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”. . . individual firms behave as if they were seeking rationally to maxi-
mize their expected returns. . . ”

Milton Friedman (1953, page 21.)

”. . . success (survival) accompanies relative superiority. . . ”

Armen A. Alchian (1950, page 213.)

1. Introduction

The preceding characterizations of firm behavior reflect a consensus view among

economists. Yet examples of seemingly contradictory behavior abound. This paper

offers a potential evolutionary explanation how altruistic behavior can arise in the

rational world.

It is well understood in the evolutionary literature that altruistic behavior can

prevail in an evolutionary environment if all agents are imitators and their interactions

are local. See Bergstrom and Stark (1993); Eshel, Samuelson, and Shaked (1998);

and Bergstrom (2002).

The present paper also uses the local interaction structure: an evolutionary version

of the Public Good game of Eshel, Samuelson, and Shaked (1998), but my agents

select a rule (either imitation or best-reply) in every period, and then use this rule to

choose a strategy. The selected rule can be the same decision rule or may vary across

agents and periods. I demonstrate that altruistic behavior has hope in this world.

The Public Good game is considered for several reasons. First, it is simple: every

player has just two strategies in the Public Good game. Second, one strategy strictly

dominates the other and corresponds to spiteful and rational behavior. In other
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words, Armen Alchian and Milton Friedman will agree on this strategy. The other

strategy is strictly dominated and corresponds to altruistic behavior.

Third, the imitation rule is hardly the only decision rule that can be used by

experienced economic agents. Moreover, we cannot ignore the fact that firms use

rational rules. There are many rational rules.1 But without loss of generality we can

restrict our analysis only to the one of such rules - the best-reply rule, because any

rational decision rule selects the dominant strategy in the Public Good game.

Finally, there is a possible conflict between imitation and best-reply decision rules:

On the one hand Eshel, Samuelson, and Shaked (1998) show that the imitation rule

can lead to altruistic behavior in the Public Good game, even in the presence of

mutations that continually introduce the rational strategy into the model. On the

other hand, Young (1998) demonstrates that the best-reply rule leads to rational

behavior.

In my model, the agents select the best-performing decision rule from the previous

period. In order to make the exposition simple, I assume that an agent uses the

previous-period decision rule, if this rule selected the strategy with the highest payoff

in her neighborhood in the previous period, and switches to the other rule otherwise.

My assumption that agents can use several decision rules is supported in experi-

ments. The literature on experimental economics claims that there is no single rule

that can describe human behavior (see Mookherjee and Sopher, 1994, 1997; Cheung

and Friedman, 1997; Camerer and Ho, 1999; Huck, Normann and Oechssler, 1999;

Salmon, 2001).

In reality, from time to time humans experiment with many different decision rules.

(See Arthur, 1994, for an excellent discussion. He also cites psychology literature.)

Arthur (1994) models agents with several predictions or hypotheses in the form of

1See, for example, Stahl (1993), Saez-Marti and Weibull (1999) and Matros (2003).
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functions that map previous outcomes into next-period outcomes. However, he offers

only computer simulation for a particular “Bar Problem”.

My main result is that altruistic behavior can arise in both the short run (mistake-

free play) and in the long run (in the presence of mistakes and errors), if the neighbor-

hoods are not too small.2 It is in sharp contrast to Eshel, Samuelson, and Shaked’s

(1998) claim that

This [imitation] is crucial, as altruism has no hope in a world of best

responders.3

This paper shows that this claim is not precise. Moreover, if altruistic behavior

survives in the short and long run, agents demonstrate altruistic behavior in groups:

agents obtain high payoffs from altruistic behavior of neighbors in such groups and

do not switch (imitation) decision rule and therefore do not change behavior.

I demonstrate that one of the two decision rules, the imitation rule, fully character-

izes short-run outcomes. It means that even though a set of decision rules can better

represent human behavior, the actual short-run prediction of the model (mistake-free

play) can coincide with a simpler model where each agent has just one decision rule.

Even though the imitation rule is enough to characterize agents’ short-run behav-

ior, Theorem 2 shows that both decision rules are important in determining long-run

outcomes. Some agents can occasionally switch decision rules and/or their behavior

in the long run. Again, if altruistic behavior survives, it survives in groups. This

result gives an idea how to provide public goods: the provision should be organized

in relatively small groups.

2In the two - neighbor case only spiteful maximizing behavior remains in the population, given

the possibility of mistakes.

3Eshel, Samuelson, and Shaked (1998), page 158.
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Theorem 2 describes long-run outcomes, if the probabilities of agents’ mistake

in the selection of decision rules (μ → 0) and error in choosing a strategy (ε → 0)

tend to zero. If it is easier to make a mistake in the selection of the decision rule

than to make an error in choosing a strategy to play, occasionally spiteful behavior

will prevail and consequently be the only possible behavior in the long run (if ε→ 0

faster than μ→ 0). However, if it is easier to make an error in choosing a strategy to

play than to make a mistake in the selection of the decision rule (μ→ 0 faster than

ε → 0), then altruistic behavior can survive in groups, because the gain to stay in

altruistic groups is higher than the gain from staying in spiteful groups. Theorem 2

describes completely long-run outcomes for different speed of convergence of μ and ε

to zero.

