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Abstract

We report results from an experiment that explores the empirical validity of correlated equilibrium,

an important generalization of the Nash equilibrium concept. Specifically, we examine the conditions

under which subjects playing the game of Chicken will condition their behavior on private third–party

recommendations drawn from publicly–announced distributions. We find that when recommendations

are not given to subjects, aggregate behavior is characterized well by mixed–strategy Nash equilibrium

play, though it does less well at lower levels of aggregation. When recommendations are given, behavior

differs from both mixed–strategy Nash equilibrium and behavior without recommendations, with the

nature of the differences varying according to the treatment. Our main finding is that subjects will follow

third–party recommendations only if those recommendations derive from a correlated equilibrium, and

further, if that correlated equilibrium is payoff–enhancing relative to the available Nash equilibria.
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1 Introduction

A standard assumption in noncooperative game theory is that players’ strategies—whether pure or mixed—

are probabilistically independent. However, researchers at least as long ago as Aumann (1974, 1987)

recognized that relaxing this assumption by allowing correlation in players’ strategies could greatly enlarge

a game’s equilibrium possibilities beyond the set of Nash equilibria. The equilibria that result are known

as correlated equilibria.1 As an illustration, consider the two–player game of Chicken, shown in Figure 1;

strategies are defect (D) and cooperate (C). This game has two asymmetric pure–strategy Nash equilibria—

(D,C) and (C,D)—as well as a mixed–strategy Nash equilibrium in which each player chooses D with

probability two–fifths.

Player 2

D C

Player D 0,0 9,3

1 C 3,9 7,7

Figure 1: The basic Chicken game

The mixed–strategy equilibrium of this game has the attractive feature of symmetry—thus avoiding

the “symmetry–breaking” question implicit in asymmetric equilibria (see Crawford (1998)). Evolutionary

dynamics often favor such symmetry and indeed, the Nash equilibrium mixed strategy is the unique

evolutionarily stable strategy of this game (see, for example, Hofbauer and Sigmund (1998)). However,

as Skyrms (1996) and others have observed, this mixed–strategy equilibrium is inefficient: in the Chicken

game of Figure 1, it yields expected payoffs of just 5.4 for each player. By contrast, if the players somehow

agreed to condition their behavior on a fair coin toss, playing (for example) the strategy profile (D,C) after

Heads and (C,D) after Tails, each could improve her ex ante expected payoff to 6. Moreover, since both

recommended outcomes are strict Nash equilibria, both would strictly prefer to honor such an agreement

as long as they believed that the other would, even after knowing which recommendation was received.2

Furthermore, as Aumann (1974) first pointed out, the players could actually do even better in this

game by enlisting an “objective chance mechanism”, that randomly chooses one of three signals called (for

example) “X”, “Y”, and “Z”, with equal probability. Player 1 learns only whether X was chosen or not

while Player 2 learns only whether Z was chosen or not. Aumann then shows that if both players know the

set and distribution of signals (possible states of the world), and if Player 1 plays strategy D if the state

is “X” and C otherwise, while Player 2 plays strategy D if the state is “Z” and C otherwise, that these

correlated strategies are mutual best responses, i.e., a correlated equilibrium that yields expected payoffs of

61
3 to each player in the Chicken game of Figure 1—an expected payoff that is higher than that obtained

under the mixed–strategy equilibrium.3

1An early example of a correlated equilibrium is also found in Luce and Raiffa (1957, pp. 115-120).
2By contrast, see Young (2005, Chapter 3) for a discussion of a variant on this setup (due to Moulin and Vial (1978))

in which players choose—before receiving recommendations—whether to commit to following them or not. Young calls a

distribution of recommendations under this setup a coarse correlated equilibrium if all players are willing to commit to

following recommendations, given that the others also choose to commit.
3The objective chance mechanism induces the outcomes (D,C), (C,C) and (C,D) with equal (one–third) probability, so

expected payoffs are (3 + 7 + 9)/3 for each player.
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A correlated equilibrium is a probability distribution over outcomes—that is, a joint distribution over

players’ strategies—such that under the assumptions mentioned above, all players prefer to follow their

state–contingent correlated strategy. Then, a Nash equilibrium is just a special case of correlated equilib-

rium, in which the joint distribution of strategies is the product of the corresponding marginals (that is,

the resulting players’ strategies are probabilistically independent of one another).

Aumann (1987) argued that correlated equilibria follow naturally from a “modern subjectivist, Bayesian

view of the world” (p. 2)—that is, when all events can be assigned subjective probabilities and individuals

are Bayesian–rational. Indeed, he shows that if players are Bayesian–rational and hold common priors

concerning the probability distribution of observations from the randomization device, then the distribution

of actions chosen by those players must be a correlated equilibrium distribution. As Aumann observes,

while correlated equilibria and mixed equilibria both rely on observations from a randomization device,

correlated strategies (and thus correlated equilibria) are more general as there is no need to assume that

the observations from the randomization device are independent of one another, as is assumed under mixed

strategies.

On the other hand, Gul (1988) has argued that Aumann’s argument for the naturalness of correlated

equilibria relies heavily on the assumption of common prior beliefs, which is not so easily justified. Gul

argues instead that common priors should be explicitly modeled as having been achieved based on some

prior stage of the game. One possibility is that players have learned over time to hold such common beliefs

as in the work of Hart and Mas-Colell (2002) and others.4 A second possibility is to adopt Myerson’s

(1991, p. 250) mechanism–design approach where, in a first stage, a neutral third-party “mediator” (which

Myerson describes as “a person or machine that can help the players communicate and share information”)

draws outcomes for all players from a commonly known distribution, thus ensuring common prior beliefs.

For instance, the mediator might announce to players that he will draw each of the three Chicken game

outcomes (D,C), (C,C), and (C,D) with equal probability. The mediator then recommends to each player

only the player’s own strategy for the outcome chosen—not that of the other player (e.g., if the outcome

randomly drawn is (C,D), the mediator privately recommends to Player 1 that she play C and privately

recommends to Player 2 that he play D). In the second stage, players may choose actions conditional on

the recommendation given to them by the mediator. This latter approach is perhaps the one that is best

suited to the laboratory, as the experimenter can announce the distribution of outcomes used publicly

thereby assuring common priors, and the experimenter can also play the role of the neutral, third–party

mediator. This recommended–play approach has the added advantage of yielding a clearer mapping from

realizations of the randomization device to each player’s strategy space. This is the approach we take in

this paper.5

The purpose of this paper is to examine the empirical validity of the correlated equilibrium concept

with an external mediator. We study correlated equilibria in the controlled environment of the laboratory,

as this enables us to clearly assess the role of well–defined, correlated signals as coordinating devices,

providing the theory with its best chance of success. Specifically, we design and conduct an experiment in

which human subjects play the game shown in Figure 1. Prior to making their choices, subjects receive

4See, e.g., Foster and Vohra (1997), Fudenberg and Levine (1998 Chapter 8, 1999), Vanderschraaf (2001), Vanderschraaf

and Skyrms (2003), and Brandenburger and Friedenberg (2008).
5Sharma and Torres (2004) provide a model of how such a neutral, third-party mediator could play a welfare–improving

role in implementing correlated equilibria in a team production model.
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private signals (“recommendations”) generated according to a known distribution of outcomes that serves

as our main treatment variable. Three of the distributions we use are symmetric correlated equilibria. In

one of our treatments, which we call our “Nash–recommendations” treatment, the correlated equilibrium

we attempt to implement is simply a convex combination of Nash equilibria. In a second treatment—our

“good–recommendations” treatment—the correlated equilibrium is the one described above, which yields

payoffs that are Pareto superior to all symmetric payoff vectors in the convex hull of Nash equilibrium

payoff vectors.

