratio test that compares the

likelihood function for the unrestricted, ML estimator for the equilibrium-plus-noise model

with the likelihood function from a purely random version of that model where we impose

the restriction that η = 0 and used the same number of observations as for the unrestricted

model. Specifically, the last two columns of Tables 5-6 report the likelihood ratio (LR)

test statistic, (LR Stat ≡ −2 ln , where is the ratio of the unrestricted to the restricted

likelihood functions) and the probability of observing such as test statistic under the null

hypothesis (H0) of no difference between the unrestricted, equilibrium-plus-noise model and

the restricted purely random switching version of the model. The LR test statistic has a χ2

distribution with degrees of freedom equal to the number of restrictions, in this case, 1.

Notice first that according to the LR test, the equilibrium-plus-noise model outperforms

the purely random switching model in three of the four treatments. The one exception

occurs for the triples, δ = 0.5 treatment, where we cannot reject the null hypothesis of

no difference at any conventional level of significance. Notice further that the comparative

static implications of the theory find support in the equilibrium-plus-noise estimates: the

estimated values of p are in, both the pairs and triples treatment, greater when δ = 0.5 than

when δ = 6, and in the pairs treatment, there is not much difference in the estimated value

of q0 as δ is varied; by contrast, for the triples, δ = 0.5 treatment, there is some difference in

estimates of q0 with changes in δ; q0 is estimated to be lower when δ = .5 than when δ = 6 (a
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LR Test Pr. LR Test
Treatment: Triples p̂ q̂0 η̂ Statistic Stat. under H0

All periods, δ = 6 0.359 0.642 0.283 61.395 Pr < 0.001
First 4 periods, δ = 6 0.350 0.651 0.301 34.321 Pr < 0.001
Last 4 periods, δ = 6 0.367 0.633 0.266 27.327 Pr < 0.001
All periods, δ = 0.5 0.501 0.502 0.003 0.004 Pr = 0.950
First 4 periods, δ = 0.5 0.515 0.530 0.059 0.519 Pr = 0.471
Last 4 periods, δ = 0.5 0.487 0.474 -0.053 0.408 Pr = 0.523

Table 6: Equilibrium-Plus-Noise Model, Triples Treatment: Maximum Likelihood Estimates
and Likelihood Ratio Test Results

finding that is nevertheless consistent with the experimental data—see Table 3). Regarding

the η̂ estimates, we note two things. First, in our estimation, of the equilibrium-plus-noise

model, η was not restricted to lie in the interval [0, 1]. Nevertheless, with one exception,

the maximum likelihood estimates for η always lie within this interval, giving some support

to the notion that switching probabilities might be appropriately modeled as a mixture of

equilibrium and noise. Not surprisingly, the exception occurs for the last four periods of

the triples, δ = 0.5 treatment, an instance where, as note above, the equilibrium-plus-noise

model does no better than the random switching model. Notice second, that the weight

on equilibrium, the estimated value of η, is low, approximately 0.3 for the pairs treatment

under δ = 0.5 and δ = 6 and for the triples treatment under δ = 6, and it is near zero in

the triples, δ = 0.5 case. This finding mainly confirms that the switching probabilities p and

q0 deviate from equilibrium in the direction of 0.5 (i.e., random switching), a fact that can

also be ascertained from looking at the actual aggregate switching frequencies relative to the

equilibrium predictions as reported earlier in Tables 2 - 3.

