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Abstract. We consider lotteries with reimbursements. It turns out that
without loss of generality it is enough analyze lotteries where the winner gets
her expenses reimbursed. We find that such a lottery (Sad-Loser) has multiple
pure-strategy equilibria. We describe all equilibria and discuss their properties.
In particular, we find (1) a sufficient condition for the net total spending to
be higher in the Sad-Loser lottery than in the standard lottery, (2) that the
Exclusion Principle holds.
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1. Introduction

Lotteries are an important part of our life. They are a big business. Charities raise
money, government gets a big share of its revenue through lotteries. For example,
California total lottery sales in the fiscal year 2006/2007 reached astronomical $3,318
millions.1 There is a big literature on lotteries and its applications. Discussions
about State Lotteries in America can be found in Clotfelter and Cook (1989, 1990),
Cook and Clotfelter (1993). Morgan (2000) and Duncan (2002) provide theoretical
contributions. Morgan and Sefton (2000) and Lange, List, and Price (2007) report
experimental results. Craig, Lange, List, Price, and Rupp (2006) present field evi-
dence. However, the lottery design (the winner gets the main prize and each player
has to pay) is always fixed in the current literature. In this paper, we consider lot-
teries with reimbursements where different players have different values for the main
prize. Once we understand how lotteries with reimbursements work, we can think
about applications.
First, we demonstrate (almost without loss of generality2) that for our analysis it

is enough to consider winner-reimbursed lotteries (which we call Sad-Loser lotteries3).
∗I am grateful to Jack Ochs for helpful comments.
1Based on “California Lottery Report to the Public, Fiscal Year 2006/2007”.
See http://www.calottery.com/NR/rdonlyres/7F476E30-187B-429F-B566-5027C6444C9B/
0/LotteryAR2007English.pdf
2See footnote 11.
3The name comes from Riley and Samuelson’s (1981) example of Sad-Loser Auction.
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In fact, this type of lotteries is easy to implement: the lottery designer has to announce
the following rules

1. Each player is eligible to submit as his lottery bid any positive real number.
Each bid corresponds to the same number of lottery tickets.

2. The lottery winner receives the prize and retains his bid.

3. All other players lose their bids.

Second, we analyze the Sad-Loser lottery where different players have different
values for the main prize in detail. It turns out that there are multiple equilibria in
pure strategies.4 We found all such equilibria. The equilibria can be of two types:
i-type and internal type. i-type equilibria are such that only player i spends a positive
amount and all other players spend nothing. The net total spending is zero in any
i-type equilibrium.
Internal equilibria are such that at least two players are active (spend positive

amounts).5 We demonstrate that the players’ expected payoffs are zero in any internal
equilibrium. Moreover, we discover a sufficient condition for the expected designer
profit (the net total spending) in the Sad-Loser lottery to be higher than the total
spending in the standard lottery. This condition is simple and natural: if all players
are active in the standard lottery, then the expected profit in any internal equilibrium
in the Sad-Loser lottery is higher than the total spending (designer profit) in the
standard lottery. This result can be important for different applications of the Sad-
Loser lottery.
In order to understand better how the Sad-Loser lottery works it is important

to compare it with the standard lottery where players have different prize values.
Hillman and Riley (1989) show that the standard lottery has a set of active high-value
players in the unique equilibrium.6 Stein (2002) describes the equilibrium spending of
the active players. As it is usual in the contest literature, higher-value player spends
more in the equilibrium in the standard lottery. It turns out that the equilibrium
behavior is drastically different in the Sad-Loser lottery. We demonstrate a counter
intuitive result that a higher-value (stronger) player always spends less than a lower-
value (weaker) player and therefore always has a lower chance to win the Sad-Loser

4It is a standard result in the contest literature that a contest has a unique equilibrium in pure
strategies, see for example Szidarovszky and Okuguchi (1997).

5Some Sad-Loser lotteries can have an internal equilibrium where all players are active.
6Fang (2002) and Matros (2006) prove the uniqueness of the equilibrium.
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lottery in any internal equilibrium.7

Another striking observation is that the Exclusion Principle holds for the (net)
total spending in the Sad-Loser lottery. This result is surprising because the opposite
claim is true for the standard lottery, see Fang (2002).

1.1. Contest literature. Contest literature has greatly expanded since Tullock
(1980) presented his simple yet powerful rent-seeking model. The general form of the
Tullock’s contest is

max
xi

xriPn
j=1 x

r
j

Vi − xi, i = 1, ..., n, (1)

where n ≥ 2 players exert effort in order to win one prize, r > 0. Player i exerts effort
xi and has a chance

xriPn
j=1 x

r
j
to win prize Vi, if xi > 0. Tullock’s initial problem was

presented for the same prize values: V1 = ... = Vn. Hillman and Riley (1989) analyze
the standard lottery, r = 1, with different prize values V1 ≥ ... ≥ Vn > 0. Nti (1999)
describes the unique Nash equilibrium in the two-player case for any 0 < r < 2 and
different prize values.
There are two main questions in the contest literature.8 The first one is How to

