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Abstract

I analyse informational e¢ ciency of two-alternative elections where the util-

ity of the voters depends on the realisation of an uncertain, binary state vari-

able about which voters receive an independent, noisy signal. I show that large

elections aggregate information e¢ ciently for any voting rule in the unique equi-

librium if and only if the set of voters who favour an alternative in one state

includes the set which favours the same alternative in the other state. I call

this the preference monotonicity condition. If preference monotonicity fails, we

have two groups of voters such that a change in state induces their rankings to

change in opposite ways; and I term this phenomenon as preference reversal.

Under preference reversal, for large classes of voting rules we have equilibria

with certain outcomes di¤erent from the full information outcome. Preference

reversal is the generic condition when voter preferences are multidimensional.

�While writing this paper, I have bene�ted a lot from discussions with David Austen-Smith
and Tim Feddersen. Roger Myerson helped me immensely by suggesting a more e¢ cient proof of
Theorem 3. I also thank Steve Callander, Marciano Siniscalchi, Sean Gailmard, Jaehoon Kim, Navin
Kartik, Alexandre Debs, Siddarth Madhav and participants in the Voting and Information panel at
the Econometric Society Summer Conference (2006), USC Marshall School, University of Pittsburgh
and Sabanci University . All responsibility for any errors remaining in the paper is mine.
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1 Introduction

A deep problem with group decision making under uncertainty is that decision rel-

evant information is often dispersed throughout the group. Traditionally, elections

have been thought to solve this problem by ensuring that all the individuals�private

information is incorporated in the election outcome. A strong argument for using

elections for making important political decisions is that the society, by aggregating

everyone�s information, would be better o¤ compared to any individual making the

decision on behalf of the society.

Starting from Condorcet (1785), several mathematical models have been formu-

lated to express the idea that voting e¢ ciently aggregates information dispersed in the

electorate. In most models, there are two alternatives, a state variable that captures

the decision relevant uncertainty and every individual receives a noisy independent

signal conditional on the state. These models exhibit that, in a large electorate, the

voting outcome is almost surely the same as the one that would have occurred if the

state variable were common knowledge: thus the individual uncertainty vanishes in

the aggregate. All these models assume diversity in information but either complete

homogeneity (e.g. Myerson (1998a, 1998b, 2000), Wit(1998), Meirowitz (2002))or a

very limited heterogeneity in preferences (e.g. Feddersen-Pesendorfer (1996, 1997,

1999)) among individuals in the society. The current paper explores the limits of

the possibility of information aggregation through voting with plurality rules1. It

develops a condition on the relationship between preferences and uncertainty in the

electorate that is not only su¢ cient, but also necessary for elections to be full in-

formation equivalent. While the condition admits existing results on information

aggregation like that in Feddersen-Pesendorfer (1997), henceforth F-P, as a special

case, I show that the condition itself holds true only in a non-generic set of situations.

In particular, it is hard to aggregate information when voters in an election care about

more than one issue.

Although the earlier proofs of what is today called the Condorcet Jury theorem2

assumed that each individual voted according to their private signal, recent work

1In this paper I focus only on elections with two given alternatives. The voting rules considered
are plurality rules or q-rules, according to which the candidate getting more than q share of the
votes wins the elections, where q 2 (0; 1). I, however, denote a voting rule in this paper by �:

2For earlier proofs of this theorem using statistical arguments, see Berg (1992), Ladha (1992,
1993), Nitzan and Paroush (1985).
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(Austen-Smith and Banks (1996)) has suggested that such behavior may not be op-

timal for rational voters3. Much like a bidder in an auction, each voter conditions

his decision on the event that the others are tied and his vote actually decides the

outcome4. Conditioning on being pivotal, a voter may learn more about the state

from the equilibrium strategies of the other voters, and consequently may vote against

his signal. F-P has shown that in equilibrium, even though only a small fraction of

voters vote informatively, in a large election the actual number of voters using their

information is large enough for the outcome to be almost surely the full information

outcome. For this result, their paper assumes what they call �common values�5: for

each individual, the relative valuation of an alternative is a strictly monotone function

of the state variable. Thus, a change in state makes all voters more inclined in favour

of exactly one alternative.

In this paper I study a spatial model of electoral competition, allow for a more

general correlation between preferences and the state variable, and examine a set-up

that is generalisable to the case of multidimensional space of voter preferences. For

the sake of tractability, unlike F-P which considers a continuum of states, I consider

only two states (say L and R). Suppose the alternatives to be chosen from are denoted

by P and Q. I consider the limit of a sequence of equilibria of the voting game as the

number of voters becomes large. The condition for information aggregation presented

here is that under full information, the set of voters who prefer alternative P under

state L should include (be included by) the set of voters who prefer P under state R.

Since this is a monotonicity condition on sets determined by voter preference, I call

this condition preference monotonicity. Note that as the state changes from R to L,

for all those voters whose ranking is sensitive to the state, the preferred alternative

changes from Q to P (from P to Q). This monotonicity condition is implied by the

common values condition in F-P (and obviously by the setting where all voters have

the same preference), but the reverse implication is not true. This makes the settings

3See McLennan (1998) for a sophisticated enunciation of Condorcet�s Jury Theorem and formal
proof showing that if there exists an outcome that aggregates information with sincere voting, there
exists a Nash equilibrium that does the same too.

4See Battaglini, Morton and Palfrey (2006) and Goeree and Yariv (2006) for experimental evi-
dence that voters condition their decision on information about the state learnt from the event of
being pivotal.

5F-P use the term "common values" in a sense slightly weaker than the way the term is de�ned
for the �rst time in the context of auctions in Milgrom and Weber (1982). In the auction context,
if the ranking of alternatives is the same for all individuals given a state, then we have common
values. However, in this paper, we shall refer to the term in the sense used by F-P.
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studied so far in the literature special cases of preference monotonicity.

Moreover, this paper shows that preference monotonicity is also necessary for

information aggregation in the sense that if the condition is not satis�ed, we always get

equilibria which give a �wrong�outcome with a high probability in one state. As long

as there are any two groups of voters with positive measure such that one group prefers

alternative P in state L and alternative Q in state R while the other group prefers Q

in L and P in R, there are multiple equilibria for large classes of voting rules, at most

one of which aggregates information. It is worth noting that this failure does not

depend on the precision of signals or on the size of the con�icting groups. Therefore,

the source of informational failure of the election system is the existence of state-

contingent con�ict among voter groups, a phenomenon which I term as preference

reversal. Additionally, if individual preferences are de�ned over multiple dimensions,

then in a sense that will be de�ned later, preference reversal happens generically.

Therefore, the claim that elections aggregate information appears tenuous.

1.1 Examples

1. Members of a jury are trying to determine whether the defendant is guilty or

innocent. Each member of the jury wants to convict if the defendant is guilty

and acquit him if he is innocent, but they have only information about the

state. Here, since everyone has the same ranking over alternatives given the

state, both common values and preference monotonicity are satis�ed. This is

the case of complete homogeneity of preference.

2. Continuing with the jury example, suppose, instead of being guilty and innocent,

the state is the level of guilt. Individuals have similar preferences in the sense

that everyone wants to acquit for low levels of guilt and convict for high levels,

but they vary with the precise level at which they switch from acquittal to

conviction. So, as the level of guilt increases, more and more members favour

the guilty verdict - this is the classic common values situation. By implication,

preference monotonicity is also satis�ed.

In the situations depicted by examples 1 and 2, we know that information is fully

aggregated. However, we can have situations where monotonicity of preference does

not hold, and others in which, even if common values holds, preference monotonicity

does not.

4



3. Suppose a country has so far been isolated and now is voting on whether to

allow free trade by joining the WTO. Because of its isolation, it has developed

both an industrial sector and an agricultural sector to suit its own consumption

needs. If the country allows free trade, the sector in which it has comparative

advantage will grow and the other will shrink. Assume that the voters do not

know where the comparative advantage of the country lies. If the advantage

lay in industry and this was commonly known, those engaged in the industrial

sector would vote in favour of joining WTO while those in the agricultural

sector would vote against, and conversely if the advantage lay in agriculture.

Thus there are two interest groups who have exactly opposite ranking over the

alternatives in each state, and preference reversal obtains, leading to a failure

of information aggregation.

The next example introduces the basic structure in which the model studied.

4. Consider an election with an incumbent candidate and a challenger. Assume

that a candidate can only commit to his own most preferred point on the policy

space, and the policy space is the left-right ideological space, which can be

represented by an interval of real numbers. The incumbent�s best point is known

to beQ, but there is some uncertainty about the location of the challenger on the

policy space, which can be one of two known points: either L or R. If L is to the

left of Q and R to the right, then the extreme leftists prefer the challenger only

when he is located at L (to the left of the incumbent) while the extreme rightists

prefer the challenger only when he is at R (to the right of the incumbent). In

that case, we are in situation of preference reversal similar to the one described

in example 3. However, if L is to the left of R, but both locations are to the left

of Q, then, for all practical purposes we have a leftist challenger and a rightist

incumbent. The location L is the more extreme location and R is a relatively

moderate location of the challenger. As the challenger becomes more extreme

(state changes from R to L), he loses support of some of the moderate voters

but does not gain any new supporters. In other words, the set of voters that

prefer the challenger in the extreme state L is a subset of those who prefer the

challenger in the moderate state R: hence preference monotonicity prevails. It

should be noted that this is not a common values setting because the e¤ect of

a change in state on the utility di¤erence between the two alternatives for an
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extreme rightist is the opposite of that for an extreme leftist.

5. To see that preference reversal (and not preference monotonicity) is the more

generic situation, consider the same example with an incumbent and challenger,

but with the policy space being the square [�1; 1]� [�1; 1] as shown in Figure
1. Suppose the incumbent�s ideal point is located at Q = (0; 0); and the two

possible locations of the challenger are L = (�0:5; 0) and R = (0; 0:5): Now,

the policy space is divided into four sections as shown in Figure 1. The voters

with ideal points lying in southwest rectangle support the incumbent in state

R and the challenger in state L; while the voters with their ideal points lying

in the northeast rectangle have the exactly opposite ranking in each state: This

is a situation of preference reversal. Preference reversal is generic in the two-

dimensional setting in the following sense: suppose the policy space is denoted

by [�x; x]� [�x; x] � R2: Then, for any two locations of L and R that do not

lie on a ray emanating from Q, if x is large enough, the policy space is always

divided into four segments with two segments having exactly opposite ranking

in each state.

QL

R

0

1

1

01 1

Challenger only in state R

Challenger
only in state L

Challenger in
both states

Challenger in neither state

Fig 1: Preference Reversal in a multidimensional policy space

In the main body of the paper, I formally study the setting introduced in example

4. Since the setting has the advantage of incorporating both preference monotonic-

ity and preference reversal depending on the parameters (relative locations of Q; L

and R), we can compare equilibria across the two cases and study their aggregation

properties. This not only allows us to show when elections may fail to aggregate

information, it also sheds light on why aggregation fails. Like F-P, we �nd that in

equilibrium only a subset of voters are responsive in the sense that changes in infor-

mation received changes their voting decision. When preferences are monotonic, for
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all responsive voters, the same information induces the same voting decision. But

under preference reversal, the same information may induce opposite voting decisions

among di¤erent groups of responsive voters. What is surprising is that the very pos-

sibility of di¤erent voters interpreting the same information in di¤erent ways leads to

outcomes that are �wrong�with a very high probability. The fact that this break-

down does not depend on the size of con�icting groups, the accuracy of signals or on

the exact distribution of voter preferences indicates that the source of informational

ine¢ ciency in voting is just the existence of two groups of voters that never agree

with each other.