Summarizing, the equilibrium-plus-noise model provides a simple measure of the “close-

ness” of the data to equilibrium predictions. We have found that the equilibrium-plus-noise

model is a better fit to the data than purely random decision-making for three of our four

treatments (n, δ). Further, under this view of behavior, most of our equilibrium compara-

tive statics predictions continue to hold. On the other hand, the estimated weight given to

the equilibrium prediction in this model is low, and essentially zero in the triples, δ = 0.5

treatment. An obvious difficulty with the equilibrium-plus-noise model is that it assumes

that otherwise rational players ignore the irrationality of others; this problem is addressed

by the quantal response equilibrium (QRE) model considered in the next section.
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B. Quantal Response Equilibrium

In a QRE, players do not play best responses to their beliefs; instead they play “noisy” or

“stochastic” best responses, rationally taking into account the noise in other players’ strate-

gies as well; the latter is what distinguishes QRE from the equilibrium-plus-noise model. In

QRE, the noise in players’ strategies is assumed to follow a specific distribution; in the case

of the logit choice rule that we use, the distribution is log Weibull. The resulting QRE is

called a logit equilibrium. In this section we use the experimental data to estimate a logit

equilibrium model using the method of maximum likelihood. In addition to considering how

the switching probabilities implied by the logit model compare with the theoretical predic-

tions in the pairs and triples cases, we will also test whether the logit model’s predictions

differ from purely random switching behavior.

We impose attainability constraints, i.e., we ignore the label of the first-round choice and

focus on equilibria that are symmetric across players. The QRE is obtained using expected

payoffs and a logit-choice rule. Specifically, for a particular game (e.g., pairs or triples) and

for a given value of λ, the degree of rationality parameter, we begin by writing a system of

logit-choice equations:

p =
eλus

eλus + eλun
,

q0 =
eλu

0
s

eλu0s + eλu0n
,

q1 =
eλu

1
s

eλu1s + eλu1n
,

where the uji represent expected payoffs from action i, switching (s) or not switching (n)

that may also condition on the state j (0=no prior switch, 1=prior switch). These expected

payoff values are defined in the Appendix. We write the solution of this system of equations

as (p(λ), q0(λ), q1(λ)) and maximize the likelihood function over different values of λ.

As in the equilibrium-plus-noise model, ω denotes the total number of round 2 observa-

tions, ω0 the total number of round 3 observations following “no switch and no success in

round 2” and ω1 is the total number of round 3 observations following a “switch in round 2

but no success in round 2.” As before, σ is the actual number of round 2 switches, σ0 the

actual number of round 3 switches following “no switch and no success in round 2” and σ1

the actual number of round 3 switches following a “switch in round 2 but no success in round
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LR Test Pr. LR Test

Treatment: Pairs p̂ q̂0 λ̂ Statistic Stat. under H0

All periods, δ = 6 0.476 0.667 0.449 35.352 Pr < 0.001
First 4 periods, δ = 6 0.477 0.660 0.427 16.307 Pr < 0.001
Last 4 periods, δ = 6 0.474 0.673 0.471 19.109 Pr < 0.001
All periods, δ = 0.5 0.588 0.623 3.260 37.785 Pr < 0.001
First 4 periods, δ = 0.5 0.570 0.592 2.414 11.602 Pr < 0.001
Last 4 periods, δ = 0.5 0.606 0.659 4.258 28.301 Pr < 0.001

Table 7: Quantal Response Equilibrium Model, Pairs Treatment: Maximum Likelihood
Estimates and Likelihood Ratio Test Results

2.”

The likelihood function is proportional to:

L(λ) = p(λ)σ(1− p(λ))(ω−σ) × q0(λ)
σ0(1− q0(λ))

(ω0−σ0) × q1(λ)
σ1(1− q1(λ))

(ω1−σ1).

In maximizing this likelihood function, we again used pooled data from all sessions of a given

treatment (n, δ). The value of q1 is 0.5 in any logit equilibrium of our model. We therefore

maximize a truncated likelihood function (just as we did in the case of the equilibrium-plus-

noise model), which yields maximum likelihood estimates for p and q0 only.