The work related to mine also includes papers on the market selection hypothe-

sis, which claims that market forces weed out less profitable firms in favor of more

profitable firms. There is a growing literature on market survival, which started with

Winter (1964), followed by Winter (1971), Nelson and Winter (1982), and recently

taken up by Blume and Easley (1992, 1995, 2002), Radner (1996), Vega-Redondo

(1997), Dutta and Radner (1999), Dutta and Sundaram (2001). These papers check

the hypothesis and demonstrate that firms’ decision rules, which maximize long-run

survival probabilities, are not those which maximize expected profits. This is the

same kind of result as we have in Theorem 2.

Finally, the best-reply and imitation rules are typical rules in evolutionary mod-

els. The best-reply rule usually leads to a rational outcome (see Young, 1993, 1998;

Kandori, Mailath, and Rob, 1993; Ellison, 1993; Blume, 1993; Samuelson, 1997).

Bergstrom and Stark (1993); Eshel, Samuelson, and Shaked (1998) show that the

imitation rule can lead to altruistic behavior. Simulation evidence for imitation be-

havior can be found in Nowak and May (1992, 1993) and Nowak, Bonhoeffer, and
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May (1994).

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 analyses the short-run prediction of the model. Section 4 examines the

long-run prediction of the model, if the agents can make mistakes and errors. Section

5 concludes. Proofs are given in the Appendix.

2. The Model: Public Good Game

We will call the following game the Public Good game. There are N players. A

player can either produce public goods which give one unit of utility to 2k < N

of her neighbors and incurs a net cost of 0 < c < 1 to the player herself, or do

nothing at no cost. In other words, every player has two strategies: be Altruistic

with neighbors and produce public goods, or be Rational and not produce public

goods. We will call these strategies A and R respectively. Then the payoff of an

agent i is πi = K(A, i) − c, if agent i plays strategy A, and πi = K(A, i), if agent

i plays strategy R, where K(A, i) ∈ {0, . . . , 2k} is the number of i’s neighbors who
play strategy A.

The one-shot Public Good game has one strict Nash equilibrium (R, . . . , R), where

all players play strategy R. Moreover, strategy A is strictly dominated by strategy

R. If the Public Good game is played repeatedly, the Folk Theorem can be applied

and the play (A, . . . , A), where each player plays strategy A, can be sustained as an

equilibrium in the infinitely repeated Public Good game.4

We will consider the following evolutionary version of the Public Good game. In

each discrete time period, t = 1, 2, ..., a population of N boundedly rational agents

plays the Public Good game.5 We assume, as in Ellison (1993); Bergstrom and Stark

4For discussion and applications of Folk Theorem see Fudenberg and Tirole (1991).
5Boundedly rational agents follow some (simple) decision rules. There might be several reasons

for that. For example, agents might lack enough abilities, or they simply do not have time to think
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(1993); and Eshel, Samuelson, and Shaked (1998), that the agents are located on a

circle. An agent i chooses a strategy xti ∈ {A,R} at time t according to a decision
rule defined below. The play at time t is the vector xt = (xt1, . . . , x

t
N).

Strategies are chosen as follows. We assume that every agent has two decision

rules. They are Best Reply (BR) and Imitation (IM). The BR rule can be described

as follows. An agent believes that her neighbor agents will play the same strategies

in period t + 1 as they did in the previous period t. Therefore, she plays a strategy

in period t + 1 which is the best reply to her 2k neighbors’ strategy distribution

(xti−k, . . . , x
t
i−1, x

t
i+1, . . . , x

t
i+k) from the previous period t. Note that since strategy R

is the dominant strategy, the BR rule always chooses strategy R. The IM rule works

as follows. An agent plays a strategy in period t + 1, which gave the highest payoff

among her 2k neighbors and her in the previous period t.

Now we explain how agents select decision rules. Suppose that an agent i used a

decision rule Dt ∈ {BR, IM} and played a strategy ∈ {A,R} in period t. Define the
set of neighbors of player i as

Ji ≡ {i− k, ..., i+ k} .

Agent i inspects a sample (xti−k, . . . , x
t
i−1, x

t
i, x

t
i+1, . . . , x

t
i+k) of size 2k + 1 of her

2k nearest neighbors and her, taken from the previous play at time t and the corre-

sponding payoffs (πti−k, . . . ,π
t
i−1,π

t
i ,π

t
i+1, . . . ,π

t
i+k) in period t. Denote by

Ji (x, t) ≡
©
j ∈ Ji | xtj = x

ª
the set of neighbors who chose strategy x ∈ {A,R} in period t. Then agent i finds
the maximum payoff in the sample:

π∗i
¡
xt
¢
= max

©
πtj | j ∈ Ji

ª
about the situation.
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and the maximum payoff to her previous period strategy:

π∗i
¡
xti, t

¢
=

½
max

©
πtj | j ∈ Ji (A, t)

ª
, if xti = A,

max
©
πtj | j ∈ Ji (R, t)

ª
, if xti = R.

