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Abstract
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itself, and to anticipate regime changes and NBER-dated turning points. The forecasting model
we develop features an error-correction mechanism with a drift component that follows regime-
speci�c trajectories. Success in forecasting depends critically on the incorporation of a �exible
speci�cation that admits wide heterogeneity in trajectories across regimes, including potentially
dramatic departures from linearity.
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1 Introduction

Success in forecasting GDP growth depends critically on the ability to anticipate shifts of the

economy between episodes of general expansion and contraction. The apparent non-linearity of

the process that governs these shifts, coupled with the decrease in the volatility of GDP growth

observed since the mid-1980s, renders the task of anticipating regime shifts as challenging. Here we

develop a univariate non-linear model designed to detect and anticipate regime shifts. The model

exhibits strong in-sample performance in forecasting GDP growth, and is also useful in anticipating

NBER turning points.

The model is a re�nement of that developed by DeJong, Liesenfeld and Richard (DLR, 2005),

and features two key components: regime-switching behavior, and an error-correction mechanism

(ECM). The ECM characterizes stochastic �uctuations of GDP growth around a drift component.

In turn, regimes are de�ned in terms of the behavior of the drift component, which shifts sto-

chastically between expansionary and contractionary trajectories (thus GDP growth shifts between

phases of general acceleration and deceleration). Trajectories are non-linear and heterogeneous

across regimes, with speci�c characteristics determined by the realization of a set of latent parame-

ters drawn from a �xed distribution. Compared with the speci�cation of DLR, our characterization

of drift trajectories is highly �exible, and capable of exhibiting dramatic departures from linearity.

Our use of a regime-change speci�cation builds upon Hamilton (1989) and Tong (1990). Models

constructed following Hamilton characterize regime changes as being governed by unobserved regime

indicators (extensions of Hamilton�s two-regime speci�cation include Boldin, 1996; Clements and

Krolzig, 1998; and Kim, Nelson and Piger, 2004). Models constructed following Tong characterize

regime changes as being governed by observed indicators constructed as deterministic functions of

current and past GDP growth (extensions of Tong�s speci�cation include Beaudry and Koop, 1993;

Pesaran and Potter, 1997; van Dijk and Franses, 1999; and Ocal and Osborn, 2000).

A third class of models incorporates features in the tradition of both Hamilton and Tong by

modelling regime changes as stochastic, with transition probabilities dependent upon observed

indicator variables (examples include Durland and McCurdy, 1994; Filardo and Gordon, 1998; and

DLR). Like DLR, we link regime-change probabilities to an observed indicator variable via a logistic

transformation. We refer to the indicator variable as a tension index, which is constructed as the
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geometric sum of past deviations of GDP growth from a corresponding sustainable growth rate

(interpreted as the growth rate of potential GDP). The tension index tends to increase in growth-

acceleration regimes, and decrease in deceleration regimes; in either case, as the index increases in

absolute value over the course of a regime, the probability of a regime change heightens.

The tension index, along with NBER-dated recessions (indicated as shaded areas) is illustrated

in Figure 1. The index undergoes 16 transitions between periods of general expansion and contrac-

tion, with transitions tending to precede NBER-de�ned business-cycle peaks and troughs by several

quarters (transition dates are reported in Table 1). In generating forecasts, we exploit the predic-

tive quality of the index by transforming forecasts of GDP growth into forecasted trajectories for

the index, forecasted regime-change probabilities, and forecasted announcements of NBER-de�ned

business-cycle turning points.

As noted, regime changes correspond with changes in the trajectory of the ECM-drift compo-

nent. Parameters characterizing the nature of trajectories are latent, and assumed to be drawn

from a �xed distribution. We also model the volatility of GDP growth as regime-speci�c, as de-

termined by the realization of an additional latent parameter. As the duration of a given regime

increases, the precision of our estimates of the realized parameters sharpens. By modelling drift

and volatility parameters as stochastic, we e¤ectively account for the heterogeneity observed across

business cycles, along with the decrease in the volatility of GDP growth associated with the Great

Moderation (for analyses of this phenomenon, see McConnell and Perez-Quiros, 2000; Kim and

Nelson, 1999; and Stock and Watson, 2002).

The enhanced �exibility of the drift component we employ (relative to that of DLR) turns out

to be critical in characterizing regime changes realized in the latter portion of the sample period.