The maximum likelihood estimates p̂, q̂0, and λ̂ for the pairs and triples treatments are

shown in Tables 7-8 using data from all eight periods, or from the first four or the last four

periods of all sessions of a treatment (δ value). We again report the results of a likelihood

ratio test that compares the likelihood function from the unrestricted, ML estimator of

the QRE model with the likelihood function from a purely random switching version of

that model where λ was restricted to be 0 and where we have used the same number of

observations as for the unrestricted model. Specifically, we report the LR test statistic and

the probability of observing that test statistic (which is distributed χ2 with 1 degree of

freedom), under the null hypothesis (H0) that the unrestricted model provides no better fit

to the data than the restricted (purely random switching) model.

Consider first the estimates for the pairs, δ = 6 or δ = .5 treatments, as reported in

Table 7. For these treatments, the LR test indicates we can reject H0 (the null no difference

between the QRE model and the restricted, random switching model). Consistent with the

comparative static predictions of the theory and the data, the QRE estimates for p are lower

in the pairs, δ = 6 treatment than in the pairs, δ = 0.5 treatment. Similarly, consistent
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LR Test Pr. LR Test

Treatment: Triples p̂ q̂0 λ̂ Statistic Stat. under H0

All periods, δ = 6 0.449 0.448 -0.242 4.551 Pr = 0.033
First 4 periods, δ = 6 0.436 0.437 -0.288 3.320 Pr = 0.068
Last 4 periods, δ = 6 0.460 0.458 -0.197 1.465 Pr = 0.226
All periods, δ = 0.5 0.505 0.503 0.178 0.062 Pr = 0.803
First 4 periods, δ = 0.5 0.512 0.507 0.411 0.145 Pr = 0.703
Last 4 periods, δ = 0.5 0.496 0.500 -0.015 0.002 Pr = 0.964

Table 8: Quantal Response Equilibrium Model, Triples Treatment: Maximum Likelihood
Estimates and Likelihood Ratio Test Results

with the theory and the data, the QRE estimates of q0 in the pairs treatment do not change

much as the value of δ changes. A comparison of the QRE pairs estimates with the actual

mean frequencies (over all periods) for p and q0, as reported in Tables 2-3, suggests that

subjects were close to playing according to the estimated QRE in the pairs treatment. We

note further that the QRE estimates of p and q0 for the pairs treatment are quite similar

to the equilibrium-plus-noise model estimates for the pairs treatment (compare Tables 5

and 7). Finally, we note that while the estimates of λ in the pairs treatment display some

variation, they are all greater than zero; larger, positive values for λ are associated with

greater rationality in decision-making while a λ equal to zero indicates random-decision

making.

Consider next the QRE estimates for the triples, δ = 6 and δ = .5 treatments as reported

in Table 8. Consistent with the theory and the data, the QRE estimates for p are lower when

δ = 6 than when δ = .5. However, inconsistent with the theory and the data, the estimates

of q0 are lower when δ = 6 than when δ = .5. Furthermore, the LR test results suggest

that for all samples of the triples, δ = .5 treatment, as well as for the last 4 periods of the

triples δ = 6 treatment, we cannot reject H0, that the restricted, random switching model

provides as likely an explanation of the data as the QRE model. Consistent with the latter

finding, notice that the estimates for λ in the triples treatment are much closer to zero than

in the comparable pairs treatment and are often slightly negative; we did not restrict our

estimates of the QRE model parameter λ, just as we did not restrict our estimates of η in the

equilibrium-plus-noise model. (Recall a similar finding for the equilibrium-plus-noise model,

where estimates of η were closer to zero or even negative in the triples, δ = .5 treatment).

One interpretation of these low λ estimates is that subjects in the triples treatment found
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their decision problem more challenging than did subjects in the pairs treatment. Comparing

the QRE estimates for the triples treatment with the equilibrium-plus-noise estimates for

this same treatment, we observe that for the δ = 6 case, the equilibrium-plus-noise estimates

of p and q0 are somewhat closer to the mean switching frequencies found in the data than are

the QRE estimates, while for the triples, δ = .5 treatment, the opposite finding obtains. We

conclude that QRE does not appear to offer any improvement over the equilibrium-plus-noise

model in explaining the data from our experiment.

