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1. Introduction

We observe tournaments every day. Euro and World Soccer Cups, Super Bowl, Amer-
ican president elections, Summer Olympic Games are just a few examples of tourna-
ments. Over the years, research tournaments have been playing the leading role in the
procurement of many innovations. See Taylor (1995), Fullerton and McAfee (1999),
Fullerton, Linster, McKee and Slate (2002), Che and Gale (2003) for examples of
various research tournaments.
The tournament literature has focused theoretically, see, for example, Lazear and

Rosen (1981), Rosen (1981, 1986), Moldovanu and Sela (2001, 2006), Lai and Ma-
tros (2006) and empirically, Ehrenberg and Bognanno (1990), Knoeber and Thurman
(1994), on players’ incentives in tournaments when players have some costs for exert-
ing effort.
This paper analyzes T -round elimination tournaments where players have fixed

equal resources (budgets for election campaigns, energy and ideas in career games,
energy in football tournaments, novelties in chess tournaments, etc.) instead of cost
functions and the success function which determines the winner of each round is
stochastic. We assume that each player can use her resources only in the tournament
and cannot cash it outside. Each player has to allocate her resources optimally across
T rounds, given that if she loses one round, she is out. There is a trade off here. On
the one hand, the more resources a player spends in a particular round the higher
her chance is to win in this round. On the other hand, the player has less chances to
win in the following rounds.
We assume that the design - a T -round elimination tournament - is given and focus

on the optimal allocation of players into groups and the optimal prize structure, if
the designer wants to obtain the best performance in the final, “quality of play,”
or the highest total spending. In order to solve the designer problem, we first find
how players allocate their resources in the symmetric equilibrium. It turns out that
players always spend (weakly) more resources in the initial than in the following
rounds. However, the designer has a tournament design which ensures equal resources
allocation across all rounds and provides incentives for players not to lay down on the
top. The designer should implement the winner-take-all prize scheme and have the
same number of competitors in each group in each round. This tournament design
gives the best performance (the highest spending) in the final.
We also show that the tournament designer can influence individual spending by

varying the size of the groups in rounds: increasing the size of the group intensifies
the competition and increases the individual spending in this round.
Several real-world phenomena in politics, science and sports have the structure

of the tournaments with fixed resources. Consider the problem of Major League
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baseball teams in the playoffs. The playoffs are a multi-stage competition, and only
winners in the first round of the playoffs advance to the World Series. The teams must
determine which pitchers to start in the first round of the playoffs. A starting pitcher
needs several days of rest, so that if a pitcher pitches in the first round, he might
not be available for the second round. The problem that the team faces is how to
allocate its pitching resources across different rounds. A coach of a soccer team faces
an analogous problem in the elimination part of the World Soccer Cup where teams
have 22 players for all matches. Alternatively, consider multi-stage elections where
candidates have fixed total budgets for their campaign expenditure on advertising.
The main assumption of this paper is that the players have equal (symmetric)

resources. Even though players in general are asymmetric, there are many examples
when a designer of the tournament wants to create a symmetric environment. This
situation arrises if each candidate has the same budget in elections, or if there is a
handicap in a sport tournament. For example, Che and Gale (2003) show that if
contestants are asymmetric it is optimal to handicap the most efficient one. Gavious,
Moldovanu, and Sela (2002) analyze different bidding caps in detail.
President elections in France and Russia have typically two rounds. A candidate

may not exceed a campaign spending ceiling of 90 million francs for the first round,
and 120 million francs for the second round in France.1 There is an overall ceiling
on the campaign expenditure of each candidate of 250 million roubles, or 300 million
roubles if the candidate makes it into the second round in Russia.2 A typical can-
didates does not have enough resources to reach the campaign expenditure even for
the first round. Therefore such a candidate has to make his allocation decision for
the two rounds in advance. Similar situation is in Hong Kong, where the government
specifies that

15.6. The maximum amount of election expenses for the Election will
be prescribed by the Maximum Amount of Election Expenses (Chief Ex-
ecutive) Regulation made by the Chief Executive in Council pursuant to
s 45 of the ECICO to limit the maximum amount of expenses a candidate
may incur on account of the Election. This limit controls the extent of
election campaigns and serves to prevent candidates with ample financial
resources from having an unfair advantage.3

