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Abstract. We experimentally examine equilibrium refinements in static and dynamic binary choice 
games of complete information with strategic complementarities known as “entry” games.  Our aim is to 
assess the predictive power of two different equilibrium selection principles. In static entry games, we test 
the theory of global games as an equilibrium selection device. This theory posits that players play games 
of complete information as if they were playing a related global game of incomplete information. In 
dynamic entry games, individuals decide not only whether to enter but also when to enter. Once entry 
occurs it is irreversible. The number of people who have already entered is part of the state description, 
and individuals can condition their decisions on that information. If the state variable does not indicate 
that entry is dominated, the efficient subgame perfect equilibrium prediction calls for all players to enter. 
Further, if there is a cost of delay, entry should occur immediately, thereby eliminating the coordination 
problem. This subgame perfect entry threshold in the dynamic game will generally differ from the global 
game threshold in static versions of the same entry game. Nevertheless, our experimental findings suggest 
that observed entry thresholds in both static and dynamic versions of the same entry game are surprisingly 
similar. The mean entry threshold in the static game lies below the global game equilibrium threshold 
while the mean entry threshold in the dynamic game lies above the efficient subgame perfect equilibrium 
threshold. An important implication of this finding is that if one were to observe only the value of the 
state variable and the number of people who enter by the end of the game one could not determine 
whether the static or the dynamic game had been played.   
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1   Introduction 
 

Many games of complete information with strategic complementarities have multiple equilibria.  

An important class of such games may be labeled as “entry games”.  In an entry game an individual has 

two possible actions, ‘enter’ and ‘not enter’.  The payoff to a player who does not enter is a fixed amount, 

F, while the payoff to entering, ),,()( YmGe   depends in a monotonic way on the number of people 

who enter, m, and on a payoff-relevant parameter, Y, of the game.  In this class of games there exists a 

value of Y, Y , such that for YY   the dominant strategy is ‘not enter’. There exists another value ,YY   

such that for YY   the dominant strategy is ‘enter’.  For intermediate values ],,[ YYY   there are two 

equilibria in pure strategies, all ‘enter’ or all ‘not enter’.  

Financial markets provide important examples of such ‘entry’ games.  For instance, this game 

form may represent situations of speculative attack on a currency (Obstfeld (1996), Morris and Shin 

(1998)), with Y representing a state in which the fundamentals are such that the currency is certain to be 

devalued if a single speculator sells the currency short, so that a short sale is certain to be profitable, while 

Y  represents a state in which the State holds sufficient reserves that it will certainly withstand any 

feasible attack by all currency speculators.  For other states, YYY   the State can withstand short 

sales from a fraction, )(Yf , of currency speculators. If less than )(Yf  agents ‘enter’ all those who enter 

lose money while if more than )(Yf  ‘enter’ all those who enter make a profit.  The same game form can 

be used to characterize the situation faced by a group of lenders, all of whom have debts that have come 

due from a particular borrower and find that the borrower has insufficient cash on hand to pay off more 

than some fraction of the outstanding debt (Morris and Shin (2006)). Given the borrower’s cash holdings, 

Y, if a sufficient fraction )(Yf  of lenders agree to roll over the debt, the borrower need not default, but if 

too few lenders agree to a roll-over, a default occurs. 

Viewed as static games of complete information, standard game theory yields no prediction of 

how these entry games will be played when there are multiple equilibria.  However, Carlsson and van 

Damme (1993) propose an equilibrium refinement for 22 entry games that is based on the assumption 

that when players face the uncertainty associated with the multiplicity of equilibria in these games they 

effectively transform the game in their own minds to a related game of incomplete information.  The 

related game is called a ‘global game’.   As shown by Carlsson and van Damme for the case of 22  

games of complete information, in the related global game the required equilibrium strategies for all 

possible realizations are cut-off strategies.  In the global game a player always chooses one action upon 

receiving a signal that comes from one portion of the probability distribution of signals and the other 
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action when the realized signal comes from outside this set. This result has been generalized by Morris 

and Shin (2003) to a class of N2 symmetric games.  Unlike the original game of complete information 

with its multiplicity of equilibria, the global game of incomplete information has a unique Bayesian 

perfect equilibrium. Therefore, if all players play the game of complete information as though there were 

a common understanding that all players will play that game as if they were playing the related global 

game, the coordination problem is resolved.  

The theory of global games offers an equilibrium selection criterion for a static entry game of 

complete information.1   Heinemann, Nagel and Ockenfels (2004) have shown that the static theory of 

global games does capture important characteristics of behavior in static entry games.  However, many 

entry games of interest are inherently dynamic, as individuals must decide not only whether to enter but 

also when to enter.  Dynamic entry games have subgame perfect equilibria that differ from the global 

game equilibrium of the corresponding static game.  Therefore, it seems natural to ask whether modeling 

phenomena such as bank runs and speculative currency attacks as static global games misses something 

important in the way people actually behave in these dynamic entry games.  Foreshadowing our results, 

we find that aggregate behavior in dynamic entry games of complete information does not differ 

systematically from aggregate behavior in corresponding static entry games.   

 

2. Related Literature 

The paper most closely related to this one is the experimental study of Heinemann et al. (2004) 

testing Morris and Shin’s (1998) model of speculative attacks.  In the Heinemann et al. design, subjects 

play sequences of static entry games under several treatment conditions that are chosen to test the 

comparative static implications of the theory. Their main treatment variable is whether there is common, 

complete information or private, noisy information about the state of fundamentals. Their principal 

finding is that there is little difference in observed behavior under the different information treatment 

conditions.   They further find that behavior responded to variations in the threshold fundamental in the 

direction predicted by the theory of global games. As we elaborate upon below, their design provides only 

an indirect test of the hypothesis that the global game provides an equilibrium refinement of the game of 

complete information. 

                                                 
1 Dynamic models of global games that are based upon learning over time of better estimates of the true value of Y 
yield multiple equilibria. See Angeletos, Hellwig and Pavan (2007), and Costain (2007) for versions of such 
dynamic global games, and Costain et al. (2007) for an experimental study. We abstract from this type of statistical 
uncertainty and consider dynamic entry games of complete information as this facilitates our comparison with static 
entry games of complete information. We show below that, under certain conditions, the symmetric subgame perfect 
equilibrium of the dynamic game of complete information is unique and will generally differ from the unique global 
game equilibrium prediction for the corresponding static game of complete information. 
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Gale (1995) considers an N-player, dynamic “monotone” entry game that is similar to the 

dynamic game we study.  In Gale’s game, a player’s decision to enter (“invest”) can take place at discrete 

periods in time, t=1,2,…, is irreversible, and provides a flow of benefits that depends on the number of 

other players who have already entered by date t.  There is a critical number of players, n*, who must 

enter before entry is profitable. As the number of players, N, increases so does n*.  Gale shows that there 

is a subgame perfect equilibrium in which everyone delays entry until n* -1 periods have elapsed.  This 

equilibrium is supported by the off-equilibrium belief that if anyone were to enter before n*-1 periods 

have elapsed, no one else will enter prior to period n*-1 so early entry will be unprofitable.  Gale’s game 

differs from the one we consider as it has a different payoff function and is indefinitely repeated.   

Dasgupta, Steiner and Stewart (2007) analyze a dynamic entry game in which each player 

receives a sequence of signals about the true value of a fundamental, payoff relevant state variable. If the 

fundamental exceeds a critical value and all players enter, then all receive a positive payoff.  If the 

fundamental is favorable, but not all enter, those who do enter receive a negative payoff.  A player may 

enter at any time, but entry is irreversible.  Each entrant secures a payoff that is decreasing in absolute 

value with the time of entry.  As time passes, information becomes more nearly precise. They show that 

for any fundamental above the critical value, the probability that everyone will enter approaches 1 as time 

passes.  Furthermore, they show that when information is precise, if the fundamental exceeds the value at 

which all enter is the Pareto Optimal pattern of actions, everyone enters immediately.  This result is 

analogous to the characterization of the sub-game perfect equilibrium of our version of the dynamic entry 

game. 

 

3   Experimental Design 

 In this section we describe our experimental design including a description of the entry game and 

our experimental treatments. As the theoretical predictions are based on details of our experimental 

design, we provide those predictions later in section 4. 

 

3.1  Overview 

Our experimental design builds upon and complements an earlier experiment by Heinemann, 

Nagel and Ockenfels (2004).  In their experiment, subjects play a sequence of entry games under one of 

two information conditions: complete information or incomplete information.  Only one information 

condition was used in a given experimental session.  In each of their sessions, all N subjects played the 

same sequence of N-person entry games. Let A denote the strategy “don’t enter” and B the strategy 

“enter.”  In all treatments studied by Heinemann et al. (2004), each subject i has a payoff function of the 

form: 
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Here, F is a fixed payoff that is independent of the actions chosen by the other N-1 players, # B denotes 

the number of the N players including i who choose action B, Y is a random payoff parameter drawn from 

a known, uniform distribution, that completely characterizes each game, and )(Yf is a monotonically 

decreasing “hurdle” function of Y that is fixed across all games in a session. 

In Heinemann et al.’s (2004) study, subjects are repeatedly presented with lists of entry games 

having different values for Y.   In their complete information game treatment, every subject in a session 

receives the same list.  In their incomplete information treatment, random Y values (games) are drawn as 

before, but subjects are not given a list of different values of Y.  Instead, for each value of Y drawn, each 

subject i receives a private signal iX that is a random draw from a commonly known, uniform distribution 

centered on the unknown value of Y and having known support ].,[   YY   Each individual’s signal 

of Y is drawn independently of the signals of others.  In both treatments, a subject is asked to specify an 

action A (no entry), or B (entry) for each game on the list. After all subjects submitted their action list, the 

outcomes of the games on that list were presented to them. This procedure was repeated 16 times.  

Heinemann et al. find that in both information treatments the pattern of action choices of most subjects 

corresponds to a “cut-off” strategy in which entry is chosen only if the commonly observed Y value or the 

private signal X exceeds a certain threshold. The estimated mean thresholds are smaller under the 

complete information treatment than under the incomplete information treatment.  However, in both 

treatments, the estimated thresholds were consistently below the global game equilibrium threshold.  