reduce rent-seeking activities? This question was originally raised in Tullock (1967,
1980), Kruger (1974), and Posner (1975). The second question is How to maximize
the total effort in contests? Recently, this question attracted a lot of attention. See,
for example, Gradstein and Konrad (1999); Moldovanu and Sela (2001) among others.
It turns out that the Sad-Loser lottery can surprisingly help to answer both questions.
It is possible because of the multiplicity of equilibria. As we mentioned above, the
rent-seeking activities are zero (minimized) in any i-type equilibrium. Note that i-
type equilibrium is easy to implement: the designer has to allow player i to move
first. At the same time, since we provide the ranking of different internal equilibria
in the Sad-Loser lottery, we are are able to find the equilibrium where the net total
spending is maximized: only top two players have to be active in this equilibrium.
Recently, a new area of research has sprung investigating the situation where the

contest winner is reimbursed for her expenses. This type of contest has applications
in politics, see Matros and Armanios (2007), R&D and industrial organization, see
Kaplan, Luski, Sela, and Wettstein (2002).

7In the recent paper Cohen and Sela (2005) consider the Sad-Loser lottery. They show that in
the two-player case there exists a unique internal equilibrium where the weak contestant wins with
higher probability than the stronger one. We demonstrate that this property holds in all internal
equilibria for any number of players n ≥ 2.

8See Nitzan (1994) and Konrad (2007) for the overview.
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Matros and Armanios (2007) analyze contests with reimbursements, 0 < r ≤ 1,
but all prize values are the same V1 = ... = Vn (this approach is similar to Tullock’s
contest’s approach). In this paper, we consider n-player Sad-Loser lotteries, r = 1,
but analyze different prize values (this approach is similar to Hillman and Riley’s
contest’s approach). Cohen and Sela (2005) consider 2-player Sad-Loser lotteries,
describe the unique internal equilibrium, and discuss its properties.
The rest of the paper is organized as follows. Sections 2 and 3 present lotteries

with reimbursements and the Sad-Loser lottery. Properties of internal equilibria are
studied in Section 4. Section 5 makes a comparison between the Sad-Loser lottery
and the standard lottery. Concluding remarks are given in Section 6.

2. The Model

Consider a lottery with reimbursements among n ≥ 2 risk-neutral players. Players
buy simultaneously lottery tickets in order to win one prize. Player i’s valuation for
the prize is Vi. Suppose that

V1 ≥ V2 ≥ ... ≥ Vn > 0. (2)

The players’ valuations are commonly known among the players and we assume that
the winner/loser reimbursements are additively separable in the winner and loser
spending. Formally, player i buys zi ≥ 0 tickets in order to maximize the following
function

max
zi≥0

ziPn
j=1 zj

¡
Vi + πW (zi)

¢
+

Ã
1− ziPn

j=1 zj

!
πL (zi)− zi, (3)

where the first term in (3) is the probability to win the lottery, ziPn
j=1 zj

≥ 0, times
the lottery prize for player i, Vi, and the winner’s reimbursement, π

W (zi); the second

term is the probability to lose the lottery,
³
1− ziPn

j=1 zj

´
≥ 0, times the loser’s reim-

bursement, πL (zi); and the last term is the cost.9 In order to find the closed-form
solution we look at linear reimbursement functions.10 We assume that the individual
reimbursement depends only on the individual effort

πW (z) = αz, πL (z) = βz, (4)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. The maximization problem (3) is equivalent to the
following maximization problem

max
xi≥0

[Vi + γxi]
xiPn
j=1 xj

− xi, (5)

9We assume that if z1 = ... = zn = 0, then nobody wins the prize.
10Baye, Kovenock, and De Vries (2005) also examine linear reimbursements.
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where
xi = (1− β) zi

and

γ =
α− β

1− β
.

It means that dealing with parameter β introduces an unnecessary degree of freedom
to our analysis. What really matters is the extent of reimbursement to a winner given
the net spending of a loser; this is entirely captured by the parameter γ and so it is
clear that it is (almost) without loss of generality to set β = 0.11 We are interested
to analyze how winner’s reimbursement affects equilibrium behavior in lotteries. In
order to emphasize that, we will look at the sad-loser lottery, α = 1 or γ = 1, in the
rest of the paper.

3. Sad-Loser Lottery

Consider a Sad-Loser lottery (5) with γ = 1 among n ≥ 2 risk-neutral players. The
first order condition is

[Vi + xi]

P
j 6=i xj³Pn
j=1 xj

´2 + xiPn
j=1 xj

− 1 = 0. (6)

The second order condition is

2

P
j 6=i xj³Pn
j=1 xj

´2
"
1− Vi + xiPn

j=1 xj

#
≤ 0,

or

xi = 0, if
X
j 6=i
xj ≥ Vi, (7)

xi > 0, if 0 ≤
X
j 6=i
xj ≤ Vi. (8)

We will call player i active if xi > 0. The entry condition (8) and the non-entry con-
dition (7) must hold for active and non-active players respectively in the equilibrium.
We will be looking for equilibria in pure strategies. Since each active player has to

11It is almost (but not completely) without loss of generality to set β = 0. The exception is β = 1
(winner-pay lottery), γ = α−β

1−β is ill-defined. We leave this case outside of the paper.
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obtain a non-negative payoff in any equilibrium, the following condition must hold
for such players

[Vi + xi]
xiPn
j=1 xj

− xi ≥ 0,

or X
j 6=i
xj ≤ Vi. (9)

Note that the second order condition (8) and the non-negative payoff condition (9)
coincide for the active players.
Denote the total spending by

s (n) =
nX
j=1

xj.