It also delivers distinct improvements in forecasting performance. For example, using rolling one-

step-ahead forecasts over the last regime identi�ed in our sample (2003:IV to 2008:II), the model

yields reductions in root-mean-squared (RMSE) forecast errors of 13% and 53% relative to the DLR

model and an alternative under which drift trajectories are constrained to be linear. Moving the

beginning of the rolling forecast period to 1988:I, and again running through the sample, we obtain

reductions of 5% and 30%.

A large and unsettled literature has assessed the importance of non-linearities in accounting suc-

cessfully for the behavior of GDP growth. The literature consists of three general branches. One
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branch adopts a hypothesis-testing approach to determine whether linear models can be rejected in

favor of non-linear alternatives. While such tests typically fail to reject when the non-linear alter-

native is Hamilton�s (1989) relatively simple two-state Markov-switching model (e.g., see Garcia,

1998; and Hansen, 1992), rejections have been obtained using extensions of Hamilton�s model as

alternatives (e.g., see Hansen, 1992; and Kim, Morley and Piger, 2005).

A second branch has assessed the ability of alternative speci�cations to account for various

facets of business-cycle behavior (e.g., average lengths of expansions and recessions). In parallel to

the hypothesis-testing branch, when non-linear alternatives are relatively simple Markov-switching

models, they are found to o¤er limited value-added relative to linear speci�cations (e.g., see Hess

and Iwata, 1997; Harding and Pagan, 2002; and Clements and Krolzig, 2004). But when relatively

complex non-linear alternatives are considered, value-added becomes more pronounced (e.g., see

Galvao, 2002; Kim, Morley and Piger, 2005; and Morley and Piger, 2005).

Here we contribute to the third branch, which has analyzed the comparative forecasting perfor-

mance of linear and non-linear speci�cations of GDP growth. Notably, Marcellino (2008) assessed

the forecasting performance of 55 alternative univariate models, and found that the non-linear

speci�cations included in the comparison set failed to outperform a baseline AR(4) model with

a constant term speci�ed for the log level of GDP. However, the comparison set did not include

non-linear models in our class. Relative to Marcellino�s baseline model, our speci�cation yields re-

ductions in RMSE of 42% and 43% over the (2003:IV to 2008:II) and (1988:I to 2008:II) forecasting

horizons referenced above. Thus the non-linearities built into our model deliver substantial gains

in forecasting performance.

We conclude this section by noting that we use the model not only to forecast GDP growth,

but also to forecast the announcement of NBER turning points. To operationalize turning-point

forecasts, we require an algorithm that converts output from the model into an NBER-dating rule.1

Given the anticipatory relationship noted above between the tension index and NBER turning

points, the index features prominently in the algorithm we employ.

We turn now to a description of the model, the methods we use to estimate it, and the algorithm

1The need for such an algorithm stems from the fact that NBER�s dating method is neither transparent nor
reproducible (Chauvet and Hamilton, 2005; Chauvet and Piger, 2008). Many attempts have been made to replicate
NBER dates using non-parametric rule-based methods and statistical models (for an overview, see Harding and
Pagan, 2002).
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used to replicate NBER turning points. We then present model estimates, characterize the real-

time evolution of regime-shift probabilities, discuss in-sample forecast performance, and conclude

by presenting forecasts obtained using the latest available data.

2 The Model

2.1 Speci�cation

As noted, the model is a re�nement of that developed by DeJong, Liesenfeld and Richard

(2005). The mean speci�cation is common to both versions, and features an ECM and regime-

switching behavior. Regime switches are manifested in the behavior of the ECM drift component

that transitions between periods of general acceleration and deceleration.

Regime changes are triggered by a tension index, constructed as a geometric sum of past devi-

ations of actual GDP growth gt from a corresponding �sustainable�growth rate g�t . Denoting the

deviations yt = gt � g�t , the tension index Gt is given by

Gt =
1X
i=0

�iyt�i ; (1)

where 0 < � < 1 measures the persistence of past deviations on current Gt. We specify the

unobservable g�t as the sample mean of gt (alternative speci�cations that admit slowly-evolving

behavior yield similar forecasting characteristics). By implication, gt tends to pass between phases

during which it alternately tends to outstrip and fall short of g�t . Under the interpretation of our

model, neither phase is sustainable: both produce tension buildups (captured by increases in the

absolute value of Gt) that ultimately lead to regime changes.