Heinemann et al. found that the estimated mean thresholds varied in response to changes in the payoff 

function in the direction predicted by the global game equilibrium and that the variance in individual 

estimated thresholds decreased with experience. 

Our research strategy is as follows:  We use the same entry game as Heinemann et al., with the 

payoff function re-scaled to reflect the fact that only 10 subjects play in the entry games in our 

experiment. The equilibrium of the global game is defined in terms of a cut point strategy for all possible 

values of the true state Y, given a measure of noise in the signal, λ.  We consider only Heinemann’s 

complete information case where  → 0, as this will facilitate comparison with our dynamic game of 

complete information.  Heinemann et al. infer cut-point strategies from action choices.   We propose a 

direct test by eliciting cut-point strategies from subjects and then seeing whether or not those same 

subjects make action choices that correspond to their elicited strategies.  A second modification addresses 

the fact that subjects tend to change their behavior with experience. Unlike Heinemann and Nagel, in our 
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design, we attempt to reduce the likelihood of group efforts at coordination by running two games (groups 

of 10 subjects) in a session simultaneously and randomly reassigning individuals to one or the other group 

after the play of each game.  These treatments serve as a robustness check of the findings of Heinemann 

and Nagel. 

Our primary research interest differs from Heinemann et al. and involves a comparison of the way 

subjects play static entry games of complete information with corresponding dynamic entry games. 

Therefore, our design incorporates treatments of dynamic entry games with  payoffs that correspond to 

those used in the static entry game sessions.  In these dynamic game treatments, each of the subjects 

chooses not only whether to enter but also when to enter.  Once a subject chooses to enter, that decision is 

irreversible. As explained below, the dynamic entry games have sub-game perfect equilibria in which 

everyone enters whenever it is not a dominant strategy to stay out.  This contrasts with the global game 

equilibrium of the corresponding static game in which entry occurs only if the value of the state variable, 

Y, is sufficiently above the region for which staying out is a dominant strategy. 

  While the dynamic entry game with no explicit cost of delay has multiple subgame perfect 

equilibria, with the addition of delay costs there is a unique subgame perfect equilibrium in which 

everyone enters immediately whenever Y is outside the region where staying out is a dominant strategy.  

Therefore, we consider both a dynamic game treatment where there is no cost of delay (to facilitate 

comparison with our static game treatment), and a second dynamic game treatment with delay costs. 

 

3.1 Specific Details 

The specific details of our experimental design are as follows. The experiment was conducted 

using Fischbacher’s (2007) z-Tree software using networked PC workstations in the Pittsburgh 

Experimental Economics Laboratory.  Each experimental session consisted of  20 subjects with no prior 

experience in any of our treatments. Subjects were recruited from the student population of the University 

of Pittsburgh and Carnegie-Mellon University.  Each session begins with the reading aloud of the written 

instructions followed by play of a series of either 60 static or 30 dynamic entry games.2  

At the start of each new entry game our computer program randomly assigns the 20 subjects to 

one of two groups of size N=10.  Subjects are informed of their random assignment to either “group 1” or 

to “group 2” at the start of each entry game, but the composition of the members of each group is 

anonymous, and no communication is possible among group members.  Subjects are instructed that they 

will participate in a series of games where their payoff function is as described in (1) with the threshold 

number of players needed for entry to yield a positive payoff  equal to 

                                                 
2 The instructions are available at http://www.pitt.edu/~jduffy/entrygames/ 
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.60/)80(10)( YYf   

In the experiment, we use ),(ˆ Yf which denotes the round-up of )(Yf  to the nearest integer in the set 

{1,2,…,10}. While this formula and the round-up rule are shown and explained to subjects, we also 

provide subjects with tables using this formula for ease of reference – see the instructions for the details.    

The Y values characterizing each “game” are random draws from a uniform distribution over the interval 

[10, 90].  The distribution and support of the Y values, the payoff function (1), and the hurdle function

)(Yf  are all public information in all sessions of our experiment, as provided in the written instructions 

and written on a chalkboard for all to see3.   

There are four treatment variables in our design.  The first treatment variable is the strategy space.  

In treatments labeled ‘C’, the strategy space consists of two possible actions, {A, B}, corresponding to 

“not enter” and “enter”.  In this treatment the randomly drawn Y value is announced publicly prior to the 

choice of a strategy.  In treatments labeled ‘G’, the Y value is not drawn until all 10 subjects have 

submitted their “cut-point” strategies.  The strategy space in G treatments consists of the set of integers, I, 

where {10<I<90}.  These correspond to cut-point strategies such that if the randomly drawn value Y> I, 

the action that will be automatically chosen for the subject (by the computer program) is “enter” (choice 

B) otherwise if Y<I, the action that will be automatically chosen for the subject is “not enter” (choice A).   

The second treatment variable concerns the value of the fixed payoff F earned by all participants 

who choose not to enter (choice A).   Variations in this parameter shift the theoretical equilibrium cut-

point strategy in the global game in which the noise of the signal goes to zero and also affect the subgame 

perfect equilibria of the dynamic game as explained below.  We consider two values for F, F=20 and 

F=50; we use only one of these two values for F in each experimental session. 

The third and most important treatment variable is whether the game is ‘static’ or ‘dynamic’.  In 

the static treatment, a game consists of a single decision round.  In the dynamic game treatment, each 

game consists of n=10 decision rounds, r=1,2,…10; players remain in a fixed group of 10 over all 10 

rounds of a dynamic game.  Following the first round of a dynamic game, all individuals are informed at 

the start of each new round about the number of individuals in their group of 10 who have previously 

entered in that game.  Each individual who has not already entered (chosen B) then decides whether to 

enter in that round (choice B) or to stay out (choice A).  Entry is irreversible. Thus, to preserve the right to 

enter at a later round of a dynamic game, a subject would have to choose not to enter (choice A). The 

dynamic game ends after 10 rounds. 

                                                 
3 Except for scaling to accommodate the smaller number of subjects, the payoff function is identical to that used by 
Heinemann et al. (2004). 
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As noted earlier, the payoff to a player who chooses not to enter (choice A) is always fixed at F 

(20 or 50). The payoff to a player who enters (chooses B) in a game is determined by the number of 

players in their group of 10 who have entered by the end of the static or dynamic game (round r= 10) and 

by the value of the state variable, Y.   If the number of entrants, #B, meets or exceeds ),(Yf rounded to 

the nearest integer, ),(ˆ Yf then all those who have chosen to enter receive a payoff  of 	ܻ െ ݀ሺݎ௜ െ 1ሻ, 

where d is a fixed entry delay cost and ݎ௜ is the round number of the (dynamic) game in which player i 

first chose to enter (made irreversible choice B); in the static game, there is only one round, so	ݎ௜ ൌ 1 for 

any entrant and successful entrants earn Y.  If the number of entrants is less than ),(ˆ Yf  those who have 

chosen to enter receive	0 െ ݀ሺݎ௜ െ 1ሻ.  Again, in one round static game, unsuccessful entrants earn 0. 

The fourth and final treatment variable pertains to the dynamic, F=20 game treatment only and 

involves the cost of delayed entry, ݀. In our baseline dynamic game treatment, there is no entry delay 

cost, i.e., ݀ ൌ 0.  In our dynamic game with delay cost treatment, we set ݀ ൌ 1/2, so that subjects are 

charged a cost of delaying their decision to enter (choice B) beyond the very first round 1, at the rate of ½ 

point per round delayed; that is, as in the static game, there is no cost for an immediate choice of entry in 

round 1 of the dynamic game but each additional round of delay beyond round 1 reduces a subjects’ 

payoff by ½ point (up to a maximum loss of -4.5 points if they delayed entry until round 10).  If they 

chose not to enter in all 10 rounds (always chose A), there is no delay cost charged and subjects earned 

the fixed payoff for non-entry, F=20.  

The timing of events in a static game is as follows. At the start of each static game, subjects are 

randomly assigned to one of two, 10-player groups and a value of Y is drawn at random. The Y number 

chosen is the same for both groups. In the C treatment, this Y number is announced to the subjects on their 

computer screens.  Each subject then uses their mouse to click on their choice, either not enter (A) or 

enter (B).   After all subjects submitted their choices, the game is over. Each subject is then reminded of 

the Y number and their own choice (A or B). They are further informed of their own payoff for the game, 

the number in their group of 10 who “entered” (chose B) in that game and the payoff earned by those who 

“entered” (Y or 0); the payoff to non-entry is a known constant, ܨ.  In the G treatment, the Y number is 

not announced until after the game has been played.  Instead, each subject chooses a cut-off strategy—an 

integer from the set {10<I<90}—for the game and enters it when prompted by their computer terminal. 

Once all subjects had submitted their cut-off numbers, the computer program automatically selected an 

action, A or B for each subject, based on the value of Y chosen for that game and the subject’s cut-off 

strategy.  Subjects were then informed of the Y number, reminded of their cut-off value and shown the 

action chosen for them by the computer program based on their cut-off value.  As in the C treatment, they 

were then informed of their individual payoff for the game, the number in their group of 10 who had (via 
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their threshold) chosen to enter and the payoff earned by those who chose to enter (Y or 0).  Before the 

next static game began, subjects were again randomly assigned to one of the two groups of size 10.   

In all ‘static’ game sessions we used a within-subjects design where subjects played half of the 60 

games under condition C and the other half under condition G.  The order of play of the two conditions C 

and G was varied from session to session. In each session, the changeover from condition G to C or from 

condition C to G was not announced in advance; instead, following the first 30 entry games, the session 

was briefly paused while subjects were given new ‘continuation’ instructions on the rules of play for the 

remaining 30 entry games (see the experimental instructions for further details). 