We are ultimately interested in the case of example 5, i.e. when voter prefer-

ences are de�ned over many issues. In an extension I show that this analysis and

results apply to the case with multidimensional policy space as well, and additionally,

we almost always �nd preference reversal in this case. Therefore, we conclude that

information aggregation through voting is an artifact of the assumption of single-

dimensional preferences. Whether elections aggregate information or not ultimately

depends on whether one believes that elections are fought over one salient issue or

over many.

2 The Set-up

In this section 1 discuss the basic set-up and a few de�nitions that will be used

throughout the paper. Suppose there is an electorate composed of a �nite number

(n + 1) of people who are voting for or against a policy P. If the policy gets more
than a proportion � of the votes6, then P wins; otherwise the status quo Q wins.

Assume that the policy space is [�1; 1]:While Q is known to be located at 0; there is
uncertainty about the location of the alternative P. P is located at L 2 [�1; 1] or R 2
[�1; 1] with equal probability. The event that P is located at S; where S 2 fL;Rg is
referred to as state S: To give a natural meaning to the names of the state, I assume

that L < R7. I also assume that the policy never coincides with the status quo, i.e

6To simplify the analysis, assume the tie breaking rule that if the policy receives exactly �
proportion of votes, the status quo wins.

7There is some loss of generality - by this assumption, we exclude the case that in the policy
location is state invariant, i.e. L = R: Thus assuming L < R is tantamount to assuming that there
is always some uncertainty about the policy location.
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both L and R are non-zero8: Each voter receives a private signal � 2 fl; rg about the
state. Signals are independent and identically distributed conditional on the state,

with the distribution being:

Pr(ljL) = Pr(rjR) = q 2 (1
2
; 1)

Voters have single peaked preferences de�ned on the policy space. Every individual

has a privately known bliss point x that is drawn independently from a commonly

known distribution F (�) with support [�1; 1] and a density f(�). The utility from the
alternative A; when it is located at a; is given by:

U(x;A) = �(x� a)2; A 2 fQ;Pg

Given a draw of x and S; I de�ne v(x; S) as the di¤erence in utility between the

policy alternative and the status quo:

v (x; S) = U(x;P)� U(x;Q) = x2 � (x� S)2; S 2 fL;Rg (1)

We shall use v(x; S); the utilitity di¤erence between the two alternatives as given

by (1) for all further analysis. If the state S is known, a voter votes for P if and only
if v(x; S) is non-negative. If S is not known, a voter calculates the expected value of

this function using the relevant probability distribution over states and votes P if the
expectation is non-negative.

Based on the location of the policy P, the following very important condition
distinguishes preference monotonicity from preference reversal.

De�nition 1 De�ne P(S) to be the set of types that (weakly) prefer the alternative
policy to the status quo if they know that the state is S:

P(S) = fx : v(x; S) � 0g

Suppose P(L) 6= P(R): P(S) exhibits preference monotonicity if P(L) � P(R) or
P(L) � P(R); and preference reversal otherwise.

8In other words, we assume that if the state were known, then there will always be a positive
interval of types that would strictly prefer to vote for the policy in either state.
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Denote P(L) \ P(R) as PLR; and notice that it can be empty. The set of types
PLR always votes for the policy irrespective of the state. They are committed types,
or type-P partisans according to the nomenclature in Feddersen-Pesendorfer (1996)9.
Now consider the sets P(L)nPLR and P(R)nPLR: These are the independent types, as
they change their vote based on the state. De�nition (1) says that preferences are

monotonic if and only if all independent types switch their votes in the same direction

(P to Q or Q to P ) when S changes. Under preference reversal, some independents
switch from P to Q and some from Q to P for a change in S: This set theoretic

de�nition is equivalent to the following algebric de�nition.

De�nition 2 De�ne V(x; S) to be the function indicating whether the type x weakly
prefers the alternative P in state S:

V(x) =

(
1 if v(x; S) � 0
0 if v(x; S) < 0

Suppose V(x; L) 6= V(x;R) for some x: V(x; S) exhibits preference monotonicity if
V(x; L) � V(x;R) for all x or if V(x; L) � V(x;R) for all x; and preference reversal
otherwise.

De�nition (2) is a di¤erent representation of De�nition (1)10: For the committed

types, we must have V(x; L) = V(x;R): For the independent types, we must have
V(x; L) 6= V(x;R): If for some independents we have 1 = V(x; L) > V(x;R) = 0

and for some others we have 0 = V(x; L) < V(x;R) = 1; the two groups have

opposed rankings in each state - and we are in a situation of preference reversal.

For preference to be monotonic, we need all independents to have V(x; L) > V(x;R)
(equivalent to P(R) � P(L)) or V(x; L) < V(x;R) (equivalent to P(L) � P(R)): The
common values assumption of F-P reduces in the two state framework to v(x; L) �
v(x; L) having the same sign for all x: It is easy to show that this assumption implies

preference monotonicity.

9Given that the location of Q is known and bi 6= 0; there is always an interval of types around 0
that are Q-partisans.
10A third way to characterise these settings is as follows. Consider any two ideal points x < x0

lying in the interior of [�1; 1]:Also note that L < R: Then, we have preference monotonicity if
v(x; L)v(x0; R) > v(x;R)v(x0; L) and preference reversal if v(x; L)v(x0; R) < v(x;R)v(x0; L): Notice
the similarity with the a¢ liation property in Milgrom and Weber (1982). However, in this case, the
preference monotonicity condition is not equivalent to log supermodularity since the v(�; �) can be
negative.
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Remark 1 If L and R have the same sign, we have preference monotonicity, and if
they have di¤erent signs, we have preference reversal.

Proof. In Appendix.
The intuition behind this remark is illustrated by example 4 in Section 1.

The equilibrium concept we employ is symmetric Bayesian Nash equilibrium in

undominated strategies.

Given an individual�s private information (bliss point x and signal �), the strategy

speci�es a probability of voting for P:

�(x; �) : [�1; 1]� fr; lg ! [0; 1]

Thus, under state S; the expected share of votes is:

t(S; �) =

Z 1

�1
Pr(ljS)�(x; l)dF (x) +

Z 1

�1
Pr(rjS)�(x; r)dF (x); S = L;R (2)

Exapanding (2) we can write

t(L; �) = q
R 1
�1 �(x; l)dF (x) + (1� q)

R 1
�1 �(x; r)dF (x)

t(R; �) = (1� q)
R 1
�1 �(x; l)dF (x) + q

R 1
�1 �(x; r)dF (x)

Under a rule � a voter is pivotal if n� votes are cast for the policy P from among

the remaining n voters. So, the probability of being pivotal under state S is given

by11:

Pr(pivj�; S) =
�
n

n�

�
(t(S; �))n� (1� t(S; �))n�n� ; S = L;R (3)

Note that (3) actually denotes a pair of equations, one for each state. Call these

the pivot equations. Note that if t(S; �) 2 (0; 1) then Pr(pivj�; S) > 0: I show later
that in any equilibrium of the model, we must have t(S; �) 2 (0; 1): Assuming the
belief on the state conditional on being pivotal is well de�ned, it is given by:

� (Sjpiv; �) = Pr(pivj�; S)
Pr(pivj�; L) + Pr(pivj�;R) ; S = L;R (4)

Since Pr(pivj�; S) > 0 for both states, we have � (Sjpiv; �) 2 (0; 1). The strategies
played in equilibrium determine the pivot probabilities in each state through (2) and

11For technical convenience, we assume that n� is an integer.

10



(3): In return;the probability of state L conditional on being pivotal is determined

by Bayes rule by (4). I call �(Ljpiv; �) the induced prior and denote it as �L. The
posterior beliefs given a signal are:

�(Ljpiv; �; l) = q�L
q�L+(1�q)(1��L)

�(Ljpiv; �; r) = (1�q)�L
(1�q)�L+q(1��L)

�(Rjpiv; �; l) = (1�q)(1��L)
q�L+(1�q)(1��L)

�(Rjpiv; �; r) = q(1��L)
(1�q)�L+q(1��L)

9>>>>=>>>>; (5)

I refer to �(Ljpiv; �; l) as pl and to �(Ljpiv; �; r) as pr: Note that while both pl
and pr are increasing functions of the induced prior, pl is concave and pr is convex

throughout. This, coupled with their equality at the extreme values of �L; i.e. pl =

pr = �L at �L = 0 and �L = 1; implies that pl > pr for all other values of �L. Figure

2 graphs the posteriors as functions of the induced prior �L.

pl, pr

βL0 ½ 1

1

q

1q

½ + b/4

½  b/4

pl

pr

Fig 2: Posteriors as functions of the induced prior belief

The following is an important de�nition that will serve to distinguish between the

nature of equilibria under monotonic and non-monotonic preferences.

De�nition 3 A voting strategy is a cut-o¤ strategy if, given a signal � and an induced
belief �L, the type space [�1; 1] can be partitioned into exactly two intervals (one
possibly empty) such that every type votes for Q in one interval and for P in the

other. Suppose, given a signal � and some induced belief �L, there is a cut-o¤ type

x� (�L) such that the types to the right (left) of the cut-o¤ vote for P. The cut-o¤
strategy is said to be ordered12 if, for all values of the induced belief �L 2 [0; 1], the
types to the right (left) of the cut-o¤ x� (�L) vote for P :
12Note that the de�nition of ordering of cut-o¤s is di¤erent here from the one in F-P (page 1035)

where ordering is de�ned based on whether cut-o¤s are monotonic in signals. Here, for any location
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In other words, a voting strategy is a cut-o¤ strategy if given � 2 fl; rg and
�L 2 (0; 1); there is some x� (�L) such that for any x1 < x� (�L) and x2 > x� (�L) ;
we have �(x1; �) 2 f0; 1g:and �(x2; �) = 1 � �(x1; �): If x� (�L) 2 f0; 1g; a cut o¤
strategy requires that �(x; �) be 0 or 1 for all x: A cut-o¤strategy is said to be ordered

if, given some �L and any two types x and x
0, if we have �(x; �) > �(x0; �);then for

all values of �L; we have �(x; �) � �(x0; �):We shall see that while we always have

cut-o¤ strategies, cut-o¤s are ordered when preferences are monotonic and unordered

when there is preference reversal.

2.1 Conditions for Information Aggregation

Before identifying equilibrium strategies, I classify the voting rules and lay down the

conditions that need to be satis�ed for information to be aggregated in equilibrium

given a voting rule.

We shall call a voting rule consequential if under that rule, we get di¤erent out-

comes under di¤erent states if the states were common knowledge. On the contrary,

if the voting threshold is such that under full information, the same outcome obtains

in each state, we call the it a trivial rule. I shall discuss this classi�cation in more

detail in section 3.3.

If the vote of an individual with type x changes with the signal, i.e. if �(x; l) 6=
�(x; r); then type x is said to be responsive. Given a voting rule, the characteristics

of the responsive set of voters determines whether information will be successfully

aggregated.

De�nition 4 Suppose that given a consequential rule, under full information, P wins
under state S and Q in the other state, i.e. the state fL;RgnS: A type x is said to
be aligned with the society if he prefers P in state S and Q in the other state. If on

the other hand, a type x prefers Q in state S and P in the other state, then we call

the type mis-aligned.