Regime-change probabilities are modelled using the logit speci�cation

�t = P (st+1 = �stjst; Gt) =
1

1 + expf�0 � �1stGtg
; (2)

where st indicates the regime prevailing in period t, being 1 if Gt is in an expansionary regime and

-1 otherwise. Thus as the absolute value of Gt increases, so too does �t.
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The model for GDP growth, in terms of its deviations from g�t , is given by

yt = mt � �Gt�2 + yt�2 + �t ; �tj�t � N(0; �2t ) ; (3)

where mt represents a stochastic latent regime drift (the rationale behind this lag-2 speci�cation

follows the presentation of equations (5) and (6) below). Subtracting yt�2 from both sides of (3)

casts the model explicitly as an ECM representation, in which the term �Gt�2 re�ects an integral

correction based upon cumulated past deviations from equilibrium, and (1 � )yt�2 represents a

proportional correction following the terminology of Phillips (1954, 1957).

The critical departure from DLR embodied in this model is the speci�cation of the stochastic

ECM drift component. The speci�cation casts drift as a latent variable that jumps discontinuously

at regime-change dates, and that follows piecewise non-linear trajectories that are heterogeneous

across regimes. The speci�cation is given by

mt = mj + staj

�
e�bj � 1
bj

�
; � 2 f0; 1; :::; (t(j)� t(j � 1)� 1)g ; (4)

where the index j (j : 1! J) denotes the regime prevailing in period t, and t(j) denotes the date

at which regime j gives way to regime j + 1 (i.e. t(j) is the last period under regime j).

The parameters of this speci�cation are taken as random variables drawn from a �xed distri-

bution at the onset of a new regime. The variable mj represents the value of the regime drift in

the �rst period of regime j, and the exponential term dictates the curvature of the mt trajectory

during regime j. Speci�cally, aj represents the absolute value of velocity
��
dmt
d�

�
�=0

�
of the drift

process at � = 0, and ajbj the absolute value of acceleration
�h

d2mt
d�2

i
�=0

�
. Both aj and bj are

restricted as non-negative.

Inferred drift trajectories, along with deviations from these trajectories exhibited by the ECM

growth term, are depicted in Figure 2 (the method used to infer these trajectories is described

below). For comparison, Figure 2 also depicts drift trajectories inferred using the speci�cation em-

ployed by DLR. Note that inferred trajectories vary widely across regimes, re�ecting the well-known

variability of business cycles themselves. In relatively long regimes, the trajectories obtained here

and using the DLR speci�cation are barely discernible; but in short regimes, di¤erences are readily
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apparent: trajectories associated with the re�ned model tend to exhibit relatively dramatic jumps

at regime-change dates, are highly non-linear, and closely track the residual ECM growth term. As

we shall see, the payo¤ of these di¤erences in terms of forecasting performance is substantial.

As noted, in order to allow for variation in the drift process mt across regimes, we specify

(aj ; bj ;mj) as latent random variables. Likewise, to capture heterogeneity in GDP volatility, the

conditional variance of growth-rate innovations �2j is also latent, random, and regime-speci�c. An

extensive diagnostic analysis led to the speci�cation of a quadrivariate normal distribution for

�j �
h
ln aj ; ln bj ;mj ; ln�

2
j

i0
, with mean vector and covariance matrix (��;��) treated as model

parameters, and with ln�2j taken as independent.

Returning to the model description, note that by pre-multiplying by (1 � �L), (3) can be

rewritten in the form of an (overidenti�ed) ARMA(3,1) plus drift process

yt = nt + �yt�1 + ( � �)yt�2 � �yt�3 + �t � ��t�1 ; (5)

where within regime j the variable nt is given by

nt = (1� �)mj +
aj
bj
st

h
e�bj � �e(��1)bj � (1� �)

i
: (6)

Its overidenti�cation provides signi�cant e¢ ciency gains in the estimation stage at virtually no

loss of �t. Note that the selection of lag 2 for the ECM representation (3) allows us to capture

parsimoniously a non-zero coe¢ cient on yt�3 in (5), which turns out to be statistically signi�cant.

2.2 Estimation

To characterize estimation, let � represent the vector of all model parameters, XT the data,

and ET = fetgTt=1 a vector of zeros and ones, where et = 1 indicates a regime change period (i.e.,

the next period is the beginning of a new regime). Note that ET 2 �T = h0; 1iT ; with cardinal

2T : Let B(ET ) = ft (j)gJj=1 denote the vector of regime change periods associated with ET . It is

critical to keep in mind that J and the t (j) s are implicit function of ET (though we do not make

this explicit hereafter, for ease of notation).