All dynamic game sessions both with and without delay costs were conducted only under the C 

treatment strategy space. In each dynamic game session, 30, 10-round dynamic games are played.  The 

timing of events in a dynamic game is as follows. At the start of each dynamic game, two groups of 10 

subjects were randomly formed.  Then, as in the static-C treatment, a value of Y was randomly drawn at 

random and announced to all group members.  In the dynamic treatment, this value of Y remains fixed 

over all 10 rounds of the dynamic game, as does the composition of the group.  Subjects then decide 

whether to enter or not (B or A) by using their mouse to click on their action choice. In treatments with 

and without delay costs, a decision to enter in the first round was costless. In the delay cost dynamic game 

treatment a delay cost of ½ cent per round was assessed in rounds 2,,3,.. 10 for those who delayed entry 

beyond the first round.  At the end of each round of the dynamic game, subjects were told the cumulative 

number in their group of size 10 (including themselves) who had chosen to enter in all prior rounds. If the 

10th round had not yet been played, the dynamic game continued with another round.  

Subjects were informed that a decision to enter (a B choice) once made, was irreversible and that 

they could only preserve the right to enter in a later round of the game (or never enter at all) by using their 

mouse to click on choice A (not enter) in each round in which they wanted to delay entry. Thus, even in 

the treatment without delay costs, there was some psychic cost to having to repeatedly click a mouse 

button for choice A (delay entering).  Subjects who had chosen to enter in any prior round of the dynamic 

game (by clicking on choice B) did not have to make any further choice for the remaining rounds of that 

dynamic game.  The payoff function for entry in the dynamic game sessions is the same one used in the 

static game, with two differences. First, in the dynamic game, the payoff depended on the number who 

had entered by the end of the final, 10th round; this number was compared with )(ˆ Yf to determine the 

payoff to those who chose to enter (payoffs were either Y or 0), as in the static game. Second, in the 

dynamic game with delay costs, payoffs were reduced if a player chose to enter after the first round. 

Subjects earned their payoff in “points” from all games played in a session.  In the static 

treatment, points were converted into dollars at the rate of 1 point =1/2 cent, while in the dynamic 

treatment which had half as many games, the conversion factor was 1 point=1 cent. In addition, subjects 
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in all sessions received a $5 show-up payment. Total payments for the 60 games played in the static-game 

sessions averaged $19.95 for a 75 minute session.  The dynamic game sessions also lasted for 75 minutes.  

Total payments for the 30 games played in the dynamic-game sessions without delay costs averaged 

$20.21 per player; with delay costs, the average was $19.82 per player. 

 

4   Theoretical Predictions 

We  assume that subjects are rational and risk neutral with regard to uncertain monetary 

amounts.4  In the static game, we have the following predictions. First, if ,FYY   the maximal payoff 

from entering, Y, is dominated by the payoff from not entering, F, so “not enter” (choice A) is a player’s 

dominant strategy.5  Similarly, if ,)1(ˆ 1 FfYY    a decision to enter by a single individual (the 1 in 

the inverse mapping, 1ˆ f ) guarantees a payoff of FY  so “enter” (choice B) is a player’s dominant 

strategy.  Given our specification for f and our rounding rule, we have 72Y . The lower bound, Y  

varies directly with the treatment variable, ܨ: ܻ ൌ 20	or	ܻ ൌ 50.   For YYY  there are two equilibria 

in pure strategies: all-enter and all-not-enter.  This multiplicity is resolved in the global game approach of 

Morris and Shin (1998) by assuming that players do not know the true value of the state variable Y; 

instead each player i receives a private signal iX  of the Y value that is drawn randomly from a uniform 

distribution over ],[   YY , where  represents a small amount of noise.  Morris and Shin show that 

this private information game has a unique threshold *X below which players choose not to enter and 

above which players choose to enter.  Heinemann (2000) further shows that in the limit, as the noise tends 

to zero, the threshold signal *X converges to a threshold value, .*Y  As we do not consider the case of 

noisy signals – subjects in our experiment are either informed in advance of the value of Y or learn it after 

all have submitted their cut-off thresholds – this limiting threshold value *Y  is the relevant global game 

prediction for our static game.   In our parameterization, *Y is the solution to .10]1)(ˆ10[ ** FYfY   

Intuitively, *Y is the value of Y for which players are indifferent between entering and not entering. For 

the treatment where F=20, we have 42* Y  and for the treatment where F=50, we have 62* Y . 

In the dynamic game it remains a dominant strategy for players to not enter if FYY   and to 

enter if .72)1(ˆ 1  fYY  Unlike the static game, in the dynamic game, the N=10 individuals face a 

game involving n=10 rounds of play. A player’s decision to enter prior to the last (10th) round of the 
                                                 
4 The predictions that follow may be different if agents are risk averse with respect to uncertain money amounts or 
boundedly rational in their payoff calculations.   
5 If FYY  , risk neutral individuals should be indifferent between choosing enter or not enter. 
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dynamic game has an influence on the decisions of other players in future rounds. This feature of the 

dynamic game implies that subgame perfection is an appropriate solution concept. 

In the dynamic game a player knows at each decision stage how many players have already 

entered.  A player’s strategy must specify what action to take for every possible history of the game.  We 

focus here on subgame perfect equilibria, and in particular on subgame perfect equilibria where one or 

more subjects choose to enter whenever ܻ ൐  One such equilibrium is associated with everyone  .ܨ

adopting the following strategy.  If  ܻ ൑  do not enter.  Otherwise, enter in round ݇ if the number of ,ܨ

others who have entered before round k is at least some critical number,	ܿሺܻ, ݇ሻ, where ܿሺܻ, ݇ሻ ൌ መ݂ሺܻሻ െ

1	when k=10 and ܿሺܻ, ݇ െ 1ሻ ൌ ܿሺܻ, ݇ሻ െ 1	when ݇ ൏ 10.  This strategy says: enter in round 10 if entry 

will assure you of a payoff of ܻ; enter in round 9 if your entry will induce sufficient entry in round 10 to 

yield you a payoff of ܻ; more generally, enter in round k, if your entry will induce sufficient entry in the 

remaining rounds to yield you a payoff of ܻ.  Since the maximum value of  መ݂ሺܻሻ ൌ 10, in this 

equilibrium ܿሺܻ, 1ሻ ൑ 0, so everyone enters in round 1.  Of course, absent any cost to delaying entry, 

there are many other sub-game perfect equilibria in which everyone enters (or no one enters).  But when 

there is a small cost to delayed entry, as in our dynamic game with delay cost treatment, then by iterated 

elimination of dominated strategies, the only subgame perfect equilibrium when ܻ ൐  is  the one where ܨ

everyone enters immediately and without delay in round 1. This is also the Pareto efficient equilibrium of 

this game. We chose to study the dynamic game without delay costs as our static game treatment does not 

have any delay costs and we do not want to introduce more than a single change with each new treatment.  

However, one can also think of the static game as a version of the dynamic game with delay costs, where 

the delay costs are infinite. 

 Summarizing, the global game refinement predicts an entry threshold of 42 in the static game 

with F=20 and an entry threshold of 62 in the static game with F=50.  In the dynamic game, where 

players can condition on the prior decisions of others, there exists a subgame perfect equilibrium where 

every player enters immediately in round 1 whenever Y>F.  This Pareto efficient equilibrium is the 

unique subgame perfect equilibrium when there are delay costs to entry.   

 

5. Empirical findings 

  

We report results from 26 sessions involving 20 subjects each – a total of 520 subjects. Our experimental 

design, treatment conditions, the number of sessions conducted of each treatment and our equilibrium 

predictions are reported in Table 1.  

Our main experimental finding is that there is no significant difference in entry behavior between 

static and dynamic entry games with the same value of F, regardless of whether subjects’ entry decisions 
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Table 1: Experimental Design and Predicted Entry Thresholds 

Treatment Conditions  
 
 
Number 
of 
Sessions 

 
Equilibrium 
Concept 
GG or SGP, 
Predicted Entry 
Threshold for Y 

Game Type: 
Static or 
Dynamic Strategy Space, No. Games F= 
Static C 30 Games,  G 30 Games 20 3 GG, 42 
Static G 30 Games,  C 30 Games 20 3 GG, 42 
Dynamic C 30 Games, 10 Rounds / Game  20 6 SGP, 21 
Dynamic C+Delay Costs, 30 Games, 10 Rounds / Game 20 6 SGP, 21 
Static C 30 Games,  G 30 Games 50 2 GG, 62 
Static G 30 Games,  C 30 Games 50 2 GG, 62 
Dynamic  C 30 Games, 10 Rounds/Game 50 4 SGP, 51 

 

are determined by choice or according to elicited thresholds in the static treatment or whether or not there 

are costs associated with delayed entry in the dynamic treatment. In particular we summarize behavior in 

these games in terms of entry thresholds.  Prior to describing these entry thresholds we first provide some 

evidence on subject rationality and efficiency in our experimental sessions. 

 

4.1 Dominated strategies and efficiency 

 
A basic test of rationality is whether subjects avoided play of dominated strategies.   Table 2, 

column 4 reports the percentage of subjects in each session who never once played a dominated 

strategy over the 30-60 games of the treatment they were in. For the static game treatments, these 

frequencies are divided up according to the 30 C games, the 30 G games and all 60 games.  For 

example, the first session frequencies of  0.85 / 0.80 / 0.80  mean that 17 /16 / 16  of the 20 

subjects never once played a dominated strategy in  the  C / G / and  both treatments (All). Table 

2 column 5 reports the frequency with which subjects played dominated strategies in instances 

where dominated strategies could be played.  Again, these frequencies are disaggregated for the 

static treatment sessions.  The frequencies shown in columns 4-5 of Table 2 provide support for the 

notion that most subjects avoided the play of dominated strategies.  

 

Finding 1:  80 percent of subjects in our experiment never played a dominated strategy. In instances 

where it was possible to play dominated strategies ሺܻ ൏ ܻ ൌ ,ܨ ܻ ൐ ܻ ൌ 72ሻ the frequency of play of 

dominated strategies is low, averaging just 3 percent. 
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Table 2:  Dominated Strategies and Efficiency 

Sess. 
No. 