Note that the responsive set of voters contains only independent types, and inde-

pendents are either aligned or misaligned. If the majority of types in a set of voters

is aligned, the set itself is said to be aligned.

of P, we always have cut-o¤s monotonic in the signals. However, it is possible that for some values
of the induced belief, those to the left of the cut-o¤ vote for P while for other values, those to the
right of the cut-o¤ vote for P: We distinguish those situations as unordered.
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For voting with a consequential rule �, we need the following conditions to be

satis�ed in equilibrium for the outcomes to be full information equivalent:

1. The responsive set should be in�uential, i.e. the overall voting outcome should

change as the responsive types vote di¤erently in the di¤erent states. In other

words, the vote share for P should be higher than the threshold � in one state
and lower in the other.

2. The responsive set should be aligned with the society, and thus contribute more

votes for the �correct�alternative in each state.

Both conditions are satis�ed under equilibrium in the common values situation,

but in the non-common values situation, each can individually fail in the limiting

equilibrium.

On the other hand, for voting with trivial rules, we need the responsive types not

to be in�uential for information to be aggregated.

In what follows, I �nd the equilibria and their aggregation properties under

monotonic preferences in Section 3 and under preference reversal in Section 4. I

show that while information is aggregated in the unique equilibrium for all voting

rules when preferences are monotonic, non-aggregating equilibria occur for conse-

quential rules and some trivial rules when there is preference reversal. In Section 5, I

discuss how the model extends to the case of multidimensional policy space. Section

6 discusses the relation to existing literature and concludes.

3 Preference Monotonicity

I start by looking at the benchmark case of preference monotonicity. I show that

both the conditions for information aggregation as mentioned above are satis�ed for

every voting rule.

3.1 Strategies and equilibria

Lemma 1 Under preference monotonicity, all equilibrium strategies are ordered cut-
o¤ strategies.
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Proof. A voter with signal �; (� 2 fl; rg) evaluates the state using the distribution
�(Sjpiv; �; �) and votes for the policy if and only if the expected value of the function
v(�; �) is non-negative. Assume for now that �(Sjpiv; �; �) is well-de�ned. De�ne
x(p�) as the solution of the equation E(v(x; S)jpiv; �; �) = 0: Solving,

x(p�) =
1

2

 
(L)2 p� + (R)

2 (1� p�)
Lp� +R(1� p�)

!
2
�
L

2
;
R

2

�

Thus, x(p�) always exists uniquely. Also, since
@Ev(x;S)

@x
= 2 (Lp� +R(1� p�)) ; R >

L > 0 ) @Ev(x;S)
@x

> 0 ) Ev(x; S) > 0 i¤ x > x(p�): Similarly, if L < R <

0; Ev(x; S) > 0 i¤ x < x(p�): This establishes the cut-o¤ nature of strategies. If

L < R < 0; types to the left of the cut-o¤ x(p�) vote for P, while if 0 < L < R; types
to the right of the cut-o¤x(p�) vote for P. Thus the cut-o¤ strategies are ordered too,
and the lemma is proved, under the assumption that �(Sjpiv; �; �) is well-de�ned.
Denote x(pl) as xl and x(pr) as xr: The the cut-o¤ strategies are given by (6) and

(7): 8>>>><>>>>:
�(x; l) =

(
1 if x � xl
0 otherwise

;

�(x; r) =

(
1 if x � xr
0 otherwise

9>>>>=>>>>; when R > L > 0 (6)

8>>>><>>>>:
�(x; l) =

(
1 if x � xl
0 otherwise

;

�(x; r) =

(
1 if x � xr
0 otherwise

9>>>>=>>>>; when L < R < 0 (7)

Remark 2 For �L = 1; xr = xl =
L
2
; and likewise for �L = 0; xr = xl =

R
2
:

Since dx(p)
dp

= �1
2

�
(R�L)LR

(Lp+R(1�p))2

�
< 0; and since pl > pr for �L 2 (0; 1); xr > xl for

non-degenerate values of �L.

Thus, for any induced prior, the strategies in the benchmark case are characterised

by cutpoints xl and xr; with xl � xr: If R > L > 0; types x < xl always vote for

Q, types x 2 [xl; xr] vote for P if they get signal l and Q if they get signal r; and

the types x > xr vote for P regardless of the signal. If L < R < 0; types left of xl
always vote for P and those right of xr always vote for Q while types in [xl; xr] vote

14



informatively. In either case, [xl; xr] is the responsive set, while the other types vote

according to their bias. Henceforth, I shall deal only with the case L < R < 0; noting

that the other case is completely symmetric.

Note that the ordered cut-o¤nature of the strategies ensures that there will always

be one and only one interval of responsive types. Also, irrespective of the location

of the cuto¤s, the responsive set is always aligned with the society. Thus, for conse-

quential rules, all we need to show for information aggregation is that in any limiting

equilibrium, the responsive set is in�uential. For this, we need vote shares to be

monotonic in the induced priors under each state, which is again ensured by the or-

dered nature of the cut o¤ strategies. I de�ne the probability of an individual voting

for the alternative P given � as z�; i:e: z� �
R 1
�1 �(x; �)dF: For L < R < 0; we have

from (7),

z� = F (x�); � = fl; rg

Therefore, using (2) we write13:

t(L; �) = qzl + (1� q)zr = qF (xl) + (1� q)F (xr)
t(R; �) = (1� q)zl + qzr = (1� q)F (xl) + qF (xr)

)
(8)

Note that since the cut-o¤s xl and xr are functions of the induced prior, the vote

shares t(L; �) and t(R; �) are also functions of �L: The following lemma examines

how the vote share in each state changes as a function of the induced prior.

Lemma 2 If L < R < 0; the expected share of votes t(S; �) in state S 2 fL;Rg
decreases strictly with the induced prior �L from F (R

2
) at �L = 0 to F (

L
2
) at �L = 1:

Also, for all interior values of the induced prior, i.e. for all �L 2 (0; 1); the vote share
t(L; �) in state L is stricty less than the share t(R; �) in state R14:

Proof. By Remark 2, at �L = 0; zl = zr = F (R
2
) ) t(S; �) = F (R

2
) for S 2

fL;Rg: Similarly, at �L = 1; t(S; �) = F (L
2
) for S 2 fL;Rg: Also, since p� is a

strictly increasing function of �L; x� is decreasing in �L by Remark 2. The full

support assumption guarantees that F (�) is strictly increasing. Hence, t(S; �) is

13For 0 < L < R; we have z� = G(x�); where G(y) � 1� F (y); y 2 [�1; 1]
14If 0 < L < R; then both t(L; �) and t(R; �) increase strictly with the induced prior �L from

F (R2 ) at �L = 0 to F (
L
2 ) at �L = 1: Also, for all �L 2 (0; 1); t(L; �) > t(R; �):
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strictly decreasing in �L: For the second part of the lemma, note that

t(L; �)� t(R; �) = (2q � 1) (F (xl)� F (xr))

By remark 2 again, for � 2 (0; 1); F (xl) � F (xr) < 0; and since q > 1
2
; we have

t(L; �) < t(R; �):

Lemma 2 states that as the induced prior probability of the state being L (condi-

tional on being pivotal) increases, the expected share of votes for P decreases under
either state since the state L is deemed to be more �extreme�. Informative voting by

the responsive set ensures that for any induced prior, the policy receives more votes

in the �moderate� state (R) unless the prior is degenerate. Note also that at any

induced prior, the di¤erence in expected vote shares is increasing in the informative-

ness of the signal. The expected vote shares in the two states are plotted against the

induced prior in �gure 3.

t(L,π), t(R,π)

0

1

1

t(L,π)

t(R,π)F(R/2)

F(L/2)

βL

Fig 3: Vote shares in each state under preference monotonicity (L < R < 0)

Lemma 2 also ensures that since t(S; �) lies strictly between 0 and 1, and

�(Sjpiv; �; �) is always well-de�ned. Intuitively, since the types left of L
2
are P-

partisans and those to the right of R
2
are Q-partisans, there is always a positive

probability that any given type is pivotal. This �nally proves Lemma 1.

The following proposition guarantees the existence of an equilibrium of the pref-

erence monotonicity voting game (F (�); q; L;R; n; �):

Proposition 1 In the voting game with monotonic preferences, there exists a voting
equilibrium �� for every population size n and every voting rule � 2 (0; 1); charac-
terized by ordered cut-o¤ strategies x� which is given by the solution of the equation

E(v(x�; s)jpiv; ��; �) = 0 for � = (l; r):
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Proof. For the proof of this proposition, we �rst note that the strategy for each voter
can be denoted by two numbers xl and xr; both lying between L

2
and R

2
: Thus the

strategy space is a compact, convex and non-empty set
�
L
2
; R
2

�
�
�
L
2
; R
2

�
: The rest of

the proof follows from the proof of Proposition 1 in F-P.

To �nd the equilibrium of the model, I �nd a �xed point on the belief space �L 2
[0; 1]: Suppose everyone else holds some belief �L:This �L determines two distributions

p� (�L) according to (5) and correspondingly, the cut-o¤ strategies x� (�L) according

to (7). From the cut-o¤ strategies, the expected shares of votes for the policies t(S; �)

in the two states S = L;R is determined by (8): Given these shares, the number of

players n and the voting rule �, a player forms Pr(pivj�; S): probabilities of being
pivotal in each state according to the pivot equations (3). These probabilities de�ne

belief f�L by (4) : in equilibrium, this f�L should be equal to the initial belief �L: Thus
the induced prior should have the rational expectations property in equilibrium. Note

that
Pr(pivj�; L)
Pr(pivj�;R) =

� (Ljpiv; �)
� (Rjpiv; �) =

�L
1� �L

Thus, using the above and the pivot equations, the equilibrium condition can be

simply stated as:

�L
1� �L

=
Pr(pivj�; L)
Pr(pivj�;R) =

"
(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��

#n
(9)

3.2 Limiting Equilibria under Preference Monotonicity

Now, I consider the properties of the voting equilibria as the electorate grows in size

arbitrarily, keeping all other parameters of the model constant. Therefore, every quan-

tity is superscripted by the number of voters n. The superscript will be suppressed

when there is no ambiguity Suppose, given L;R and � for some n; the equilibrium is

�n; and the cuto¤s are xn�: As long as preference monotonicity assumption is satis�ed,

existence of equilibrium for any n implies the existence of a convergent subsequence

with an accumulation point as n!1: If a limit of this sequence exists, I call it �0:
By continuity arguments, as xn� ! x0�; t(S; �

n); �nL; p
n
l ;and p

n
r all converge to �nite

limits t(S; �0); �0L; p
0
l ; and p

0
r respectively along the sequence.

Rewriting the equilibrium condition:
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�nL
1� �nL

=

"
(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��

#n
for all n (10)

By Proposition 1, a solution to (10) exists for every n: From continuity, if a limit

exists, we can also say that the above relation has to hold in the limit; call this the

limiting equilibrium condition.

�0L
1� �0L

= lim
n!1

"
(t(L; �0))

�
(1� t(L; �0))1��

(t(R; �0))� (1� t(R; �0))1��

#n
(11)

To avoid writing complicated expressions, I de�ne:

�n =
(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��
and �0 =

(t(L; �0))
�
(1� t(L; �0))1��

(t(R; �0))� (1� t(R; �0))1��

Note that the vote shares t(S; �n) are functions of �nL: Next, I look at the properties

of the limit, assuming existence for the time being. I later show that in the preference

monotonicity setting, for any voting rule, there is only one accumulation point of �n

which must be the limit.