ET is not observed, and brute force marginalization of the data density with respect to ET re-
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quires summation over the 2T trajectories in �T (the vast majority of which are assigned negligible

probabilities). Following DLR, we instead apply two maximum likelihood (ML) procedures: ML

estimation conditional on a particular trajectory cET (selected as described below); and ML esti-
mation unconditional on ET ; relying on an importance sampling procedure designed to to identify

likely trajectories.

For a given ET , the conditional likelihood function is given by

LC(�;XT ; ET ) = q (ET ;XT ; �q)h (XT ;ET ; �h) ; (7)

where

q (ET ;XT ; �q) =
TY
t=1

�ett (1� �t)(1�et); (8)

h (XT ;ET ; �h) =
JY
j=1

f (Xj ;ET ; �h) ; (9)

f (Xj ;ET ; �h) =

Z t(j)Y
t=t(j�1)+1

1

�2j
�

�
yt � �t
�j

�
fN (�j) d�j ; (10)

and Xj denotes the block of the data associated with regime j, � = (�q; �h) ; �q = (�0; �1) ;

�t = mt� �Gt�1+ yt�2; fN is the Normal density N (��;��) introduced above, and � () denotes

the standardized Normal density.

Conditional ML estimation amounts to maximizing lnLC with respect to � conditionally onbE�T , which is selected iteratively as follows. Let bE0T denote an initial trajectory (selected, e.g., by
visual inspection of Figure 1), let B

� bE0T� = �bt0(j)	 bJ0j=1 ; and let b�0C denote the ML estimate of
� conditional on bE0T : For each j from 1 to bJ0 we reconsider the location of bt0(j): Speci�cally, let
t01(j) = bt0(j� 1)+1 and t02(j) = bt0(j+1); so that the interval �t01(j); t02(j)� represents the complete
set of potential dates for t (j) : Then the probability that the jth shift occurred at time t over the

interval is given by

bP0(t; j) = LC(b�0C ;XT ; bE0T (t; j))Pt02(j)

s=t01(j)
LC(b�0C ;XT ; bE0T (s; j)) ; t 2

�
t01(j); t

0
2(j)

�
; (11)
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where bE0T (t; j) denotes the modi�ed trajectory obtained by substituting t for t (j) in bE0T (i.e., by
setting e0t(j) = 0 and e0t = 1). For each j : 1 ! bJ0; a new date t� (j) is de�ned as that which

maximizes bP0(t; j): Application of this procedure produces a revised trajectory bE�T and a new

conditional ML estimate b�0C : The procedure is repeated until convergence to a �xed-point solutionb��C ; which constitutes the conditional ML estimate of �: This process typically converges within
three rounds (hardly surprising, considering the strong informational content of the index Gt; as

highlighted in Figure 1). This iterative procedure is akin to the EM-type algorithms typically

employed in estimated Markov-switching models (as outlined, e.g., in Hamilton 1994, and Diebold,

Lee, and Weinbach 1994).

Note that a similar iterative procedure can be applied in order to see whether new regime breaks

need to be introduced into the sample. This possibility is particularly relevant as new observations

become available, and one wishes to determine whether a new break may have occurred since the

last identi�ed break J: In such a case the search for a potential new break is conducted on the

interval t01 (J + 1) = bt0(J) + 1 to t02 (J + 1) = T: For any t 2 �t01 (J + 1) ; t02 (J + 1)� ; the modi�ed
trajectory bE0T (t;�) obtains by setting be0t = 1 instead of its current zero. Formula (11) still applies,
with the additional additive term LC(b�0C ;XT ; bE0T ) appearing in the denominator to account for
the possibility of no new break, and also appearing in the numerator when the probability of no

new break is calculated. The search for additional breaks in the interior of the sample proceeds

analogously.