The salary cap in NBA is supposed to play the same role: to handicap the richest
teams. More discussion about salary caps can be found in Fort (2003). Another

1See http://www.elysee.fr/elysee/anglais/the president/his function/
6 questions about the president/6 questions about the president.20030.html
2See http://www.russiavotes.org/electorallawchange3.htm
3See http://www.info.gov.hk/archive/consult/2001/reo/ce chap15.doc
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example of this kind is some chess tournaments in Sweden when stronger players are
handicapped and given less time to play than their weaker opponents.4 France uses
handicaps in horse races.5,6

The strategic problem in elimination tournaments with fixed resources is different
from the one analyzed in multi-object auctions with budget constraint (see, for ex-
ample, Benoit and Krishna, 2001) because players in elimination tournaments do not
have incentives to deplete the budgets of their rivals in the first round since all losers
of this round are eliminated before the second round. It is also different from the
problem examined in the contest literature where players have to decide how much
effort is needed to win the prize(s) in one contest; see, for example, Dixit (1987, 1999),
Baik and Shogren (1992), Baye and Shin (1999), and Moldovanu and Sela (2001).
Krishna and Morgan (1998) and Moldovanu and Sela (2001) show that the winner-

take-all prize scheme is often the optimal one for the designer who wants to maximize
the total effort of the players in the one-stage tournament when players have cost
functions and deterministic success functions. Classical papers Lazear and Rosen
(1981) and Rosen (1986) analyze stochastic success functions and show that high
differences in prizes in the last round(s) (we obtain the extreme variation of this
result: winner-take-all prize scheme) have to provide enough incentives for players to
insert the same effort in all rounds.
Moldovanu and Sela (2006) analyze a deterministic model with cost functions.

They show that it is optimal to split players in two groups in the first round and
to have a final between two winners, if the designer maximizes the expected highest
effort.
The rest of the paper is organized as follows. We consider the model and results in

Section 2. Section 3 provides a discussion. All proofs can be found in the Appendix.

2. The Model

Consider a T -round elimination tournament where all players have equal resources.
We assume that there are n1 × ... × nT risk-neutral players. In round 1, all players
are divided into n2 × ... × nT ≥ 2 groups with n1 ≥ 2 players in each group. Each
group determines the winner according to the players’ spending in this round. n2 ×

4One of such tournaments can be found at http://lass.no-ip.com/lass/ss index.htm.
5Handicapping is simply the additional weight handicap (penalty), measured in Pounds (lbs),

that is awarded to a horse that has had more wins relative to other horses in a particular race. The
handicap will slow a horse down slightly and an allowance will benefit a horse relative to the rest of
the field. This makes a race more competitive. Handicapping in this manner, is an age-old racing
tradition that works in real racing and now in virtual racing, where it is part of an owners racing
strategy. The base weight in each race on which penalties and allowances are applied is 120lbs. This
is the combined base weight of the jockey, saddle and equipment on the horse.

6See http://www.digiturf.com/Betting/Handicaps.asp
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...× nT winners of the first round compete in round 2. All losers of the first round -
(n1 − 1)n2× ...×nT players - get prize W0 (they have 0 victories) and are eliminated
from the tournament at the end of the first round. In round 2, the winners of the first
round are divided into n3 × ... × nT ≥ 2 groups with n2 ≥ 2 players in each group.
Each group determines the winner according to the players’ spending in this round.
Only n3 × ... × nT winners of the second round compete in round 3. All losers of
the second round - (n2 − 1)n3 × ...× nT players - get prize W1 (they have 1 victory)
and are eliminated from the tournament at the end of the second round, and so on.
Finally, in round T , only nT players remain. The winner of the final (she has all T
victories) gets prizeWT and the losers (they have T −1 victories) receive prizeWT−1.
We make the standard assumption that prizes increase from round to round:

Assumption 1: WT ≥WT−1 ≥ ... ≥W0 ≥ 0. (1)