Lemma 3 If �0L 2 (0; 1); �0 = lim
n!1

�n = 1

Proof. See Appendix. Note that this lemma does not use the preference monotonicity
condition, so it is true of preference reversal too.

Lemma 4 If �0L = 1; then xn� ! R
2
from the left for � = l; r: Similarly, if �0L = 0;

then xn� ! L
2
from the right for � = l; r

Proof. Follows from continuity of xn� in p
n
� and of p

n
� is �

n
L; along with Remark 2.

As an aside to Lemma 4, note that although under both signals the cuto¤s converge

to R
2
or L

2
as the induced prior converges to 1 or 0 respectively, by remark 2, we always

have xnl < x
n
r : Thus, in the responsive set, the voters always vote for Q if they get

moderate signal r and P if they get the extreme signal l: The responsive interval

is vanishingly small as the induced prior distribution converges to state R , grows

for intermediate values of the prior, and again shrinks to a vanishing size as the

distribution converges to a degenerate distribution at state L: Thus, given a level of
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precision q of the signals, the di¤erence between expected shares in the two states is

low for extreme values of the induced prior and high for intermediate values.

Lemma 3 and Lemma 4 together imply that for any limiting induced prior, given

a voting rule �; under any equilibrium, the vote shares in each state must be related

in a certain way. This is stated in Proposition 2 below. According to Lemma 3, if �n
is bounded away from 1; then �0L must be either 0 or1: Under conditions of Lemma 4,

if �nL is indeed 0 (or 1); then the voters are almost sure of the state in which they are

pivotal and vote as if under full information. Every type except those in a vanishing

set votes uninformatively, and the vote shares under either state are the same in the

limit. Thus, in equilibrium, we have �0 = 1 for all values of the induced prior.

Proposition 2 In all limiting equilibria, we must have �0 = 1; i.e.�
t(L; �0)

�� �
1� t(L; �0)

�1��
=
�
t(R; �0)

�� �
1� t(R; �0)

�1��
; i:e: �0 = 1

Proof. For any equilibriumwith �0L 2 (0; 1); the proposition follows straightforwardly
from Lemma 3. If �0L = 1; the �rst part of Lemma 4 implies that

t(L; �n) = qF (xnl ) + (1� q)F (xnr )! qF (
R

2
) + (1� q)F (R

2
)! F (

R

2
)

t(R; �n) = qF (xnr ) + (1� q)F (xnl )! qF (
R

2
) + (1� q)F (R

2
)! F (

R

2
)

) �0 = lim
n!1

(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��
=

�
F (R

2
)
�� �
1� F (R

2
)
�1���

F (R
2
)
�� �
1� F (R

2
)
�1�� = 1�* F (R2 ) 2 (0; 1)

�
If �0L = 0; the proof follows in exactly the same way since the second part of Lemma

4 implies that then t(S; �n)! F (L
2
) for S 2 fL;Rg:

Note that Proposition 2 is based on a necessary condition that must be true for a

�0L to which the induced belief converges in the limiting equilibrium. It helps exclude

certain voting rules that cannot support a given value of �L in the limit. To say this

formally, de�ne �(�L) as the set of voting rules that can support �L as an induced

belief in the limiting equilibrium condition (11) for some distribution of preferences

in the cut-o¤ equilibrium. To emphasize that t(S; �) is a function of �L; we write

t(S; �) as tS(�L) for S 2 fL;Rg:

Lemma 5 Under preference monotonicity, (i) If �L 2 (0; 1); then �(�L) is a strictly
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decreasing function ��(�L); with tL(�L) < �
�(�L) < tR(�L): (ii) Otherwise, �(1) =

f� : � < F (L
2
)g; and �(0) = f� : � > F (R

2
)g

Proof. In Appendix.
The �rst part of the lemma is almost a corollary of Proposition 2. For each interior

value �L of the induced prior, it identi�es a unique � as the only possible voting rule

to support �L in the limiting equilibrium. As long as the expected vote shares in the

two states are di¤erent, the only voting rule that can satisfy Proposition 2 is one that

lies strictly between the two shares. This has the implication that under one state

the status quo wins, while in the other, the policy wins. If there are any equilibria

with beliefs that place positive probability on each state, then the responsive set of

types for these equilibria are always in�uential. The second part of the lemma says

that the extreme beliefs can be supported only by extreme values of the voting rules.

The main inplication of the Lemma is that while the responsive set is in�uential for

any possible equilibria with consequential rules, it is never in�euntial for trivial rules.

Note that since ��(�L) is strictly decreasing, its inverse function �
�1
L (�) exists for

� 2
�
F (L

2
); F (R

2
)
�
and is strictly increasing. Thus, according to Lemma 5, for every

�; there is a unique �L that can be supported as an equilibrium induced prior in the

limit, for any distribution of types. Call it � (�) : We can write:

� (�) =

8><>:
1 if � < F (L

2
)

��1L (�) if � 2
�
F (L

2
); F (R

2
)
�

0 if � > F (R
2
)

(12)

I plot the correspondence �(�L) along with the expected vote shares in each state

against the induced prior in Figure 4.

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

Θ*(βL)

Fig 4: Correspondence �(�L) under preference monotonicity
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The next theorem gives a characterization of cut-o¤ equilibria in large populations

for di¤erent voting rules under preference monotonicity.

Theorem 1 Assume L;R satisfy the preference monotonicity condition, F (�) satis-
�es full support, and q 2 (1

2
; 1): Fix a voting rule � 2 (0; 1): Then there is a unique

limiting equilibrium �0 with ordered cut-o¤ strategies and with the induced prior con-

verging to �L if and only if � 2 �(�L); or alternatively, if and only if �L = � (�) :

Proof. According Proposition 2, a voting equilibrium �n with ordered cut-o¤ strate-
gies exists for a given �; for any n: Since �L lies in a compact set, there is an accumu-

lation point �a; given �: I show in the appendix that this �a is the limiting equilibrium

�0 given �: Lemma 5 states that for any distribution of types, if a limit exists, there

is a unique number � (�) to which the induced prior converges in the limit along the

sequence of equilibria under voting rule �:

Note that once the limiting value of the induced prior �L is established, the limiting

posterior distributions p�; the limit cut-o¤s x� etc. are all determined from �L:

Thus this theorem describes all relevant information about strategies, vote shares and

statewise outcomes in equilibria with a voting rule when the population size becomes

large. Also, by the Law of Large numbers, the actual vote shares are arbitrarily close

to the expected vote shares15. From here onwards, I do not distinguish between the

expected and actual, and just call it �vote share�.

3.3 Outcomes and Information Aggregation

In Section 2, I informally discussed a classi�cation of voting rules according to the

outcomes produced under full information. Here I formalise the discussion, and then

examine the information aggregation properties of each class of voting rules.

For the purposes of this paper de�ne a social choice rule H as a function that

maps a state to an outcome, i.e.

H : fL;Rg ! fP;Qg

When the function H(�) maps di¤erent states to di¤erent outcomes, i.e. H(L) 6=
H(R), I call it a consequential choice rule. When H(�) is a constant function, i.e.
15More speci�cally, given any � > 0 and � > 0; we can �nd some number N such that as long as

the polupation size is larger than N , the actual vote share is within � of the exoected share with a
probability higher than 1� �:
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when the planner wants the same outcome in both states, I call it a trivial choice

rule. There are two trivial rules - one where the planner always wants the status quo

to prevail (H(L) = H(R) = Q), and the one that maps both states to the policy
(H(L) = H(R) = P): I call the �rst one Q-trivial and the second one P-trivial choice
rule. If .

A voting rule is identi�ed by the particular social choice rule it implements when

the state is common knowledge. With full information, under state L; the policy

would get F (L
2
) share of votes; and similarly under state R; the policy would get

F (R
2
) share of votes. Therefore:

� Any voting rule � < F (L
2
) is a P-trivial rule, i.e. P wins under both states.

� Any voting rule F (L
2
) < � < F

�
R
2

�
is a consequential rule, i.e. P wins in state

R and Q in state L16.

� Any voting rule � > F
�
R
2

�
is a Q-trivial rule.

A voting rule is said to satisfy full information equivalence17 if, for any � > 0, we

can �nd a number N such that when the population size is larger than N; in either

state the outcome of the voting game under incomplete information is the same as the

outcome under full information with a probability larger than 1��: A full information
equivalent voting rule implements the corresponding social choice rule.

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

θ

β

tL(β)

tR(β)

P in R
Q in L

Figure 5(a): Outcome under a Consequential rule θ under
Preference monotonicity (L < R < 0)

t(R,π)

t(L,π), t(R,π)

0

1

1

t(L,π)

F(R/2)

F(L/2)

βL

θ

tR(β) = tL(β)

Q in R
Q in L

Figure 5(b): Outcome under a Qtrivial rule θ under
preference monotonicity (L < R < 0)

Fig 5(a), 5(b)

16Note that the other consequential rule, i.e. fG(L) = P; G(R) = Qg cannot be implemented
under full information by the plurality rule with the common values case we are considering, i.e.
L < R < 0:
17The concept of full information equivalence was formalised by F-P, and I adapt their de�nition

to my setting.
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Theorem 2 Under preference monotonicity, any plurality rule � 2 (0; 1) satis�es full
information equivalence for any distribution of types.

Proof. In appendix.
According to the theorem, under preference monotonicity, any voting rule aggre-

gates information. Since the vote shares in each state is between F (L
2
) and F

�
R
2

�
; the

responsive set is never in�uential and any trivial rule aggregates information. With

P-trivial rules, being pivotal at state L (when P receives least votes) is in�nitely more
probable than being pivotal at state R; and everyone is virtually sure that conditional

on being pivotal, the state is L: Similarly, with any Q-trivial rule, conditioning on
being pivotal, the state is almost surely R (when P receives most votes). I depict

the outcome in the limiting equilibrium with a Q-trivial rule in �gure 5(a). On the
other hand, for any consequential rule, the induced prior places positive probability

on both states in the limit, and the responsive set is in�uential. Since the responsive

types are aligned too, we have outcome P in state R and Q in state L almost surely,

and hence we have information aggregation. The limiting equilibrium outcome with

a consequential rule is depicted in �gure 5(b).

4 Preference Reversal

Recall that preference reversal occurs if L < 0 < R: I now look at the strategies and

equilibria in this situation and compare and contrast their properties with that of the

benchmark model with monotonic preferences. Speci�cally, I show how voting can fail

to aggregate information in the presence of groups with competing interests. Since

the voters with x � L
2
support the alternative policy only in state L and those with

x � R
2
do so only in state R; I will call these two groups of voters the L-group and the

R-group respectively. These are groups of voters with state-dependent rankings such

that the two groups have exactly opposite ranking over alternatives in each state.

Note that within a group while rankings are the same, there is some heterogeneity in

terms of strength of preferences for each alternative.

I shall simplify the model a bit and consider a slightly special case with L = �b
and R = b > 0: Note that this is not too strong an assumption as I consider all

possible distributions of voter ideal points. However, we need to make an additional

assumption on the informativeness of the signals.
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Assumption I (Informativeness): Pr(ljL) = Pr(rjR) = q > 1
2
+ b

4

The full support assumption is heneceforth referred to as Assumption F . A pref-

erence reversal setting is denoted by the collection (F (�); q; b) : In this section, I shall
use the same methodology I used in the previous section to examine the preference

reversal situation.