Then, the first order condition (6) becomes

[Vi + xi]
s (n)− xi
s2 (n)

+
xi
s (n)

= 1,

or
x2i + [Vi − 2s (n)]xi + s (n) (s (n)− Vi) = 0.

Therefore,

xi = s (n)−
Vi ± Vi
2

. (10)

There are two solutions of the equation (10). They are

xi1 = s (n) (11)

and

xi2 = s (n)− Vi. (12)

First, consider solution (11). This solution and the entry condition (8) describe all
i-type equilibria.

Proposition 1. (0, ..., 0, xi, 0, ..., 0) is i-equilibrium, if

xi ≥
½
V1, if i > 1,
V2, if i = 1.

(13)
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Proof. Consider (0, ..., 0, xi, 0, ..., 0), where xi satisfies (13). It is straightforward
to check that condition (8) holds for the active player. All other players are not active
because the non-entry condition (7) holds:X

j 6=k
xj = xi > Vk for any k 6= i.

The first order condition (6) holds by our choice of xi. Therefore, (0, ..., 0, xi, 0, ..., 0)
is indeed an equilibrium. ¥

i-type equilibria in our model are similar to i-type equilibria in the second-price
seal-bid auctions where just one bidder - bidder i - places a (very) high bid and all
other bidders bid zero. It is highly unlikely that i-type equilibria can actually arise in
applications where all players have to make their decisions simultaneously. However,
the lottery designer can take advantage of these equilibria if his goal is to reduce
the net total spending or rent-seeking activities. The designer should allow one (his
favorite) player i to buy lottery tickets first, then allow all other players to buy. If
the selected player i buys “enough” tickets (consistent with an i-type equilibrium),
then all other players will have a negative expected payoff for any positive amount of
expenses. Therefore, all other players buy nothing and player i is reimbursed. Hence,
the total net spending or rent dissipation in this equilibrium is zero.
Second, consider solution (12). There must be at least two active players in this

type of equilibria. It follows from (12) thatX
j 6=i
xj = Vi, (14)

for any active player i. Summing (14) over k ≥ 2 active players
ikX
i=i1

X
j 6=i
xj =

ikX
i=i1

Vi,

or

s (k) =
1

(k − 1)

ikX
j=i1

Vj. (15)

From (14) and (15), we get

xi = s (k)− Vi =
1

(k − 1)

ikX
i=i1

Vi − Vi. (16)

Expression (16) together with the entry condition (8) describe all internal equilibria.
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Proposition 2. In an internal equilibrium (x1, ..., xn) with k active players, each
active player i buys lottery tickets according to formula (16).

Propositions 1 and 2 characterize all equilibria in the Sad-Loser lottery.

3.1. Players’ expected payoffs. We calculate players’ expected equilibrium
payoffs in this subsection. Note that the expected equilibrium payoff of any non-
active player is always zero. We start from i-type equilibria.

Proposition 3. The expected payoff of the active player i in the equilibrium of i-
type is Vi.

Proof. It follows from (13) and (5). ¥

The only active player gets the prize and her expenses are reimbursed. As the
result, the net total spending equals to zero. We consider internal equilibria now.

Proposition 4. The expected payoff of each player in any internal equilibrium is
zero.

Proof. Consider any internal equilibrium with k active players. Suppose that
player i is active in this equilibrium. Then condition (16) must hold for player i.
Therefore, her expected payoff is

[Vi + xi]
xi
s (k)

− xi = s (k)
xi
s (k)

− xi = 0.

¥

Proposition 4 gives an intuition for why the Sad-Loser lottery can generate higher
expected revenue than the usual lottery: the players expect to receive nothing, hence,
the designer should obtain all available expected profit. This result is in contrast with
the standard observation in the contest literature: the expected individual payoffs are
usually positive. See for example, Tullock (1980); Nitzan (1994); Congleton, Hillman,
and Konrad (2007); Konrad (2007).
We consider the internal equilibria in the next section.

4. Internal Equilibria

First, we find the number of internal equilibria. Second, the total equilibrium spend-
ing is described. Then, we show that a higher-value (stronger) player always exerts
less effort than a lower-value (weaker) player and therefore has a lower chance to win
the Sad-Loser lottery in any internal equilibrium. Finally, the expected total spend-
ing is analyzed. In this section, we also show that the Exclusion Principle holds for
the (net) total spending in the Sad-Loser lottery.
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4.1. Number of Internal Equilibria. In turns out that if players’ prize values
are relatively close, there can be as many as 2n − (n+ 1) internal equilibria in pure
strategies. The following proposition states it formally.

Proposition 5. Suppose that

V1 < min
2≤k<n

s (k) . (17)

Then, there are 2n−(n+ 1) internal equilibria in pure strategies. In particular, there
are n!

(n−k)!k! internal equilibria with 2 ≤ k ≤ n active players.