Treatment 
Conditions 

F
= 

 
 
 
 
Percent of 
subjects who 
never  play a 
dominated 
strategy* 
   C    /  G    /  All 

Average 
frequency of the 
play of 
dominated 
strategies in 
instances where 
there were 
dominated 
strategies 
   C    /  G    /  All 

 
 
 
 
 
Payoff efficiency 
relative to 
equilibrium 
prediction† 
  C      /  G    /  All 

Equilib. 
Concept- 
Predicted 
Entry 
Threshold

1 Static C,G 20 0.85 / 0.80 / 0.80 0.02 / 0.07 / 0.04 0.99 / 1.03 / 1.01 GG-42
2 Static G,C 20 0.95 / 0.60 / 0.55 0.01 / 0.13 / 0.07 1.04 / 0.94 / 0.99 GG-42
3 Static C,G 20 1.00 / 0.60 / 0.60 0.00 / 0.08 / 0.03 1.01 / 0.98 / 0.99 GG-42
4 Static G,C 20 0.95 / 0.80 / 0.75 0.00 / 0.05 / 0.02 1.19 / 0.88 / 1.04 GG-42
5 Static C,G 20 1.00 / 0.80 / 0.80 0.00 / 0.04 / 0.02 0.96 / 0.87 / 0.91 GG-42
6 Static G,C 20 1.00 / 0.60 / 0.60 0.00 / 0.06 / 0.02 0.96 / 0.84 / 0.91 GG-42
7 Dyn C 20 0.95 0.03   0.91 SGP-21
8 Dyn C 20 1.00 0.00 0.94 SGP-21
9 Dyn C 20 0.80 0.04 0.96 SGP-21

10 Dyn C 20 1.00 0.00 0.97 SGP-21
11 Dyn C 20           0.95 0.03 0.90 SGP-21
12 Dyn C 20 0.95 0.03 0.90 SGP-21
13 Dyn C+DelayCost 20 0.95 0.03 0.92 SGP-21
14 Dyn C+DelayCost 20 0.90 0.03 0.92 SGP-21
15 Dyn C+DelayCost 20 0.95 0.03 0.92 SGP-21
16 Dyn C+DelayCost 20 0.90 0.03 0.98 SGP-21
17 Dyn C+DelayCost 20 0.65 0.04 0.89 SGP-21
18 Dyn C+DelayCost 20 0.90 0.03 0.95 SGP-21
19 Static C,G 50 0.75 / 0.70 / 0.65 0.03 / 0.05 / 0.04 0.99 / 0.97 / 0.98 GG-62
20 Static G,C 50 0.90 / 0.75 / 0.70 0.01 / 0.09 / 0.04 1.00 / 0.95 / 0.97 GG-62
21 Static C,G 50 0.95 / 0.80 / 0.75 0.01 / 0.03 / 0.02 1.01 / 0.99 / 1.00 GG-62
22 Static G,C 50 0.80 / 0.50 / 0.35 0.02 / 0.08 / 0.05 1.01 / 0.94 / 0.98 GG-62
23 Dyn C 50 0.90 0.01 0.99 SGP-51
24 Dyn C 50 0.70 0.02 0.98 SGP-51
25 Dyn C 50 0.80 0.01 0.99 SGP-51
26 Dyn C 50 1.00 0.00 0.99 SGP-51

Sessions 1-26 Overall Avgs: 0.80 0.03 0.96  
 

 *Dominated strategies are entering (choice B) when FY   or not entering (choice A) when YY  . For 
the dynamic treatment, entry decisions are assessed as of the final (10th) round of the game. † Payoff 
efficiency calculations include losses due to delay costs in the dynamic treatment with delay costs. 
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Finding 1 is consistent with Heinemann et al.’s (2004) finding that subjects in their design largely 

avoided the play of dominated strategies.6  We note that the play of dominated strategies was always more 

frequent in the G treatment than in the comparable C treatment of each static game session. 

 Table 2 column 6 reports on a measure of payoff efficiency, specifically, how subjects’ payoffs 

compare with those they could have earned if all had played according to the threshold strategies 

specified by the equilibrium solution concept for the class of entry games examined in each session.  For 

instance, session 1 involved play of a static entry game with F=20.  Under the global game (GG) solution 

concept, the threshold equilibrium prediction is that subjects enter if 42Y  and don’t enter otherwise.  

Our payoff efficiency measure takes the sum of all subjects’ payoffs for all games played in the session 

and divides that number by the sum of the payoffs that all subjects would have earned had they faced the 

exact same sequence of randomly drawn Y numbers and played according to the global game equilibrium 

strategy. For the static game sessions, these efficiency ratios are again disaggregated by treatment.  For 

example, in the static game session 1,  the payoff efficiency ratios of  0.99 / 1.03 / 1.01 indicate that 

subjects earned 99% of  the payoffs they could have gotten by playing the GG-42 equilibrium cut point 

strategy in the C treatment, 103% of  such equilibrium payoffs in the G treatment and 101% of 

equilibrium payoffs in both treatments (over all).  For the dynamic game sessions, the solution concept is 

subgame perfection, SGP, and the entry threshold is the lower, Pareto efficient one where all enter 

whenever Y>F.  Based on data in column 6 of Table 2 we have: 

 

Finding 2:  Over all sessions, subjects earned payoffs that averaged 96% of the payoffs they could have 

earned by following either the global game (static treatment) or the subgame perfect (dynamic treatment) 

equilibrium threshold strategies. 

 

We further observe that, using nonparametric two-sided Wilcoxon-Mann-Whitney tests on the 

session level payoff efficiency averages reported in Table 2 (we use the observations for ``all’’ games of 

each session), there is only a marginally significant difference in payoff efficiency relative to equilibrium 

prediction between the six static and six dynamic F=20 sessions without delay costs, i.e. efficiency is 

slightly higher in sessions 1-6 versus sessions 7-12 (p=.07) ; however this might be attributed to the 

different equilibrium thresholds we use for the two types of games. There is no significant difference in 

payoff efficiency relative to equilibrium prediction between the six static and six dynamic F=20 sessions 

                                                 
6 While Heinemann et al. (2004) report a somewhat higher frequency of play of dominated strategies (8%), this 
frequency is still quite low. The difference may be owing to experimental design differences: Heinemann et al. elicit 
entry decisions for 10 different situations (Y values) in each of 16 repetitions whereas we elicit only a single entry 
decision (for a single Y value)  in each of 30-60 repetitions. With more decisions to make in a single repetition (10 
rather than 1) the play of dominated strategies might become more frequent. 
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with delay costs, i.e. sessions 1-6 versus sessions 13-18 (p=.19).  There is also no difference in payoff 

efficiency relative to equilibrium predictions between the six sessions of the two dynamic F=20 

treatments, i.e. sessions 7-12 versus sessions 13-18 (p=.87).  Finally, there is no difference in payoff 

efficiency relative to equilibrium predictions between the four static and four dynamic F=50 sessions, i.e. 

sessions 19-22 versus 23-25 (p=.36).  Indeed, efficiency is very high across all treatments and Finding 2 

suggests that both equilibrium refinements may be characterizing subject behavior rather well.  However, 

as we shall see in the next two sections, the payoff efficiency evidence does not indicate that subjects 

were actually playing according to the prescribed equilibrium threshold strategies.   

  

4.2 Estimated entry thresholds across treatments 

We now turn to the main focus of our analysis, the entry thresholds characterizing subject 

behavior across the static and dynamic game treatments of our experiment.  For the static-G treatment, we 

have elicited entry thresholds for each subject; we will later (in section 4.4) address the consistency of 

those elicited thresholds with choice behavior in the static-C treatment.  As for the static-C treatment, as 

well as for all our dynamic treatment sessions, empirical entry thresholds have to be estimated from 

observed entry decisions.  Here we follow Heinemann et al. (2004) and estimate a logit response model in 

which the binary entry decision depends on a constant and the Y value, using all data (binary entry 

decisions and associated Y values) from a given treatment of a session.  That is, we use maximum 

likelihood estimation to find the coefficient estimates ොܽ and ෠ܾ, that are a best fit to the logit response 

function: 

(2)                           .)]exp(1[)|Pr(                                  1 bYaYB  

The entry threshold can be viewed as the critical value, ܻ∗, for which a representative player is indifferent 

between entering and not entering, which obtains when Prሺܤ|ܻሻ ൌ .5.  Using that probability in (2) and 

the maximum likelihood estimates of a and b, we obtain the estimated entry threshold	෡ܻ ∗ ൌ െ ොܽ/ ෠ܾ.  The 

standard deviation of a logistic distribution with meanെොܽ/ ෠ܾ, and scale parameter 1/෠ܾ is given by 
గ

௕෠√ଷ
 

,which we take as a measure of the coordination of subjects around the estimated entry threshold.  We 

estimate the entry threshold and its standard deviation for all static-C and dynamic treatment sessions as 

well as for the static-G treatment sessions; in the latter case, we can compare the logit estimated 

thresholds and standard deviations with the actual mean and standard deviation of the elicited entry 

thresholds. For the dynamic game treatment, we use each player’s entry decision as of the final, 10th 

round of each game. 

 For each of our 26 sessions, Table 3 reports the logit estimates of a, b, the ratio –a/b, and the 

associated standard deviations.  Note that we again divide the static game sessions up according to 
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whether it was a C or G treatment.  Static game sessions involved play of 30 games of each treatment, just 

as dynamic game sessions involved the play of 30 dynamic games.  Thus, each of the 36 estimates in 

Table 3 is based on data from 30 games played by 20 subjects (consisting of 600 individual observations). 

 

Table 3 Logit Coefficient Estimates,  Implied Entry Threshold and Standard Deviation 

 
 
Sess. 
No. 

Session Characteristics C Treatment Estimates G Treatment Estimates  
Equilib. 
Concept 
-Pred.  