If π∗i (x
t
i, t) = π∗i (x

t), the agent i uses the decision rule Dt in period t + 1 again,

otherwise she switches to the decision rule Dt+1 6= Dt in period t + 1. There is

exactly one strategy in every sample which gives the highest payoff, because of our

assumption 0 < c < 1. An interpretation of such a rule selection is the following. If

an agent’s current strategy did not attain the maximum payoff in the neighborhood,

whatever decision rule led to that choice does not seem to work well, so the agent

switches her decision rule.

Note that the agents do not observe the decision rules of other agents, just their

strategies. The assumption which rule to use in the current period is important and

we will look at the following examples to see how agents can change the imitation rule

into the best-reply rule and vice versa. We will call an agent whose previous period

decision rule is BR, a maximizer, and an agent whose previous period decision rule

is IM , an imitator. We will say that an agent behaves altruistically if her previous

period strategy is A, and rationally if her previous period strategy is R.6 Therefore

we can have rational maximizers and imitators and altruistic imitators in the model.

Example 1. Suppose that k = 2 and N > 5. Suppose that an imitator observes

the following sample

(xti−2, x
t
i−1, x

t
i, x

t
i+1, x

t
i+2) = (A,R,A{IM}, A,A)

and the corresponding payoffs

(πti−2,π
t
i−1,π

t
i ,π

t
i+1,π

t
i+2) = (3− c, 4, 3− c, 3− c, 4− c),

6Note that in the model both spiteful behavior and optimizing behavior correspond to the same

strategy S. We will call such behavior spiteful.
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where A is her own strategy choice. Only one agent plays strategy R in the sample

and the other four agents play strategy A. It is obvious that

π∗i
¡
xt
¢
= π∗(R) = 4 > 4− c = π∗(A)

and the imitator will become the maximizer in the next period.

Suppose now that a maximizer observes the following sample

(xti−2, x
t
i−1, x

t
i, x

t
i+1, x

t
i+2) = (A,A,R{BR}, R,R)

and the corresponding payoffs

(πti−2,π
t
i−1,π

t
i ,π

t
i+1,π

t
i+2) = (3− c, 2− c, 2, 1, 0),

where two of her neighbors play strategy R, the other two play strategy R and R is

her own strategy choice. Since

π∗i
¡
xt
¢
= π∗(A) = 3− c > 2 = π∗(R),

the maximizer will become the imitator in the next period.

Assume that the sampling process begins in the period t = 1 from some arbitrary

initial play x0 and some arbitrary initial decision rule distribution d0. Then we obtain

a finite Markov chain on the finite state space ({A,R})N × ({BR, IM})N of states
of the length 2N drawn from the strategy space {A,R} and the decision rule space
{BR, IM} with an arbitrary initial play x0 and some arbitrary initial decision rule
distribution d0. Given a play xt and a decision rule distribution dt at time t, the

process moves to a state of the form {xt+1; dt+1} in the next period. Such a state is
called a successor of {xt; dt}. We will call this process unperturbed adjusted dynamic
with population size N and 2k neighbors, ADN,k,0,0.

Example 2. Suppose that k = 1, N = 4, x0 = (A,A,R,R) and d0 = (IM, IM,BR,BR).
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In period 1, each agent i inspects a sample (x0i−1, x
0
i , x

0
i+1) of size 3 of her 2 nearest

neighbors and her, taken from the previous play in period 0. Agents 3 and 4 (1 and

2) use the BR (IM) rule to choose a strategy at the beginning of period 0. Agents

3 and 4 will use the BR rule again in period 1, because these agents observe that

strategy R gives a payoff of 1 and strategy A gives a payoff of 1− c (there is exactly
one spiteful maximizer neighbor and one altruistic imitator neighbor for every agent).

Therefore, strategy R gives the highest payoff in any sample:

π∗i
¡
x0
¢
= π∗(R) = 1 > 1− c = π∗(A), for any i.

It means that agents 1 and 2 will switch to the best-reply rule, BR, because they

also observe that strategy R gives the highest payoff in their samples. Therefore

d1 = (BR,BR,BR,BR). Hence, all agents will use the BR rule in period 1 and play

the dominant strategy R, x1 = (R,R,R,R). As a result the unperturbed adjusted

dynamic process moves to the state {x1; d1} in period 1.

The unperturbed adjusted dynamic process describes short-run behavior in the

model when there are no mistakes and errors in the agents’ behavior. Short-run

predictions are useful, because the predicted outcome(s) arise very fast, due to the

local interaction structure of the model, stay long (until a mistake or an error is

made), and depend on the initial state.