It is often forgotten, though, that there also exist correlated equilibria in which payoffs are Pareto

inferior to all symmetric payoff vectors in the convex hull of Nash equilibrium payoff vectors. If correlated

equilibrium is to be taken seriously as a descriptive device, and not just a theoretical curiosity, then it should

be possible to induce these bad correlated equilibria as well as the good ones. To our knowledge, however,

there has never been an experimental test of a bad correlated equilibrium. We remedy this, with what we

call our “bad–recommendations” treatment. Despite the “bad” moniker, the distribution over outcomes

we use in this treatment is every bit as much a correlated equilibrium as that in our good– and Nash–

recommendations treatments. In particular, it is still optimal for a player to follow her recommendations,

as long as she believes her opponent will follow the recommendations given him.

Finally, we attempt to distinguish between subjects’ following recommendations as part of a correlated

equilibrium and their following of recommendations for other reasons—for example, out of a desire to please

the experimenter (an example of “experimenter demand effects”)—with our “very–good–recommendations”

treatment. In this treatment, the distribution of recommended outcomes is not a correlated equilibrium, but

the temptation to follow recommendations may be great, because if both players follow recommendations,

payoffs are Pareto superior to all symmetric correlated–equilibrium payoff vectors.

In the experiment, subjects play the game shown in Figure 1 repeatedly against changing opponents.

In half of the rounds, they receive recommendations (always according to the same correlated strategy

distribution), while in the remaining rounds, they do not receive any recommendations. The main results

are as follows. When players do not receive recommendations, their behavior is described fairly well

(though not perfectly) by the mixed–strategy Nash equilibrium. Giving subjects recommendations has an

effect that depends on which underlying distribution of outcomes is used. The likelihood of following a

recommendation is higher in the good– and Nash–recommendations treatments and lower in the bad– and

very–good–recommendations treatments, and also varies somewhat with which of the available actions is

recommended. In nearly all cases, subjects follow recommendations more often than chance would predict,

but there is no treatment where subjects follow recommendations all the time.

2 Correlated equilibrium—theory and tests

The game we use is the Chicken game shown in Figure 1 above. We chose Chicken as it is perhaps the

simplest game with the property that there exist correlated equilibrium payoff pairs that lie outside the

convex hull of Nash equilibrium payoff pairs. Under the assumption that players are risk neutral with

regard to monetary payoffs, the game has three Nash equilibria: (D,C), (C,D), and a mixed–strategy

Nash equilibrium in which each player chooses D with probability 2
5 . Payoffs in these three equilibria are,

respectively, (9,3), (3,9), and (5.4,5.4).

As mentioned in the introduction, one way to think about correlated equilibria is as involving a
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“mediator”—a non–strategic third party—in the game. The mediator chooses one of the four pure–strategy

profiles according to a commonly–known probability distribution, and to each player “recommends” that

player’s component in the profile. (The mediator never recommends a mixed strategy.) The probability

distribution is a correlated equilibrium of the original game if each player at least weakly prefers following

her recommended action to choosing any other action. (Thus, a correlated equilibrium of the original

game corresponds to a Nash equilibrium of this new game, in which players’ strategies are mappings from

recommended actions to chosen actions.6)

Define pDD, pDC , pCD, and pCC to be the probabilities of the outcomes (D,D), (D,C), (C,D), and

(C,C), according to the commonly–known distribution characterizing the mediator’s behavior. Suppose

Player 1 is given a recommendation of D. Then, the conditional probability that the chosen outcome was

(D,D) is pDD

pDD+pDC
, and the probability that the chosen outcome was (D,C) is pDC

pDD+pDC
. If Player 1 believes

that Player 2 will follow the recommendation given to him, then Player 1’s conditional expected payoff

from following her recommendation of D is

pDD

pDD + pDC

· 0 +
pDC

pDD + pDC

· 9 =
9pDC

pDD + pDC

,

and her conditional expected payoff from choosing C instead is

pDD

pDD + pDC

· 3 +
pDC

pDD + pDC

· 7 =
3pDD + 7pDC

pDD + pDC

,

so (if risk neutral) she prefers to follow the D recommendation if 9pDC

pDD+pDC
≥ 3pDD+7pDC

pDD+pDC
—that is, if

2pDC ≥ 3pDD. Using similar reasoning for Player 1 following a C recommendation, Player 2 following an

D recommendation, and Player 2 following a C recommendation gives us a total of four inequalities:

2pDC ≥ 3pDD

3pCD ≥ 3pCC

2pCD ≥ 3pDD

3pDC ≥ 3pCC .

A correlated equilibrium is a quadruple (pDD, pDC, pCD, pCC) that satisfies these four inequalities, along

with pDD + pDC + pCD + pCC = 1.

Since the set of correlated equilibria can be characterized as an intersection of sets defined by linear

equations and inequalities, it is a convex set, and because it contains the set of Nash equilibria, it must

also contain the convex hull of Nash equilibria. The same is true in payoff space; that is, the set of

correlated–equilibrium payoffs of a game always contains the convex hull of the set of Nash equilibrium

payoff pairs. However, in most games—including ours—there also exist correlated equilibria that are not

in the convex hull of Nash equilibrium payoff pairs. Figure 2 shows the regions corresponding to the sets of

Nash equilibrium payoff pairs and correlated equilibrium payoff pairs. The Nash equilibrium payoff pairs of

this game are (3,9) (corresponding to the equilibrium (C,D)), (9,3) (corresponding to (D,C)), and (5.4,5.4)

(corresponding to the mixed–strategy equilibrium). Therefore, the convex hull of Nash equilibrium payoff

6This Nash equilibrium is not unique. There always exist three “babbling” equilibria corresponding to the three Nash

equilibria of the original game, in which both players completely ignore the recommendations given them, and play Nash

equilibrium strategies instead. There exist additional equilibria as well.
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Figure 2: Characteristics of the Game
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pairs is the triangle with these three points as vertices (region A in the figure); in particular, 6 is the

highest symmetric payoff in this convex hull, and 5.4 the lowest. The set of correlated equilibrium payoff

pairs is the quadrilateral with vertices (3,9), (4.5,4.5), (9,3), and (63
7 , 63

7) (the union of regions A, Bl, and

Bh in the figure), so that 63
7 is the highest symmetric correlated equilibrium payoff and 4.5 the lowest.

Relatively little experimental research has looked at correlated equilibria that are not convex combi-

nations of Nash equilibria.7 The earliest such study that we know of is that by Moreno and Wooders

(1998), who examine the ability of several game–theoretic solution concepts (including Nash equilibrium

and correlated equilibrium) to characterize subject behavior in a three–player version of a one–shot match-

ing pennies game, in which two of the players have perfectly aligned interests; their game is shown on the

left of Figure 3. Instead of giving players recommendations as we do, they allowed subjects to participate

in a round of cheap talk prior to play of the game; subjects could send messages to either other player

individually, or to both at once. Moreno and Wooders found that the choices of the players with aligned

interests were highly correlated, so that mixed–strategy Nash equilibrium poorly described the distribu-

tion of outcomes. Rather, they concluded that the best–performing solution concept was coalition–proof

correlated equilibrium (Einy and Peleg (1995), Moreno and Wooders (1996)).