Summarizing, QRE is a generalization of Nash equilibrium to the case of noisy best

responses where noise enters via a logistic-choice function transformation of theoretical ex-

pected payoffs and players take account of this noise in formulating best responses. We

found that the QRE estimates for our pairs treatment improve upon a model of purely ran-

dom switching behavior. Also for the pairs treatment, the QRE estimates of p and q0 are

consistent with the comparative static implications of the theory and bear some resemblance

to the actual switching frequencies observed in the data. However, the same cannot be said

for QRE estimates using data from the triples treatment, where QRE estimates of q0 are

inconsistent with both the comparative static implications of the theory and the data.

C. Level-k Analysis

Finally, we consider the fit of a non-equilibrium behavioral model known as ‘level-k analysis’

to our experimental data. We suppose there are three player types. The lowest, Level 0

(L0) players switch randomly in every round. The next highest, Level 1 (L1) players play

a best response to the L0 types, and the highest, Level 2 (L2) players play a best response

to the L1 types. Our restriction to just three level types is in line with prior findings. For

instance, Camerer, Ho and Juin-Kuan Chong (2004) find that an average level of 1.5 fits

the data from many games using their closely related ‘cognitive hierarchy’ model (in which

L2 player types best respond to a Poisson mix of L1 and L0 player types). Crawford and

Iriberri (2007) restrict themselves to L0, L1 and L2 players and find a higher proportion of

L1 than either L2 or L0 players. Costa-Gomes and Crawford (2006) find roughly twice as

many L1 types as L2 types.

The predictions of level-k analysis in our search-for-success game are found by considering

the payoffs earned by the various player types from following reduced normal form strategies.

Table 9 above shows the payoff from play of the reduced normal form set of pure strategies
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SS SN NS NN
SS 1

3
1
3
+ δ 1

3
1
3
+ δ 1

3
1
3

SN 1
3
+ δ 1

3
1
3

1
3
+ δ 1

3
1
3

NS 1
3
+ δ 1

3
1
3
+ δ 1

3
δ 1
3

δ 1
3

NN 1
3

1
3

δ 1
3

0

Table 9: Payoffs from play of pure strategies against one another in the 2-player game.
Strategies are represented by pairs of values, S=Switch, N=No Switch, e.g., ‘SN’ is the
strategy Switch in round 2, No Switch in round 3.

in the two-player game, Switch (S) or No Switch (N) in periods 2 and 3 against one another.

For instance, the strategy pair SS (switch in round 2 and switch back in round 3) against

itself has an expected payoff of 1/3. Given that L0 types randomize uniformly, it follows

that for δ = .5, L1 players are indifferent between SS and SN, and strictly prefer these two

strategies to all others. By contrast, L2 players who best respond to L1 players’ decision to

switch in round 2, strictly prefer NS to all other strategies. For δ = 6, if we once again

assume that L0 players randomize uniformly, then L1 players strictly prefer NS to all other

strategies, and given this behavior, L2 players’ are indifferent between either SS and SN ,

but strictly prefer these strategies to all others.

Notice that, while the level-k analysis yields ambiguous predictions concerning round 3

switching behavior, it yields an unambiguous prediction regarding round 2 behavior in the

2-player game: L1 types should switch in round 2 when δ = 0.5 and should not switch in

round 2 when δ = 6, and L2 types should follow the precise opposite strategy, not switching

in round 2 when δ = 0.5 and switching in round 2 when δ = 6.

We can also apply level-k analysis to the 3-player, 2-success game (our triples treatment).

The payoff matrix from all different combinations of reduced normal form strategies in our

three-player search-for success game with 2 successes is given in Table 10, which can be read

the same way as Table 9, except that the columns now report pure strategy pairs for two of

the three players. Analysis of these payoffs for the three-person game under level-k reasoning

reveals that L1 and L2 types should behave in the precisely the same manner as predicted

for the two-player game.