Let us introduce some noise into the model. To model the situation in which a

rule can be chosen by a mistake, we suppose that the agents use the selected rule with

probability 1−μ and use the other rule at random with probability μ ≥ 0. Moreover,
suppose that agents use a decision rule to choose a strategy with probability 1 − ε

and make an error and choose a strategy at random with probability ε ≥ 0. The
resulting perturbed adjusted dynamic process ADN,k,μ,ε is an ergodic Markov process

on the finite state space ({A,R})N × ({BR, IM})N . Thus, in the long run, the initial
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state is irrelevant.

3. Short Run: Recurrent Classes

In the rest of the paper, we will make use of the following definitions. A recurrent class

of the process ADN,k,0,0 is a set of states where there is a probability zero of moving

from any state in the set to any state outside and there is a positive probability of

moving from any state in the set to any other state in the set. We will call a state h

absorbing if it constitutes a singleton recurrent class. In this section we analyze the

situation when all agents always use the selected rule, μ = 0, and do not make errors,

ε = 0.

3.1. μ = 0 and ε = 0. Note that if every agent uses the imitation rule and

plays strategy A, then every agent obtains the same payoff and therefore selects

the imitation rule again in the next period. Moreover, as everyone plays the same

strategy, the imitator chooses strategy A in the next period as well. It means that a

state of the form:

{(A, . . . , A); (IM, . . . , IM)} = {A; IM}

is absorbing.

Suppose that all agents played strategy R in the previous period. Either an agent

used the IM or the BR rule, she observes only strategy R in her sample. It means

that she will select her previous period decision rule in the next period too. Both the

imitator and the maximizer will again choose strategy R in the next period. Hence,

states in the form:

{(R, . . . , R); (d1, . . . , dN)} (1)

are absorbing, where dj can be either BR or IM , j ∈ {1, ..., N}. Let a set {(R; ·)}
denote all 2N states of the form (1).

The following examples show that there are other recurrent classes.
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Example 3. Suppose that N = 7 and k = 2.

There are five imitators who play strategy A and two maximizers who play strat-

egy R. It is evident that every agent finds that her strategy performs best in her

sample. For example, every imitator has the best imitator, marked IM , in the sam-

ple. The best imitator receives 4− c which is the highest payoff among all agents. It
means that for each imitator

π∗(A) = 4− c > 3 = π∗(R)

and she selects the imitation rule in the next period.

Both maximizers do not have the best imitator in their neighborhoods which

means that their payoffs are the highest in their samples:

π∗(R) = 3 > 3− c = π∗(A).

Therefore, both maximizers select the best-reply rule in the next period. It means that

every agent selects her previous period decision rule again. Hence, all agents choose

the previous period strategies again. Figure 1 gives an example of this recurrent class.
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The following example shows that a recurrent class can contain several states.

Example 4. There are eight imitators playing strategy A and one maximizer

playing strategy R, in the first circle in Figure 2.

The maximizer obtains payoff 4 which is the highest payoff among all agents. There-

fore, all her four neighbors find that

π∗(R) = 4 > 4− c = π∗(A).

These four agents will change their decision rule from the imitation rule to the best-

reply rule in the next period. All maximizers choose strategy R in the next period,

as it is shown in the second circle in Figure 2. There are five maximizers and four

imitators in the second circle. The imitators find that

π∗(A) = 3− c > 2 = π∗(R)

and select the imitation rule in next period which leads to the continuation of play-

ing strategy A. Two maximizers on the boundary between the maximizers and the

imitators are in the situation from example 1. They observe that two neighbors play
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strategy A and the other two play strategy R. The highest payoff to strategy A is

equal to 3− c which is greater than the highest payoff to strategy R in the sample,
or

π∗(A) = 3− c > 2 = π∗(R).

Therefore, these two maximizers change their decision rule from the best-reply to the

imitation rule in the next period. We observe this in the third circle in Figure 2.

There are three maximizers and six imitators in the third circle. Once again,

all imitators select the imitation rule and play strategy A in the next period. Two

maximizers on the boundary between the maximizers and the imitators are in the

situation from example 1. Therefore, these two maximizers change their decision rule

from the best-reply to the imitation rule in the next period. It explains how the

process moves from the third to the first circle in Figure 2. The cycle repeats again.

Hence, Figure 2 gives an example of a recurrent class which contains three states.

Taking these examples into consideration, we can provide a complete description

of recurrent classes, if k ≥ 2. The following are recurrent classes:

• The state where all agents are imitators playing strategy P.

• The states where all agents play strategy R. The set {(R; ·)} contains all the
states of this kind.

• The state where all agents are imitators playing strategy A except for the two
adjacent imitators or maximizers playing strategy R:

. . . A, . . . , A,R,R,A, . . . A, . . .

• The set of three states, consisting of:

. . . A, . . . A,R,A, . . . A, . . .
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. . . A, . . . A,R, . . . , R,A, . . . A, . . .

. . . A, . . . , A,R,R,R,A, . . . A, . . . ,

where there is one agent playing strategy R in period t; 2k + 1 agents playing

strategy R in period t+1; three agents playing strategy R in period t+2. This

cycle is repeated after that.