4.1 Strategies and equilibria

A voter with signal �; (� 2 fl; rg) evaluates the state using the distribution �(Sjpiv; �; �) and
votes for P if and only if the expected value is non-negative. So, the condition for

voting for the policy after having received � is:

Ev(x; �) � 0) 2x(1� 2p�) � b

Hence, the voter votes for P i¤

1 � jxj � b

2(1� 2p�)
(13)

Using (13); we can determine the cut-o¤s:

x� =

(
min(1; b

2(1�2p�)); 0 � p� < 1
2

max(�1; b
2(1�2p�));

1
2
� p� � 1

(14)

Now, according to the above de�nitions of the cut-o¤, we get:

�(x; �) =

8>>>><>>>>:
1 for x � x�
0 for x > x�

)
if 1

2
� p� � 1

1 for x � x�
0 for x < x�

)
if 0 � p� < 1

2

(15)

Or alternatively, combining (14) and (15); we de�ne the strategies in terms of p�
as follows:
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�(x; �) =

8>>>>>>><>>>>>>>:

1 for x � b
2(1�2p�)

0 for x > b
2(1�2p�)

)
if p� � 1

2
+ b

4

0 for all x if p� 2
�
1
2
� b

4
; 1
2
+ b

4

�
1 for x � b

2(1�2p�)

0 for x < b
2(1�2p�)

)
if p� � 1

2
� b

4

9>>>>>>>=>>>>>>>;
Any equilibria must have strategies of the above form. Note that p� 2 [0; 1] )

�1 � 1� 2p� � 1 and so x� 2 [�1;� b
2
] [ [ b

2
; 1]: Also, for all values of p�, �(x; �) = 0

in the range (� b
2
; b
2
): Thus a voter with his bliss point in this range always votes for

the status quo irrespective of the signal.

 b/2

0

1
1

βL

b/2

0

1

x

xl

xr
xl

xr

Fig 6: Cut-o¤s under preference reversal as functions of induced prior

Thus, although all equilibria must have cut-o¤ strategies, the cut-o¤s are not

ordered. The cuto¤s as functions of the induced prior are plotted in Figure 6. When

a cut-o¤ is in [�1;� b
2
] (the L-group); the types to the left of the cut-o¤ vote for P ;

and when the cut-o¤ lies in [ b
2
; 1] (the R-group), types to the right of the cut-o¤ vote

for P. This has several implications. First, the responsive types lying in these two
groups would vote in opposite ways based on the same information since one of the

groups is aligned with the society and the other is not. Second, in each state, the vote

share is a non-monotonic function of the induced belief. Note that the monotonicity

in vote shares was crucial for information aggregation with consequential rules in the

preference monotonicity case. Third, with unordered cut-o¤s, the existence of a well-

de�ned induced prior is no longer trivial, and we need the informativeness assumption

I on signals to guarantee that. Lastly, with a loss of the ordering property, uniqueness

of the responsive set is no longer assured. This can give rise to a certain kind of

equilibria that is not seen in the preference monotonicity case, as we shall see in
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Proposition 4.

Recall that the probability of an individual voting for the alternative P given �

is z�; i:e: z� �
R 1
�1 �(x; �)dF: In any equilibrium, we have:

z� =

8><>:
F (x�) if x� � � b

2

1� F (x�) if x� � b
2

0 otherwise

(16)

Although the de�nition of z� is di¤erent in the preference reversal case, the vote

shares in the two states in terms of z� are still given by equation (8):

t(L; �) = qzl + (1� q)zr
t(R; �) = (1� q)zl + qzr

Lemma 6 In any equilibrium in the preference reversal setting, the expected share of
votes in any state lies strictly between 0 and 1; i:e: t(S; �) 2 (0; 1) for S 2 fL;Rg:

Proof. See Appendix.
Lemma 6 guarantees that the induced prior is indeed always well-de�ned. The

expected share of people voting is less than unity because there is always a set of

types close enough to 0 (between � b
2
and b

2
) who vote for the Q. On the other hand,

the signal being informative enough (Assumption I) guarantees that the cut-o¤s are

su¢ ciently distant for moderate values of the induced prior. This is needed to ensure

that if for one signal, no type votes for P, there is an interior cut-o¤ for the other
signal. To see that from Figure 2, note that the range of �L for which pl lies between
1
2
� b

4
and 1

2
+ b

4
lies entirely to the left of 1

2
; while the range of �L for which pr lies

between 1
2
� b

4
and 1

2
+ b

4
lies entirely to the right of 1

2
: This guarantees that, for

any induced prior, at least one signal always leads to an interior cut-o¤ - leading to

positive expected share for P.
Next, the existence of an equilibrium for the preference reversal game (F (�); q; b; n; �):is

proved. This is the analogous result to Proposition 1. Although the strategy set is

non-convex and we cannot use a �xed point theorem to prove existence the way we did

in the preference monotonicity setting, we can still show the existence of a solution

to equation (10); which is the equilibrium condition.

Remark 3 In the preference reversal game, there exists a voting equilibrium �� for
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every population size n and every voting rule � 2 (0; 1): The equilibrium is character-
ized by unordered cut-o¤ strategies x� given by the solution of E(v(x�; s)jpiv; ��; �) =
0 for � = (l; r):

Proof. From Lemma 5, we know that t(S; �), is bounded by positive numbers both

above and below. This implies that for any n; the right hand side of equation (10)

is bounded above and below. However, as �L goes from 0 to 1; the left hand side

continuously increases from 0 to 1: This guarantees the existence of a solution �nL
to the equation, and hence existence.

We can immediately identify one particular equilibrium for the case with a distri-

bution of types with density f(�) that is symmetric about 0:

Proposition 3 For any F (�) for which the density f(�) is symmetric about 0; there
is an equilibrium with x�l = � b

2(2q�1) and x
�
r = �x�l : This is an equilibrium for all

values of � 2 (0; 1) and is independent of the number of voters n:

Proof. Consider the situation where everyone else plays x� = x��; and � 2 fl; rg:
Note that x�l < � b

2
and x�r >

b
2
: So, z�l = F (x

�
l ) and z

�
r = 1�F (x�r) = 1�F (�x�l ) =

F (x�l ) = z
�
l ; by symmetry of f(�): Therefore, t(L; �) = t(R; �) = F (x�l ) for each n;

which implies that �L =
1
2
for every � and n: Thus, the signals are fully informative,

and we have pl = q and pr = 1� q: These, coupled with the Assumption I, imply that
the best response to x�� is indeed x

�
�; which establishes the claim.

The proposition says that if the commonly held induced priors are uninformative,

then su¢ ciently extreme types vote for the alternative P if and only if they get

favourable signals, and everyone else votes uninformatively, disregarding their signal.

There are a few things to be noted about the above equilibrium. First, this is the

only �stable�equilibrium sequence in the sense that the strategies do not change with

the number of players. Second, in this equilibrium, the expected vote share does not

change with the state or the voting rule. If the required plurality for the policy to

pass is higher than F (x��) ; then the status quo always passes, and if the required

share is lower than F (x��) ; then the status quo always loses. If � = F (x��), then

we get either alternative (policy or status quo) with equal probability. As we shall

see later in Section 4.3, this constitutes a failure of information aggregation. Note

here that we do not even require the full force of symmetry of f(�) here. As long
as we have F

�
� b
2(2q�1)

�
= 1 � F

�
b

2(2q�1)

�
; we shall have this equilibrium. I later

27



establish that even if the distribution of ideal points is not symmetric, there is always

an equilibrium at some belief ��L (not necessarily equal to
1
2
) that has the same vote

share for each state and is independent of the voting rule.

Next, let us examine the vote share as a function of the induced prior in the

preference reversal set-up.

Lemma 7 Under preference reversal, the expected share of votes t(S; �) in state S 2
fL;Rg is a U-shaped function of the induced prior �L:There exists some number
��L satisfying 0 < ��L < 1 such that �L < ��L; t(R; �) > t(L; �); for �L > ��L;

t(R; �) > t(L; �) and for �L = �
�
L; t(R; �) = t(L; �):

Proof. See Appendix.
This lemma says that there is a critical value ��L of the induced belief of the

state being L below (above) which the expected vote share in favour of the policy

alternative in state L is higher (lower) than that in state R: Also, given a state, the

expected share of the votes in favour of the policy alternative increases with more

extreme beliefs. As the voters get more unsure about the state, only the very extreme

types vote for the policy. Note that at ��L; we have F (xl) + F (xr) = 1; and under

a symmetric distribution of types, ��L =
1
2
:. The expected share of votes under the

two states in the preference reversal situation (according to Lemma 7) as functions of

the induced prior are shown in �gure 7. To illustrate how the shares are constructed

according to (8); we also show the functions zl and zr (i.e. the probability of voting

for P on getting the signal l and r respectively) in the �gure.

t(L,π)

t(R,π)
zl

zr

Vote shares

1F(b/2)

F(b/2)

βL
*

βL

Fig 7: Construction of vote shares as functions of induced prior
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4.2 Limiting equilibria in large elections

Given Proposition 3, equilibrium exists for every n: Therefore, I use the same no-

tation as in Section 3.2. Since the cuto¤s are bounded within a compact set, any

sequence of xn� will have a convergent subsequence. We look at such convergent

subsequences xn� as n ! 1: We call an accumulation point of such a sequence of
cuto¤s as x0�; and the resulting equilibrium as �0: By the continuity arguments , as

xn� ! x0�; t(S; �
n); �nL; p

n
l ;and p

n
r all converge to t(S; �

0); �0L; p
0
l ; and p

0
r respectively

along the subsequence. In this section I examine which outcomes can be supported

in the limit.

The necessary conditions for the limit, the limiting equilibrium condition as iden-

ti�ed in equation (11) remains exactly the same. Lemma 3 goes through without

any change. Lemma 4 goes through too, with the slight modi�cation that it is no

longer true of all n; but it holds for large enough n: I state this in Lemma 8. For a

su¢ eicntly large electorate, if the induced prior converges to 0 (1); both cut-o¤s are

in the L-group (R-group).

Lemma 8 If �0L = 1 ; (i) 9 some m such that xnl > x
n
r for all n > m; and (ii) x

n
� !

� b
2
from the left for � = l; r: Similarly, if �0L = 0 ; (i) 9 some m1 such that xnl > x

n
r

for all n > m1; and (ii) xn� ! b
2
from the right for � = l; r

Proof. See Appendix.
Proposition 2 now goes through in exactly the same form. The proof follows

from Lemma 3 and Lemma 8 analogously. In other words, the local properties of

the limiting equilibria are the same in the case of preference monotonicity and that

of preference reversal. Next, I examine which voting rules can be supported by a

given value of the induced prior in the limit, for which an equivalent of Lemma 5 is

necessary.

Lemma 9 Under preference reversal, (i)for �L 2 (0; ��L) [ (��L; 1); �(�L) is a con-
tinous function ��(�L); with tL(�L) < ��(�L) < tR(�L) for �L < ��L; and tL(�L) >

��(�L) > tR(�L) for �L > �
�
L; (ii)Otherwise, �(1) = f� : � > F (� b

2
)g; �(0) = f� :

� > 1� F ( b
2
)g and �(��L) = f� : � 2 (0; 1)g:
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In Appendix.