Table 11 reports results from a level-k analysis of round 2 switching decisions in both

the pairs and triples sessions; as the level-k predictions for round 3 are ambiguous, we use

only round 2 data in our analysis. Assignment of level type 1 or type 2, L1 or L2, was
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SS SS SS SS SN SN SN SN NS NS NS NS NN NN NN NN
SS SN NS NN SS SN NS NN SS SN NS NN SS SN NS NN

SS 2
7

* * 2
7

* * * * * * * * 2
7

* * 2
7

SN * * * * * 2
7

* 2
7

* * * * * 2
7

* 2
7

NS * * * * * * * * * * δ 2
7

δ 2
7

* * δ 2
7

δ 2
7

NN 2
7

* * 2
7

* 2
7

* 2
7

* * δ 2
7

δ 2
7

2
7

2
7

δ 2
7

0

Table 10: Payoffs from play of pure strategies against one another in the 3-player game.
Strategies are represented by pairs of values, S=Switch, N=No Switch, e.g., ‘NS’ is the
strategy No Switch in round 2, Switch in round 3. Note that ∗ = 2

7
+ 5

7
δ 2
6
.

Implied Actual Implied Actual
Percent Percent Percent Rnd 2 Rnd 2 Rnd 2 Rnd 2

Treatment Subjects Subjects Subjects Sw Freq Sw Freq Sw Freq Sw Freq
-Session Level 0 Level 1 Level 2 δ = 0.5 δ = 0.5 δ = 6 δ = 6
Pairs-1 0.15 0.55 0.30 0.63 0.66 0.38 0.45
Pairs-2 0.15 0.70 0.15 0.78 0.56 0.23 0.42
Pairs-3 0.05 0.50 0.45 0.53 0.56 0.48 0.48
Pairs-4 0.20 0.75 0.05 0.85 0.77 0.15 0.35
Pairs 1-4 0.14 0.63 0.24 0.69 0.64 0.31 0.43
Triples-1 0.27 0.53 0.20 0.67 0.47 0.34 0.30
Triples-2 0.13 0.53 0.33 0.60 0.49 0.40 0.44
Triples-3 0.20 0.60 0.20 0.70 0.51 0.30 0.22
Triples-4 0.20 0.60 0.20 0.70 0.62 0.30 0.32
Triples 1-4 0.20 0.57 0.33 0.67 0.52 0.33 0.32

Table 11: Level-type Analysis of Data from Round 2 Decisions in the Pairs and Triples
Treatments
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made as follows. As noted above, when δ = 0.5 in both the pairs and triples treatments, L1

players strictly prefer switching in round 2 to not switching while L2 players strictly prefer

not switching in round 2 to switching. When δ = 6 in both the pairs and triples treatments,

these predictions are precisely reversed: L1 players strictly prefer not switching in round 2

to switching, while L2 players strictly prefer switching in round 2 to not switching. Thus, we

labeled each subject a ‘1’ if their round 2 switching behavior was in accord with L1 play and a

‘2’ if their round 2 behavior was in accord with L2 play. Using the 16 numerical assignments

for each subject (across both the 8 periods of the δ = 0.5 treatment and the 8 periods of

the δ = 6 treatment), we used the modal assignment to identify each subject’s type (either 1

or 2). In the event where the mode was indeterminate - exactly 8 of an individual subject’s

choices were in accord with level 1 play while the other 8 were in accord with level 2 play,

we classified that subject as a level 0, L0 type.

Using these assignment rules, the distribution of player types is as given in the first

three columns of Table 11. A striking finding across all sessions of both treatments is that

the ratio of L1 to L2 types is, on average, approximately 2 to 1, which, as noted earlier, is

consistent with prior findings, e.g., Costa-Gomes and Crawford (2006). Further, we find that

a non-negligible fraction (an average of 17 percent) of our subjects can be typed as level L0.