These examples and combinations based on them include all the possible recurrent

classes. Both strategies must appear in clusters in all recurrent classes.

Theorem 1. Suppose that k ≥ 2 and N ≥ k + 4. The recurrent classes of the

unperturbed process ADN,k,0,0 are

(i) the states where all agents play strategy R;

(ii) the state where all agents are imitators playing strategy A;

(iii) the state where a cluster of imitators consisting of k + 2 agents or more

playing strategy A is separated by a cluster of imitators or maximizers consisting of

two agents playing strategy R;

(iv) the sets of three states: in each of these states a cluster of imitators consisting

of k + 2 agents or more playing strategy A is separated by a cluster of imitators or

maximizers consisting of 2k + 1, 3 or 1 agents playing strategy R. If the cluster

consists of 2k + 1 (3 or 1) agents playing strategy R in one of the states, the state

moves to the state where the cluster consists of 3 (1 or 2k+1) agents playing strategy

R in the next period;

(v) combinations of (iii) and (iv).

Proof. See the Appendix.

Theorem 1 indicates that there are many recurrent classes in general. In all

but one of these recurrent classes, the majority of the population shows altruistic
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behavior. Moreover, Theorem 1 not only describes short-run behavior of the agents,

but also emphasizes that such behavior can be described by the imitation decision

rule alone. This result might explain why we could consider one decision rule in

evolutionary models, even though people can use several decision rules. However,

Theorem 1 proves this result only for the Public Good game.7 Since the imitation

rule characterizes completely short-run outcomes for any size of the population, N ,

and the neighborhoods, k, Theorem 1 generalizes the short-run results from Eshel,

Samuelson and Shaked (1998).8 It indicates all recurrent classes in general (even if

the agents use only the imitation decision rule). To see what lies behind the result, it

is helpful to remember that the imitation rule determines short-run outcomes. Even

though agents use two decision rules, once a cluster of k+2 or more altruistic imitators

is formed, every agent in this cluster finds that altruistic behavior leads to the highest

payoff in the neighborhood and therefore does not change her decision rule which, in

turn, selects altruistic behavior. However, a cluster of spiteful maximizers can never

contain more than 2k + 1 agents (the only exception is when all agents are spiteful

maximizers) in the recurrent class. If there are more than 2k + 1 agents in such a

cluster, then the two agents at its edges will each have k altruistic imitators on one

side and k spiteful maximizers on the other. In this situation the highest payoff in

the neighborhood will correspond to the altruistic behavior which means that these

two agents change their decision rule and also become altruistic imitators.

3.2. Fixed μ, 0 < μ < 1. This subsection clarifies the main difference between

the approach of this paper and the approach of other evolutionary papers in the field.

Typically authors model multiple decision rules in the following way: there are N

7An open question is whether one decision rule can always describe the short-run behavior of

agents who use several decision rules.

8Our case k = 2 corresponds to their main case.
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populations corresponding to N player positions in the game. Agents are chosen at

random from populations (one agent per population) to play the corresponding player

positions in the game in every period. Each population consists of agents of different

types: agents of the same type always use the same decision rule (see Saez-Marti and

Weibull, 1999; Matros, 2003).

If 0 < μ < 1 and fixed, the agents can use both the best-reply and the imitation

rules with a positive probability in every period. Another interpretation of this situ-

ation is that there is a population of agents for every player position with at least μ

share of agents using the best-reply and the imitation rules.

If agents can use both decision rules with a positive probability in every period,

only spiteful behavior will survive in the short run. The intuition is simple: if occa-

sionally all agents use the best-reply rule in one period (this can happen with positive

probability), only strategy R will be present thereafter. The following proposition is

a corollary of Matros (Theorem 1, 2004).

Proposition 1. If μ is fixed and such that 0 < μ < 1, only states from the set

{(R; ·)} are absorbing states of the unperturbed process ADN,k,μ,0.

This finishes the description of short-run outcomes.

4. Long Run: Selection among Recurrent Classes

We now ask if altruistic behavior survives in the presence of agents’ mistakes or/and

errors. To answer this question, long-run behavior of the adjusted dynamic process

ADN,k,μ,ε will be analyzed in this section. First, we analyze the situation where μ is

positive and fixed (the agents can always use both decision rules) and the probabilities

of errors tend to zero, ε → 0. Then, we consider the situation where both mistakes

and errors tend to zero, μ→ 0, ε→ 0.
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4.1. Fixed μ, 0 < μ < 1. From Proposition 1 and Theorem 3 in the Appendix, we

conclude that all agents must play strategy R in the long run, because all agents play

strategy R in every absorbing state. This result is consistent with Matros (Theorem

2, 2004). In other words, only spiteful behavior will be present in the population

when each decision rule can be chosen in every period.

Proposition 2. If μ is fixed and such that 0 < μ < 1, the limiting distribution of the

adjusted dynamic process ADN,k,μ,ε puts a positive probability only on states from

the set {(R; ·)}, where all agents play strategy R.