More recently, Cason and Sharma (2007) attempted to induce a correlated equilibrium through the

7Experimental studies of correlated equilibria that are convex combinations of Nash equilibrium include Van Huyck, Gilette,

and Battalio (1992), Brandts and McLeod (1995), and Seely, Van Huyck, and Battalio (2005). In a market setting, Duffy and

Fisher (2005) examine whether subjects will coordinate on the closely related concept of a sunspot equilibrium involving a

randomization over two certainty equilibria.
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use of private recommendations to subjects, as we do. The game they use is a version of Chicken, shown

on the right of Figure 3. The correlated equilibrium they attempt to induce has (Up, Right) and (Down,

Player 2 Player 2 Player 2

H T H T Left Right

Player H 1,1,–2 –1,–1,2 Player H –1,–1,2 –1,–1,2 Player Up 3,3 48,9

1 T –1,–1,2 –1,–1,2 1 T –1,–1,2 1,1,–2 1 Down 9,48 39,39

Player 3: H Player 3: T

Moreno and Wooders (1998) Cason and Sharma (2007)

Figure 3: Games used in previous correlated–equilibrium experiments

Left) occurring with probability 0.375 each, and (Down, Right) with probability 0.25, with (Up, Left)

never occurring. This correlated equilibrium yields expected payoffs of 31.125 for each player: higher than

the mixed–strategy Nash equilibrium expected payoffs of 20.4, and indeed, higher than any symmetric

payoff pair in the convex hull of Nash equilibrium expected payoffs. In the experiment, subjects often did

follow recommendations, doing so roughly 80% of the time in their baseline treatment, and earning payoffs

well above the mixed–strategy Nash equilibrium prediction (though below the prediction of the correlated

equilibrium) as a result.8

However, by only considering a correlated equilibrium that was payoff–enhancing relative to Nash equi-

librium, Cason and Sharma’s study risks confounding the coordinating role of third-party recommendations

with a general interest by subjects in earning higher payoffs. Further, in Cason and Sharma’s experimental

instructions, they explicitly tell subjects that they ought to follow recommendations, as doing so will result

in higher payoffs as long as the opposing player also follows recommendations.9

By contrast with Cason and Sharma’s (2007) experiment, which considered a single type of correlated

equilibrium, our experimental design considers three different correlated equilibria, each associated with a

different probability distribution for recommended play. In our “Nash–recommendations” treatment, the

recommendations (D, C) and (C, D) are each selected with probability one–half, and (C, C) and (D, D)

are selected with probability zero. This distribution of recommended outcomes is a correlated equilibrium,

and moreover, is a convex combination of Nash equilibria, with payoffs of 6 for each player. We also

consider two correlated equilibria that are not convex combinations of Nash equilibria. In our “good–

recommendations” treatment, the recommended outcomes (D, C), (C, D), and (C, C) are each selected

with probability one–third, and (D, D) is selected with probability zero. These probabilities satisfy the

conditions for a correlated equilibrium, and yield payoffs of 61
3 for each player—more than any point in the

convex hull of Nash equilibrium payoff pairs. In addition to the good–recommendations treatment, however,

8Cason and Sharma—somewhat pessimistically, in our opinion—conclude from these results that “players frequently reject

recommendations,” and their experiment includes additional treatments designed to increase the likelihood that recommen-

dations are followed, such as having human subjects play against a computer program that always follows recommendations.

Recommendations are typically followed even more often in these variations.
9For example, their instructions state “[y]ou should follow the recommendation given by the computer, because as long

as the person you are paired with also follows his or her recommendation then you earn more on average by following the

recommendation” and “[t]o reiterate: you always earn more by following your recommendation as long as the participant you

are paired with also follows his or her recommendation”; see http://www.krannert.purdue.edu/faculty/cason/papers/corr-

inst.pdf.
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we also consider a “bad–recommendations” treatment, in which the recommended outcomes (D, C) and

(C, D) are each selected with probability 0.4, and (D, D) is selected with probability 0.2, so that (C, C) is

selected with probability zero. These probabilities also satisfy the conditions for a correlated equilibrium,

but result in payoffs of only 4.8 for each player—less than any point in the convex hull of Nash equilibrium

payoff pairs. As far as we know, there are no existing experimental studies of correlated equilibria that are

payoff–reducing relative to Nash equilibrium.

Finally, as an even stronger test of the correlated equilibrium concept, we consider one distribution

of recommended outcomes that is not a correlated equilibrium. In our “very–good–recommendations”

treatment, the recommended outcome (C, C) is selected with probability 0.8, (D, C) and (C, D) are each

selected with probability 0.1, and (D, D) is selected with probability zero. Given these probabilities, a

player receiving a D recommendation will prefer to follow it—assuming she believes her opponent will also

follow recommendations—but a player receiving a C recommendation will not, instead preferring to choose

D. If recommendations are followed, however, payoffs are 6.8 for each player—higher than in any of three

correlated equilibria discussed above.

Some features of the four recommended outcome distributions we use, as well as the mixed–strategy

Nash equilibrium, are shown in Table 1. The expected payoffs from following these distributions of recom-

mended outcomes are also shown in Figure 2 (as plus signs).

Table 1: Outcome frequencies imposed in the experiment

Probability Probability Probability Probability Probability Expected

of (D,D) of (D,C) of (C,D) of (C,C) of C choice payoffs

outcome outcome outcome outcome

Good recommendations 0.000 0.333 0.333 0.333 0.667 (6.333,6.333)

Bad recommendations 0.200 0.400 0.400 0.000 0.400 (4.8,4.8)

Nash recommendations 0.000 0.500 0.500 0.000 0.500 (6,6)

Very good recommendations 0.000 0.100 0.100 0.800 0.900 (6.8,6.8)

Mixed–strategy NE 0.160 0.240 0.240 0.360 0.600 (5.4,5.4)

3 Experimental procedures

Besides varying the type of recommendations that were given to subjects (that is, the probability distri-

bution over outcomes), we varied whether recommendations were given at all. All experimental sessions

lasted for 40 rounds: 20 rounds with recommendations and 20 rounds without recommendations. We also

varied the order of these; in half of our sessions, the 20 rounds without recommendations came first, and

in the other half, the 20 rounds with recommendations came first. (Thus, whether or not recommenda-

tions were given was varied within–subject, while the type of recommendations and the ordering between

recommendations and no recommendations were varied between–subjects.) Each experimental session in-

volved 12 subjects. Subjects were primarily undergraduate students from University of Pittsburgh, and

were recruited by newspaper advertisements and email. No one took part in more than one session of this

experiment.
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At the beginning of a session, subjects were seated in a single room and given a set of written instructions

for the first twenty rounds.10 They were told at this time that there would be a second part to the session,

but details of the second part were not announced until after the first part had ended. The instructions for

the first part were read aloud to subjects, in an attempt to make the rules of the game common knowledge.

After the instructions were read, subjects were given a short quiz to ensure that they understood the

instructions. After subjects’ quizzes were completed, they were graded anonymously. If any question was

answered incorrectly, the experimenter went over the question and answer out loud for the benefit of all

subjects (without identifying which subject had answered incorrectly). After any incorrect answers were

discussed, the first round of play began. After the twentieth round of play was completed, each subject

was given a copy of the instructions for the remaining twenty rounds. These were also read aloud, after

which another (shorter) quiz was given out, before the final twenty rounds were played.

In the instructions, we strove to use neutral terminology. Instead of relatively loaded terms such as

“opponent” or “partner”, we used phrases such as “the player matched with you”. Also, in our discussion

of recommendations, we never went so far as to instruct subjects to follow recommendations, or even to

point out that following recommendations might lead to higher payoffs; rather, we merely provided the

outcome distribution from which the recommendations were generated (both in the written instructions

and in our public reading of those instructions), and noted that a player’s recommendation may or may

not convey information about the recommendation given to the player matched with him.11

The experiment was run on networked computers, using the z–Tree experiment software package (Fis-

chbacher (2007)). Subjects were asked not to communicate directly with one another, so the only interac-

tions were via the computer program. Subjects were paired using a round–robin matching format, in an

attempt to minimize incentives for reputation building and other potential supergame effects; for the same

reason, subjects were not given identifying information about their opponents in any round.

A round of the game in which there were no recommendations (either rounds 1–20 or rounds 21–40,

depending on the cell) began by prompting subjects to choose one of the two available actions. (In the

instructions and during the session, the actions were named X and Y instead of D and C, respectively.)