1F(b/2)

F(b/2)

Vote shares,
Voting rules

t(L,π)
t(R,π)

Θ(βL)

0 1
βL

βL
*

Fig 8: Correspondence �(�L) under preference reversal

The correspondence �(�L) for the preference reversal case, as inferred in Lemma

9, is depicted in �gure 8. For any value of induced belief �L for which the vote share

in the two states are di¤erent, there is a unique voting rule ��(�L) that can support

such a belief in the limiting equilibrium. The extreme (degenerate) priors can be

supported by "large enough" voting rules. For the belief ��L where the vote shares

are equal in the two states, we cannot rule out any voting rule. Proposition 4 is an

example where any voting rule leads to a limiting equilibrium at ��L =
1
2
: Note that in

this case, if we invert the correspondence to get the supporting induced belief �L for

each voting rule �; we no longer get a function �(�) as de�ned in (12) in the preference

monotonicity case, but rather a correspondence.

The above lemma only says that it is possible that some voting rule � 2 �(�L)
may support an equilibirum with belief convering to �L for some distribution of ideal

points. The next theorem states that given an induced prior �L, any voting rule in

�(�L) indeed supports a limiting equilibrium with beliefs converging to �L for any

distribution of ideal points:

Theorem 3 For any b > 0 satisfying the preference reversal condition, and for any q
satisfying Assumption I and any distribution of preferences F (�) satisfying assumption
F , given a voting rule �; there is a limiting equilibrium �0 with cut-o¤ strategies and

with the induced prior converging to �L if � 2 �(�L)18:

Proof. In appendix.
Denote t(L; ��L) = t(R; �

�
L)) by z: Because of the non-monotonic vote share func-

tions, for any voting rule � > z, there can be three di¤erent limiting equilibria: one
18This theorem requires an assumption that ��(�L) is not constant over any range. We ignore

that as a non-generic case.
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with equilibrium limiting belief less than, one more than and one exactly equal to

��L:The �rst equilibrium has responsive set of types entirely (or mostly) in the R-group

and the second one has the responsive set mostly or entirely in the L-group. The third

equilibrium is similar to the one identi�ed in Proposition 4 with the responsive set

equally divided in both groups.

4.3 Voting rules and Information Aggregation

From Lemma 9, we can deduce possible outcomes for each value of the induced

prior. All these outcomes occur almost surely, in the same way as in the preference

monotonicity case.

� For �L = 0; the only possible outcome is Q under both states. Here, the

responsive set is in the R-group but is not in�uential.

� For �L 2 (��L ; 1); the only possible outcome is Q under state L and P under

state R. Here, the responsive set is in the R-group and is in�uential.

� For �L = ��L ; the vote share in each state is �xed at z and the outcome depends
on whether the voting rule is greater or less than z:

� For �L 2 (0; ��L ); the only possible outcome is P under state L and Q under

state R. Here, the responsive set is in the L-group and is in�uential.

� For �L = 0; the only possible outcome is Q under both states. Here, the

responsive set is in the L-group but is not in�uential.

From here onwards, I assume with a slight loss of generality that F (� b
2
) > 1 �

F ( b
2
)19: In other words, I assume that the L-group is the larger interest group, and

hence the group that is aligned with the society. Therefore,

� Any voting rule � < 1� F
�
b
2

�
is P-trivial

� Any voting rule 1�F
�
� b
2

�
� � < F

�
b
2

�
is a consequential rule20, i.e. the policy

wins in state L and the status quo in state R.

19If F (� b
2 ) = 1 � F ( b2 );then there are no consequential rules. � = F (� b

2 ) would implement a
random social choice rule under full information if the L-group is the larger interest group.
20Note that the other consequential rule, i.e. fG(L) = Q;G(R) = Pg cannot be implemented

under full information by the plurality rule
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� Any voting rule � � F
�
� b
2

�
is a Q-trivial rule.

For all Q-trivial rules, the beliefs that can be supported in equilibrium are � =

f0; ��L; 1g: Since the maximum share of received by the alternative P in any state is
F
�
� b
2

�
;Q-trivial rules always aggregate information. Figure 9(a) depicts the limiting

equilibria for a Q-trivial rule.
For informaion to be aggregated under consequential rules, we need the responsive

set to be in�uential and in the L-group. For these rules however, there is always one

equilibrium with �L = 0 where the responsive set in the R-group and is not in�uential.

Hence we get Q in both states. In another equilibrium for these rules, �L = �
�
L, and

here too, we get Q in both states with a very high probability. However, there

is a third equilibrium with induced prior converging to some belief in (0; ��L ) with

the responsive set entirely in the L-group and in�uential. This equilibrium aggregates

information. Figure 9(b) depicts all the possible limiting equilibria for a consequential

rule.

For P-trivial rules greater than z we have two equilibria with opposite outcomes
in the di¤erent states: one with equilibrium induced prior in the set (0; ��L ) and the

other in the set (��L ; 1). The responsive sets are in�uential here when information

aggregation requires that they not be so. So, for these voting rules we have no

information-aggregating equilibrium. The third equilibrium has beliefs converging to

��L: Since at this belief, the vote share in both states is z; in this equilibrium we

always get the status quo. Figure 9(c) shows the possible equilibria for one such rule.

However, information is aggregated almost surely by the very low P-trivial rules21.
I summarise the inferences about information aggregation for di¤erent voting rules

in a preference reversal setting in the next theorem. I use the same de�nition of full

information equivalence as in Section 3.3. I de�ne an equilibrium as non-information

aggregating when in at least one state, voting under incomplete information delivers

an outcome di¤erent from the full-information outcome with a probability arbitrarily

close to 1:

Theorem 4 All (limiting) voting equilibria with Q-trivial voting rules satisfy the full
information equivalence property. For consequential rules, there is one equilibrium

21More spe�cically, the P-trivial voting rules that aggregate information for sure for any distri-
bution of preferences are those that are below the minimum share of votes received by P for any
belief, i.e. those rules that satisfy � < minfmin�L t(L; �);min�L t(L; �)g: Equilibrium induced prior
is ��L and equilibrium shares in both states are z > � in the limit.
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that satis�es full information equivalence and two that are non-information aggregat-

ing. For P-trivial rules that are su¢ ciently large, all equilibria are non-information
aggregating. All P-trivial rules below some threshold aggregate onformation.

The above theorem establishes the bias in favour of the status quo. Unless the

required vote share for the policy to win is very low, competition between two groups

along with risk aversion ensures that the status quo wins in at least one state. Note

that the only voting rules for which information is aggregated in any equilibrium are

all Q-trivial rules and the very low P-trivial rules.

1F(b/2)

F(b/2)

Vote shares,
Voting rules

t(L,π)
t(R,π)

0 1
βL

βL
*

θ

Each equilibrium selects Q in both states

Fig 9(a): Equilibria under a Q-trivial rule
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Fig 9(b): Equilibria under a consequential rule

1F(b/2)

F(b/2)

Vote shares,
Voting rules

t(L,π)

t(R,π)
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Fig 9(c): Equilibria under a large P -trivial rule

5 Multidimensional extension

In the previous two sections, we have established that at least in the case of convex

voter preferences over a unidimensional policy space, the question of information

aggregation boils down to the empirical question of whether preference monotonicity

or reversal prevails. In the unidimensional model, unless the uncertainty is somewhat

extreme, we do not encounter preference reversal. For example, in most elections, it

is known whether the challenger is to the left or right of the incumbent. However, in a

multidimensional policy space, the monotonic preferences assumption is much harder

to justify. The framework developed in the previous section can readily handle the

extension to a multidimensional policy space, and the main conclusions carry over.

Moreover, convexity of preferences does not seem to be necessary for the results. In

this paper, I only provide the intuition for this.

Q

L

XL

XR

R

HL

HR

Lgroup

Rgroup

Fig 10: Cut-o¤s and responsive set in the multidimensional policy space
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Think of the policy space as a many-dimensional cube, with each dimension being

[�1; 1]: Suppose that the status quo Q is located at the origin, and the policy alter-

native P is located at two points L and R under states L and R respectively. Given
a state S, a hyperplane HS separates the cube into two parts, one composed of types

that support Q (containing the origin) and the other containing types that support

P under full information. Just as described in Section 2, we can de�ne as P(S) the

set of types that prefer P in state S: The preference monotonicity condition is exactly
the same - that P(L) be included in P(R) or vice versa. Note that this is harder to

satisfy in the multidimensional setting. In particular, for a given location L; as the

size of the cube increases, the set of locations R for which P(S) exhibits preference

monotonicity keeps shrinking and approches a ray connecting L with Q at the origin.
If the hyperplanesHL andHR are parallel, we are either in a monotonic preference

situation or in a situation where there are two disjoint, completely opposed interest

groups, much like the unidimensional preference reversal situation. Otherwise, for a

large enough policy cube, we have four sets: two of opposed independent types, one

type committed to P under both states and one type committed to Q under both

states. Denote the set of indpendents preferring P under L and Q under R by the

L-group and the set of independents preferring P under R and Q under L as the

R-group.

Suppose the hyperplanes HL and HR meet at a straight line L22: Under uncer-
tainty, given a signal �; the �cut-o¤s�that separate those who vote for P from those
who vote Q are hyperplanes X�. As the induced prior changes from 0 to 1; X� rotates
about L23, starting at HR; and ending at HL: The strategy of a voter can also be

described by the angle that each of the cut-o¤ hyperplanes makes with the line L.
This is a compact set, and therefore, an equilibrium exists. If the hyperplanes HL

and HR are parallel, then the cuto¤s X� do not rotate, but translate from HR to

HL:Thus we can trace vote shares tL and tR in the two states as a function of the

induced prior �L: Once we have done that, the rest of the analysis is exactly as in the

unidimensional model. Note here that the responsive set is always non-convex: it has

two subsets, one of which lies in the L-group and the other in the R-group. Figure 10

demonstrates the cut-o¤s in the multidimensional policy space, with the responsive

22If the policy space is two-dimensional, the hyperplanes HL and HR will be straight lines and L
will be a point.
23Using a simple geometric argument, it is easy to show that every type on L should be indi¤erent

between P and Q for any beliefs. Hence the cut-o¤s should always contain L.
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set being the shaded area.

In a monotonic preferences setting, the vote shares in both states are monotonic

functions of the induced prior. Thus all results from Section 3 extend to the multi-

dimensional case. With preference reversal case though, we do not necessarily have

U-shaped share functions. The equilibria depend on the particular shape of the

distribution of preferences. This makes generalised equilibrium characteristics and

aggregation (or non-aggregation) results di¢ cult to get in a multidimensional set-

up. However, given a distribution of preferences we can use the limiting equilibirium

conditions developed in this paper to identify all the possible voting equilibria for

that particular case and make judgements about information aggregation properties

of each voting rule.

6 Discussion

The chief idea of the paper is that the source of informational ine¢ ciency in elections is

the existence of groups of voters who always have opposed interests, and such con�ict,

as the multidimensional model shows, is inherent in the electorate. To demonstrate

the results, I develop a methodology of determining all the limiting equilibria in a

spatial model of electoral competition for any voting rule short of unanimity. While

this method applies to any �nite dimensional policy space, for the unidimensional

policy space, we can identify all possible equilibria and the aggregation properties of

each voting rule except unanimity.