Proposition 2 not only describes long-run behavior of the agents, but also empha-

sizes that such behavior can be described by just one decision rule, if the agents can

use any decision rule in every period. This result holds in general, see Matros (2004).

In the next subsection we find the long-run outcomes, if both mistakes and errors

tend to zero, μ→ 0, ε→ 0.

4.2. μ→ 0, ε→ 0. Now we consider how agents’ behavior changes in the presence

of mistakes and errors. For this purpose we study the agents’ long-run behavior when

the probabilities of mistakes and errors tend to zero, μ → 0, ε → 0. From Theorem

1 it follows that there are five “types” of the recurrent classes, if k ≥ 2. The idea
behind this section is based on the following observation. When mistake and error

rates are small, the process spends almost all time in the recurrent classes. There are

two possibilities to move from one recurrent class to another. Agents have to make

mistakes in their choices of the decision rules (this can happen with probability μ),

or make errors in choosing a strategy (this can happen with probability ε) in order to

move from a recurrent class of one type to a recurrent class of another type. We are

interested in changes of the agents’ behavior or the movements between the recurrent

classes of different types.
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Even though Theorem 1 identifies the same recurrent classes in the case of two

decision rules and the imitation rule only, we have to take into account the best-

reply rule when we are looking for the long-run prediction of the model. The reason

is simple: a maximizer always demonstrates spiteful behavior. It means that if it

is easier to make a mistake in the selection of the decision rule than to make an

error in choosing a strategy to play, occasionally spiteful behavior will prevail and

consequently be the only possible behavior in the long run (if ε → 0 faster than

μ → 0). It means that only spiteful behavior will survive in the long run, because

such behavior is unaffected by the switching of the decision rules. However, if it is

easier to make an error in choosing a strategy to play than to make a mistake in the

selection of the decision rule (μ→ 0 faster than ε→ 0), then altruistic behavior can

survive in groups, because the gain to stay in altruistic groups is higher than the gain

from staying in spiteful groups.

We are looking for the limiting distribution as the mistake, μ, and error, ε, proba-

bilities tend to zero. We will assume that μ = μ(ε), μ(0) = 0 and analyze the limiting

distribution when ε→ 0. The following main theorem describes completely long-run

outcomes for different speed of convergence of μ and ε to zero.

Theorem 2. Suppose that k ≥ 2.
1. If limε→0

μ(ε)
ε
< ∞ and N > 4(k + 1)(k + 2), the limiting distribution of the

adjusted dynamic process ADN,k,μ,ε puts a positive probability on all recurrent classes

except for the absorbing states where all agents play strategy R.

2. If limε→0
μ(ε)
ε
= ∞, or N < 4(k + 1)(k + 2), the limiting distribution of

the adjusted dynamic process ADN,k,μ,ε contains only the absorbing states where all

agents play strategy R.

3. If limε→0
μ(ε)
ε
< ∞ and N = 4(k + 1)(k + 2), the limiting distribution of

the adjusted dynamic process ADN,k,μ,ε puts a positive probability on all recurrent
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classes.

Proof. See the Appendix.

The proof of the theorem shows that it is much easier to introduce altruistic behav-

ior in the spiteful world than vice verse, as long as the population size is sufficiently

large and it is easier to make an error in choosing a strategy to play than to make a

mistake in the selection of the decision rule. The intuition for this result is as follows.

It takes only one mistake or error to introduce spiteful maximizer (imitator) into a

world of altruistic imitators. However, the resulting group of spiteful agents cannot

become more than 2k + 1. To get additional spiteful agents, additional mistakes

or/and errors are required. These mistakes or/and errors can lead to states where

there are many groups of spiteful agents. If two such groups join together after a

mistake or error, then the new group of spiteful agents will contain more than 2k+1

agents and this group will shrink in the next period in the presence of an altruistic

group of agents in the population. The only chance to create a spiteful world arises if

there are mistakes, or errors in every altruistic group of agents. The number of such

mistakes or errors is large for large N , because between every two spiteful groups of

agents there must be a group of altruistic agents.

Theorem 2 describes for what parameters N and k the long-run prediction of the

model contains altruistic behavior of agents. If μ = ε, or mistakes and errors are

equally likely, the main condition of the Theorem becomes a comparison between the

population size, N , and 4(k + 1)(k + 2). If we fix k such that 2k + 1 = N , then the

unique prediction of the model is spiteful behavior of all agents. Now, if we keep fixed

k and start to increase the number of agents on the circle, N , spiteful behavior — all

agents play strategy S — will be the only long-run prediction until N = 4(k+1)(k+2).

If we increase the number of agents, N , further, altruistic behavior appears. Note
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that altruistic behavior will appear if the number of agents on the circle is much

greater that the number of neighbors. Similar effects arise if the number of agents on

the circle, N , is fixed and we start to decrease the number of neighbors, k, down to

2.