After the action choices were entered, each subject was shown the following information: own action,

opponent action, own payoff, and opponent payoff. In a round of the game with recommendations, the

sequence of play was similar except for the recommendations. Specifically, subjects would first be shown

their “recommended action”, which was randomly drawn from the appropriate outcome distribution. Then,

they were prompted to choose an action. After action choices were entered, each subject was shown the

following information: own recommendation, own action, opponent recommendation, opponent action,

own payoff, and opponent payoff. In all treatments, subjects were not given information about the results

of any other pairs of subjects, either individually or in aggregate. At the end of the round, subjects were

10The set of instructions given to subjects—as well as additional materials given to them (quizzes and record sheets)—from

one of our cells can be found at http://www.abdn.ac.uk/˜pec214/papers/corr instructions.pdf. Materials used in the other

cells and screenshots of the computer interface seen by subjects, as well as the raw data from the experiment, are available

from the corresponding author upon request.
11One passage from our instructions states, “These recommendations are optional; it is up to you whether or not to

follow them. Notice that your recommendation may give you information about the recommendation that was given to the

person matched to you.” To further emphasize this point, one of the questions in the quiz given to subjects after reading

the instructions was, “You are required to follow the recommendations shown on your computer screen (circle one): TRUE

FALSE”—to which the correct answer was FALSE. We acknowledge the possibility that our use of the term “recommendations”

itself might have influenced subjects to follow them to some extent.
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asked to observe their result, write the information from that round down onto a record sheet, and then

click a button to continue to the next round.

At the end of round 40 of any treatment, the experimental session ended. One of the first twenty rounds

and one of the last twenty rounds were randomly chosen, and each subject received his/her earnings from

these two rounds, at an exchange rate of $1 per point. Additionally, all subjects received a $5 show–up

fee. Total earnings for subjects participating in a session averaged about $15, and sessions typically lasted

between 45 and 60 minutes.

4 Experimental results

A total of 16 sessions were conducted—four of each treatment—with 12 subjects per session, for a total

of 192 subjects. Each subject played 20 rounds without recommendations and 20 with recommendations,

giving us 7580 observations overall: 1920 of each treatment. Aggregate outcome frequencies and payoffs

are shown in Table 2.

Table 2: Aggregate observed outcome frequencies

Recommendations Ordering Outcome Average

(D,D) (D,C) (C,D) (C,C) payoff

+ 0.145 0.200 0.274 0.381 5.513

None – 0.174 0.226 0.295 0.305 5.261

Combined 0.159 0.213 0.284 0.343 5.387

+ 0.154 0.258 0.363 0.225 5.300

Good – 0.125 0.258 0.279 0.338 5.588

Combined 0.140 0.258 0.321 0.281 5.444

+ 0.213 0.267 0.246 0.275 5.000

Bad – 0.171 0.242 0.208 0.379 5.354

Combined 0.192 0.254 0.227 0.327 5.177

+ 0.121 0.271 0.300 0.308 5.583

Nash – 0.104 0.258 0.300 0.338 5.713

Combined 0.113 0.265 0.300 0.323 5.648

+ 0.138 0.175 0.254 0.433 5.608

Very good – 0.200 0.279 0.229 0.292 5.092

Combined 0.169 0.227 0.242 0.363 5.350

Note: “+”: recommendations received in rounds 21–40; “–”: recom-

mendations received in rounds 1–20

4.1 Behavior without recommendations

We first examine subject behavior in rounds where subjects do not receive recommendations; this is shown

in the top three rows of data in Table 2. There are minor, but insignificant, differences in aggregate choice
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frequencies according to whether the no–recommendation rounds were 1–20 or 21–40 (robust rank–order

test, session–level data, p > 0.10 for (C,C) frequencies, p > 0.20 for the other three frequencies).12 If

we pool (C,D) and (D,C) outcomes, aggregate behavior comes very close to the mixed–strategy Nash

equilibrium prediction of 16% (D,D) outcomes, 48% (C,D) and (D,C) outcomes, and 36% (C,C) outcomes.

When these outcomes are treated separately, however, the substantially larger frequency of (C,D) than

(D,C) outcomes means that mixed–strategy Nash equilibrium does less well. In fact, a chi–square test

strongly rejects the null hypothesis that behavior in the no–recommendations rounds is generated by i.i.d.

mixed–strategy equilibrium play (p < 0.001) when (C,D) and (D,C) outcomes are disaggregated, but not

when they are pooled (p > 0.20). We note that this test assumes independence across subjects in a session

and for each subject over time (so to the extent that these assumptions do not hold, the test will be

excessively liberal).

The reason for the partial failure of mixed–strategy Nash equilibrium to characterize play in this treat-

ment becomes clearer when we disaggregate the data further. Figure 4 shows the frequencies of C choices

by both types of player in the experiment, disaggregated into groups of sessions that had qualitatively

similar results, and also disaggregated into five–round blocks. The first such five-round block in a session

is labeled in the figure (as “1–5”), and the path of play through the other three five–round blocks are

shown via line segments. In a plurality (7 out of 16) of sessions (numbers 1–4, 7, 13 and 15), behavior

Figure 4: Dynamics of no–recommendations rounds (5–round blocks)
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is close to the mixed–strategy prediction after the first block of five rounds. In the other nine sessions,

behavior is not well described by mixed–strategy play, though the nature of the deviations varies. In three

sessions (5, 6, and 14), behavior starts out near the mixed–strategy outcome but moves over time toward

the pure–strategy outcome (C,D), while in three other sessions (8, 9, and 10), behavior starts and remains

between the mixed–strategy outcome and (C,D). In the remaining three sessions (11, 12, 16) average play is

also away from the mixed–strategy outcome, in the direction of the (D,C) pure–strategy outcome (though

12See Siegel and Castellan (1988) for descriptions of the nonparametric tests used in this paper. Critical values for the

robust rank–order test are from Feltovich (2005).
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it does not move in this direction over time).

While behavior in this no–recommendations treatment can be different from i.i.d. mixed–strategy

equilibrium play, a weaker condition—statistical independence of row and column player choices—is broadly

satisfied. To verify this, we calculated the phi coefficient of association (a measure of correlation for

categorical data) for each five–round block of every session, giving us 64 of these coefficients. Of these 64,

only 6 (that is, 9.375% of them) were significantly different from zero at the 10% level, and 4 (6.25% of the

64) were significant at the 5% level: roughly what would be expected by chance if row and column player

choices are independent.

4.2 Effect of recommendations on population aggregates

Having examined how subjects behave without recommendations, we next look at whether recommenda-

tions have any effect. Table 2 above provides some strong evidence that they do.13 When recommendations

are generated from a correlated equilibrium (all but the very–good–recommendations treatment), outcome

frequencies are significantly different from mixed–strategy probabilities—irrespective of whether we pool

(C,D) and (D,C) outcomes—and the difference is in the direction predicted by correlated equilibrium (fol-

lowing recommendations). Both good recommendations and Nash recommendations increase the likelihood

of a pure–strategy Nash equilibrium outcome, from 49.7% without recommendations to 56.5% with Nash

recommendations and 57.9% with good recommendations, though this likelihood decreases slightly in the

game with bad recommendations—to 48.1%—and with very good recommendations, to the lowest fre-

quency of 46.9%. Also, the Pareto–dominated (D,D) outcome becomes more likely under bad or very good

recommendations (19.2% and 16.9% of the time respectively, versus 15.9% when no recommendations are

given) and less likely under good recommendations (14.0%) or Nash recommendations (11.3%). For some

of the treatments, this last result might be expected in light of the outcome probabilities we attempted to

impose: a 20% chance of (D,D) in the bad–recommendations treatment and 0% in the good– and Nash–

recommendations treatment as compared with 16% in the mixed–strategy Nash equilibrium. However,

this does not hold for the very–good–recommendations treatment, as the frequency of (D,D) recommended

outcomes was 0% in this treatment as well.