Unconditional importance sampling estimation employs conditional ML estimates b�Cq to produce
a sequence fb�tgTt=1 of probability estimates of regime changes. These probabilities are used as an
importance sampler for the unobserved ET : Speci�cally, these probabilities are used to produce

R = 1; 000 trajectories
n eET;roR

r=1
: Given these trajectories, the corresponding IS estimate of the

unconditional likelihood function is given by

LS(�;XT ) =
1

R

RX
r=1

q
� eET;r;XT ; �q�

q
� eET;r;XT ;b�Cq �h

�
XT ; eET;r; �h� : (12)

The unconditional ML estimate of � is that which maximizes lnLS :

Both conditionally and unconditionally upon regime-change dates, likelihood evaluation re-
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quires integration over the latent parameters �j ; j = 1; :::; J . To accomplish this, we utilize the

e¢ cient importance sampling (EIS) procedure introduced by Richard and Zhang (2007). Finally,

we obtained ML estimates using the simplex algorithm of Nelder and Mead (1965), implemented

in IMSL FORTRAN numerical libraries as routine UMPOL.

2.3 Dating Recessions

As noted, our forecasting objectives include the anticipation of NBER-dated turning points.

Towards this end, we require an algorithm that converts output from the model into an approxi-

mated NBER dating rule. A simple and popular example of such an algorithm is the �two consec-

utive quarters of negative growth�rule for de�ning the onset of a recession. However (no doubt in

part due to the fact that growth-rate data are often revised, while NBER dates are not), this rule

is far from infallible in the data-set vintage we analyze.

The algorithm we employ instead features a modi�cation of the two-quarter rule, combined with

behavior of the tension index Gt: To motivate our use of Gt; recall from Figure 1 the proximity

of business-cycle peaks and troughs to transitions in Gt from general periods of expansion and

contraction. Note also that no NBER-recession fails to coincide with the crossing of Gt over the

threshold �5: Using this fact, and experimenting with alternative characterizations of changes in

Gt trajectories, we developed the following algorithm for dating NBER turning points. Let

�Gt = G[t;t+3] �G[t�3;t]; (13)

where G[t;t+3] represents the arithmetic mean of Gt over the 4-period window [t; t+ 3]. Then:

� Preselection of potential start date intervals. A potential interval is de�ned as a

(maximal) sequence of contiguous periods t for which at least two periods of negative growth

are observed in the four-period window [t; t+ 3].

� Selection of start dates. Let [t1; t2] denote a preselected interval. A recession-start date is

de�ned as the period t�1 that minimizes �Gt subject to the constraint that G[t�1;t�1+3] exceeds

�5: If no date in [t1; t2] exceeds this threshold, the interval is eliminated as containing a

possible recession (three such instances arise in our sample).
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� Selection of end dates. Let [t1; t2] denote a preselected interval containing the chosen start

date t�1. The interval of potential end dates is de�ned as [t
�
1 + 1; t2] : The selected end date

t�2 is de�ned as the last date in the interval such that Gs < 0; s 2 [t�1 + 1; t2], subject to the

constraint that gt�2 < 2:75:

Application of this algorithm yields a close approximation to NBER-de�ned turning points.

It succeeds in �agging each NBER-de�ned recession, and avoids �agging recessions spuriously.

Regarding the timing of de�ned recessions, the algorithm misses only three start dates, each by one

quarter: the NBER-de�ned peaks of (1969:IV, 1980:I, 1981:III) are identi�ed instead as (1969:III,

1979:IV, 1981:IV). And it misses only one end date: 1991:I is identi�ed instead as 1991:III.

3 Results

3.1 Estimates of Parameters and Latent Regime-Speci�c Variables

The sequence of regime-shift dates used to obtain conditional ML parameter estimates are

reported in Table 1, and conditional and unconditional ML parameter estimates are reported in

Table 2. Estimates were obtained using the annualized growth rate of quarterly U.S. GDP measured

in chain-weighted 2000 prices, spanning 1950:III to 2008:II.

Conditional and unconditional point estimates are closely comparable, with conditional esti-

mates tending to be relatively precise. Two aspects of these estimates are particularly notable.

First, the estimates indicate a strong error-correction e¤ect. For example, the conditional estimate

of the autoregressive coe¢ cient  (0.3426, with s.e. 0.0416) indicates non-trivial persistence for

shocks; its di¤erence (1� ) translates into a fairly strong proportional error correction of 0.6574.

In turn, the ECM coe¢ cient � is estimated as 0.2522 (s.e. 0.051), indicating that past errors in

the lagged tension index exert appreciable in�uence over GDP growth. Second, estimates obtained

for the distribution of the latent regime-drift parameters indicate a signi�cant positive interaction

between (ln aj ; ln bj) across regimes; recall that these variables jointly determine the initial velocity

and acceleration of the regime drift. Additional interactions are insigni�cant.