One might expect that trembles in behavior are higher order than in selection

between behavior rules — people change behavior rules more consciously and delib-

erately than their actions. That would correspond to the case where μ goes to zero

faster than ε (μ→ 0 faster than ε→ 0), the argument similar to the case μ = ε works

and a comparison between the population size, N , and 4(k+1)(k+2) determines the

agents’ long-run behavior. This has an important bearing on the survival of “simple”

models of behavior in the face of competition from more sophisticated ones: Theorem

2 describes long-run outcomes, as if all agents would use only the imitation decision

rule. The comparison between the population size, N , and 4(k+1)(k+2) defines the

agents’ long-run behavior. Theorem 2 generalizes the results of Eshel, Samuelson and

Shaked’s (1998) model for any population size, N , and any size of the neighborhoods,

k.

Theorem 2 also suggests how to provide public goods: the population should

be divided in (relatively) small neighborhoods in which everybody can observe the

nearest neighbors’ contributions. This can lead to altruistic behavior and to the

provision of the public goods.

5. Conclusion

This paper analyzes an evolutionary version of the Public Good game in which agents

can use two decision rules. This framework is modeled as a Markov chain on a finite

state space. It is shown (Theorem 1) that if k ≥ 2, short-run behavior of the system
can have five types: (i) all agents are altruistic, (ii) all agents are rational, (iii) there

are two types of agents so that between two clusters of altruistic agents there is a
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cluster of two rational agents, (iv) there are two types of agents so that between two

clusters of altruistic agents there is a cycle cluster when the number of rational agents

in the cluster varies from one to 2k + 1, then to three and then back to one, or (v)

different combinations of (iii) and (iv).

This result is consistent with the results in Bergstrom and Stark (1993) and Eshel,

Samuelson, and Shaked (1998), where agents use only the imitation rule and have

four, k = 2, or six, k = 3, neighbors.9 One of the contributions of this paper is to show

that this result is robust to the introduction of the best-reply rule into the system.

Moreover, Theorem 1 is a generalization of the previous results for any population

size, N , and any size of the neighborhoods, k.

Theorem 1 also reveals that it is enough to have just one decision rule in order to

obtain the same short-run outcomes as we obtain in the case of two decision rules. It

means that we can use simple models with just one decision rule to analyze human

behavior: the short-run prediction is the same in more complicated models. There

are open and interesting questions for future research. Is it always the case that for

any set of decision rules, Ψ, and any game Γ there always exists a unique decision

rule ψ (ψ0) such that the short- (and long-) run predictions if the agents use the set

of decision rules Ψ, or just one decision rule ψ (ψ0) is the same for playing game Γ?10

I demonstrate that, even with the possibility of using the best-reply rule, altruistic

behavior can be sustained not only in the short run, but also in the long run. At the

same time, Theorem 2 shows the limit of Eshel, Samuelson, and Shaked (1998) results

9Bergstrom and Stark (1993) and Eshel, Samuelson, and Shaked (1998) compare the average

payoffs instead of the highest payoffs. In their setting, the number of the neighbors can be two, or

four. These cases correspond to the cases k = 2 and k = 3 in my model.
10This paper describes the short- and long- run outcomes in the Public Good Game. It is the first

step in our understand of the short- and long- run predictions in general games where agents can

use several decision rules.



Altruistic Versus Rational Behavior in a Public Good Game 23

for an arbitrary number of neighbors. They fix the number of the neighbors, four or

six, and find the total number of agents, N , so that altruistic behavior survives in

the long run. Theorem 2 describes long-run outcomes for any number of neighbors,

k, and for any total number of agents, N .

My model also suggests how to provide public goods: the population should be

divided in (relatively) small neighborhoods where everybody can observe the nearest

neighbors’ contributions. This leads to altruistic behavior and to the provision of the

public goods.

6. Appendix

Proof of Theorem 1: It is obvious that the states where all agents are playing

strategy R or all agents are imitators playing strategy A are absorbing.

To find the remaining recurrent classes consider what happens to a cluster of

imitators playing strategy A. Note that any cluster of the imitators consisting of

1, 2, . . . , k + 1 agents will immediately disappear. So, imitators can play strategy A

in groups of the length k + 2 or more. Consider what happens to a cluster of agents

playing strategy R. Any cluster consisting of three or more agents will shrink in the

next period.11 It will be shrinking until the cluster of strategy R becomes of two

or one. The cluster of two agents playing strategy R will not change. However, if

there is only one agent playing strategy R among her 2k neighbors playing strategy

A, the whole neighborhood — all 2k+1 agents - will become maximizers and will play

strategy R in the next period. Then this cluster of maximizers consisting of 2k + 1

agents playing strategy R shrinks to the cluster of maximizers consisting of three,

11It can stay the same size one more period if some agents use the imitation rule to select strategy

S in the current period. These imitators will switch their decision rule to the best-reply and will

play strategy S again in the next period. Imitators playing strategy P in the current period will

use the same rule in the next period and play strategy P .
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then one agent playing strategy R. This cycle will be repeated again. ¥

We now turn our attention to the perturbed adjusted dynamic process. In par-

ticular, we are interested in the limiting distribution of this process as the mistake,

μ, and error, ε, probabilities tend to zero. We assume that μ = μ(ε), μ(0) = 0 and

analyze the limiting distribution when ε→ 0.