Each player has an initial fixed resource E and must decide how to allocate this
resource across all T rounds. We assume that players cannot use their resources
outside the tournament. Denote the spent part of player i’s resource in round k by
xik. If player i chooses to use the part x

i
k ∈ [0, E] of her resource in round k, when

her (nk − 1) opponents in round k choose
³
x1k, ..., x

i−1
k , xi+1k , ..., xnkk

´
∈ [0, E]nk−1, then

player i wins in round k with probability

pik
³
x1k, ..., x

nk
k

´
=

f (xik)

f (xik) +
Pnk
j=1,j 6=i f

³
xjk
´ , (2)

where f (x) is a positive and increasing function:

Assumption 2: f (x) > 0, f 0 (x) > 0 on the interval [0, E] . (3)

A pure strategy for player i is a rule (xi1, ..., x
i
T ), which assigns a part of her

resource for every round in the tournament such that
PT
k=1 x

i
k = E, x

i
k ≥ 0, for any i ∈

{1, ..., n1 × ...× nT} and k ∈ {1, ..., T}. Note that we assume that all players have to
specify their resource allocation for all rounds before the first round. This assumption
allows to concentrate on the resource allocation when players cannot signal anything
to their opponents. This situation can arise in sports events, if a team have directions
for the whole tournament before the first round and cannot communicate with its
coach during the tournament, or/and the tournament design might be such that
players cannot receive any feedback about their potential opponents.7 Moreover, a

7Lai and Matros (2006) analyze 2-round elimination tournaments where players can signal their
abilities. Players have cost functions instead of fixed resources in their model.
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coach has to make his pitching resources allocation across different rounds before the
first round in playoffs in baseball.
Our framework is similar to the famous Blotto games. See, for example, Borel

(1953), Blackett (1958), Kvasov (2006) among other. There are two players in a Blotto
game. Each player has a fixed resource which she has to allocate simultaneously for
all (typically three) battles. A winner in a battle is the player who allocates more
resources (deterministic success function) for this battle. For stochastic Blotto games
see Matros (2006).
Given the opponents’ resource allocation (x1, ..., xi−1, xi+1, ..., xn1...nT ), player i’s

allocation decision xi = (x1, ..., xT ) is determined by the solution of:

max
x1,...,xT

nh
1− P1

³
x11, ..., x

n1
1

´i
W0 + P1

³
x11, ..., x

n1
1

´ ³h
1− P2

³
x12, ..., x

n2
2

´i
W1 + ... +

...+ PT−1
³
x1T−1, ..., x

nT−1
T−1

´ ³h
1− PT

³
x1T , ..., x

nT
T

´i
WT−1 + PT

³
x1T , ..., x

n1
T

´
WT

´o
,

(4)

s.t.
TX
k=1

xk = E, xk ≥ 0, (5)

where Pk is the expected probability of success in round k. This is a weighted average
over all possible opponents in round k.

2.1. Existence of the symmetric equilibrium. First we show that there exists
a symmetric Nash equilibrium in pure strategies. The properties of the symmetric
equilibrium are analyzed after that. The T -round elimination tournament is a sym-
metric game with n1× ...×nT players and at least one symmetric equilibrium, which
follows from an application of the Kakutani’s Fixed-Point Theorem.

Proposition 1. Suppose that assumptions (1), (3) hold, then the T -round elimina-
tion tournament has at least one symmetric equilibrium in pure strategies.

2.2. Properties of the symmetric equilibrium. Since Proposition 1 estab-
lishes the existence of the symmetric equilibrium in pure strategies, properties of this
equilibrium can be analyzed. Let (x∗1, ..., x

∗
T ) be a symmetric equilibrium, where xk is

a part of the endowment every player spends in round k. It will be shown that a sym-
metric equilibrium in pure strategies is unique if function f (x) is strictly logconcave
(not very convex):

Assumption 3: [ln f (x)]0 > 0 and [ln f (x)]00 < 0 on the interval [0, E] . (6)

Note that concave and linear functions belong to this class.
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We will also assume that the competition is weakly decreasing from round to
round:

Assumption 4: n1 ≥ ... ≥ nT . (7)

This assumption holds usually in elections, different career games, and most sports
events.