Smoothed estimates of the latent regime-speci�c parameters are illustrated in Figure 3 (plotted

estimates were obtained using conditional ML estimates; unconditional estimates are similar). Note
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that the last �ve values of ln�2j lie below the estimated sample mean of 2.0709, illustrating the

impact of the Great Moderation. In addition, estimates of the regime-drift parameters exhibit mild

downward trends across regimes. It is possible to exploit these patterns by introducing additional

complexity into the distributions speci�ed for these latent parameters (e.g., means of the latent

parameters could be modelled as decreasing functions of identi�ed regimes). However, with only

17 regimes identi�ed in the sample, the precision with which tendencies across regimes could be

identi�ed is limited, thus the payo¤ of this added complexity is low. Moreover, as highlighted in

Section 3.3 below, the in-sample forecasting performance of the model is very strong, and does not

appear to su¤er from the maintained assumption of a stable distribution for regime characteristics.

3.2 The Evolution of Regime-Shift Probabilities

The regime-shift dates indicated in Table 1 were obtained using the full data set. Figure 4

illustrates how inferences regarding the last four selected break dates evolved in real time. To see

how, consider the upper-left panel of the �gure. Given the regime-break date identi�ed in 1984:I,

and using data observed through 1989:IV, conditional model estimates were obtained and used to

calculate the probability that a subsequent break date had not occurred. As the �gure indicates, the

probability assigned to this scenario is essentially 1. Adding an additional data point, re-estimating

the model, and re-calculating break probabilities, we continue to roll through the sample. Beginning

in 1990:III, a second probability is plotted: that associated with a possible break in 1990:III; four

additional plots are added over the next four quarters. Jointly, the probability plots illustrate the

ability of the model to track the evolution of regime changes.

In the upper-left �gure, note that 1990:IV initially appears as a strong potential break date: the

initial probability of a break at this date is 60%. However, in the next quarter this probability drops

below 20%, and the ultimate break date of 1991:I is assigned a break-point probability of 75%. By

1991:II the probability of no break is essentially zero, with 1990:IV and 1991:I both appearing as

likely candidates for break dates. By 1992:III, 1991:I emerges as the clear choice for a break.

In contrast to the rapid identi�cation of 1991:I as a clear candidate for a break, Figure 4 indicates

that probabilities assigned to the subsequent break dates of 1999:IV, 2001:III and 2003:III evolved

relatively slowly and gradually. In turn, note from Table 1 that the full-sample probabilities assigned

to these speci�c dates are relatively low: 62%, 87%, and 68%, relative to the 94.5% probability
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assigned to 1991:I.

The message from Figure 4 is that the identi�cation of regime changes often takes time, and

in general we face uncertainty regarding the current state of the economy as we seek to generate

forecasts. We account for this uncertainty explicitly by generating sets of conditional forecasts,

where conditioning is with respect to the full range of break-date scenarios evident given the latest

available data. We then compute unconditional forecasts as the weighted average of the conditional

forecasts, with weights given by the probabilities assigned to the alternative conditional scenarios.

Characteristics of these forecasts are detailed below.

3.3 In-Sample Forecasting Performance

As noted, a large and unsettled literature has assessed the importance of non-linearities in

accounting for the behavior of GDP growth. Marcellino (2008) contributed to this literature by

comparing the in-sample forecasting performance of 55 models relative to a baseline AR(4) model

with constant speci�ed for the logged-levels of GDP (from which growth-rate forecasts are straight-

forward to generate via a di¤erence transformation of levels forecasts). While the non-linear models

he considered failed to outperform his baseline speci�cation, he did not consider non-linear mod-

els in our class. Thus we present a modi�cation of his analysis to assess the contribution of the

non-linearities built into our model.

Following Marcellino, for a given model we obtained a series of forecasts by truncating the sample

period, generating a one-step-ahead forecast, augmenting the sample with an additional observation,

re-estimating, and generating another forecast. We then computed root-mean- and root-variance-

squared-error (RMSE and RVSE) statistics over various forecasting windows, including the period

spanning 1988:I through 2008:II (the end of our sample), and the sub-periods 1988:I-1999:I, 1991:II-

1999:IV, 2000:I-2001:III, 2001:IV-2003:III, 2003:IV-2008:II. The sub-periods correspond with the

last �ve regimes identi�ed in the sample.