Proof. Note that there are exactly n!
(n−k)!k! possibilities to have k active players

in the Sad-Loser lottery. Active player equilibrium spending is uniquely determined
by expression (16). Therefore, there are at most

Pn
k=2

n!
(n−k)!k! = 2

n− (n+ 1) internal
equilibria. The entry condition (8) and the non-entry condition (7) must hold for k
active and for all other players respectively in an internal equilibrium with k active
players. Consider condition (7): player i is non-active (xi = 0), ifX

j 6=i
xj = s (k) ≥ Vi.

The highest number of internal equilibria is reached if

min
2≤k<n

s (k) ≥ max
i
Vi = V1. (18)

Condition (17) ensures that there are 2n−(n+ 1) internal equilibria in pure strategies.
¥

If player 1’s lottery prize value is much higher than lottery prize values of other
players, there are only (n− 1) internal equilibria with two active players. Player 1 is
active in all of them.

Proposition 6. Suppose that

V1 > max
2≤k<n

s (k) . (19)

Then, there are (n− 1) internal equilibria in pure strategies:⎛⎝Vl, 0, ..., 0,| {z }
l−1

V1, 0, ..., 0

⎞⎠ for l = 2, ..., n. (20)

In each internal equilibrium, there are exactly 2 active players.
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Proof. Suppose that there exists another internal equilibrium (x1, ..., xn) different
from (20). There are two cases.
Case 1. Suppose that player 1 is not active in this internal equilibrium. We show

that the non-entry condition (7) must be violated for player 1 in this case.
Note that if x1 = 0, then, from the non-entry condition (7), the total spending

in this internal equilibrium must be not higher than max2≤k<n s (k). Together with
(19), it gives

V1 ≤ max
2≤k<n

s (k) < V1.

Therefore, the non-entry condition (7) is violated for player 1.
Case 2. Suppose that x1 > 0. Then, there are at least k ≥ 3 active players in

this equilibrium. From (16), player 1 should spend

0 < x1 = s (k)− V1 ≤ max
2≤k<n

s (k)− V1 < 0.

Therefore, there are exactly (n− 1) internal equilibria. ¥

Propositions 5 and 6 describe the highest and the lowest number of the internal
equilibria.

Corollary 1. There are at least (n− 1) and at most 2n− (n+ 1) internal equilibria
in pure strategies.

There are two types of equilibria in the Sad-Loser lottery. The first type, i-type
equilibria, with (very) high spending by just one player and zero spending from all
other players. Since the winner gets reimbursed, player i spends so much that it
pushes all other players to stay away from the Sad-Loser lottery, because they have
negative expected payoffs for any spending level.
The second type, internal equilibria, where there is a set of active players. Note

that all players can be active in an internal equilibrium. This class of equilibria is
very intuitive if players have “close” values for the lottery prize.

Example 1. Suppose that n = 3 and V1 ≥ V2 ≥ V3 > 0. Then, from Proposition
1, there are the following i-type equilibria in pure strategies:

• 1-type: (x1, 0, 0) , where x1 ≥ V2;

• 2-type: (0, x2, 0) , where x2 ≥ V1;

• 3-type: (0, 0, x3) , where x3 ≥ V1.
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From Corollary 1, there are at least 2 internal equilibria in pure strategies:

• (V2, V1, 0) ;

• (V3, 0, V1) .

If V1 ≤ V2+V3, then from Proposition 5 there are 2 other internal equilibria. One
with two active players:

• (0, V3, V2)

and another one with all three active players:

•
¡
1
2
[V2 + V3 − V1] , 12 [V1 + V3 − V2] ,

1
2
[V1 + V2 − V3]

¢
.

4.2. Weaker players win more often. Now, we show how players’ lottery prize
valuations affect their spending in an internal equilibrium. Denote pil to be the
probability that player il wins the lottery.

Proposition 7. In each internal equilibrium with k active players,

xi1 ≤ ... ≤ xik
and

pi1 ≤ ... ≤ pik
if and only if

Vi1 ≥ ... ≥ Vik .

Proof. Consider any internal equilibrium with k active players. Suppose that
players i1 and i2 are active in this equilibrium and

Vi1 ≥ Vi2.

It follows from condition (16) that

xi1 = s (k)− Vi1 ≤ s (k)− Vi2 = xi2.

Note that
pi1 =

xi1
s (k)

≤ xi2
s (k)

= pi2 .

¥

Proposition 7 leads to the following surprising conclusion: A stronger player al-
ways has a lower chance to win the Sad-Loser lottery than a weaker player in any
internal equilibrium.
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Corollary 2. Suppose that Vi > Vj. Consider an internal equilibrium where both
players i and j are active. Then pi < pj.

This observation together with the (non-)entry conditions establish the following
startling trade off: higher lottery prize value promises active participation in more
internal equilibria, but decreases winning chances. This trade off is unique in the
literature.12 So far, a monotonic relationship was ascertained: higher value would
lead to more frequent active equilibrium participation and more aggressive spending
which, as the result, would lead to higher winning chances. See, for example, Hillman
and Riley (1989); Nti (1999).

4.3. Total spending in internal equilibria. Consider an internal equilibrium
(x1, ..., xn) with i1, ..., ik active players. Then the total spending, from formula (16),
is

s (i1, ..., ik) =
1

(k − 1)

ikX
i=i1

Vi.