Theorem 1. Suppose that assumptions (1), (3), (6), and (7) hold. Then, in the
symmetric equilibrium (x∗1, ..., x

∗
T ),

x∗1 ≥ ... ≥ x∗T ,

for any prize structure (W0,W1, ...,WT ).

Theorem 1 shows that players always spend more resources in the initial than in
the following rounds in the symmetric equilibrium.
We will call the following prize structure

WT > WT−1 =WT−2 = ... =W0 ≥ 0,

a winner-take-all one, and

WT =WT−1 = ... =W1 > W0 ≥ 0

a “grand-contest” one. It is obvious that players spend all their resources in the first
round in the grand-contest case, because all prizes are the same after the first round
and there are no incentives to keep resources more than one round. This tournament
design is equivalent to the one Grand contest where n2 × ... × nT best players all
receive the same prize, W1.

Proposition 2. Suppose that the prize scheme is a “grand-contest” one. Then, in
the symmetric equilibrium (x∗1, ..., x

∗
T ),

x∗1 = E, x
∗
2 = ... = x

∗
T = 0.

Corollary 1. The highest total spending is achieved, if the prize scheme is a “grand-
contest” one.

Even though a tournament designer often wants to maximize the total spending,
in most career games the designer cares about “quality of play” as the game proceeds
through its rounds. The quality of the competition on the very top might be especially
important for the performance of organizations. Theorem 1 shows that we can never
have more resources on the top than on the bottom in the symmetric equilibrium.
However, it is important to find out what the highest performance can be on the top.
The following proposition answers this question.
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Proposition 3. Suppose that assumptions (1), (3), (6), and (7) hold. Then, in
the symmetric equilibrium (x∗1, ..., x

∗
T ), equal resource allocation across all rounds,

x∗1 = ... = x∗T , takes place if and only if (i) the prize scheme is the winner-take-all
and (ii) n1 = ... = nT .

Proposition 3 shows that the extreme reward concentration on the very top has
to be in elimination tournaments in order to obtain “the quality of play” across all
rounds. This result is consistent with Rosen (1986). Another important result is
that the prize scheme is just one of the two requirements. Organizations has to have
“proportional” structure - equal number of competitors on each layer, for “the quality
of play.”

Corollary 2. The highest performance in the final is achieved if (i) the prize scheme
is the winner-take-all and (ii) n1 = ... = nT .

Corollary 2 is in contrast with Krishna and Morgan (1998) and Moldovanu and
Sela (2001). They show that the winner-take-all prize scheme is the optimal one for
the designer who wants to maximize the total effort.
The following proposition demonstrates that the tournament designer can influ-

ence the individual equilibrium resource allocation by varying the size of the groups
in rounds. The result is very intuitive: higher competition (more players in each
group) leads to higher individual spending in this round.

Proposition 4. Suppose that assumptions (1), (3), (6), and (7) hold. Then, in the
symmetric equilibrium (x∗1, ..., x

∗
T ), x

∗
k increases if nk increases.

Assumptions (1) and (3) are common and we will illustrate the role of assumption
(6) by the following example, where function f (x) is “very convex”.

Example. Suppose that there are two rounds, T = 2; n1 = n2 = 2; the resource
is equal to one, E = 1; f (x) = e(x+1)

2

; and the following prize structure, W0 = 0,

W1 = 1 and W2 = 3. Note that f
0 (x) = 2 (x+ 1) e(x+1)

2

. From Proposition 1, there
exists a symmetric equilibrium (x1, x2). Condition (12) (see the Appendix) becomes

2 (x1 + 1) = (2− x1)

or
x1 = 0.