In addition to our model, we generated forecasts using Marcellino�s AR speci�cation, a random

walk with drift speci�ed for GDP growth, the DLR model, and a version of our model under which

regime-drift trajectories were restricted to be linear (hereafter, the linear-mt model). Comparisons

with these latter two models are particularly revealing, because identi�ed regime changes are iden-

tical across speci�cations: departures from linearity in regime-shift speci�cations are the sole source
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of di¤erences in forecasting performance across these speci�cations.

Table 3 reports RMSE and RVSE statistics; and Figure 5 illustrates the time series of squared

forecast errors obtained using our model and the AR(4) speci�cation (vertical lines indicate regime-

change dates and NBER-de�ned turning points). In the brief sub-period 2000:I-200I:III, the AR(4)

model yields optimal performance on the basis of RMSE comparisons; in all other cases the model

we have presented dominates, often substantially. Over the entire in-sample horizon, our model

yields a 43% reduction in RMSE relative to the AR(4) model, and 30% relative to the linear-mt

model. From the �gure, note that squared forecast errors associated with the AR(4) model spike

around the last two regime-change dates we identify, but additional spikes are also observed during

the relatively tranquil period of the late 1990s.

3.4 Forecasting Future Growth Rates and Recessions

Beyond forecasting GDP growth, the model is also useful for anticipating future regime changes,

along with NBER-dated turning points. We illustrate this in Figures 6 and 7, which present

the results of model simulations computed over a twelve-quarter horizon. The simulations are of

forecasted trajectories for growth, conditional on the model estimated using data through 2008:II,

and on the set of identi�ed regime-break dates reported in Table 1.

Recall from Table 1 that the economy was inferred to have entered a growth-deceleration regime

in 2003:III. Using subsequent observations of GDP growth, we compute smoothed values of the pa-

rameters that determine the trajectory followed by the ECM drift mt; and thus smoothed values

of the trajectory itself. Extending the trajectory beyond the end-of-sample period T; and simu-

lating subsequent ECM innovations using the smoothed estimate of the latent innovation-variance

parameter, we obtain a simulated trajectory for growth using (3).

For a given simulated trajectory, so long as a regime break does not occur over the forecast

horizon, the trajectory follows the uninterrupted path for mT+i described above. However, for each

period in the forecast horizon, the probability of a regime change triggered by the continuation of

the trajectory is calculated using (2). We then simulate a coin toss that triggers a regime change

with the calculated probability. When a regime change is realized, say, at date T + i; a new

trajectory is inferred for fmT+i+1;mT+i+2; :::g :

The top panel of Figure 6 reports a histogram of regime-break probabilities (including the
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probability of no break) over the forecast horizon obtained using 500,000 simulated trajectories.

The forecasted probability of no break over the horizon is 1.6%, and 2010:II and 2010:III appear

as the dates most likely to feature a break (break probabilities in both cases are 14.8%).

The middle panel of Figure 6 plots mean growth trajectories simulated for each possible break-

date scenario over the forecast horizon. Note that mean forecasts jump discontinuously whenever

a break is inferred to occur. In turn, the bottom panel of the �gure integrates over all simulated

trajectories to produce unconditional point forecasts and 95% con�dence intervals. The outlook

based on the �gure is bleak: growth is predicted to remain sluggish and �at (below 2% with

near-zero slope) over the next two years.

Figure 7 illustrates implications of this outlook for the likely occurrence of an NBER-dated

recession by mapping model simulations into the dating algorithm described above. The top, middle

and bottom panels plot histograms of recession start-date, end-date, and duration probabilities. The

probability of no recession is 11.4%. Start dates are fairly evenly distributed, with 2009:I appearing

most likely for a start (15.2%); end dates are also evenly distributed, with 2010:II appearing most

likely (11.7%). Finally, the histogram for recession length is sharply peaked at 4 quarters, which is

assigned a probability of 47.3%.