F Game Type 
Treat. 
Order ොܽ ෠ܾ 

 
െොܽ/෠ܾ 

ߨ
෠ܾ√3

 
ොܽ ෠ܾ 

 
െොܽ/෠ܾ 

ߨ
෠ܾ√3

 

1 20 Static  C, G -4.63 0.15 31.65 12.40 -4.10 0.13 31.30 13.85 GG-42
2 20 Static G, C -6.77 0.24 28.57 7.65 -2.26 0.09 25.39 20.38 GG-42

3 20 Static C, G -7.90 0.24 32.92 7.56 -3.85 0.15 25.67 12.09 GG-42

4 20 Static G, C -8.60 0.38 22.63 4.77 -4.70 0.12 39.17 15.11 GG-42

5 20 Static C, G -10.67 0.28 37.84 6.43 -4.97 0.15 34.12 12.44 GG-42

6 20 Static G, C -7.97 0.29 27.36 6.22 -3.31 0.11 30.52 16.72 GG-42

7 20 Dynamic C -6.63 0.21 31.89 8.72  n/a  n/a  n/a  n/a SGP-21
8 20 Dynamic C -11.18 0.45 24.77 4.02  n/a  n/a  n/a  n/a SGP-21

9 20 Dynamic C -6.88 0.30 22.77 6.00  n/a  n/a  n/a  n/a SGP-21

10 20 Dynamic C -6.28 0.24 26.17 7.56  n/a  n/a  n/a  n/a SGP-21

11 20 Dynamic C -11.47 0.32 36.19 5.72  n/a  n/a  n/a  n/a SGP-21

12 20 Dynamic C -9.47 0.32 29.22 5.59  n/a  n/a  n/a  n/a SGP-21

13 20 Dynamic+DC C -10.60 0.43 24.72 4.23  n/a  n/a  n/a  n/a SGP-21

14 20 Dynamic+DC C -9.37 0.39 23.92 4.63  n/a  n/a  n/a  n/a SGP-21
15 20 Dynamic+DC C -11.18 0.36 31.28 5.07  n/a  n/a  n/a  n/a SGP-21

16 20 Dynamic+DC C -8.76 0.48 18.28 3.79  n/a  n/a  n/a  n/a SGP-21

17 20 Dynamic+DC C -6.29 0.19 33.64 9.71  n/a  n/a  n/a  n/a SGP-21

18 20 Dynamic+DC C -10.19 0.44 23.01 4.10  n/a  n/a  n/a  n/a SGP-21

19 50 Static C, G -9.54 0.18 54.47 10.35 -7.87 0.13 59.99 13.83 GG-62

20 50 Static G, C -18.89 0.36 52.36 5.03 -5.03 0.09 55.21 19.92 GG-62

21 50 Static C, G -16.97 0.34 51.46 5.41 -11.42 0.22 51.71 8.21 GG-62
22 50 Static G, C -14.40 0.29 49.65 6.36 -7.08 0.13 54.46 14.52 GG-62

23 50 Dynamic C -41.33 0.83 49.95 2.19 n/a n/a n/a n/a SGP-51

24 50 Dynamic C -15.31 0.31 48.90 5.79 n/a n/a n/a n/a SGP-51

25 50 Dynamic C -19.60 0.38 51.58 4.82 n/a n/a n/a n/a SGP-51

26 50 Dynamic C -49.81 0.97 51.35 1.87 n/a n/a n/a n/a SGP-51

 

Based on the estimated entry thresholds, – ොܽ/ܾ,෡   as shown in Table 3 we report the following 

findings: 
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Finding 3:  Estimated entry thresholds in the static-C treatment sessions are indistinguishable from 

estimated entry thresholds in the corresponding dynamic treatment sessions (same F value) without delay 

costs.  

Using a nonparametric Wilcoxon-Mann-Whitney test, we cannot reject the null hypothesis of no 

difference between the six, session-level estimated entry thresholds for the F=20 static-C treatment and 

the six, session-level estimated thresholds for the F=20 dynamic treatment without delay costs, i.e. the 

estimated thresholds for sessions 1-6 versus sessions 7-12 as reported in column 7 of Table 3 (p=.63).  

The same conclusion holds for the four session-level estimated entry thresholds for the F=50 static-C 

treatment and the four session-level estimated entry thresholds for the F=50 dynamic treatment without 

delay costs, i.e., sessions 19-22 versus sessions 23-26 (p=.25).   

 

Finding 4: The addition of delay costs to the dynamic, F=20 game does not lead to any significant 

difference in estimated entry thresholds relative to the static-C or dynamic game without delay costs. 

 

Again using a nonparametric Wilcoxon-Mann-Whitney test, we find we cannot reject the null 

hypothesis of no difference between the six estimated entry thresholds for the dynamic F=20 game with 

delay costs and 1) the six estimated entry thresholds for the F=20 static-C game, i.e. sessions 13-18 versus 

sessions 1-6 (p=.26), or 2) the six estimated entry thresholds for the F=20 dynamic game without delay 

costs, i.e. sessions 13-18 versus sessions 7-12 (p=.34). Thus, despite the fact that delay costs make the 

efficient equilibrium of the dynamic game the unique subgame perfect equilibrium, there is little 

difference in behavior relative to static or dynamic versions of the F=20 game without delay costs.  

 

Finding 5:  Estimated entry thresholds in the F=20 static-G treatment are indistinguishable from 

estimated entry thresholds in 1) the F=20 static-C treatment and 2) the F=20 dynamic, no delay cost 

treatment but they are significantly greater than in 3) the F=20 dynamic, delay cost treatment.  Estimated 

entry thresholds in the F=50 static-G treatment are significantly greater than in 1) the F=50, static-C 

treatment and 2) the F=50 dynamic, no delay cost treatment. 

 

For the F=20 static-G versus static-C treatment comparison we use a two-sided Wilcoxon signed rank test 

for matched pairs (as the data come from a single, within-subject sample involving two treatments) and 

we find we cannot reject the null hypothesis of no difference using the six session-level estimated entry 

thresholds for each treatment (p=.60).  For the comparisons between the F=20 static-G and dynamic-C 

treatments we used a two-sided Wilcoxon-Mann-Whitney test and found we could not reject the null of 

no difference in estimated entry thresholds between the static-G treatment and the dynamic game without 
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delay cost treatment (p=.42)  but we found that entry thresholds in the static-G treatment were 

significantly greater than in the dynamic F=20 treatment with delay costs (p= .08).  

For the F=50 static-G versus static-C comparison, a two-sided Wilcoxon signed rank test leads us 

to reject the null in favor of the alternative that entry thresholds are higher in the F=50 static-G treatment 

(p=.07).  For the comparison between the F=50 static-G and dynamic-G treatment without delay costs a 

Wilcoxon-Mann-Whitney test leads us to reject the null in favor of the alternative that estimated entry 

thresholds are higher in the static-G treatment than in the dynamic no delay cost treatment (p=.02). 

While the static-G treatment involves a different methodology for gathering entry decision data 

and is thus not strictly comparable to the static-C and dynamic treatments, we find only mixed evidence 

of a difference in behavior across these two  elicitation methods, particularly for the F=20 treatment.  

For further evidence confirming the findings above, we report the results of two simple OLS 

regressions involving the 36 logit-estimated entry thresholds reported in Table 4 (the values of െොܽ/ ෠ܾ) and 

the 36 estimated standard deviations  ቀ
గ

௕෠√ଷ
ቁ on several dummy variables: 1G  if the G, “cut-point 

strategy” treatment was used, 0 otherwise; 150   if F=50, 0 otherwise, 1D  if the entry game was 

dynamic, 0 otherwise, 1DC  if there were delay costs, 0 otherwise as well as two multiplicative 

dummies, 50 G  and D 50
. The OLS regression results—with standard errors (in parentheses) 

that have been corrected for clustering of estimates within (static-treatment) sessions using a Huber-White 

sandwich estimator— are presented in Table 4.   

  For the regression involving the estimated entry threshold (column 2 of Table 4) we see that the 

change in the value of F from 20 to 50 significantly increases this threshold, as predicted, from an 

estimated mean of about 30 to one of about 52.  However, all other treatment variable conditions appear 

to be irrelevant for the determination of the entry threshold, as the coefficient estimates on the dummy 

variables ,  , GD   
50  ,  GDC  and 50 G are not significantly different from zero.  

For the regression involving the standard deviation as the dependent variable (column 3 of Table 

4), we find that the only treatment condition with a significant effect on the standard deviation of entry 

decisions is whether subjects submitted cut-off strategies or made action choices as indicated by the 

significant coefficient estimate on the G dummy variable.  In particular, we observe that the standard 

deviation of entry decisions is significantly larger in the static-G treatment where we elicited cut-off 

strategies than in the static-C treatment where actions were chosen.  Unlike the C treatment, in the G 

treatment the Y value is not known at the time a strategy is submitted.  This difference in the timing with 

which the Y value is revealed may lead subjects to think more (less) carefully in the C (G) treatment, 

where their choice is less (more) hypothetical and we posit that this difference can account for the 
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significantly higher variance in entry choices (cut-off values) in the G treatment relative to the C 

treatment. 

Table 4: Linear Regression Examining Treatment Effects: 
Coefficient Estimates (Standard Error) 

Variable Entry threshold, 
-a/b 

Standard deviation, 

)3/(b  

Intercept 
           30.16*** 

 (2.18) 
                   7.51*** 

(1.09) 
 

G  
0.87 

(3.52) 
     7.59*** 

(1.79) 

50  
           21.82*** 

(2.38) 
                  -0.72 

 (1.61) 

D  
-1.66 
(3.01) 

                  -1.24 
 (1.29) 

 
DC  

-2.69 
(3.15) 

-1.01 
(1.16) 

50 G  
2.49 

(3.70) 
                  -0.26 

(3.24) 
 

D 50  
0.12 

(3.21) 
                  -1.88 

(1.99) 
2R  0.88 0.73 

Statistically significant at the: .01 level, ***; .05 level, **; .10 level, *. 

  

 Finally, we test for differences between the logit-estimated entry thresholds in Table 3 and the 

global game or subgame perfect equilibrium predictions.  Using a simple t-test, we consider whether the 

six independent estimated entry thresholds for the static, F=20 game are statistically different from the 

global game prediction.  For both the C and G treatments, we may reject the null of no difference from the 

global game threshold of 42 (two-sided t-test, p=.00 in the C treatment, p=.00 in the G treatment).  For the 

F=20 dynamic game, we use a one-sided version of the t-test to determine whether the six estimated entry 

thresholds for the dynamic F=20 game with or without delay costs are greater than the subgame perfect 

equilibrium threshold prediction of 21 (it would not be rational for these thresholds to be lower than 21).  

We again find that we can reject the null of no difference  in favor of the alternative that entry thresholds 

are greater than 21 for the dynamic treatment without delay costs (p =.01) or with delay costs (p=.05).  