The fact that voting under incomplete information may produce outcomes inferior

to those under complete information is hardly a surprise. Several papers point out

sources of partial aggregation failure using completely preference homogeneity or only

limited heterogeneity in the form of common values: use of unanimity rules (Feddersen

and Pesendorfer 1998), voters signaling their preferences through their votes (Razin

2003), information being costly (Persico 2004, Martinelli 2006), abstention (Oliveros

2005) and so on24. Since the agenda of the current paper is to pinpoint that the

fundamental source of aggregation failure is in competing interests among groups

which is endemic to any democracy, I do not allow for these other possible causes of

24Another paper that looks at a similar common values context where the members of the jury
vary over what counts as "reasonable doubt" for acquittal is Li, Rosen and Suen (2001). While
they examine aggregation failure in small committes, F-P shows that such con�ict does not a¤ect
aggregation if the jury size is large.
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partial failure and consider an environment with a more general correlation between

the state variable and preferences. There are a few papers (Kim 2006, Kim and Fey

2006, Meirowitz 2006, 2005a) that consider groups with opposed rankings in each

state, but in these papers, the voters within the group have exactly same preferences.

Kim (2006), which is probably the paper that is closest to the current one, �nds that

information is fully aggregated for most voting rules as long as voters care enough

about mistakes in each state. In the current paper, voters with the same ranking over

the alternatives under full information need not have the same intensity of preference

for them, leading to di¤erent behaviour under uncertainty. Allowing any intra-group

heterogeneity uncovers the deeper problem with inter-group con�ict in preferences.

The claim made here is that real elections may involve voter preferences which look

neither like adversarial committees nor like jury boards. In elections, voters may feel

di¤erently about di¤erent issues and may in fact care about myriad issues well beyond

the left-right ideological space.

It must be noted here that that I have two related, but distinct sets of results: one,

the necessity and su¢ ciency of preference monotonicity for information aggregation;

and two, the characterization of all equilibria in the unidimensional model for any

voting rule.

In addition, I demonstrate that monotonicity is hard to obtain in a multidimen-

sional policy space. While the assumption of convexity of preferences is necessary

for the characterization of equilibria under preference reversal, but is not necessary

for the �rst set of results. With the help of this assumption we can point out, in a

substantive way, how exactly the electoral system may fail to produce the outcomes

desired by the majority. Since there are di¤erent equilibria, there are di¤erent reasons

why elections can fail to aggregate information.

The multiplicity issue makes the role of beliefs in a political system crucial. The

model endogenises the process of formation of beliefs about which types are going

to be responsive to information in equilibrium. Aggregation failure for consequential

rules can simply be thought of a co-ordination failure because of "wrong" beliefs.

For example, while a consequential rule needs the responsive set to be in the larger

interest group, voters can believe that almost everyone is voting uninformatively.

Independent of information received, the larger interest group votes for the status

quo and almost everyone in the smaller interest group votes for the alternative. Voter

behaviour in this equilibrium is akin to what we know as block voting. In another
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�bad�equilibrium, only the extremists at either end of the ideological spectrum are

responsive �but aggregation fails because most of the voters vote for the status quo

in either state.

In each of these �bad�equilibria, whatever be the mode of failure of aggregation,

the failure is of an extreme nature in the sense that the �wrong�outcomes occur with

a very high probability in a large electorate. It is worth noting that these results do

not depend on the relative size of the con�icting groups or on the extent of noise in the

signals. Therefore, any improvement in the accuracy of information that individuals

have will fail to produce superior outcomes in the limit.

Aside from the question of information aggregation, this paper addresses an im-

portant question of implementation of social choice rules. Can we �nd a voting rule

which delivers two pre-speci�ed outcomes in two states with a very high probability in

all equilibria? For example, we might look for a voting rule that delivers the majority

preferred outcome in both states. I show that under preference reversal, such a rule

does not exist unless the pre-speci�ed outcome is the same in both states.

One interpretation of Condorcet Jury Theorem is that communication among

voters is not necessary in large elections for the information problem to be solved.

This paper indicates that we are faced with the possibility of multiple equilibria,

some or all of which produce informationally inferior outcomes. Thus, voting cannot

perform the role of communication among voters. Can democratic deliberation25

improve election outcomes? Note that since all members within each con�icting

interest group have the same state-contingent rankings26, members each group have

an incentive to share information among themselves. However, this needs the voter

preferences to be public information. We can think of each set of independent voters

with similar rankings as belonging to a political party or a special interest group,

and thus this paper highlights the role of political institutions like parties or interest

groups as information aggregators in an electorate.

25See Coughlan(2000), Austen-Smith and Feddersen (2005, 2006), Gerardi and Yariv (2007),
Meirowitz (2005a, 2005b, 2006) for models of deliberation before voting. Goeree and Yariv (2006)
demonstrates in an experimental setting that communication can improve outcomes.
26In this case, the condition for full revelation of information between any two members of the

same group is satis�ed according to Baliga and Morris (2002)
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8 Appendix

8.1 Proof of Remark 1

Let us �rst look at the situation with 0 < L < R: Here, P(R) = fx : x � R
2
g �

fx : x � L
2
g = P(L): Similarly, if we have L < R < 0; P(L) = fx : x � L

2
g �

fx : x � R
2
g = P(R): On the other hand, if L < 0 < R; P(L) = fx : x � L

2
g and

P(R) = fx : x � R
2
g; thus P(L) \ P(R) = �:

8.2 Proof of Lemma 3

By hypothesis of the lemma, lim
n!1

�nL
1��nL

=
�0L
1��0L

is a �nite, positive number. Now

suppose 9 some " > 0 such that �n > 1 + " for all n. Then �nL
1��nL

= (�n)
n >

(1 + ")n ! 1 as n ! 1 which is a contradiction. On the other hand, suppose

9 some " 2 (0; 1) such that �n < 1� " for all n. Then �nL
1��nL

= (�n)
n < (1� ")n ! 0

as n!1; which is again a contradiction.

8.3 Proof of Lemma 5

For part (i) of the lemma, since �L 2 (0; 1); Proposition 2 holds. Suppose 0 < y <
x < 1; and f(z; �) = z�(1� z)1��; with both z and � lying in (0; 1) : Note that if we
�x �; the function f(z; �) is continuous and single peaked in z with the peak lying at

�: From the properties of this function, we can show that for any0 < y < x < 1; there

exists a unique ��s:t: f(x; ��) = f(y; ��); and x < �� < y: To be speci�c, �� =
log 1�y

1�x

log
x(1�y)
y(1�x)

:

Also, if both x and y increase, �� must increase. Since 0 < F (L
2
) < tL(�L) < tR(�L) <

F (R
2
) < 1; taking tR(�L) = x and tL(�L) = y and noting that tR(�L) and tL(�L) are

strictly increasing functions of �L, part (i) of the Lemma is established.

For part (ii); note that for any n; by Remark 2, we have xnl < xnr : Since z
n
� =

F (xn�) ; we have z
n
r > z

n
l > 0. De�ne, for any n; h

n = znr � znl > 0: Substituting, we
have: t(R; �n) = znl + qh

n; and t(L; �n) = znl + (1� q)hn: Therefore:

1� �nL
�nL

=

"
(t(R; �n))� (1� t(R; �n))1��

(t(L; �n))� (1� t(L; �n))1��

#n
=

"
(znl + qh

n)� (1� znl � qhn)
1��

(znl + (1� q)hn)
� (1� znl � (1� q)hn)

1��

#n

If �0L = 0 (or 1) ; the left hand side of the above equation goes to in�nity (or 0). This

requires the term in the bracket large enough n to be greater (or less) than unity, or
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its logarithm to be positive (or negative). We can write,

log
(znl + qh

n)� (1� znl � qhn)
1��

(znl + (1� q)hn)
� (1� znl � (1� q)hn)

1�� > 0, � > �(znl ; h
n) 8n

where the function �(znl ; h
n) is de�ned as:

�(znl ; h
n) �

� log
h

1�znl �qhn
1�znl �(1�q)hn

i
log

�
(znl +qhn)(1�znl �(1�q)hn)
(znl +(1�q)hn)(1�znl �qhn)

�
By Lemma 4, we know that for any sequence, with �0L 2 f0; 1g; hn ! 0+. Hence,

lim
hn!0+; znl =t

�(znl ; h
n) = lim

hn!0+; znl =t

0BB@ � log
h

1�znl �qhn
1�znl �(1�q)hn

i
log

�
(znl +qhn)(1�znl �(1�q)hn)
(znl +(1�q)hn)(1�znl �qhn)

�
1CCA = lim

znl =t
zn� = t

By Lemma 4, if �0L = 0; t = F (
R
2
); and � > �(znl ; h

n) 8n) � > limhn!0+; znl =t �(z
n
l ; h

n) =

F (R
2
): Similarly, if �0L = 1; t = F (

L
2
); and � < �(znl ; h

n) 8n) � < limhn!0+; znl =t �(z
n
l ; h

n) =

F (L
2
):

8.4 Proof of Theorem 1

Here we only show that the only accumulation point is also the limit. For this, it

is enough to show that given � 2 �
�
�0L
�
; for any neighbourhood � of �0L; there is

some large enough N; such that �nL in the equilibrium sequence must lie within the

nighbourhood for all values of n > N:

First consider �0L 2 (0; 1):Suppose the accumulation point is not the limit, and
there is an in�nite equilibrium subsequence �mL of the sequence �nL; such that for

any � > 0; there is some M so that for all values of m larger than M; �mL lies

outside
�
�0L � �; �0L + �

�
: Since even this subsequence must have an accumulation

point, it must be either 0 or 1: But, by the second part of Lemma 5, since the

limiting equilibrium condition must hold for accumulation points too, there cannot

be an accumulation point for � in �
�
�0L
�
at 0 or 1: Hence there is no such in�nite

subsequence.

The proof for �0L 2 f0; 1g is similar.
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8.5 Proof of Theorem 2

Theorem 1 guarantees existence of limiting equilibrium for all �: Now consider � <

F
�
L
2

�
: By Lemma 2, t(S; �n) > F

�
L
2

�
8n for S = L;R: Let � = F

�
L
2

�
��: By Law of

large numbers, given � we can �nd N such that actual share of votes �(S,�n; �) under

rule � in any state S is greater than F
�
L
2

�
� � > � for any n > N with a probability

larger than 1��: Thus, under both states, P wins with a probability larger than 1��:
Since t(S; �n) < F

�
R
2

�
8n8S; by the same logic as above, any Q-trivial rule

aggregates information too.

Consider a consequential rule �; for which the only equilibrium induced prior in

the limit is ��1L (�): By Lemma 5, tL
�
��1L (�)

�
< � < tR

�
��1L (�)

�
:Also, for any such

�; we can �nd a positive number � such that F
�
L
2

�
+ � < � < F

�
R
2

�
� �: By Lemma

5, we can �nd a similar number � > 0 such that � < ��1L (�) < 1��: Now, by Lemma
1 and Lemma 2, we can �nd some � > 0 such that tR

�
��1L (�)

�
� tL

�
��1L (�)

�
> �:

Now, from Proposition 2, we can derive � from tR
�
��1L (�)

�
and tL

�
��1L (�)

�
and can

�nd another number � > 0 such that tL
�
��1L (�)

�
+ � < � < tR

�
��1L (�)

�
� �: Since

tR; tL and �
� are all continuous functions of �L; we can �nd a number � > 0 such that

for a range
�
��1L (�)� �; ��1L (�) + �

�
around ��1L (�); tL � �

2
< � < tR +

�
2
: Given �;we

can �nd M1 such that �
n
L 2

�
��1L (�)� �; ��1L (�) + �

�
in any �n whenever n > M1:

Now consider � = min
�
(tR
�
��1L (�)� �

�
+ �

2
� �; � � tL(��1L (�) + �)� �

2

�
: By Law

of large numbers, given � we can �ndM2 such that actual share of votes under rule �

under state R; �(R,�n; �) is less than tR
�
��1L (�)� �

�
+ �

2
� � < � for any n > M2 and

the actual share under state L; �(L,�n; �) is greater than tL
�
��1L (�) + �

�
+ �

2
� � > �

for any n > M2 with a probability larger than 1 � �: Set N = max(M1;M2) and we

are done.