4 Conclusion

We have presented a regime-switching model of GDP growth that can be used to anticipate

NBER-dated turning points. Parameters charaterizing growth trajectories and innovation volatili-

ties are modelled as latent and regime-speci�c, thus the model captures temporal changes in growth

behavior in the absence of changes in its underlying structure. There is considerable heterogene-

ity in the model�s characterization of growth trajectories across regimes, with distinct departures

from non-linearity appearing frequently. Based on an in-sample forecasting exercise, allowances for

non-linear behavior generate distinct improvements in forecasting performance.
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5 Tables and Figures

Table 1. Regime-Shift Dates and Associated Probabilities
Break Estimated Break Estimated

No. Date Probability No. Date Probability

1 1953:IV 0.977 10 1978:II 0.955

2 1955:I 0.956 11 1980:II 0.965

3 1958:I 0.961 1983:IV 0.341

12 1984:I 0.454
1959:I 0.102 1984:II 0.114

4 1959:II 0.882
13 1991:I 0.945

5 1960:IV 0.949
1997:III 0.097

1965.III 0.105 1998:IV 0.075

6 1965:IV 0.705 14 1999:IV 0.620

7 1970:IV 0.901 2001:II 0.062

15 2001:III 0.872
8 1973:I 0.915 2001:IV 0.050

9 1974.III 0.891 16 2003:III 0.678
2003:IV 0.102

2004:III 0.074

Note: Identi�ed regime-shift dates are in boldface; local alternatives receiving non-negligible probabilities are also listed.
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Table 2. Parameter Estimates
Conditional ML Unconditional ML

Parameter Estimate Asym. Std. Error Estimate Asym. Std. Error

� -0.2522 0.0510 -0.2427 0.1183

 0.3426 0.0416 0.3328 0.0664

�0 10.877 0.9028 10.161 1.2494

�1 1.2124 0.0784 1.3132 0.2136

� 0.5875 0.1910 0.5733 0.2745

ln aj -2.7623 0.2320 -2.8740 0.7324

ln bj -1.1255 0.2214 -1.2918 0.4133

mj 0.4322 0.1322 0.3923 0.1325

ln�2j 2.0709 0.2880 2.0173 0.5317

Cov(ln aj ; ln bj) 0.6335 0.0423 0.5662 0.2139

Cov(ln aj ;mj) -0.0039 0.0358 0.0069 0.0867

Cov(ln bj ;mj) -0.0087 0.0399 -0.0174 0.1851

V ar(ln aj) 0.9127 0.2830 0.9828 0.3934

V ar(ln bj) 0.4935 0.1719 0.4240 0.1654

V ar(mj) 3.5381 0.4933 3.6405 0.5695

V ar(ln�2j ) 1.0292 0.5940 1.0921 0.6038

Log-Likelihood -611.130 -604.617

Note: The sequence of regime-shift dates used for Conditional Maximum Likelihood are reported in Table 1.
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Table 3. In-Sample Forecast Performance
Model: DHLR DLR (2005) mt-Linear Random Walk AR(4)

1988:I to 1991:I
Root Mean Squared Error 100 100 122 114 128

Root Variance Squared Error 100 127 151 109 135

1991:II to 1999:IV
Root Mean Squared Error 100 105 126 134 193

Root Variance Squared Error 100 103 199 188 340

2000:I to 2001:III
Root Mean Squared Error 100 112 134 148 90

Root Variance Squared Error 100 138 116 223 177

2001:IV to 2003:III
Root Mean Squared Error 100 104 134 102 100

Root Variance Squared Error 100 107 132 67 117

2003:IV to 2008:II
Root Mean Squared Error 100 113 153 153 142

Root Variance Squared Error 100 109 228 283 156

1988:I to 2008:II
Root Mean Squared Error 100 105 130 131 143

Root Variance Squared Error 100 116 156 174 183

Reported statistics are relative to DHLR, normalized to 100 in all forecast horizons. Forecast errors were computed using

rolling one-period-ahead forecasts of GDP growth (with each model re-estimated following updates in the observed sample).

The random walk model included a drift term; the AR(4) model included a constant, and was speci�ed for the log-level of

GDP (log-level forecasts were then converted into forecasted growth rates).
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Figure 1. Tension Index and NBER-Dated Recessions
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Figure 3. Smoothed Values of the Latent Variables.

Panel (A) ! aj , (B) ! bj , (C) ! mj , (D) ! ln�2j .
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Figure 5. Squared Forecast Error Comparisons.
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Figure 6. Forecasted Regime-Shift Probabilities and Growth Rates.

Top Panel: Regime-Shift Probabilities.
Middle Panel: Conditional forecasted mean growth trajectories.

Bottom Panel: Unconditional forecasted mean growth trajectories.
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Figure 7. Forecasting NBER-Dated Recessions.

Top Panel: Recession-Start Probabilities.
Middle Panel: Recession-End Probabilities.

Bottom Panel: Duration Probabilities.
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