Therefore, the highest equilibrium spending with k active players is achieved if the
top k players are active

max
i1,...,ik

s (i1, ..., ik) =
1

(k − 1)

kX
i=1

Vi. (21)

Our next result shows that the Exclusion Principal holds for the total spending
in the Sad-Loser lottery.13 It is important to emphasize that the previous literature
indicates, see Fang (2002); Matros (2006), that the Exclusion Principle does not hold
in standard lotteries.

Proposition 8. Consider two internal equilibria with i1, ..., ik and i1, ..., ik, ik+1 ac-
tive players. Then,

s (i1, ..., ik) ≥ s (i1, ..., ik, ik+1) .

Proof. Since player ik+1 is non-active in the internal equilibrium with i1, ..., ik
active players, condition (7) gives the following inequality

Vik+1 ≤ s (i1, ..., ik) =
1

(k − 1)

kX
j=1

Vij . (22)

12Cohen and Sela (2005) notice this effect in the case of two players. They also point out (Propo-
sition 2) that “in the n player contest ... underdogs may win with the highest probability.” We prove
that this effect holds in any internal equilibrium.
13For the Exclusion Principle see, for example, Baye, Kovenock, and De Vries (1993); Krishna

(2002).
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Note that
s (i1, ..., ik)− s (i1, ..., ik, ik+1) =

1

(k − 1)

kX
j=1

Vij −
1

k

k+1X
j=1

Vij =

1

k (k − 1)

Ã
kX
j=1

Vij − (k − 1)Vik+1

!
≥ 0, (23)

where the last inequality follows from (22). ¥

Therefore, the highest total spending in an internal equilibrium is achieved if the
top 2 players are active

max
k≥2

s (k) = max
i1,i2

s (i1, i2) = V1 + V2.

Hence, we prove the following result.

Proposition 9. The total spending in any internal equilibrium is at most V1 + V2.

The lowest equilibrium spending with k active players is reached if the bottom k
players are active

min
i1,...,ik

s (k) =
1

(k − 1)

nX
i=n−k+1

Vi. (24)

Define the lowest equilibrium spending in any internal equilibrium as

s = min
k≥2

s (k) =

min

(
(Vn + Vn−1) ,

1

2
(Vn + Vn−1 + Vn−2) , ...,

1

(n− 1)

nX
i=1

Vi

)
. (25)

The following examples illustrate that the lowest equilibrium spending depends on
the lottery prize values.

Example 2. Suppose that

V1 = V2 = ... = Vn = V > 0.
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Then

s = min

½
2V,

3

2
V, ...,

n

(n− 1)V
¾
=

n

n− 1V = s (n) .

Example 3. Suppose that

Vn = 1, Vn−1 = 2, ..., Vn−i = 2
i, ..., V1 = 2

n−1.

Then

s = min

(
(1 + 2) ,

1

2
(1 + 2 + 4) , ...,

1

(n− 1)

n−1X
i=0

2i

)
= Vn + Vn−1 = min

i1,i2
s (2) = 1+ 2.

4.4. Expected net total spending. Consider the expected net total spending
in an internal equilibrium with i1, ..., ik active players. Since the net total spending is
often the designer’s profit, we will call the expected net total spending the expected
profit. Then, the expected profit is

π (i1, ..., ik) =
xi1
s (k)

[s (k)− xi1] + ...+
xik
s (k)

[s (k)− xik ] . (26)

From (16),

π (i1, ..., ik) =
s (k)− Vi1
s (k)

Vi1 + ...+
s (k)− Vik
s (k)

Vik ,

or

π (i1, ..., ik) =

ikX
i=i1

Vi − (k − 1)
Pik

i=i1
V 2iPik

i=i1
Vi
. (27)

The expected profit in an internal equilibrium depends on the number of active
players and their lottery prize values. However, if all prize values are the same, the
profit is the same in any internal equilibrium.

Proposition 10. Suppose that

V1 = V2 = ... = Vn = V .

Then, there are 2n−(n+ 1) internal equilibria. In any internal equilibrium, the profit
is equal to V .
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Proof. From Proposition 5, it follows that there are 2n − (n+ 1) internal equi-
libria. Consider an internal equilibrium (x1, ..., xn) with i1, ..., ik active players. From
(27), we get

π (i1, ..., ik) =
kX
i=1

V − (k − 1)
Pk

i=1 V
2Pk

i=1 V
=

= kV − (k − 1) kV
2

kV
= V.

¥

Our next result shows when the Exclusion Principal for the expected profit holds
in the Sad-Loser lottery.

Proposition 11. Consider two internal equilibria with i1, ..., ik and i1, ..., ik, ik+1 ac-
tive players. Then,

π (i1, ..., ik) > π (i1, ..., ik, ik+1) , if
Pik

j=i1
Vj
¡
Vj − Vik+1

¢
> 0,

π (i1, ..., ik) < π (i1, ..., ik, ik+1) , if
Pik

j=i1
Vj
¡
Vj − Vik+1

¢
< 0.

(28)

Proof. See the Appendix.

The Exclusion Principal for the expected profit does not hold for the highest-value
player.

Corollary 3. Consider two internal equilibria with i1, ..., ik and i1, ..., ik, i
0
k+1 active

players. Suppose that

Vi0k+1 > max {Vi1, ..., Vik} > 0. (29)

Then,
π (i1, ..., ik) < π

¡
i1, ..., ik, i

0
k+1

¢
.