By arguments similar to those in Young (1993), the perturbed adjusted dynamic

process ADN,k,μ(ε),ε is a regular perturbation of ADN,k,0,0, and hence it has a unique

stationary distribution ρ(ε). Moreover, by Theorem 4 in Young (1993), limε→0 ρ (ε) =

ρ (0) exists, and ρ(0) is a stationary distribution of ADN,k,0,0.

Definition 1. (Young, 1993) A state h is stochastically stable if limε→0 ρh (ε) > 0.

Let the process ADN,k,μ(ε),ε have recurrent classes E1, ..., EM . For each pair of

distinct recurrent classes, a pq-path is a sequence of states ζ = (hp, ..., hq) beginning

in Ep and ending in Eq. The resistance of this path is the sum of the resistances on

the edges composing it. Let rpq be the least resistance over all pq-paths. Construct

a complete directed graph with M vertices, one for each recurrent class. The weight

on the directed edge Ep → Eq is rpq. A tree rooted at El is a set of M − 1 directed
edges so that from every vertex different from El there is the only possible directed

path in the tree to El. The resistance of such a rooted tree Ψ(El) is the sum of

resistances rpq on its M − 1 edges. The stochastic potential of a recurrent class El
is the minimum resistance over all trees rooted at El. The following theorem is

analogous to results of Freidlin and Wentzell (1984) on Wiener processes. Foster

and Young (1990) introduced the theorem to economics for continuous state spaces.

Young (1993, 1998) contains a discrete version of the theorem.

Theorem 3. (Young, 1998) The stochastically stable states are precisely the states

contained in the recurrent classes of ADN,k,0,0, having minimum stochastic potential.
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Proof of Theorem 2: From Theorem 1 follows that any recurrent class can

contain N,N − 2, N − 3, N − 4, . . . , k + 3, k + 2, or 0 imitators playing strategy A.
Note that it is enough to make just one mistake, μ(ε), or one error, ε, for moving from

the recurrent class (iii) to the recurrent class (iv) from Theorem 1 and vice versa. It

means that these recurrent classes have the same stochastic potential. It also means

that the recurrent class (v) will have the same stochastic potential as recurrent classes

(iii) and (iv).

One error, ε, is enough for moving from the absorbing state {A; IM} (recurrent
class (ii)) to an absorbing state where N − 1 imitators are playing strategy A and
vice versa (recurrent class (iv)). At the same time, one mistake, μ(ε), is enough for

moving from the absorbing state {A; IM} to an absorbing state where N−1 imitators
are playing strategy A.

(k + 2) errors are required for moving from the absorbing state where all imi-

tators are playing strategy R (from recurrent class (i)) to the recurrent class where

only 2 agents are play strategy R for N even (to recurrent class (iii)), or to sets

of blinkers where 1, 2k + 1, or 3 agents are playing strategy R (to recurrent class

(iv)). These (k + 2) errors must create a cluster of imitators consisting of k + 2

agents playing strategy A. Note that all absorbing states in the set {(R; ·)} (recur-
rent class (i)) have the same stochastic potential, because one mistake is enough for

moving from the absorbing states {R;BR} to {(R, . . . , R); (IM,BR, . . . , BR)}, from
{(R, . . . , R); (IM, IM,BR, . . . , BR)} to {(R, . . . , R); (IM,BR, . . . , BR)}, . . . , from
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{R; IM}, to {(R, . . . , R); (IM, . . . , IM,BR)} and vice versa.
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Figure 3: Recurrent Classes
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What is the smallest number of mistakes and/or errors which is necessary to make

for moving from the recurrent class with at least (k+2) imitators playing strategy A

to the recurrent class where all agents are playing strategy R? Theorem 1 shows that

the cluster of imitators playing strategy A is at least of the length (k + 2) and the

cluster of strategy R is at most of the length (2k + 1) in any recurrent class. There

must be at least one mistake or one error per cluster of strategy A for moving to the

absorbing state where all agents are playing strategy R. After such a mistake or error

every cluster must consist of at most (k + 1) imitators playing strategy A in order

to disappear in the next period. It is possible for a cluster of the maximal length of

(2k+3). That cluster must be between two clusters of agents playing strategy R and

each of them consists of at most (2k + 1) agents. Hence, at least

N

(2k + 3) + (2k + 1)
min {ε,μ (ε)} = N

4 (k + 1)
min {ε,μ (ε)}
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mistakes and/or errors are necessary to move from the recurrent class (iii) or the

recurrent class (iv) into an absorbing state where all agents play strategy R, recurrent

class (i). Figure 3 summarizes all the statements above. The statement of the theorem

follows immediately. ¥
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