Hence, in the symmetric equilibrium (x∗1, x
∗
2) = (0, 1), every player spends all resource

in the final round.
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3. Discussion

We consider T -round elimination tournaments where risk-neutral players have fixed
resources. The symmetric equilibrium in pure strategies is shown to exist and be
unique. Moreover, in this equilibrium, all players spend most of their resources in
round 1 and least in the last round, T . The intuition is straightforward; the expected
payoffs are much higher in round 1 than in all other rounds.
We show that the winner-take-all prize structure and the same number of com-

petitors in each group in each round guarantees equal resource allocation across all
rounds. Our result is another explanation for the reward concentration on the very
top in organizations. This is consistent with Rosen (1986), who shows that prizes
must increase over rounds to provide enough incentives for players to exert the same
effort in every round, if players have a trade off between costs and expected high
future payoffs.
We show that the designer can also influence individual spending by varying the

size of the groups in rounds: increasing the size of the group intensifies the competition
and increases the individual spending in this round.
There are several interesting topics for the future research. It deserves a lot of

attention to look at elimination tournaments where players can get feedback from
previous rounds before making allocation decision for the current round. It will be
interesting to analyze elimination tournaments where players can have asymmetric
resources. Lai and Matros (2006) analyze 2-round elimination tournaments where
players have cost functions and can have different abilities. In their model, players
signal their abilities in the first round.
Although elimination tournaments are usually associated with sports: tennis, soc-

cer, chess and so on, there are many applications for a hierarchy in a firm, career
games, and election campaigns. Some work has been done to test prediction of
Lazear and Rosen (1981) theory, see for example Ehrenberg and Bognanno (1990)
and Knoeber and Thurman (1994). It will be interesting to test the relationship be-
tween prizes/relative prizes and allocation of players’ resources in experimental and
real-life frameworks.

4. Appendix

Proof of Proposition 1. The proof is a generalization of the result for the two-
player symmetric games in Weibull (Proposition 1.5, 1995). The set of all pure
strategies for player i is a T dimensional simplex ∆, where vertex k of the simplex
is a strategy where the whole endowment E is spent in round k. Simplex ∆ is non-
empty, convex, and compact. Fix all players but player i, and denote these players
as −i. Suppose that players −i can only choose the same strategy x ∈ ∆, which is
the diagonal in the simplex ∆n1×...×nT−1. This diagonal is the simplex ∆ itself. The



Elimination Tournaments where Players Have Fixed Resources 10

best reply correspondence βi (x, ..., x) = βi (x) of player i to the same strategies for
players −i is upper hemi-continuous. Moreover, βi (x) ⊂ ∆ is convex and closed. By
the Kakutani’s theorem, there exists at least one fixed point: x∗ ∈ β (x∗), x∗ ∈ ∆.
This is true for any player i and leads to the statement of the proposition. End of
proof.

Proof of Theorem 1. Note that g (l) = l−1
l
is an increasing function of l. So,

k − 1
k

>
j − 1
j
, for any k > j,

or
k − 1
k

j

j − 1 > 1, for any k > l.

From assumption (7)
nj − 1
nj

nk
nk − 1

> 1, if k > j. (8)

Given the opponents’ symmetric resource allocation (y1, ..., yT ), the player’s allo-
cation decision is determined by the solution of

max
x1,...,xT−1

(
(n1 − 1) f (y1)

f (x1) + (n1 − 1) f (y1)
W0+

f (x1)

f (x1) + (n1 − 1) f (y1)

"
(n2 − 1) f (y2)

f (x2) + (n2 − 1) f (y2)
W1 + ... +

...+
f (xT−1)

f (xT−1) + (nT−1 − 1) f (yT−1)
×

"
(nT − 1) f (E − yT−1 − ...− y1)

f (E − xT−1 − ...− x1) + (nT − 1) f (E − yT−1 − ...− y1)
WT−1+

f (E − xT−1 − ...− x1)
f (E − xT−1 − ...− x1) + (nT − 1) f (E − yT−1 − ...− y1)

WT

#)
, (9)

s.t. xk ≥ 0, for any k = 1, ..., T − 1. (10)

The first order condition for the problem (9)− (10) is

f (x1)

f (x1) + (n1 − 1) f (y1)
× ... f (xk−1)

f (xk−1) + (nk−1 − 1) f (yk−1)
×
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(nk − 1) f 0 (xk) f (yk)
[f (xk) + (nk − 1) f (yk)]2

"
−Wk−1 +

Ã
(nk+1 − 1) f (yk+1)

f (xk+1) + (nk+1 − 1) f (yk+1)
Wk+1 + ...