Two–sample chi–square tests imply that the distributions of outcomes in the good–, bad–, and Nash–

recommendations treatments are significantly different from the distribution without recommendations

(d.f. = 3, p < 0.02 for each comparison), but there is not a significant difference between no recommen-

dations and very–good recommendations (χ2 = 3.511, d.f. = 3, p > 0.20). The finding of no difference

between no recommendations and very good recommendations is striking: it suggests that subjects will

not blindly follow just any recommendations, but rather will follow them only if they are consistent with

implementation of a correlated equilibrium. Indeed, one–sample chi–square tests find no significant differ-

ence between the distribution of outcomes in either the bad– or very–good–recommendations treatment

and that implied by mixed–strategy equilibrium play (χ2 = 5.188, d.f. = 3, p > 0.10 and χ2 = 0.577,

d.f. = 3, p > 0.20 respectively), while we do find significant differences from mixed–strategy equilibrium

for the good– and Nash–recommendations treatments (χ2 = 23.26, d.f. = 3, p < 0.001 and χ2 = 17.01,

13In the following discussion, we will concentrate on the pooled data from sessions with recommendations first and sessions

with recommendations last. We will see in Table 4 and the surrounding discussion that pooling the data in this way is

justifiable.
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d.f. = 3, p < 0.001 respectively).14

Furthermore, we note that in the cases where recommendations were consistent with implementation

of a correlated equilibrium, aggregate outcome frequencies—while different from the point predictions

of Table 1—typically move in the direction predicted by correlated equilibrium relative to the mixed–

strategy Nash equilibrium prediction. For example, if subjects were always to follow recommendations

in the good–, bad– and Nash–recommendations treatments, the resulting frequency of (C,C) outcomes

would be lower than in the mixed–strategy Nash equilibrium. As Table 2 shows, the frequencies of (C,C)

outcomes in these cases are indeed lower than in mixed–strategy Nash equilibrium. By contrast, in the

very–good–recommendations case, if subjects followed recommendations, the predicted frequency of (D,D)

outcomes would be lower than in the mixed Nash equilibrium (0 versus 0.16), but Table 2 shows that

the observed frequency is actually higher. Finally, two–sample chi–square tests usually find significant

differences in the distribution of outcomes between any two of the recommendations treatments (p > 0.10

for comparison of the good– and Nash–recommendations treatments and for comparison of the bad– and

very–good–recommendations treatments, p < 0.02 for any other pair of treatments).

Another way of assessing whether recommendations have any effect involves testing for independence

between row and column player choices. Recall from Section 4.1 that players’ choices were found to be

independent of each other when players did not receive recommendations. We now construct the phi

coefficient of association for each session and five–round block when recommendations are received by

subjects, giving us a total of 64 of these coefficients—16 for each treatment. In the good–recommendations

treatment, 5 of the 16 five–round blocks have a significantly negative correlation at the 10% level, and 3 of

these are significant at the 5% level, while in the Nash–recommendations treatment, 4 of 16 are negative

and significant at the 5% level (with the other 12 not significant even at the 10% level). These proportions

are higher than chance would predict, giving additional evidence that recommendations are having an effect

on behavior. In the bad– and very–good–recommendations treatment, on the other hand, only 2 and 1

(respectively) of 16 are negative and significant at the 10% level or better, suggesting that recommendations

have less effect in these treatments. We note, however, that the level of correlation implied even by perfect

following of recommendations varies sharply across treatments, from perfect negative correlation in the

Nash–recommendations treatment, to fairly high (in absolute value) correlations of −2
3 and −1

2 in the

bad– and good–recommendations treatments respectively, to the nearly zero correlation of −1
9 in the very–

good–recommendations treatment. As a result, direct comparisons across treatments should be made with

caution.

Summarizing, we have:

Result 1 When no recommendations are given, aggregate outcome frequencies are broadly similar to

mixed–strategy Nash equilibrium frequencies, though in some sessions there is a tendency toward one of

the pure–strategy Nash equilibria. When recommendations are given, they lead to significant differences in

aggregate outcome frequencies, compared with the no–recommendations case, if and only if the recommen-

14As in the previous section, we note here that these chi–square statistics assume independence across subjects in a session

and for each subject over time. Also, note that observed frequencies in all treatments are significantly different from any of

the correlated–equilibrium predictions, as each of the latter predicts zero probability of at least one outcome that occurs with

positive frequency in the experimental data. Finally, pooling (C,D) and (D,C) outcomes has little qualitative effect on these

significance tests; the lone exception is that outcomes in the bad–recommendations treatment are significantly different from

mixed–strategy equilibrium at the 10% level when these are pooled, but not when they are treated separately.
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dations come from a correlated equilibrium. Also, there are significant differences in aggregate outcomes

across the treatments with recommendations. When recommendations come from a correlated equilibrium,

the effect on aggregate outcome frequencies is consistent with the directional predictions—though usually

not the point predictions—of the corresponding correlated equilibrium.

Table 2 also shows the per–round average payoff earned by subjects in each treatment; these vary from

a low of 4.902 under bad recommendations to a high of 5.648 under Nash recommendations. However, a

nonparametric Kruskal–Wallis one–way analysis of variance fails to reject the null hypothesis that average

payoffs are the same in all four recommendations treatments (session–level data, p > 0.10), and robust

rank–order tests find no significant differences in pairwise comparisons between treatments (session–level

data, p > 0.10 in all cases). This lack of significance in the payoff dimension is likely owing to the relatively

small differences in predicted expected payoffs amongst the various correlated equilibria, combined with

the inherent conservatism of nonparametric tests using session–level data.

4.3 Effects of recommendations on individual behavior

Having shown that aggregate play with recommendations is usually different from aggregate play without

recommendations—and that this difference depends on which recommendations are given—we next con-

sider how subjects treat the particular recommendations they receive. Table 3 shows the frequencies with

which recommendations are followed in each treatment over all twenty rounds as well as for the last five

rounds of each treatment (after subjects have had time to gain experience with the strategic environment).

For the sake of comparison, the table also shows the corresponding predicted frequencies according to

mixed–strategy Nash equilibrium. (Note that the predictions in the last two columns depend on the actual

frequencies of C versus D recommendations given in the experiment, so these will vary across treatments

and rounds.15)

Here we see more differences across treatments. In the good– and Nash–recommendations treat-

ments, subjects are substantially more likely to follow recommendations than would be predicted by

the mixed–strategy Nash equilibrium. They follow D recommendations 73.5% of the time in the good–

recommendations treatment and 56.7% of the time in the Nash–recommendations treatment, compared to

a prediction of 40%, and they follow C recommendations 73.2% of the time in the good–recommendations

treatment and 77.7% of the time in the Nash–recommendations treatment, compared to a prediction of

60%. As the table shows, these frequencies are even higher if we concentrate on the last five rounds of the

treatment, and all of these differences are significant (one–tailed sign test, session–level data, p = 0.0625).

In the bad– and very–good–recommendations treatments, evidence that subjects follow recommenda-

tions is weaker. If we look at frequencies for the entire bad–recommendations treatment, subjects are

15Specifically, the predictions in the third and fourth columns are based on the predictions of 0.4 and 0.6 for the frequencies of

following D and C recommendations (from the first and second columns). For the third column—overall frequency of followed

recommendations—we take the mixed–strategy Nash equilibrium prediction in a treatment to be the weighted average of 0.4

and 0.6, with the weightings equal to the actual observed frequencies of D and C recommendations in that treatment. As

an example, in the good–recommendations treatment, C recommendations were actually made to subjects 628 times and D

recommendations 332 times. The predicted frequency of following recommendations overall is then 0.6
(

628

960

)

+ 0.4
(

332

960

)

=

0.531. In a similar way, the predictions for the fourth column (frequency of both paired players following recommendations)

are weighted averages of 0.16, 0.24, 0.24, and 0.36 (predictions conditional on recommended outcomes of (D,D), (D,C), (C,D),

and (C,C) respectively), weighted by the actual frequencies of recommendation pairs.
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Table 3: Frequencies of followed recommendations—all subjects, all rounds

Frequency of Frequency of Frequency of Frequency of

followed D followed C followed followed

Treatment recommendations recommendations recommendations recommendations

(overall) (pairs)