We conclude that in the F=20 case, entry thresholds in the static game lie below the global game threshold 

while in the dynamic game they lie above the subgame perfect equilibrium prediction, which is consistent 

with our earlier finding of no significant difference in the distribution of entry thresholds between these 

two treatments.   

For the F=50 static game sessions, a t-test indicates that we may also reject the null of no 

difference between the four estimated session-level entry thresholds and the predicted global game 
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threshold of 62 for both the C and G treatments (two-sided t-test, p=.01 for the C treatment, p=.03 for the 

G treatment).  However, for the F=50 dynamic game, a one-sided t-test indicates that we cannot reject the 

null of no difference between the four session level estimated entry thresholds and the subgame perfect 

(and efficient) equilibrium threshold prediction of 51 (one-sided test, p=.79). Given that we earlier found 

no difference in the distribution of entry thresholds between the static-C treatment and the dynamic 

treatment of the F=50 game, it would seem that entry thresholds in the static-C treatment should also not 

differ significantly from the efficient equilibrium threshold of 51 for the dynamic game. Indeed, a t-test 

confirms that we cannot reject the null hypothesis of no difference between the estimated entry thresholds 

in the static-C treatment and a hypothesized entry threshold of 51 (one-sided test, p=.20).7  As noted 

earlier, observed and estimated entry thresholds in the static game where F=50 are a smaller proportion of 

the distance FY * than are entry thresholds in the static game where F=20. This difference most likely 

reflects the greater likelihood that entry will succeed in the F=50 treatment as compared with the F=20 

treatment, as in the F=20 case, more subjects must choose entry on average for entry to yield a non-zero 

payoff than in the F=50 case.  Summarizing, these last findings with regard to our equilibrium predictions 

we have:   

 

Finding 6:   Estimated entry thresholds in both the F=20 and F=50 static game treatments are 

significantly below the global game predictions. A comparison of the distribution of entry thresholds 

between static-C game and dynamic game treatments with the same F value reveal no significant 

differences.  

 

Finding 7:   In the F=50 treatment, the efficient strategy of entering if Y>F and not entering otherwise 

can be used to characterize behavior in both the static-C and dynamic game treatments. 

 

4.3 Distribution of entry frequencies 

 

[Figures 1a-1d here.] 

 

In addition to considering whether there are differences in estimated entry thresholds between treatments, 

it is also of interest to examine whether the distribution of entry frequencies over Y numbers differs 

                                                 
7 We can reject the null of no difference between the estimated entry thresholds in the static-G treatment and a 
hypothesized entry threshold of 51 in favor of the alternative that the static G-treatment thresholds are greater than 
51 (one-sided test, p=.04). However, the timing of information concerning the Y-value in the G treatment is 
different from that in the static-C and dynamic game treatments, so the more natural comparison to make (as in the 
text above) is between the static-C and dynamic treatments with the same value of F.  
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between the static and dynamic treatments.  Figures 1a-1d show the mean entry frequencies in all static 

and dynamic F=20 sessions disaggregated by Y number bins. Here we used the same bins as are used in 

the experimental design to determine the number of entrants needed for successful entry. Specifically for 

each Y-bin we report the mean entry frequency along with associated standard errors, indicated by the 

error bars in these figures, which provide an indication of the precision of these means across sessions.

 Figure 1a compares mean entry frequencies using pooled data from the six static F=20 game 

sessions with pooled data from the twelve F=20 dynamic game sessions (both with and without delay 

costs). T-tests confirm the impression that whenever the standard error bars in these figures do not 

overlap we can reject the null hypothesis of no difference in favor of the alternative that entry frequencies 

are statistically higher in the one treatment (one-sided test p<.10 in all such instances).  We observe that 

entry frequencies in the dynamic game are significantly higher in 5 of the 10 bins.  However, in 4 of those 

5 bins -- the last four Y bins involving Y numbers between 54 and 90 --- the differences in entry 

frequencies are not economically important.  For instance, in the 54-59 bin the mean entry frequency in 

the static sessions is 96.5% versus 99.9% in the dynamic sessions; both frequencies guarantee that entry is 

successful in this bin.  As for the other Y-bin where entry frequencies in the dynamic game are 

statistically higher than in the static game – the bin for Y values between 24-29 – the entry frequencies in 

that bin are always less than 50%, which lies well below the 80% entry frequency needed for successful 

entry via the hurdle function መ݂; thus again, the difference is not economically significant.    

Figures 1b-1d provide comparisons of mean entry frequencies across bins between two of the 

three different treatments of the F=20 entry game.  Once we remove the six sessions of the F=20 dynamic 

game with delay costs, we observe in Figure 1b that there is little difference in entry frequencies by Y 

number bin between the six static and six dynamic without delay cost sessions, except again for the last 

four bins, where entry frequencies are significantly higher in the dynamic treatment.  The F=20 dynamic 

game with delay costs does lead to significant increases in entry frequencies across nearly all bins by 

comparison with either the static or the dynamic game without delay costs as seen in Figures 1c and 1d.   

 

[Figure 2 here.] 

 

Figure 2 shows the mean frequency of entry in the F=50 static and dynamic game sessions 

disaggregated by Y number bins.  Here again, whenever the standard error bars in the figure do not 

overlap, t-tests allow us to reject the null hypothesis of no difference in favor of the alternative that entry 

frequencies are statistically higher in one treatment (one-sided test p<.10 in all such instances). We 

observe no significant difference in entry frequencies between the static and dynamic game treatments 



21 
 

when Y is in the critical, 48-53 bin.  However, for values of Y>53, entry is significantly higher in the 

dynamic than in the static treatment of the F=50 entry game. 

We emphasize again that while many differences in entry frequencies across Y-bins are 

statistically significant, these differences are not economically important.  If we consider the important 

question of whether the mean entry frequency equaled or exceeded the relevant hurdle value, መ݂ሺܻሻ, we 

find no difference between the static-C or dynamic game treatments for any of the 10 Y-bins.  And, 

indeed as we have already seen in the estimates reported in Table 3, the small but statistically significant 

differences in entry frequencies observed in Figures 1a-1d and 2 do not lead to significant differences in 

the overall estimated entry threshold, ෠ܻ ∗, across treatments.  We summarize these findings as follows: 

 

Finding 8:  There are differences in the distribution of entry frequencies over Y values between the static 

and dynamic entry games with the same F value.  Specifically entry game frequencies are relatively 

higher in dynamic games with delay costs or for large values of Y.  However these entry frequency 

differences do not affect whether entry is successful or not on average, in any Y-bin across all treatments.  

 

4.4 Consistency of cut-point strategies with action choices in the static game 

 

 We now compare the elicited entry thresholds in the static-G treatments with choice behavior in 

the static-C treatments. We begin by reporting in Table 5 the mean and standard deviations of the 

threshold strategies elicited in all sessions involving the static-G treatment. For comparison purposes we 

also report the estimated entry thresholds and standard deviations (from Table 3) for these same static-G 

sessions.  Specifically, for each static game session, we report in column 4 of Table 5 the mean elicited 

cut-off value provided by all 20 subjects in the 30 static-G games played in the session and in column 5 

we provide the associated standard deviations. The average elicited cut-off value for the static-G 

treatment is 32.41 when F=20 and 55.67 when F=50. These overall averages, along with the individual 

session-level averages, lie below the global game prediction of 42 and 62 for the F=20, F=50 treatments, 

respectively.  Indeed, using the session-level averages, a one-sample, Wilcoxon signed rank test reveals 

that we may reject the null hypothesis that the cut-off  is 42  for the F=20 treatment and that the cut-off is 

62 for the F=50 treatments in favor of the alternative that both cut-offs are lower (p=.03, F=20, p=.07, 

F=50).  Also, contrary to the global game prediction, we find using the same test on session-level data 

that there is significant variance in the distributions of these elicited thresholds, i.e., the standard 

deviations reported in Table 3, column 4 are large and significantly greater than 0 (p=.03).  Columns 6-7 

of Table 5 report the same mean and standard deviations of elicited entry thresholds but using data from 

just the final 5 games of each session.  Notice that while there is little difference in the mean elicited 
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thresholds over the last 5 games as compared with all 30 games, there is typically a reduction in the 

standard deviation. This observation suggests that subjects were converging on entry thresholds that are 

well approximated by the 30-game mean elicited entry thresholds. 

 

 Table 5: Elicited Entry Thresholds, Static-G Treatment Sessions and Elicited Entry Thresholds 

 
 
 
 
 
Sess. 
No. 

 
 
 
 
 
Treatment 
Order 

 
 
 
 
 
F
= 

 
Mean  
Elicited 
Entry 
Threshold 
Games 
1-30 

 
St. Dev. of 
Elicited 
Entry 
Threshold 
Games  
1-30 

 
Mean  
Elicited  
Entry 
Threshold 
Games  
26-30 

 
St. Dev. of 
Elicited  
Entry 
Threshold 
Games  
26-30 

 
 
Estimated 
Entry 
Threshold 
From  
Table 3 

 
 
Estimated 
Std. 
Deviation 
From  
Table 3 

1  C, G 20 31.24 12.93 30.91 9.19 31.30 13.85

2  G, C 20 29.25 16.81 29.12 11.78 25.39 20.38

3  C, G 20 27.97 12.10 28.35 8.97 25.67 12.09

4  G, C 20 40.77 15.46 39.50 10.97 39.17 15.11

5  C, G 20 33.78 11.74 34.76 8.92 34.12 12.44

6  G, C 20 31.45 13.99 32.20 12.40 30.52 16.72

1-6 Averages 20 32.41 13.84 32.47 10.37 31.03 15.10

19 C, G 50 61.80 14.46 62.20 12.43 59.99 13.83

20 G. C 50 55.32 15.36 53.58 11.79 55.21 19.92

21 C, G 50 50.20 8.49 49.89 8.96 51.71 8.21

22 G, C 50 55.36 11.98 53.14 8.32 54.46 14.52

19-22 Averages 50 55.67 12.57 54.70 12.43 55.34 14.12
 

Finding 9: Estimated entry thresholds and standard deviations for the static-G treatments are not 

significantly different from (and are a good approximation to) the mean elicited entry thresholds and 

standard deviations for the static-G treatments. 