The Exclusion Principal for the expected profit holds for the lowest-value player.

Corollary 4. Consider two internal equilibria with i1, ..., ik and i1, ..., ik, i
00
k+1 active

players. Suppose that

min {Vi1 , ..., Vik} > Vi00k+1 > 0. (30)

Then,
π (i1, ..., ik) > π

¡
i1, ..., ik, i

00
k+1

¢
.
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Using the Exclusion Principal we can characterize the lowest and the highest
expected profit in the Sad-Loser lottery now.

Proposition 12. The lowest expected profit is achieved in the internal equilibrium
with the two lowest-value active players. This expected profit is 2Vn−1Vn

Vn−1+Vn
.

Proof. See the Appendix.

The following result can be proven similar to Proposition 12. We omit the proof.

Proposition 13. The highest expected profit is achieved in the internal equilibrium
with the two highest-value active players. This expected profit is 2V1V2

V1+V2
.

Propositions 12 and 13 describe the highest and the lowest boundaries on the
expected profit in the Sad-Loser lottery.

Corollary 5. The expected profit is at least 2Vn−1Vn
Vn−1+Vn

and at most 2V1V2
V1+V2

in an internal
equilibrium.

5. Standard vs Sad-Loser lottery

We compare a standard lottery (more common name is an asymmetric contest) with
a Sad-Loser lottery in this section. First, we describe the total equilibrium spending
in the standard lottery. Then, the total spending in the standard lottery is compared
with the (net) total spending in the Sad-Loser lottery. We will only look at internal
equilibria in the Sad-Loser lottery in this section.

5.1. Standard Lottery. Hillman and Riley (1989) identify the set of active play-
ers in the standard lottery (asymmetric rent-seeking contest) and the total equilibrium
spending. Stein (2002) follows Hillman and Riley (1989) and describes the players’
equilibrium strategies.
Consider a standard lottery among n risk-neutral players where (2) holds. Players

buy simultaneously lottery tickets in order to win one main prize. In particular, player
i spends bi ≥ 0 in order to win prize Vi. The players’ valuations are commonly known
among the players. Player i obtains the prize with probability biPn

i=1 bi
, if bi > 0.

Each player i has to solve the following maximization problem

max
bi≥0

biPn
j=1 bj

Vi − bi.
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Hillman and Riley (1989) demonstrate that the top 1, 2, ...,n players are active in
the standard lottery and the total spending in the unique equilibrium14 is

T (n) =
(n− 1)
n

bVn,
where bVn is the harmonic mean of the highest n players’ prizes

bVn ≡ nPn
j=1

1
Vj

and non-active player (n+ 1) has prize value such that

Vn+1 ≤
(n− 1)
n

bVn. (31)

Note that higher-value players spend more than lower-value players and have
higher chance to win the standard lottery. Moreover, each active player has a positive
expected profit. We compare the standard and the Sad-Loser lotteries in the next
subsections.

5.2. Total spending. Since players can be reimbursed in the Sad-Loser lottery,
they buy more tickets in this lottery than they buy in the standard lottery. It turns
out that this observation hold in any internal equilibrium.

Proposition 14. Total spending in the Sad-Loser lottery is always higher than the
total spending in the standard lottery, or

min
k≥2

s (k) > T (n) .

Proof. See the Appendix.

The lottery designer usually cares about her profit. So, we compare the net total
spending (the expected profit) in the Sad-Loser lottery with the total spending in the
standard lottery in the next subsection.

14Fang (2002) and Matros (2006) show that there exists a unique equilibrium in the standard
lottery.
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5.3. The expected profit. As we show in Section 3, there are several internal
equilibria in the Sad-Loser lottery. In some of them, the expected profit is higher
than the expected profit in the standard lottery.

Proposition 15. The expected profit in the internal equilibrium (V2, V1, 0, ..., 0) is
higher then the total spending in the standard lottery.

Proof. The expected profit in the internal equilibrium (V2, V1, 0, ..., 0) is
2V1V2
V1+V2

≥
V2. Player 2 is always active in the standard lottery and obtains positive payoff. It
means that T (n) < V2. ¥

The following proposition provides the sufficient condition for the expected profit
in any internal equilibrium to be higher than the total spending in the standard
lottery. It turns out that this condition is very natural: all players have to be active
in the standard lottery. This proposition suggests when the designer should run the
Sad-Loser lottery instead of the standard lottery.

Proposition 16. Suppose that all players are active in the standard lottery, or

Vn >
n− 2
n− 1

bVn−1. (32)

Then, the expected profit in any internal equilibrium in the Sad-Loser lottery is higher
than the total spending in the standard lottery.

Proof. Proposition 12 shows that the minimal expected profit is achieved in the
internal equilibrium with the two lowest-value active players (n− 1) and n. This
expected profit is equal to 2Vn−1Vn

Vn−1+Vn
≥ Vn. The total spending in the standard lottery

with all n active players must be smaller than a prize value of any player, including
the lowest value player n. Therefore, the expected profit in any internal equilibrium
is higher than the total spending in the standard lottery. ¥

There are several corollaries from Proposition 16. First, if there are just two
players.