!#
+

f (x1)

f (x1) + (n1 − 1) f (y1)
× ... f (xk−1)

f (xk−1) + (nk−1 − 1) f (yk−1)
×

f (xk)

f (xk) + (nk − 1) f (yk)
× ...× f (xT−1)

f (xT−1) + (nT−1 − 1) f (yT−1)
×

"
− (nT − 1) f 0 (E − xT−1 − ...− x1) f (E − yT−1 − ...− y1)
[f (E − xT−1 − ...− x1) + (nT − 1) f (E − yT−1 − ...− y1)]2

(WT −WT−1)

#
= 0,

(11)
for any k = 1, ..., T − 1. In a symmetric equilibrium, xT−1 = yT−1, ..., x1 = y1, and
the first order condition (11) becomes

nk − 1
n2k

f 0 (xk)

f (xk)

"
−Wk−1 +

nk+1 − 1
nk+1

Wk +
1

nk+1

nk+2 − 1
nk+2

Wk+1 + ...+
1

nk+1
× ...× 1

nT
WT

#
=

Ã
1

nk
× ...× 1

nT−1

!
nT − 1
n2T

f 0 (E − xT−1 − ...− x1)
f (E − xT−1 − ...− x1)

(WT −WT−1) .

Finally, we get
nk − 1
nk

f 0 (xk)

f (xk)
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

=
nT − 1
nT

f 0 (E − xT−1 − ...− x1)
f (E − xT−1 − ...− x1)

(WT −WT−1) , for any k = 1, ..., T − 1. (12)

Assumption (6) guarantees that the left-hand side (LHS) in equation (12) is a strictly
decreasing function of xk on the interval [0, E], and the right-hand side (RHS) in the
same equation is a strictly increasing function of xk on the interval [0, E]. It follows
from the fact that f 0/f is a strictly decreasing function since f 00f − [f 0]2 < 0, which
is a corollary of the assumption (6).
The existence of a symmetric equilibrium in pure strategies follows from Propo-

sition 1. Hence, equation (12) either has no solution and x∗T = 0 in a unique pure
strategy symmetric equilibrium or has a unique solution x∗k inside of the interval
(0, E), since it defines the intersection of a decreasing and an increasing continuous
functions.
Denote x = xT−1+ ...+xk+1+xk−1+ ...+x1. Player i has to allocate her resource

part (E − x) between round k and the last round T . Note that xk ≥ xT if and only
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if LHS
³
E−x
2

´
≥ RHS

³
E−x
2

´
. If xk is equal to

E−x
2
, or the resource parts in period

k and the last period are equal, then

LHS
µ
E − x
2

¶
=
nk − 1
nk

f 0
³
E−x
2

´
f
³
E−x
2

´×
[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)]

and

RHS
µ
E − x
2

¶
=
nT − 1
nT

f 0
³
E−x
2

´
f
³
E−x
2

´ (WT −WT−1) .

Note that from (8) and the assumption (1)

nk − 1
nk

×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

nk − 1
nk

(WT −WT−1)+

nk − 1
nk

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ nT (WT−1 −Wk−1)] ≥

nT − 1
nT

(WT −WT−1) .

Hence, in the symmetric equilibrium xk ≥ xT for any k = 1, ..., T − 1 and any prize
scheme (W0,W1, ...,WT ).
Since the right-hand side in the equation (12) is the same for any k = 1, ..., T − 1,

then
nk − 1
nk

f 0 (xk)

f (xk)
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

nj − 1
nj

f 0 (xj)

f (xj)
×

[(nj+1 − 1)nj+2 × ...× nT (Wj −Wj−1) + ...+ (nT − 1) (WT−1 −Wj−1) + (WT −Wj−1)] .