Using these frequencies for the three player types, we can obtain “level-k” predictions for

the actual switching frequencies in the δ = 0.5 and δ = 6 versions of the pairs and triples

treatments. Specifically, when δ = 0.5, the frequency of switching in round 2 should equal the

percentage of L1 types plus 1/2 times the percentage of L0 (random) types. This is computed

in the fourth column of Table 11. When δ = 6, the frequency of switching in round 2 should

equal the percentage of L2 types + 1/2 times the percentage of L0 types; this prediction

is given in the sixth column of Table 11. The fifth and seventh columns report the actual

switching frequencies reproduced from Table 2 for comparison purposes. The main finding

here is that the correlation between the level-k predicted round 2 switching frequencies and

the actual round 2 switching frequencies is strongly positive. In the pairs treatment, the

correlation across both the δ = 0.5 and δ = 6 cases is .91, and in the triples treatment, the

correlation across both the δ = 0.5 and δ = 6 cases is .70. The high correlation coefficient

suggest that the level-k model has some predictive power for round 2 switching decisions in

both the pairs and triples treatments.

Summarizing, the level-k predictions are unambiguous only for round 2 of the search-for-
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success game. Nevertheless, it appears that a level-k analysis provides a reasonable, non-

equilibrium characterization of round 2 switching behavior. Level-k thinking is frequently

declared particularly appropriate for explaining behavior in first encounters with a game. In

our setting, it appears that it helps explain behavior equally well after repeated exposure

to the game. This could be result of the fact that players get very little feedback between

instances of the search-for success game. Another possible explanation is that in the search-

for success game, the level-k predictions do not differ much from the symmetric equilibrium

prediction.

VI. Individual behavior

Finally, it is of interest to consider the behavior of individual subjects. In this section we

focus exclusively on individual switching behavior in round 2, as behavior in this round is

predicted to vary with changes in the value of δ and the group size. We first ask whether the

differences in round 2 switching frequencies across the two different δ values and group sizes

(as reported in Table 2) reflect changes in each individual’s behavior or whether the aggregate

differences are due only to a subset of individuals. Figure 5 provides striking evidence that

the distribution of individual round 2 switching behavior is quite distinct across treatments.

This figure shows the empirical (weighted) cumulative distribution of round 2 switching

frequencies using data from all four sessions of the four treatments, i.e., for each switching

frequency it reports the proportion of all individuals who switched with that frequency or

with a lower frequency. Notice that the cumulative frequency distribution for the pairs

δ = 0.5 treatment first order stochastically dominates that of the triples δ = 0.5 treatment.

The latter first order stochastically dominates the pairs, δ = 6 treatment, which in turn

first order stochastically dominates the triples, δ = 6 treatment. This ordering is precisely

in accord with the comparative static implication of the symmetric equilibrium predictions,

which (you will recall) predict that round 2 switching frequencies should be .80, .75, .25

and 0 across these four treatments, respectively. A two-sample, two-sided Kolmogorov-

Smirnov test confirms that round 2 switching frequencies are significantly greater in the

pairs treatment when δ = 0.5 (δ = 6) relative to the triples treatment when δ = 0.5 (δ = 6)

(Pr ≤ .025 in both comparisons).

Figure 5 here.
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Second, we examine how individual behavior relates to the symmetric Nash equilibrium

prediction. In addressing this question, we calculated each subject’s round 2 switching

frequency in the 8 periods played under δ = 0.5 and in the 8 periods played under δ = 6

under either the pairs or the triples treatments. Thus for each subject i, we have an average

round 2 switching frequency pair, (p.5i , p
6
i ). In Figure 6 we use a bubble chart format to plot

these frequency pairs using all data from the four sessions of a treatment (pairs, triples).

The size of each bubble indicates the number of individual observations of that frequency

pair; the smallest bubble corresponds to a single, individual observation. The top panel of

Figure 6 shows the individual round 2 switching frequencies in the pairs treatment while the

bottom panel does the same for the triples treatment. We have also indicated in Figure 6 the

location of the unique symmetric Nash equilibrium and we remind the reader of the overall

average round 2 switching frequencies (averaging over all subjects) as previously reported in

Table 2.