Observed (all rounds) 0.735∗ 0.732∗ 0.733∗ 0.531∗

Good Observed (rnds 16–20) 0.750∗ 0.770∗ 0.762∗ 0.583∗

Mixed NE prediction 0.400 0.600 0.531 0.277

Observed (all rounds) 0.477 0.631 0.541 0.269∗

Bad Observed (rnds 16–20) 0.529∗ 0.530 0.529∗ 0.300∗

Mixed NE prediction 0.400 0.600 0.483 0.226

Observed (all rounds) 0.567∗ 0.777∗ 0.672∗ 0.454∗

Nash Observed (rnds 16–20) 0.608∗ 0.792∗ 0.700∗ 0.517∗

Mixed NE prediction 0.400 0.600 0.500 0.240

Very Observed (all rounds) 0.511∗ 0.608 0.599 0.381

good Observed (rnds 16–20) 0.227 0.537 0.508 0.308

Mixed NE prediction 0.400 0.600 0.580 0.336

*: Significantly above corresponding mixed–strategy prediction (one–tailed sign test, session–level data, p = 0.0625)

not significantly more likely to follow either type of recommendation than predicted by mixed–strategy

equilibrium (one–tailed sign test, session–level data, p > 0.10), though the frequencies are slightly higher

than predicted (47.7% for D recommendations and 63.1% for C recommendations, versus predictions of

40% and 60%). However, if we focus on the last five rounds, we find a higher frequency of following D

recommendations, and this frequency is significantly higher than the mixed–strategy equilibrium prediction

(p = 0.0625), though we also see that subjects actually become less likely to follow C recommendations

in the last five rounds. Subjects in the very–good–recommendations treatment are not significantly more

likely to follow C recommendations than mixed–strategy equilibrium predicts (p > 0.10), either over all

rounds or in the last five. They are more likely to follow D recommendations over all rounds (51.1% versus

a predicted 40%), and this difference is significant (p = 0.0625), but this frequency drops sharply in the last

five rounds to below one–fourth, and in those rounds is not significantly different from the mixed–strategy

equilibrium prediction (p > 0.10).

Given how these results vary with the treatment, it should not be surprising that we find significant

differences across treatments in how often recommendations are followed. A Kruskal–Wallis one–way

analysis of variance rejects the null hypothesis that the likelihood of following a C recommendation is the

same across the four treatments (p < 0.05), and similarly for the case of a D recommendation (p < 0.05).

The null of equal frequencies across treatments of following recommendations overall is also rejected (p <

0.05), but we should note that mixed–strategy Nash equilibrium does not imply equal frequencies in this

case.

We next examine how subjects’ willingness to follow recommendations changes over time. Figure 5

shows the frequency with which recommendations are followed in each five–round block, disaggregated

according to which correlated equilibrium was being implemented, and which action was recommended.
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For C recommendations, there are no obvious time trends in the good– and Nash–recommendations treat-

Figure 5: Frequency of followed recommendations
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ments, while subjects in the bad– and very–good–recommendations treatments become less likely over time

to follow these (falling from about 75% to just over 50% in both). The frequency of following D recommen-

dations stays roughly constant over time in the good–recommendations treatment and rises slightly in the

bad– and Nash–recommendations treatment. In the very–good–recommendations treatment, sample sizes

for D recommendations are small (since only one–tenth of recommendations is for a D choice), but their

frequency of being followed rises somewhat from the first to the third five–round block, before plummeting

in the last five–round block.

Further evidence of the effects of recommendations on individual subject choices can be found in Ta-

ble 4, which reports the results of several probit regressions with the subject’s choice of action as the

dependent variable. (To be precise, the dependent variable is an indicator for a C choice.) Our main inde-

pendent variables are two indicators for recommendations given to subjects—one for a C recommendation

(viz., taking on the value of one if a C recommendation was made, and zero otherwise) and one for a D

recommendation. (To avoid perfect collinearity, we do not include an indicator for no recommendation.)

We also include variables for the products of these indicators with the round number, to capture any time–

varying effect of recommendations that exists. Additionally, we include a variable for the round number

itself, as well as an indicator variable that takes the value one in sessions in which recommendations were

given in the first twenty rounds rather than the last twenty (to capture any order effects).

The regressions were performed using Stata (version 10) and incorporate individual–subject random

effects; we estimate coefficients separately for the four treatments. The results are shown in Table 4, which

shows the coefficient and standard error for each variable in our four model specifications. (We additionally

estimated specifications with individual–session fixed effects, but the results were nearly identical to those

reported here.) Also shown is the absolute value of the log–likelihood, as well as a pseudo–R2, for each

model specification.

We do not find evidence of substantial order effects between treatments (that is, our results are robust

to whether the rounds with recommendations came before or after the rounds without recommendations),
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Table 4: Results of probit regressions with random effects (standard errors in parentheses)

Dependent variable: Good–recommendations Bad–recommendations Nash–recommendations Very–good–

cooperative action treatment (N = 1920) treatment (N = 1920) treatment (N = 1920) recommendations

chosen in round t treatment (N = 1920)

constant 0.372 0.464 0.727∗∗∗ 0.956∗∗∗

(0.237) (0.295) (0.250) (0.241)

Order (indicator 0.046 0.232 –0.097 –0.440

for order effects) (0.312) (0.392) (0.327) (0.314)

t (round number) 0.001 −0.022∗∗ −0.027∗∗∗ −0.048∗∗∗

(0.008) (0.009) (0.008) (0.008)

Drec (D recom– −1.098∗∗∗ –0.075 −0.463∗∗∗ −1.313∗∗∗

mendation given) (0.207) (0.181) (0.172) (0.299)

Drec · t –0.001 −0.022∗∗∗ –0.009 0.088∗∗∗

(0.017) (0.014) (0.015) (0.025)

Crec (C recom– 0.593∗∗∗ 0.338∗ 0.472∗∗ 0.086

mendation given) (0.162) (0.200) (0.184) (0.150)

Crec · t –0.014 –0.021 0.021 0.002

(0.013) (0.016) (0.015) (0.012)

–ln(L) 970.789 898.429 950.705 971.544

pseudo–R2 0.106 0.027 0.086 0.037

* (**,***): Coefficient significantly different from zero at the 10% (5%, 1%) level.

as the “Order” variable is never significant. On the other hand, there is some nonstationarity in the data,

as shown by the negative and significant coefficient on the round number t in three of the four treatments

(the lone exception being the good–recommendations treatment). The significance of the recommendation

variables varies substantially across treatments. In the good and Nash–recommendations treatments, the

C–recommendations and D–recommendations indicators are both significant, but their products with the

round number are not, and each has the sign associated with subjects’ following recommendations: positive

for C and negative for D. In the bad–recommendations treatment, the D–recommendations indicator is

insignificant, but its product with the round number is significant; the coefficient of the C–recommendations

indicator is barely significantly different from zero, while that of its product with the round number is

insignificant. In the very–good–recommendations treatment, both the C–recommendations indicator and

its product with the round number are significant, with the former negative and the latter positive, but

neither of the D–recommendations variables are significant.

Based on these results, we conclude:

Result 2 There are significant differences across treatments in how subjects use their recommendations.

Subjects are most likely to follow recommendations in the good– and Nash–recommendations treatments.

In the bad–recommendations treatment, recommendations have less effect on behavior. In the very–good–

recommendations treatment, subjects either don’t follow recommendations at all, or learn over time not to

follow them.

We next consider whether the likelihood of a subject following recommendations depends on the sub-

ject’s past history. One possibility is that subjects will be more willing to follow recommendations if

following them has been successful in the past. As a first step, we look at how a subject’s propensity to

follow recommendations is affected by the success of following recommendations in the previous round.