If k > j, then
nk − 1
nk

f 0 (xk)

f (xk)
×
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[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

nj − 1
nj

f 0 (xj)

f (xj)
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)]+

nj − 1
nj

f 0 (xj)

f (xj)
[(nj+1 − 1)nj+2 × ...× nT (Wj −Wj−1) + ...

...+ (nk − 1)nk+1 × ...× nT (Wk−1 −Wj−1) + nk+1 × ...× nT (Wk−1 −Wj−1)] .
(13)

Hence from (8) and the assumption (1), in the symmetric equilibrium xj ≥ xk,
for any k > j. Therefore, the resource allocation in the symmetric equilibrium must
be x1 ≥ x2 ≥ ... ≥ xT , for any prize scheme (W0,W1, ...,WT ). End of proof.

Proof of Proposition 2. The maximization problem (4)-(5) becomes

max
x1,...,xT−1

Pnk
j=1,j 6=i f

³
xj1
´

f (x1) +
Pnk
j=1,j 6=i f

³
xj1
´W0 +

f (x1)

f (x1) +
Pn1
j=1,j 6=1 f

³
xj1
´W1,

s.t. xk ≥ 0, for any k = 1, ..., T − 1.
It is straightforward to see that the optimal strategy is to spend all resources in the
first round. End of proof.

Proof of Corollary 1. Since all resources are spent in the first round in the
symmetric equilibrium, all eliminated players do not have any resources. End of
proof.

Proof of Proposition 3. If (i) the prize scheme is the winner-take-all and (ii)
n1 = ... = nT , then equation (13) becomes

f 0 (x∗k)

f (x∗k)
(WT −W0) =

f 0
³
x∗j
´

f
³
x∗j
´ (WT −W0) ,

or
xk = xj, for any k, j = 1, ..., T .

Suppose that in the symmetric equilibrium (x∗1, ..., x
∗
T ), there is equal resource

allocation across all rounds, x∗1 = ... = x
∗
T = E/T . It means that x

∗
k = x

∗
j = E/T is

the solution of the equation (13) :

nk − 1
nk

f 0 (xk)

f (xk)
×
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[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

nj − 1
nj

f 0 (xj)

f (xj)
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)]+

nj − 1
nj

f 0 (xj)

f (xj)
[(nj+1 − 1)nj+2 × ...× nT (Wj −Wj−1) + ...

...+ (nk − 1)nk+1 × ...× nT (Wk−1 −Wj−1) + nk+1 × ...× nT (Wk−1 −Wj−1)] ,

for any k > j. Hence, it must be
nk − 1
nk

×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =

nj − 1
nj

×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)]+

nj − 1
nj

[(nj+1 − 1)nj+2 × ...× nT (Wj −Wj−1) + ...

...+ (nk − 1)nk+1 × ...× nT (Wk−1 −Wj−1) + nk+1 × ...× nT (Wk−1 −Wj−1)] ,

or Ã
nj − 1
nj

− nk − 1
nk

!
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)]+

nj − 1
nj

[(nj+1 − 1)nj+2 × ...× nT (Wj −Wj−1) + ...

...+ (nk − 1)nk+1 × ...× nT (Wk−1 −Wj−1) + nk+1 × ...× nT (Wk−1 −Wj−1)] = 0.

From (8) and the assumption (1) it follows that the last equality holds only if (i) the
prize scheme is the winner-take-all and (ii) n1 = ... = nT . End of proof.

Proof of Proposition 4. Consider equation (12):

nk − 1
nk

f 0 (xk)

f (xk)
×

[(nk+1 − 1)nk+2 × ...× nT (Wk −Wk−1) + ...+ (nT − 1) (WT−1 −Wk−1) + (WT −Wk−1)] =
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=
nT − 1
nT

f 0 (E − xT−1 − ...− x1)
f (E − xT−1 − ...− x1)

(WT −WT−1) , for any k = 1, ..., T − 1.

Assumption (6) guarantees that the left-hand side (LHS) in equation (12) is a strictly
decreasing function of xk on the interval [0, E], and the right-hand side (RHS) in the
same equation is a strictly increasing function of xk on the interval [0, E]. Therefore,
if nk increases, the solution of equation (12), xk, has to increase too. End of proof.
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