 

Support for Finding 9 comes from a two-sided, Wilcoxon matched-pairs signed ranks test on the six 

(four) session-level observations reported for the F=20 (F=50) treatment for all 30 games in Table 5. 

Using this data, we cannot reject the null hypothesis of no difference between the mean elicited entry 

thresholds (column 4) and the estimated entry thresholds (column 8) or between the standard deviations in 

elicited entry thresholds (column5) and the standard deviations in the estimated entry thresholds (column 

9)  (p>.10 for all four tests). This finding provides us with some assurance that the logit-estimated 

thresholds and associated standard deviations reported in Table 3 are a good approximation to the average 

cut-off values that were elicited from subjects in our static-G treatment.  We further observe that: 
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Finding 10:  In both the F=20 and F=50 treatments the mean elicited entry thresholds in the static-G 

treatment are not significantly different from the logit estimated thresholds in the corresponding static-C 

treatment.   

 

When the six estimated entry thresholds for the static-C treatment of the F=20 static game (Table 3, 

column 7) are compared with the corresponding six mean elicited thresholds for the static-G treatment of 

the same game (Table 5, column 4), we find no significant difference (Wilcoxon matched-pairs signed-

ranks test (2-sided test, p=.75).  Similarly, we find no significant difference between the four mean 

elicited thresholds from the static-G treatment of the F=50 game and the corresponding estimated entry 

thresholds for the static-C treatment of the same game (Wilcoxon matched-pairs signed-ranks test (2-

sided test, p=.14). 

 

The next two findings address in further detail the consistency of behavior between the static C 

and the static G treatments and whether there is a change in strategy when the treatment changes. It could 

well be that the change in the static game treatment from C to G or G to C is used by subjects as an 

opportunity to change their strategy with the possible aim of increased efficiency.8  Thus we first explore 

whether subjects changed their strategy in moving from the static-C treatment to the static-G treatment or 

when the reverse order was in effect.  In static game sessions where the treatment order was C, G, we 

calculated the mean elicited entry threshold for each subject in the just first 5 games (repetitions) of the G 

treatment and used that threshold to predict each subject’s behavior in the last 15 games of the C 

treatment that preceded the switch to the G treatment (i.e., using the same sequence of Y values they 

faced in those last 15 games of the C treatment).9 Similarly, in static sessions where the treatment order 

was G, C, we calculated the mean elicited entry threshold for each subject in the last 5 games of the G 

treatment and used that threshold to predict each subject’s behavior in the first 15 games of the C 

treatment that followed the G treatment. The result is a consistency metric for each of the 200 subjects 

who participated in one of our 10 static game sessions.  A consistency metric value of 1 corresponds to 

perfect consistency between a subject’s mean elicited strategy threshold in the static-G treatment and the 

subject’s action choices in the 15 immediate prior or 15 immediate subsequent games of the static-C 

treatment and a value of 0 corresponds to complete inconsistency.   

                                                 
8 For instance, Van Huyck et al. (1991) found evidence that subjects changed strategies with a change in the 
treatment conditions of an experimental coordination game. 
9 We used data form 15 games of the C treatment so as to obtain sufficient variation in the Y values to assess the 
consistency in behavior between the C and G treatments. 
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We regress these 200 individual observations for the consistency metric on a constant and two 

dummies: ߜହ଴ ൌ 1   if F was 50, 0 otherwise and ீߜ,஼=1 if the treatment order was 30 games of the static-

G treatment (strategy method) followed by 30 games of the static-C treatment and 0 for the reverse order.  

The OLS regression results, with standard errors (in parentheses) that have been corrected for 

clustering of the consistency metric within sessions using a Huber-White sandwich estimator, are as 

follows:  

Consistency   =   0.868   - 0.001 ஼,ீߜ   + 0.058  ହ଴ߜ

  (0.023)   (0.024)    (0.023) 

 ܴଶ ൌ .06 

 

The regression results reveal that mean consistency in the baseline F=20 static game is high, at around 87 

percent; that is, 87 percent of the time, subjects’ action choices in the C treatment of the F=20 static game 

were consistent with their cut-off strategy choice in the G treatment of the F=20 static game close to the 

time that the switch in treatments took place. This finding provides direct evidence of high (but though 

not perfect) consistency between subjects’ action choices and their use of threshold strategies; by contrast, 

Heinemann et al. (2004) merely asserted that such a relationship held in their study.  Note further that  the 

coefficient on the order dummy, ீߜ,஼  , is not significantly different from zero, suggesting that the two 

different treatment orders did not affect the consistency between subjects’ elicited thresholds (G 

treatment) and their prior or subsequent action choices (C treatment).  Finally, the regression also reveals 

that there is a statistically significant increase in the consistency metric in the F=50 static game as 

compared with the F=20 static game; mean consistency rises from 87 percent in the F=20 static game to 

about 93 percent in the F=50 static game.   

 

Finding 11:   The consistency between elicited cut-point strategies and action choices averages 87% in 

the F=20 treatment and 93% in the F=50 treatment.  The consistency measure is unaffected by whether 

strategies were elicited in the first or second half of static game sessions, i.e., there is no order effect. 

 

While these consistency levels may seem high, note that they are calculated for all values of Y in [10, 90].  

We next ask whether our consistency metric is uniform across all Y values or whether it varies with 

certain values of Y. 
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Figures 3a-3b plot weighted average values of the consistency measure from all sessions of the 

F=20 and the F=50 sessions grouped according to the 10 non-overlapping “bin” values for the actual Y-

numbers subjects faced in the experiment. 

 

[Figures 3a-3b here.] 

 

Notice that for Y-values that lie either below F or above the hypothesized global game thresholds (42 

when F=20 and 62 when F=50), the average consistency metric is generally very high, often close to 

100%.  However, there is a sharp fall-off in this consistency measure in the neighborhood of the 

empirically observed thresholds, bins 24-29, 30-35 and 36-41 in the F=20 sessions and bins 48-53 and 54-

59 in the F=50 sessions.  In the F=20 case, when Y is between 30-35, subjects’ strategies from the G-

treatment part of the session predict their actions in the C treatment part of the session only 52 percent of 

the time.  This finding leads us to conclude that there is only mixed support for an important implication 

of the global game solution—that individuals approach the play of a sequence of coordination games, 

which differ only in a payoff-relevant variable, by adopting a unique threshold strategy.  This finding is 

not inconsistent with the finding that inferred or estimated entry thresholds in the F=20 static-C and 

static-G game treatments are not significantly different from one another as the variance of entry 

thresholds is significantly greater in the G treatment as compared with the C treatment (see, e.g., Table 4). 

And indeed, we earlier reported (Finding 5) that both the mean entry threshold and its variance in the 

F=50 static-G treatment were significantly higher than in the corresponding F=50 static-C treatment.  The 

observation that subjects are varying their cut-off thresholds to a greater degree than the variation in their 

entry choices is what appears to account for the inconsistencies observed in Figures 3a-3b. 

 

Finding 12: Individual’s chosen cut-point strategies are a poor predictor of their actions when the payoff 

relevant state variable, Y, lies between F and the global game equilibrium threshold. 

 

5.5  Timing of entry decisions in the dynamic game 

 

Finally, we focus attention in this section on the dynamic game treatment and examine the timing of entry 

decisions. We have the following finding: 

 

Finding 13:  There is evidence against the efficient symmetric, subgame perfect equilibrium prediction of 

immediate entry for all values of Y>F, especially in the F=20 dynamic game treatment. 
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For the dynamic game, the efficient, symmetric subgame perfect equilibrium calls for immediate 

entry in round 1 by all 10 individuals whenever Y>F.  As noted earlier, this is also the unique symmetric 

subgame perfect equilibrium in the case where there are delay costs.  However, as Figures 4a-4b reveal, 

this prediction of immediate entry finds only conditional support, when Y is sufficiently greater than F.  

Figures 4a-4b show the mean number of the 10 subjects who choose to enter at each of the 10 rounds of 

the dynamic game (indicated by tick marks within each Y-bin).10   These time paths are constructed using 

pooled data from all sessions of the 1) F=20 treatment with delay costs, 2) the F=20 treatment without 

delay costs (both shown together in Figure 4a) and 3) the F=50 treatment without delay costs (shown in 

Figure 4b). 

[Figures 4a-4b here] 

Figures 4a-4b reveal that decisions to enter or not enter are, on average, immediate (occur in 

round 1) only when Y is below the value of F or well above the global game threshold of 42 in the F=20 

case and 62 in the F=50 case.  For intermediate values of Y, there is clear evidence that subjects are 

conditioning their entry decisions on the number of subjects who have previously entered, that is, some 

subjects are playing a “wait-and-see” strategy that is inconsistent with the subgame perfect equilibrium 

prediction. Consider for instance, the Y number bin 30-35 in Figure 4a for the F=20 dynamic game. 

When there are no delay costs, an average of just 3 of 10 players enter immediately in round 1 (marked by 

the vertical line in the Figure). With delay costs a higher average, 6 of 10 players enter immediately in 

round 1. However, by the 10th and final round, an average of just  6.8 of 10 players have entered in the no 

delay cost treatment while an average of 7.7 of 10 players have entered in the delay cost treatment. The 

lack of immediate entry in round 1 by all players in this bin and other instances where Y>F is clear 

evidence against the backward induction logic of the subgame perfect equilibrium prediction.  Figure 4b 

reveals that the incidence of “wait-and-see” before entering behavior is less pronounced in the dynamic 

F=50 game, as it is less risky for individual subjects to immediately enter in the first round of such games 

when Y>50; in such cases, at most 5 of the 10 group members must choose to enter for an entry decision 

to yield the larger, Y payoff.  However, entry hesitation nevertheless persists in the F=50 treatment.  For 

example, consider the Y number bin 54-59 in Figure 4b: an average of just 6.4 of 10 players choose to 

enter in the first round of games with those Y values; in that bin, only 4 out of the 10 players must choose 

to enter for entry to succeed.  While the average number of entrants in the 54-59 bin does climb to 9.9 of 

10, this only by the 10th and final round of the game.  