Figure 6 here.

Figure 6 reveals several interesting findings. First, there is considerable heterogeneity

in the individual subjects’ switching frequencies. Bear in mind, however, that in our envi-

ronment, where individuals interact anonymously in a population setting, our equilibrium

prediction can be realized as the population distribution over heterogeneous individual strate-

gies, which themselves may be either pure or mixed (see, e.g., Ariel Rubinstein (1991)).12

Second, and more importantly, a majority of the mass of the individual frequencies lies below

the 45 degree line in both panels of Figure 6 which is consistent with the location of the

symmetric Nash equilibrium in both treatments (pairs, triples) and suggests that individual

subjects were taking into account the impact on expected payoffs from a change in the value

of δ. Finally, notice that in the pairs case, there is more mass associated with p.5i = 1 than

in the triples case and, symmetrically, in the triples case, there is more mass associated with

p6i = 0 than in the pairs case. Indeed, in the pairs treatment, a sizeable subset of subjects

(16/80) appear to be following a heuristic switching strategy of the form (p.5i , p
6
i ) = (1, x)

where x ∈ [0, 1]. Similarly, a sizeable subset of subjects (13/60) in the triples treatment
appear to have been using a heuristic switching strategy of the form (p.5i , p

6
i ) = (x, 0) where

12This parallels the Bayesian interpretation of Nash equilibrium that was articulated by John C. Harsanyi
(1973) (using incomplete information) and later by Robert J. Aumann (1987) (without recourse to incomplete
information), according to which a player’s mixed strategy is an expression of the other players’ ignorance
of his (pure) strategy.
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x ∈ [0, 1]. These heuristics are roughly consistent with the play of level 1 (L1) types; recall
from our level-k analysis that in both the pairs and triples treatments, a L1 type would switch

in round 2 when δ = 0.5 and not switch when δ = 6, i.e., the L1 strategy is (p
.5
i , p

6
i ) = (1, 0).

By contrast, there appear to be no pure level 2 (L2) types, who would always play the strat-

egy opposite to L1 types, i.e., (p
.5
i , p

6
i ) = (0, 1), though there is some mass above the 45

degree line in both the pairs and triples treatments. Finally Figure 6 reveals evidence for

level 0 (L0) types who switch with probability 0.5 for both values of δ, as evidenced by the

mass at (p.5i , p
6
i ) = (.5, .5) in both the pairs and triples treatments.

VII. Conclusion

We have experimentally tested a stylized model of organizational learning that assumes

rational agents, sparse information and decentralized learning. In the random matching

environment studied here, we find that the comparative static implications of the unique

symmetric equilibrium are largely confirmed by our experimental data. The main qualitative

insight from our experiment is that the rationality assumption has predictive power; the

common practice in the organizational learning literature of assuming boundedly rational

actors may be unwarranted. Specifically, we observe that team members cope with the

confounding effects of the simultaneous learning of others by changing actions less frequently

than individuals, or teams of smaller size. Furthermore, we find that team members switch

actions less frequently if the future becomes relatively more important. These are striking

findings and to our knowledge they constitute the first direct evidence yet provided that

learning individuals take into account the simultaneous learning of other agents.

We view these results as providing an important benchmark for future work. We plan

to build on this investigation by changing the basic environment so that either tacit or

explicit coordination of learning strategies becomes easier. As for tacit coordination, we

expect that with fixed matchings and public information about the actions taken by team

members, subjects would be more likely to develop routines, which would correspond to

the asymmetric, but efficient equilibria (where the number of strategy profiles explored in

T periods was maximized). Explicit coordination via pre-play communication similarly is

likely to increase efficiency, and one could try to determine the relative value of ‘directives’

(one-way communication) versus ‘committee meetings’ (two-way communication).
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Appendix: Expected Payoff Calculations for QRE Esti-

mation

The quantal response equilibria of interest have the form (p, q0, q1) and are derived using

expected payoffs and the logit choice rule. Here we provide details about the expected

payoff calculations for the two and three player cases. The notation here is the same as in

the paper.