Corollary 6. If n = 2, then the expected profit in the internal equilibrium is higher
than the total spending in the standard lottery.

Proof. Condition (32) always holds for n = 2. ¥

Seconds, if all lottery values are the same.
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Corollary 7. Suppose that

V1 = V2 = ... = Vn = V. (33)

Then, the expected profit in any internal equilibrium is higher than the total spending
in the standard lottery.

Proof. Condition (32) always holds if condition (33) is satisfied.
We can see the same result in the following way. Proposition 10 shows that the

expected profit in any internal equilibrium is V . Tullock (1980) demonstrates that
the total spending is equal to n−1

n
V in the standard n-player lottery. ¥

The following example illustrates that Proposition 16 provides a sufficient condi-
tion. In this example, condition (32) does not hold, but the expected profit is higher
in all internal equilibria than the total spending in the standard lottery.

Example 4. Suppose that n = 3 and V1 = V2 = 10, V3 = 5. Then, the
total spending in the standard lottery (see Hillman and Riley, 1989; Stein, 2002) is
T (3) = 5. In Example 1, all internal equilibria in the 3-player Sad-Loser lottery are
calculated. See Table 2.

values eq’m (1, 2) eq’m (1, 3) eq’m (2, 3) eq’m (1, 2, 3)
10 10 5 0 2.5
10 10 0 5 2.5
5 0 10 10 7.5

Expected profit 10 6.67 6.67 7

Table 2: Sad-Loser Lottery

Tables 2 shows that the expected profit in the Sad-Loser lottery (in all internal
equilibria) is higher than the total spending in the standard lottery.

If condition (32) does not hold, the expected profit can be lower in all but one
internal equilibria. The following example illustrates.

Example 5. Suppose that n = 3 and V1 = V2 = 10, V3 = 1. Then, the total
spending in the standard lottery is T (3) = 5. Based on Example 1, all internal
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equilibria are calculated for the Sad-Loser lottery in Table 3.

values eq’m (1, 2) eq’m (1, 3) eq’m (2, 3) eq’m (1, 2, 3)
10 10 1 0 0.5
10 10 0 1 0.5
1 0 10 10 9.5

Expected profit 10 1.818 1.818 1.857

Table 3: Sad-Loser Lottery

The total spending in the standard lottery is higher than the expected profit in all
but one internal equilibrium in the Sad-Loser lottery.

5.4. Example. In this subsection, we consider an example which illustrates sev-
eral propositions above.

Example 6. Suppose that n = 4 and V1 = 50 > V2 = 45 > V3 = 40 > V4 = 35.
Then, from Proposition 5, there are 11 internal equilibria in pure strategies:

Equilibrium Total spending Expected Profit
(45, 50, 0, 0) 95 47.368
(40, 0, 50, 0) 90 44.444
(35, 0, 0, 50) 85 41.176
(0, 40, 45, 0) 85 42.353
(0, 35, 0, 45) 80 39.375
(0, 0, 35, 40) 75 37.333
(35/2, 45/2, 55/2, 0) 67.5 44.259
(30/2, 40/2, 0, 60/2) 65 41.538
(25/2, 0, 45/2, 55/2) 62.5 39.8
(0, 30/2, 40/2, 50/2) 60 39.167
(20/3, 35/3, 50/3, 65/3) 56.667 40.294

Note that condition (32) holds. Then, the total spending in the standard lottery is

T (4) =
4− 1P4
j=1

1
Vj

= 31.317.

We can see that

• the expected profit in any internal equilibrium is higher than the total spending
in the standard lottery (Proposition 16);



Sad-Loser Lottery 21

• the total spending in the Sad-Loser lottery is always higher than the total
spending in the standard lottery (Proposition 14);

• the highest expected profit is achieved in the internal equilibrium with the two
highest-value active players (Proposition 13);

• the lowest expected profit is achieved in the internal equilibrium with the two
lowest-value active players (Proposition 12);

• the total spending in any internal equilibrium is at most V1 + V2 = 95;

• Exclusion Principal holds for the (net) total spending in the Sad-Loser lottery
(Propositions 8 and 11).

6. Conclusion

This paper considers the Sad-Loser lottery. All equilibria in pure strategies are found
and their properties are discussed. There are several natural extensions of this paper.
It will be interesting to test the results in the experimental laboratory and in the

field. We have already started an experimental investigation of the Sad-Loser lottery.
In particular, the equilibrium prediction (the counter-intuitive aggressive bidding of
weak players) and the Exclusion Principle will be tested.
Another direction is an application of the Sad-Loser lottery to the public good

provision. Since, as Morgan (2000) and Duncan (2002) show, lotteries increase pro-
vision of public goods, the Sad-Loser lottery might be even a better tool than the
standard lottery.