Specifically, we consider how consistent behavior in our experiment is with Selten and Stoecker’s (1986)
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“direction learning theory”. When a game has a one–dimensional strategy space, direction learning theory

predicts that when a player changes strategy from one round to the next, the change will be in the direction

of the (myopic) best response. In our setup, this implies that when a subject chose successfully (i.e., chose

a best response to the opponent’s action) in the previous round, she will continue following recommenda-

tions in the current round if she had done so in the previous round, or will not follow recommendations

in the current round if she did not follow them in the previous round. On the other hand, if the subject

chose unsuccessfully in the previous round, she will do the opposite of what she did in that round—follow

recommendations if she had not done so, or not follow recommendations if she had. By and large, our data

are only weakly consistent with direction learning. After a successful choice, subjects stay with the same

strategy (follow or not follow recommendations) 64.6% of the time, but they stay with the same strategy

almost as often (60.6% of the time) following an unsuccessful choice.

An alternative possibility is that subjects’ choices depend not just on the previous round outcome,

but instead on the entire history of play. To examine this possibility, we first construct measures for the

success rate of following recommendations and that of not following recommendations. The success rate of

following recommendations is set to one–half if a subject has never followed a recommendation; otherwise,

it is equal to the proportion of times (in all rounds up through the previous round) in which following

recommendations led to a best response to the opponent action. (For example, if a player has thus far

followed recommendations 5 times, and 3 of these turned out to be best responses, then the success rate

would be 0.6.) The success rate of not following recommendations is calculated in an analogous way.

We then use the difference between these success rates (the rate for following recommendations minus

the one for not following recommendations) as an explanatory variable, where the dependent variable is

an indicator for following recommendations in the current round. The results can be seen in Table 5.

This table shows four alternative probit specifications, differing in which other explanatory variables are

Table 5: Results of probit regressions with random effects, rounds 2–20 of treatments with recommendations

(standard errors in parentheses)

Dependent variable: Model Model Model Model

follow recommendations specification specification specification specification

in round t (N = 3648) #1 #2 #3 #4

constant 0.381∗∗∗ 0.445∗∗∗ 0.294∗∗∗ 0.359∗∗∗

(0.049) (0.066) (0.093) (0.105)

t (round number) –0.006 –0.006

(0.004) (0.004)

Success–rate 0.196∗∗ 0.208∗∗∗ 0.150∗ 0.161∗∗

difference (0.079) (0.079) (0.081) (0.081)

Good recommendations 0.357∗∗∗ 0.352∗∗∗

(0.134) (0.134)

Bad recommendations –0.194 –0.198

(0.131) (0.130)

Nash recommendations 0.200 0.194

(0.135) (0.135)

–ln(L) 2226.897 2225.886 2217.141 2216.220

pseudo–R2 0.001 0.002 0.006 0.006

* (**,***): Coefficient significantly different from zero at the 10% (5%, 1%) level.

included: the round number, indicators for the treatments, or both. For all of these specifications, the

coefficient for the success–rate difference is positive and significant, suggesting that subjects are indeed
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more likely to follow recommendations, the more successful following them has been in the past—relative

to not following them. (On the other hand, the low pseudo–R2 values suggest that past success is only a

minor factor in explaining whether recommendations are followed.)

We thus have

Result 3 Subjects’ following of recommendations is affected by history. The more successful following

recommendations has been in the past, or the less successful not following recommendations has been, the

more likely a subject is to follow recommendations in the current round.

We next look at whether subjects who fail to follow recommendations suffer (monetarily) as a result.

To examine this question, we consider subjects’ forgone payoffs: the payoff a subject would have gotten

from choosing the other action, minus the payoff the subject actually got. (Thus, a negative forgone payoff

means the subject chose a best response.)

Overall, in rounds with no recommendations, forgone payoffs averaged –0.079 points per round, which is

not significantly different from zero (two–tailed Wilcoxon signed–ranks test, session–level data, p ≈ 0.40),

meaning that on average, subjects earned approximately the same payoffs with the actions they chose than

they would have earned by choosing the opposite action—as would be implied by mixed–strategy equilib-

rium play. Forgone payoffs averaged –0.467 points per round in the good–recommendations treatment and

–0.428 points per round in the Nash–recommendations treatment, both of which are significantly less than

zero (one–tailed Wilcoxon test, session–level data, p = 0.0625 for both), while forgone payoffs averaged

+0.026 points per round in rounds with the bad–recommendations treatment and +0.059 points per round

in the very–good–recommendations treatment, neither of which is significantly less than zero (p = 0.3125

and p = 0.6825 respectively), suggesting that subjects in the good– and Nash–recommendations treat-

ments by and large made correct choices, while subjects in the other two treatments did not. Since the

good– and Nash–recommendations treatments were also the ones where subjects were most likely to follow

recommendations, the implication is that following recommendations is indeed positively associated with

better outcomes for the individual subject, at least on average.

However, we are interested less in these treatment–wide aggregates than in how forgone payoffs are

associated with how often subjects followed the recommendations they were given. In Figure 6, we present

scatterplots showing, for each individual subject, the proportion of recommendations that were followed

(on the horizontal axis) and the subject’s mean forgone payoff (on the vertical axis). Also shown are

two lines for each scatterplot: one is a least–squares line showing the actual average relationship between

following recommendations and foregone payoffs (with the slope shown as well), and the other is a bench-

mark line showing what this relationship would be under the assumption that the opposing player always

follows recommendations.16 The benchmark line is negatively sloped for the three treatments in which

recommendations form a correlated equilibrium, reflecting the incentives in these treatments for players

to follow recommendations as long as their opponents are expected to do so. In contrast, if opponents

always follow recommendations in the very–good–recommendations treatment, the incentives are against

following recommendations, as evidenced by the positive slope of that benchmark line.

16This benchmark makes the additional assumptions that (1) the player receives C and D recommendations in proportion

equal to the underlying probabilities of C and D recommendations in that treatment, and (2) the player’s likelihoods of

following C and D recommendations are equal.
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Figure 6: Relationship between followed recommendations and

forgone payoffs (Individual subjects, all rounds)

Proportion of recommendations followed

Mean
forgone
payoff

Good recommendations Bad recommendations

Nash recommendations Very good recommendations
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For subjects in the good– and Nash–recommendations treatments, the least–squares line shows a visible

negative correlation between following recommendations and forgone payoffs, suggesting that following

recommendations more often was associated with better payoffs for individual subjects in these treatments,

as was true for the benchmark line. The least–squares lines are less steep in these treatments than the

benchmark lines, due to not all opponents following recommendations in reality (while we’ve assumed

they do for the benchmark). On the other hand, the least–squares line shows no apparent correlation for

subjects in the bad– and very–good–recommendations treatments, by contrast with the benchmark lines.

The implication is that in these two treatments, enough other subjects do not follow recommendations to

remove nearly all incentives to follow recommendations in the bad–recommendations treatment, or not to

follow recommendations in the very–good–recommendations treatment.

Spearman rank–order correlation tests provide further, quantitative, evidence of these results. The

Spearman correlation coefficient between frequency of followed recommendations and mean forgone payoff

is approximately –0.312 in the good–recommendations treatment and –0.469 in the Nash–recommendations

treatment, both of which are significantly different from zero (p ≈ 0.02 for the former and p < 0.001 for

the latter), suggesting that following recommendations more often was associated with better payoffs for

individual subjects. In the bad– and very–good–recommendations treatments, on the other hand, the
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Spearman coefficients are approximately +0.003 and +0.092 respectively, neither of which is significantly

different from zero (p ≈ 0.98 and p ≈ 0.25, respectively), suggesting that subjects in these treatments

did not do better by following recommendations than by ignoring them. The least–squares lines give

additional evidence of these relationships; their slopes are negative and significantly different from zero in

the good– and Nash–recommendations treatments (p < 0.01 for both treatments, using robust standard

errors adjusted for clustering by session), and are not significantly different from zero in the bad– and

very–good–recommendations treatments (p > 0.20 for both treatments).