For the two player case, define:

us := payoff from switching in round 2 against (p, q0, q1)

=
1

3
+
2

3
δ[p2q1(1− q1)

1

2
+ (1− p)q0

1

2
]

un := payoff from not switching in round 2 against(p, q0, q1)

= p
1

3
+ δ[p

2

3
q0
1

2
+ (1− p)(1− (1− q0)

2)
1

3
]

u0s := payoff from switching in round 3 after no switch in round 2 against (p, q0, q1)

= δ[p̃
1

2
+ (1− p̃)

1

3
] where

p̃ =
2
3
p

2
3
p+ (1− p)

u0n := payoff from not switching in round 3 after no switch in round 2 against (p, q0, q1)

= δ[(1− p̃)q0
1

3
]

u1s := payoff from switching in round 3 after a switch in round 2 against (p, q0, q1)

= δ[p(1− q1)
1

2
+ (1− p)q0

1

2
]

u1n := payoff from not switching in round 3 after a switch in round 2 against (p, q0, q1)

= δ[(1− p)q0
1

2
+ pq1

1

2
]

Similarly, for the three-player case, define:

us := payoff from switching in round 2 against (p, q0, q1)

=
2

7
+
5

7
δ{p2[3q1(1− q1)

2 + 3q21(1− q1)]
2

6

+ 2p(1− p)[q0
2

6
+ (1− q0)(2q1(1− q1))

2

6
]

+ (1− p)2[1− (1− q0)
2]
2

6
}

un := payoff from not switching in round 2 against(p, q0, q1)
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= 2p(1− p)[
2

7
+
5

7
δ(1− (1− q0)

2)
2

6
]

+ p2[
2

7
+
5

7
δ(q0

2

6
+ (1− q0)(2q1(1− q1))

2

6
)]

+ (1− p)2[δ
2

7
(1− (1− q0)

3)]

u0s := payoff from switching in round 3 after no switch in round 2 against (p, q0, q1)

= δ[p̃
2

6
+ (1− p̃)

2

7
] where

p̃ =
(1− (1− p)2)5

7

(1− (1− p)2)5
7
+ (1− p)2

u0n := payoff from not switching in round 3 after no switch in round 2 against (p, q0, q1)

= δ{ p2 5
7

p2 5
7
+ 2p(1− p)5

7
+ (1− p)2

(2q1(1− q1))
2

6

+
2p(1− p)5

7

p2 5
7
+ 2p(1− p)5

7
+ (1− p)2

q0
2

6

+
(1− p)2

p2 5
7
+ 2p(1− p)5

7
+ (1− p)2

(1− (1− q0)
2)
2

7
}

u1s := payoff from switching in round 3 after a switch in round 2 against (p, q0, q1)

= δ{p2(1− q21)
2

6

+ 2p(1− p)(q0
2

6
+ (1− q0)(1− q1)

2

6
)

+ (1− p)2(1− (1− q0)
2)
2

6
}

u1n := payoff from not switching in round 3 after a switch in round 2 against (p, q0, q1)

= δ{p2(1− (1− q1)
2)
2

6

+ 2p(1− p)(q0
2

6
+ (1− q0)q1

2

6
)

+ (1− p)2(1− (1− q0)
2)
2

6
}
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All Periods of All Sessions with delta=.5
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Figure 1: Predicted and Mean Round 2 Switching Probabilities Over All 
Periods and Sessions of a Given Treament
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Figure 5: Cumulative Frequency Distribution of Individual Round 2 
Switching Frequencies Across Treatments
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Figure 6: Individual Switching Frequencies as a function of delta. Pooled data 
from all four Pairs (top) and Triples (bottom) sessions.