The pooled data from all sessions used to construct Figures 4a-4b masks some important session-

level heterogeneity.  For instance, in Figure 4a for the dynamic F=20 treatment, it appears that entry is 

                                                 
10 The 10th tick for each bin, representing the 10th round should not be connected to first tick of the next bin 
representing the 1st round ; the connection is unavoidable using our graphical software. 
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unsuccessful on average, for Y numbers less than 36, as the average number of entrants by round 10 is 

less than hurdle number needed for entry success for Y values between 10 and 35. However, this 

inference is not correct. Table 6 reports the frequency of successful entry in the twelve F=20 dynamic 

games (similar session-level heterogeneity obtains for the F=50  dynamic game). Entry success means 

that at least the hurdle number of subjects in each group chose to enter (so entrants received positive 

payoffs), and these entry success frequencies are further disaggregated according to the 10 Y number bins 

and whether it was the first (1st) dynamic game for which a Y number was chosen in that particular bin 

versus all subsequent games (subsq) that the chosen Y number was in that same bin. For all 6 sessions of 

a treatment we also report the overall success rate for each Y number bin.  

 

Table 6:  Frequency of Successful Entry , Dynamic F=20 Sessions 
Entry Success Frequencies, Dynamic with No Delay Cost Sessions 

 All Sessions 7-12 Session 7 Session 8 Session 9 Session 10 Session 11 Session 12 

Bins 1st Subsq Overall 1st Subsq 1st Subsq 1st Subsq 1st Subsq 1st Subsq 1st Subsq 

10-23 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24-29 0.25 0.00 0.067 0.00 0.00 0.50 0.00 nobs nobs nobs nobs 0.00 0.00 0.50 0.00 

30-35 0.75 0.55 0.625 0.00 0.50 1.00 1.00 1.00 nobs 1.00 0.50 0.50 0.00 1.00 0.75 

36-41 0.90 0.75 0.833 1.00 1.00 1.00 nobs nobs nobs 1.00 0.50 0.50 0.50 1.00 1.00 

42-47 0.92 1.00 0.742 0.50 1.00 1.00 nobs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

48-53 1.00 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

54-59 1.00 1.00 1.000 1.00 nobs 1.00 1.00 1.00 nobs 1.00 1.00 1.00 1.00 1.00 1.00 

60-65 1.00 1.00 1.000 1.00 1.00 1.00 nobs 1.00 1.00 1.00 nobs 1.00 1.00 1.00 nobs 

66-71 1.00 1.00 1.000 1.00 1.00 1.00 1.00 1.00 nobs 1.00 1.00 1.00 1.00 1.00 1.00 

72-90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.000 1.00 

Entry Success Frequencies, Dynamic with Delay Cost Sessions 
 All Sessions 13-18 Session 13 Session 14 Session 15 Session 16 Session 17 Session 18 

Bins 1st Subsq Overall 1st Subsq 1st Subsq 1st Subsq 1st Subsq 1st Subsq 1st Subsq 

10-23 0.08 0.05 0.06 0.00 0.00 0.00 0.08 0.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 

24-29 0.75 0.41 0.47 1.00 0.00 1.00 0.33 0.00 0.00 1.00 1.00 nobs nobs 0.00 0.50 

30-35 0.83 0.63 0.69 1.00 1.00 1.00 1.00 0.50 0.25 1.00 1.00 0.50 0.00 1.00 1.00 

36-41 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

42-47 1.00 1.00 1.00 1.00 1.00 1.00 nobs 1.00 1.00 nobs nobs 1.00 1.00 1.00 1.00 

48-53 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 nobs 1.00 1.00 

54-59 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

60-65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

66-71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 nobs nobs 

72-90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 
Notes: 1st=First dynamic game in which the Y value was in the given bin, subsq=All subsequent dynamic games in which the Y value was in the 
given bin, Overall = overall success frequency for that Y bin, nobs=No observations available for this Y bin. 

 



28 
 

Table 6 makes it clear that there are session-level differences.  For instance, in the dynamic with 

delay cost treatment, when the Y number lies between 30-35, we observe that in 4 of 6 sessions, entry is 

always successful, while in the other two sessions (15 and 17), entry is initially successful just half the 

time (the two groups of size 10 split in coordinating on successful entry) so that subsequently, entry in the 

30-35 bin was not very successful in those two sessions.  However, overall when the Y number was in the 

30-35 bin, entry was successful 69 (62.5) percent of the time in dynamic F=20 treatment with delay costs 

(without delay costs).  

 Finally, we address whether delay costs affected the timing of entry decisions in the dynamic 

game relative to dynamic game treatment without delay costs.  

 

Finding 14:  The addition of a small delay cost serves to hasten the round in which individuals choose to 

enter in the dynamic game. 

[Figure 5 here] 

 

Here we again focus on the six sessions of the F=20 dynamic treatment with and without delay 

costs.  Figure 5 shows the mean period of entry among all those choosing entry by Y-number bins.  We 

observe that for all bins, the mean period of entry is always greater for the dynamic game without delay 

costs than for the dynamic game with delay costs; t-tests confirm the impression from the non-

overlapping standard error bars that such differences are statistically significant. However, the typical 

difference consists of an average of 1 period of delay or less.  Further, while delay costs do hasten the 

period of entry in the dynamic game, we have already seen that such costs do not affect whether entry is 

successful or not or the aggregate estimated entry threshold, i.e., the ܻ∗ number that characterizes play of 

the dynamic game.  Finding 14 thus indicates that subjects were paying attention to delay costs and 

seeking to minimize them whenever their entry threshold was reached. 

 

5 Summary and Concluding Remarks 

 

Games with strategic complementarities give rise to a multiplicity of equilibria.  An important 

class of such games are binary choice, ‘entry’ games in which the payoff to a player who ‘enters’ is a 

monotonic increasing function of the number of other players who enter.  These games have been used to 

model speculative attacks, bank runs, and other situations in which actions by a critical mass of players 

can produce a regime change.  The theory of global games has been proposed as a model of how people 

resolve the coordination that is inherent in such games.  That theory implies that an individual will play 

all entry games whose payoff functions differ only with respect to the value of a threshold parameter 
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using the same cut-point strategy and that in equilibrium all individuals will choose the same strategy.   

We test these implications by directly eliciting the strategies subjects choose to play in all entry games 

that vary only with respect to the threshold parameter, Y.  We then compare those strategies with the 

actual action choices the same subjects make in a series of entry games in which the value of Y varies 

from one game to another.  We find only mixed support for the theoretical predictions.  In support of the 

proposed refinement, we find that individual actions are generally consistent with the actions that are 

implied by the strategies they chose when asked to choose a cut-point strategy.  Further, the lack of an 

treatment order effect suggests that individuals are employing a cut-point strategy when selecting which 

action to take in these entry games. However, inconsistent with the theory, there is substantial variance 

among individuals in their elicited cut-point strategies.  Perhaps most importantly, elicited or estimated 

entry thresholds in the static game are significantly below the global game equilibrium prediction, while 

the mean estimated dynamic game entry threshold is above the subgame perfect equilibrium prediction in 

the F=20 case, but it is not significantly different from it in the F=50 case. 

Most phenomena that are modeled as static entry games have an inherently dynamic property in 

that individuals do not have to move simultaneously and when they do act, they may possess information 

about how close the system is to the threshold that would make entry individually profitable.  

Theoretically, the equilibrium of the dynamic version of the entry game we study is quite different from 

the equilibrium of the global game. Surprisingly, we find that despite the large, predicted difference in the 

play of the static and dynamic games, the actual pattern of behavior in these different games is 

statistically indistinguishable, even when we consider the case of delay costs in the dynamic game or vary 

the  payoff to non-entry, F.  This finding suggests that the modeling of N-player entry games with 

strategic complementarities as static, one-shot games –ignoring the dynamic element of those interactions 

-- may not be leaving out empirically important determinants of behavior observed in such environments. 

However, some caution is warranted as we may not have explored game parameterizations for which 

there may be significant differences in behavior between dynamic and static versions of the same entry 

game. We leave that exercise to future research. 
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Figure 1a:  Mean Entry Frequencies by Y Number Bins from 6 Static and all 12 Dynamic Game Sessions, 
with 1 Standard Error Band. 
 
 

 
 
Figure 1b:  Mean Entry Frequencies by Y Number Bins from 6 Static and 6 Dynamic Game Sessions 
without Delay Costs, with 1 Standard Error Band. 
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Figure 1c:  Mean Entry Frequencies by Y Number Bins from 6 Static and 6 Dynamic Game Sessions with 
Delay Costs, with 1 Standard Error Band. 
 
 
 

 
 
Figure 1d:  Mean Entry Frequencies by Y Number Bins from 6 Dynamic Game Sessions without Delay 
Costs and 6 Dynamic Game Sessions with Delay Costs, with 1 Standard Error Band. 
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Figure 2:  Mean Entry Frequencies by Y Number Bins from 4 Static and 4 Dynamic Game Sessions 
where F=50, with 1 Standard Error Band. 
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Figure 3a: Average Accuracy of Predicted Entry Decisions Using Elicited Cut-Points:  
Pooled Data from Six Static Game Sessions where F=20 

 
 
 
 

 
Figure 3b:  Average Accuracy of Predicted Entry Decisions Using Elicited Cut-Points:  

Pooled Data from Four Static Game Sessions where F=50 
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Figure 4a:  Average Number of Entrants in Rounds 1-10 of All Dynamic F=20 Game Sessions without 

Delay Costs or With Delay Costs, Grouped According to Y-bins. The threshold number of entrants 
needed for entry to yield a positive payoff is also indicated. 

 
 

 
Figure 4b:  Average Number of Entrants in Rounds 1-10 of All Dynamic F=50 Game Sessions without 

Delay Costs, Grouped According to Y-bins.  The threshold number of entrants needed for entry to yield a 
positive payoff is also indicated. 
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Figure 5: Mean Period of Entry in all F=20 Dynamic Game Sessions Without Delay Costs and in all F=20 
Dynamic Game Sessions With Delay Costs 
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