8.6 Proof of Lemma 6

If x� � � b
2
; z� = F (x�) � F (� b

2
) since F (�) is nondecreasing. If on the other hand,

x� � b
2
; z� = 1�F (x�) � 1�F ( b2): Thus, for � 2 fl; rg; z� � max

�
F (� b

2
); 1� F ( b

2
)
�
:Therefore,

t(S; �) � qmax(zl; zr)+(1�q)max(zl; zr) = max(zl; zr) � max
�
F (� b

2
); 1� F ( b

2
)

�
< 1

The last inequality in the chain is guaranteed by assumption F. To show t(S; �) > 0, it

is su¢ cient to show that both zl and zr cannot be 0 simultaneously. From assumption
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F and the de�nition of x�, z� = 0 ) p� 2 [12 �
b
4
; 1
2
+ b

4
]: We show that both pl and

pr cannot be simultaneouly in this range. We start by noting that pl and pr increase

in tandem, since both increase with �L: When pl = q; �L =
1
2
: So, pr = 1� q: By the

above positive relationship, pl < q ) pr < 1� q and pr > 1� q ) pl > q: Note that

by Assumption I, q > 1
2
+ b

4
and 1� q < 1

2
� b

4
:Hence,

pl 2 [
1

2
� b
4
;
1

2
+
b

4
]) pr < 1� q <

1

2
� b
4
and pr 2 [

1

2
� b
4
;
1

2
+
b

4
]) pl > q >

1

2
+
b

4

8.7 Proof of Lemma 7

At �L = 0; xl = xr =
b
2
) zl = zr = 1�F

�
b
2

�
: Now, consider the interval of �L such

that pl lies in (0; 12 +
b
4
]: In this interval, xl 2 ( b2 ; 1][ f�1g ) zl = 1�F (xl): Also, in

this interval of �L; pr <
1
2
� b

4
) xr 2 ( b2 ; 1)) zr = 1�F (xr) > 0; by assumptions F

and I: For values of �L such that xl � 1; xr < xl ) zl = 1� F (xl) < 1� F (xr) = zr;
again by assumption F. For values of �L such that xl = �1; zl = 1�F (�1) = 0 < zr:
Thus, over this entire interval zr > zl. Note also that over this set of values of �L;

zr is strictly decreasing, while zl �rst strictly decreases and then stays at 0: For �L
such that pl = 1

2
+ b

4
; zr = zr; say. In the same way, consider the interval of �L such

that pr lies in [12 �
b
4
; 1]: Here, by the same token, zr < zl except for �L = 1 where

zl = zr = F
�
� b
2

�
: zl increases strictly from zl > 0 to F

�
� b
2

�
over this interval, while

zr is initially 0 and then strictly increases.

Now, consider the remaining interval of �L which is
�
p�1l (

1
2
+ b

4
); p�1r (

1
2
� b

4
)
�
:

That this is a valid nonempty interval is guaranteed by assumption I. In this interval,

xr 2 ( b
2
; 1], and xr increases with �L: Thus, zr = 1 � F (xr) is a strictly falling

continuous function, going from zr > 0 to 0 over this interval. Similarly, zl strictly

and continuously increases from 0 to zl > 0: Therefore, there exists a unique �
�
L in

this interval where zl = zr: This implies that at �
�
L; t(L; �) = t(R; �): For all �L < �

�
L;

zl < zr ) t(L; �) = qzl+(1� q)zr < qzr+(1� q)zl = t(R; �): Similarly, for �L > ��L;
where zl > zr; we have t(L; �) > t(R; �):
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8.8 Proof of Lemma 8

We prove the result for the case �0L = 1, the other one follows symmetrically. First

we look at how pl
pr
changes with �L:

pl
pr
=

�
q

1� q

��
q�R + (1� q)�L
q�L + (1� q)�R

�
=

�
q

1� q

��
q + (1� q)�
q�+ (1� q)

�
;

where � = �L
�R
: Therefore, we have:

d

d�L

�
pl
pr

�
=
d�

d�L
� d
d�

�
pl
pr

�
=

1

(1� �L)
2

�
q

1� q

�
(1� q)2 � q2

(q�+ (1� q))2
< 0

At �L = 1; we have pl = pr = 1: Thus, for �L 2 [0; 1); we always have pl > pr by the
above strictly monotonic relationship. Since �0L = 1) pnr ! 1; by continuity we can

�nd some m large enough such that for all n > m; we have pnr >
1
2
+ b

4
: Since pnl > p

n
r ;

for all n > m; pnl >
1
2
+ b

4
too. Since we always have �nL < 1; p

n
� < 1: Therefore, for

all n > m; both xnl and x
n
r lie in the open interval (�1;� b

2
): Also, pnl > p

n
r ) xnl > x

n
r

for all n > m: This proves part (i) : Part (ii) follows trivially from pn� ! 1:

8.9 Proof of Lemma 9

Part (i) follows from Lemma 5 and Lemma 7.

For part (ii), we �rst consider the case with �0L = 1: By Lemma 8, we know

that for any such sequence, xn� !
�
� b
2

��
for � = fl; rg; and xnl > xnr for all large

enough n: For large enough n; pn� >
1
2
+ b

4
) zn� = F (xn�) ) znl > znr > 0 and

zn� ! F (� b
2
): De�ne hn = znl � znr ! 0+: Substituting, we have: t(L; �n) = znr + qh

n;

and t(R; �n) = znr + (1� q)hn: Therefore:

�nL
1� �nL

=

"
(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��

#n
=

"
(znr + qh

n)� (1� znr � qhn)
1��

(znr + (1� q)hn)
� (1� znr � (1� q)hn)

1��

#n

If �0L = 1; the left hand side of the above equation goes to in�nity. This requires the

term in the bracket large enough n to be greater than unity, or its logarithm to be

positive .

For the case with �0L = 0; we again use Lemma 8 which tells us that x
n
� !

�
b
2

�+
for � = fl; rg; and xnl > xnr for all large enough n:We also know that for large enough
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n; pn� >
1
2
� b

4
) zn� = 1 � F (xn�) ) znr > znl > 0 and zn� ! 1 � F (� b

2
): De�ne

hn = znr � znl ! 0+: Substituting, we have: t(R; �n) = znr + qh
n; and t(L; �n) =

znr + (1� q)hn: Therefore:

�nL
1� �nL

=

"
(t(L; �n))� (1� t(L; �n))1��

(t(R; �n))� (1� t(R; �n))1��

#n
=

"
(znr + qh

n)� (1� znr � qhn)
1��

(znr + (1� q)hn)
� (1� znr � (1� q)hn)

1��

#�n

Since the LHS goes to 0 in the limit, the term within the bracket in the RHS has to

be greater than 1: Thus we have the exact same situation as in the proof of Lemma

5, and therefore, we need.

log
(znr + qh

n)� (1� znr � qhn)
1��

(znr + (1� q)hn)
� (1� znr � (1� q)hn)

1�� > 0, � > �(znr ; h
n) 8n

where the function �(znl ; h
n) is de�ned as in the proof of lemma 5.

By Lemma 4, if �0L = 0; t = 1�F ( b2); and � > �(z
n
l ; h

n) 8n) � > limhn!0+; znl =t �(z
n
l ; h

n) =

1� F ( b
2
): Similarly, if �0L = 1; t = F (� b

2
); and � > F (� b

2
):For �0L = �

�
L; from Propo-

sition 4, no value of � can be ruled out.

8.10 Proof of Theorem 3

This is a proof by construction. Consider any preference reversal setting (F (�); q; b):
De�ne the function

fn(�; �) =
1

1 +
h
tR(�)�(1�tR(�))1��
tL(�)�(1�tL(�))1��

in
If given (n; �) we can show that there is some �xed point �n of the function

fn(�; �); then that �n is the solution to the equilibrium condition (10); proving that

�n exists for that �: We show that for any � 2 �(�0), there is a sequence of �xed
points of beliefs �n such that �n ! �0 as n ! 1: We prove this separately for
di¤erent values ranges of �0:

Case 1 �0 2 (0; ��L) [ (��L; 1):

By Lemma 9, in this range, �(�L) is a continuous function �
�(�L): Since F admits

a pdf f; ��(�L) is di¤erentiable too. Thus, there exists a neighbourhood (�
0��; �0+�)

where ��(�L) is either only increasing, only decreasing or constant.
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Suppose �rst that ��(�L) is decreasing in (�
0��; �0+�): Now, for � 2 (�0; �0+�);

we must have fn(�; �
�(�0))! 0 as n!1: On the other hand, for � 2 (�0 � �; �0);

we must have fn(�; �
�(�0))! 1 as n!1: Thus, for � small enough, there must exist

some m such that fn(� + �; �
�(�0)) < � and fn(� � �; ��(�0)) > 1 � � for all n > m:

In particular, choose � < �: Then, for all n > m; if fn(�; �
�(�0)) is plotted against �;

it intersects the 450 line for some � 2 (�0 � �; �0 + �); which is the �xed point of the
function. Call it �n: To be speci�c, �n is the solution of fn(�; �

�(�0)) = �; and for

all n > m; �n 2 (�0 � �; �0 + �): Thus, there exists a sequence �n such that for any
� > 0 small enough, there is some m such that for all n > m; fn(�n; �

�(�0)) = �n and���n � �0�� < �:
If ��(�L) is increasing in (�

0 � �; �0 + �); then we can prove the theorem in an

analogous way. However, if ��(�L) is constant in the range (�
0��; �0+�); the theorem

may not hold. To be clear, this case requires that tL(�L) increases (decreases) and

tL(�L) decreases (increases) so as to keep
tR(�)

�(1�tR(�))1��
tL(�)�(1�tL(�))1�� constant over the range.

Ignore this case as non-generic.

Case 2 �0 2 f0; ��L; 1g

First, consider the case �0 = 0: Note that �(0) = f� : � > 1� F (R
2
)g:Select � > 0

small enough such that tR(�L) > tL(�L) in the range �L 2 (0; 2�): Choose � < �:

By Case 1, for voting rule ��(�) there exists a sequence of equilibria �n such that

fn(�n; �
�(�)) = �n and �n 2 (� � �; � + �) for n large enough. This implies �n < 2�

for all n large enough. Now consider the sequence �n such that fn(�n; �
�(�)) = �n:

For � > 1 � F (R
2
) > ��(�);we must have fn(�n; �) < �n: Now, consider the function

fn(�; �) � �: At � = �n; the function is negative while at � = 0; the function is

positive due to the boundedness of the shares. Since fn(�; �) is continuous, there is

some 0 < �0n < �n < 2� such that fn(�
0
n; �) = �0n: Thus, given � 2 �(0); for any �

small enough, there exists a sequence �0n:such that fn(�
0
n; �) = �

0
n and j�0n � 0j < 2�

for all n large enough.

In the same way, we can prove the theorem for �0 = 1:Next, consider the case

with �0 = ��L: Note that �(�
�
L) = (0; 1): To show existence of a limiting equilibrium

for � < tL(�
�
L); use the neighbourhood (�

�
L � �; ��L) to the left of ��L; and to show

existence of a limiting equilibrium for � > tL(�
�
L); use the neighbourhood (�

�
L; �

�
L+ �)

to the right of ��L and apply the same method.
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