Finally, disaggregating by round and according to the recommended action tells a more detailed, but

similar, story. Linear panel–data regressions with individual–subject random effects, either with or with-

out session fixed effects, show that a subject’s following either type of recommendation in either the

good–recommendations treatment or the Nash–recommendations treatment is associated with significant

decreases in forgone payoffs, as is following a C recommendation in the bad–recommendations treatment.

By contrast, there is no significant association between forgone payoffs and either following D recom-

mendations in the bad–recommendations treatment or following C recommendations in the very–good–

recommendations treatment. Finally, following D recommendations in the very–good–recommendations

treatment is positively correlated with foregone payoffs; that is, following D recommendations actually

lowers a player’s payoff in that treatment.17

We thus conclude:

Result 4 In the good and Nash–recommendations treatments, it pays subjects (individually) to follow

either type of recommendation. In the bad–recommendations treatment, it pays subjects to follow C recom-

mendations, but there is no statistically significant relationship between following D recommendations and

payoffs. In the very–good–recommendations treatment, there is no significant relationship between following

C recommendations and payoffs, and it pays subjects not to follow D recommendations.

5 Summary and discussion

The aim of this paper was to assess the empirical validity of correlated equilibrium, an important gen-

eralization of the Nash equilibrium concept. Specifically, we have explored whether subjects make use

of known (and publicly announced) distributions of private third–party recommendations as a coordina-

tion device in the game of Chicken, the simplest game with which to study a wide variety of correlated

equilibria. The treatments in our experiment differ in the distributions of recommendations. Three of

our four treatments use distributions that form correlated equilibria; two of these yield symmetric payoffs

that are outside the convex hull of Nash equilibrium payoff vectors. In our “good” correlated equilibrium,

payoffs are better than any symmetric payoff in the convex hull of Nash equilibrium payoff vectors, while

in our “bad” correlated equilibrium, payoffs are worse than any symmetric payoff in the convex hull of

17These regressions used the subset of the data in which recommendations were given. The dependent variable is forgone

payoff, and the independent variables are C recommendation, D recommendation, followed C recommendation, followed D

recommendation. No constant term was used. In the results, p–values were below 0.001 for both types of recommendation in

the good– and Nash–recommendations treatment, approximately 0.043 for C recommendations in the bad–recommendations

treatment, and approximately 0.77 for D recommendations in the bad–recommendations treatment. In the very–good–

recommendations treatment, the p–value was approximately 0.78 for C recommendations and 0.030 for D recommendations,

but the coefficient for the latter was positive. Adding session fixed effects to these regressions had little qualitative effect.
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Nash equilibrium payoff vectors. A third, “Nash” treatment uses a correlated equilibrium with payoffs in

the convex hull of Nash equilibrium payoff vectors, and a fourth, “very good” treatment uses an outcome

distribution yielding high payoffs, but which is not a correlated equilibrium.

We find that when subjects do not receive recommendations, their choices can be described fairly

well (though not perfectly) by mixed–strategy Nash equilibrium. This result suggests that theoretical

rationales for correlated equilibria that do not rely on extrinsic, third–party recommendations (or some

other “external event space” in the terminology of Vanderschraaf (2001)) might be difficult to observe in

practice—though we acknowledge the possibility that if subjects had interacted in fixed pairings rather

than under the random matching protocol we adopted, or had opportunities for communication (as in

Moreno and Wooders (1998)), then spontaneously–arising correlated equilibrium might have been more

likely to have been observed.

By contrast, giving subjects recommendations nearly always has an effect on behavior, but the effect

depends on what recommendations are given. When recommendations are based on an underlying corre-

lated equilibrium, subjects follow them more often than mixed–strategy equilibrium predicts, though far

less than 100% of the time, and varying with the correlated equilibrium. When recommendations are not

based on a correlated equilibrium, subjects learn to ignore them.

As in previous efforts to implement correlated equilibria in the laboratory, our results cast a bit of

doubt on the usefulness of this solution concept as a descriptive notion, as the correlated equilibrium

point predictions are not observed. On the other hand, our study reveals several new and important

empirical findings about the correlated equilibrium concept. First, the lesson of our good– and Nash–

recommendations treatments is that it is not necessary for recommendations always to be followed in order

for them to have an effect. Recommendations in these treatments were followed only roughly 70–75% of the

time, but this was enough to have a significant effect on the distribution of outcomes.18 (There was also a

positive, but insignificant, effect on average payoffs.) Second, the lesson of our very–good–recommendations

treatment is that correlated equilibrium is likely a necessary condition for recommendations to have any

substantial effect on behavior. In particular, we found that, consistent with the theoretical prediction,

subjects were not blindly following recommendations in the very–good-recommendations treatment (as

they would have if they were, for example, simply trying to please the experimenters, or choosing high–

payoff outcomes irrespective of the outcomes’ strategic properties). Third, our bad–recommendations

treatment shows that it is particularly difficult to induce subjects to follow recommendations based on

correlated equilibria that are Pareto inferior to the available Nash equilibria. This finding would seem to

greatly limit the class of empirically relevant correlated equilibria to those that Pareto improve upon the

set of Nash equilibria.19

Future theoretical and empirical work on the topic of correlated equilibria might relax the assumption

18This frequency is comparable to that found by Cason and Sharma (2007), whose baseline treatment resembles our good–

recommendations treatment. Unlike Cason and Sharma, we do not attempt here to disentangle among competing explanations

for subjects’ failure to follow recommendations (see Note 8), such as social preferences, uncertainty about whether the opponent

will follow recommendations, or simply decision errors; however, we expect that their finding—that all three of these factors

have some impact—should apply to our subjects as well.
19A referee has pointed out an alternative explanation for our results: that recommendations are more likely to be followed

when the underlying outcome distribution allows easy application of Bayes’s rule. Posterior probabilities in the good– and

Nash–recommendations treatments are always 0, 0.5, or 1, while they can be 1

3
or 2

3
in the bad–recommendations treatment and

1

9
or 8

9
in the very–good–recommendations treatment; the increased cognitive requirements involved in calculating expected

payoffs using these latter fractions might have pushed frequencies of following recommendations toward one–half.
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that recommendations arise from a non–strategic third party according to deterministic (and commonly

known) probabilities. In place of this construct, a self–interested “mediator” player might repeatedly choose

recommendations to make to the players of the stage game. In such an environment, the mediator’s payoff

could be based on the payoffs earned by the stage–game players: for example, it might be proportional

to their average payoff. In this setting, the researcher could explore whether the mediator’s frequencies of

recommendations to players were consistent with any correlated equilibrium, and if so, which one: good,

bad, Nash, or some other one.20

A second useful extension would be to consider some “language” issues as they apply to correlated

equilibrium. For instance, one might wonder whether the form of recommendations matters: for example,

whether subjects are told, “It is recommended that you play C”, as in our design, or they simply see the

message “C” on their screens. The salience and literal meanings of recommendations are also of interest:

must the message space for recommendations correspond precisely to the action space, or might it be larger

(for example, including also “no message”), or consist of a set of messages with no clear mapping to the

action space (such as the message space {@, & })?21

We leave these extensions to future research.
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de México.

Siegel, S. and N.J. Castellan, Jr. (1988), Nonparametric Statistics for the Behavioral Sciences, 2nd Ed.,

New York: McGraw Hill.

Skyrms, B. (1996), Evolution of the Social Contract, Cambridge: Cambridge University Press.

Van Huyck, J.B., A.B. Gilette and R.C. Battalio (1992), “Credible assignments in coordination games,”

Games and Economic Behavior 4, pp. 606–626.

Vanderschraaf, P. (2001), Learning and Coordination: Inductive Deliberation, Equilibrium, and Conven-

tion, New York: Routledge.

Vanderschraaf, P. and B. Skyrms (2003), “Learning to take turns,” Erkenntnis 59, pp. 311—348.

Young, P. (2005), Strategic Learning and Its Limits, Oxford: Oxford University Press.

24