7. Appendix

Proof of Proposition 11. Consider an internal equilibrium (x1, ..., xn) with i1, ..., ik
active players. Suppose that an active player ik+1 is added. Then, from (27),

π (i1, ..., ik)− π (i1, ..., ik, ik+1) =

k
³Pik

j=i1
V 2j + V

2
ik+1

´³Pik
j=i1

Vj
´
− (k − 1)

³Pik
j=i1

V 2j

´³Pik
j=i1

Vj + Vik+1

´
³Pik

j=i1
Vj + Vik+1

´³Pik
j=i1

Vj
´

−
Vik+1

³Pik
j=i1

Vj + Vik+1

´³Pik
j=i1

Vj
´

³Pik
j=i1

Vj + Vik+1

´³Pik
j=i1

Vj
´ .
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Note that

k

Ã
ikX
j=i1

V 2j + V
2
ik+1

!Ã
ikX
j=i1

Vj

!
−

− (k − 1)
Ã

ikX
j=i1

V 2j

!Ã
ikX
j=i1

Vj + Vik+1

!
− Vik+1

Ã
ikX
j=i1

Vj + Vik+1

!Ã
ikX
j=i1

Vj

!
=

Ã
ikX
j=i1

Vj

!Ã
ikX
j=i1

Vj
¡
Vj − Vik+1

¢!
+

(k − 1)
"Ã

ikX
j=i1

V 2j + V
2
ik+1

!Ã
ikX
j=i1

Vj

!
−
Ã

ikX
j=i1

V 2j

!Ã
ikX
j=i1

Vj + Vik+1

!#
.

(34)

Since Ã
ikX
j=i1

V 2j + V
2
ik+1

!Ã
ikX
j=i1

Vj

!
−
Ã

ikX
j=i1

V 2j

!Ã
ikX
j=i1

Vj + Vik+1

!
=

Vik+1

Ã
ikX
j=i1

Vj
¡
Vik+1 − Vj

¢!
,

(34) becomesÃ
ikX
j=i1

Vj

!Ã
ikX
j=i1

Vj
¡
Vj − Vik+1

¢!
− (k − 1)Vik+1

Ã
ikX
j=i1

Vj
¡
Vj − Vik+1

¢!
=

(k − 1)
Ã

ikX
j=i1

Vj
¡
Vj − Vik+1

¢!" 1

k − 1

Ã
ikX
j=i1

Vj

!
− Vik+1

#
.

The statement of the proposition follows from the non-entry condition (7), expression
(15), and assumption (28). ¥

Proof of Proposition 12. Consider an internal equilibrium with i1, ..., ik active
players where 2 ≤ k ≤ n and

Vi1 ≥ ... ≥ Vik .
There are four cases.
Case 1. Suppose that

Vi1 ≥ ... ≥ Vik > Vn−1 ≥ Vn.
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Then, from Proposition 11,

π (n− 1, n) < π (ik, n− 1, n) < ... < π (i1, ..., ik, n− 1, n) <

π (i1, ..., ik, n− 1) < π (i1, ..., ik) .

Case 2. Suppose that

Vi1 ≥ ... ≥ Vik = Vn−1 ≥ Vn.

Then, from Proposition 11,

π (n− 1, n) < π (ik−1, ik, n) < ... < π (i1, ..., ik, n) <

< π (i1, ..., ik) .

Case 3. Suppose that

Vi1 ≥ ... ≥ Vik−1 = Vn−1 ≥ Vik = Vn.

Then, from Proposition 11,

π (n− 1, n) < π (ik−2, ik−1, ik) < ... < π (i1, ..., ik) .

Case 4. Suppose that

Vi1 ≥ ... ≥ Vik−1 > Vn−1 ≥ Vik = Vn.

First, we show that

π (n− 1, n) ≤ π (k, n) , for any 1 ≤ k ≤ n− 1. (35)

Note that (35) holds if and only if

2
Vn−1Vn
Vn−1 + Vn

≤ 2 VkVn
Vk + Vn

⇐⇒ Vk ≥ Vn−1.

Therefore, from (35) and Proposition 11,

π (n− 1, n) < π (ik−1, n) < π (ik−2, ik−1, ik) < ... < π (i1, ..., ik) .

Hence, the lowest expected profit is reached in the equilibrium with the two lowest-
value players. Players spend Vn and Vn−1 in this equilibrium. Hence,

min
k

π (k) = min
i1,i2

π (i1, i2) =
2Vn−1Vn
Vn−1 + Vn

.



Sad-Loser Lottery 24

¥

Proof of Proposition 14. It is a well known result, see for example Hillman
and Riley (1989), that the total spending in the standard lottery is strictly smaller
than the highest prize value,

T (n) < V1. (36)

From (25), the lowest equilibrium spending in any internal equilibrium is

min
k≥2

s (k) =

min

(
(Vn + Vn−1) ,

1

2
(Vn + Vn−1 + Vn−2) , ...,

1

(n− 1)

nX
i=1

Vi

)
.

The non-entry condition (7) must hold for player 1 in the internal equilibria with
(n− 1, n) ; (n− 2, n− 1, n) , ..., (2, ..., n− 1, n) active players. It means that

min

(
(Vn + Vn−1) ,

1

2
(Vn + Vn−1 + Vn−2) , ...,

1

(n− 2)

nX
i=2

Vi

)
≥ V1.

Since (36), it must be
min
2≤k<n

s (k) > T (n) .

Consider the remaining case, mink≥2 s (k) = s (n) =
1

(n−1)
Pn

i=1 Vi. Then, from (16)

x1 = s (n)− V1 > 0.

Therefore,
s (n) > V1 > T (n) .

¥
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