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Abstract 
 
While two different streams of literature exist investigating 1) the relationship between 
oil prices and emerging market stock prices and 2) the relationship between oil prices and 
exchange rates, relatively little is known about the dynamic relationship between oil 
prices, exchange rates and emerging market stock prices. This paper proposes and 
estimates a structural vector autoregression model to investigate the dynamic relationship 
between these variables.  Impulse responses are calculated in two ways (standard and 
projection based methods). The model supports stylized facts.  In particular, positive 
shocks to oil prices tend to depress emerging market stock prices and US dollar exchange 
rates in the short run. The model also captures stylized facts regarding movements in oil 
prices. A positive oil production shock lowers oil prices while a positive shock to real 
economic activity increases oil prices. There is also evidence that increases in emerging 
market stock prices increases oil prices. 
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1. Introduction 
 

The recent surge in oil prices over the past eight years has generated a lot of interest in 

the relationship between oil prices, financial markets and the economy (see, for example, 

Blanchard and Gali, 2007, and Herrera and Pesavento, 2009). Crude oil spot prices, 

measured using West Texas Intermediate crude oil, closed out the year 2002 at $29.42 

per barrel.1  By June of 2008 spot oil prices had risen to $133.93 per barrel. Over this 

same time period, the US dollar fell against other major traded currencies and emerging 

market stock prices rose (Figure 1). While there exists a literature on the relationship 

between oil prices and stock prices, and a separate literature on the relationship between 

oil prices and exchange rates, the relationship between these two streams has, however, 

not been that closely studied, especially within the context of emerging market stock 

prices. The purpose of this paper is to use a structural vector autoregression (SVAR) 

model to bring these two literatures together.  

 

Understanding the relationship between oil prices, exchange rates and emerging stock 

market prices is an important topic to study because as emerging economies continue to 

grow and prosper, they will exert a larger influence over the global economy. By some 

estimates, emerging economies will account for 50% of global GDP by 2050 (Cheng et 

al., 2007) and the majority of economic growth. Over the period 1990 to 2007 real GDP 

in China and India grew at average annual rates of 10.0% and 6.3% respectively.2  By 

comparison, OECD countries grew at an average annual rate of 2.5% over this same 

period. At these growth rates the Chinese economy will double every 7 years and the 

Indian economy will double every 11 years. Along with this economic growth comes a 

voracious demand for energy products such as oil. In 2009, the US was the largest 

consumer of oil in the world, accounting for 22% of the global oil demand. China, at 10% 

of the world total, had overtaken Japan to become the second largest oil consuming 

nation (Table 1). While the demand for oil in developed economies is holding steady or 

declining slightly, the demand for oil in emerging economies is rapidly growing. The 

International Energy Agency (IEA) (2009, p. 81) predicts that between 2008 and 2030, 
                                                           
1 http://research.stlouisfed.org/fred2/data/OILPRICE.txt 
2 International Energy Agency (2009, p.62) 
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China and India will have average annual growth rates in oil consumption of 3.5% and 

3.9% respectively (compared to the 1.0% average annual growth rate for the world). 

China alone will account for 42% of the global increase in oil demand between 2008 and 

2030. 

 

Some emerging economies, like China, are accumulating large reserves of foreign 

currency (mostly US dollars) and this will make them a bigger player in the world 

financial markets. Some estimates place China’s reserves of foreign exchange and gold at 

$2.206 trillion as of December 2009.3  Managing this amount of money and protecting its 

store of value will mean that China will have not only a greater participation but also a 

greater influence over global financial capital markets. 

 

Shocks or unexpected price hikes originating from the oil market have been captured in 

different ways.4  Hamilton (2003) defines an oil price shock as a net oil price increase, 

which is the log change in the nominal price of oil relative to its previous three year high 

if positive, or zero otherwise. However, Kilian (2008a) argues that this measure of oil 

price shocks does not necessarily filter out oil price changes due to exogenous political 

events or wars because oil price shocks may be demand-driven.5   Furthermore, nominal 

oil price shocks do not mean that there are corresponding real oil price shocks.  In order 

to account for these problems, Kilian (2009) uses a vector autoregression (VAR) with 

three variables, the oil supply, the real price of oil and a proxy variable for global demand 

for industrial commodities measuring global real economic activity.  He identifies, based 

on a recursive structure, three oil shocks: an oil supply shock, an oil-market specific 

shock and a global demand shock.   Kilian (2009) treats these shocks as pre-determined 

in secondary ordinary least squares regressions analyzing their effects on the US 

economy.6  We model the oil market as in Kilian (2009), however, we use a much less 

                                                           
3 https://www.cia.gov/library/publications/the-world-factbook/rankorder/2188rank.html 
4 This literature has been focusing on the US and European economies.   
5 See Kilian and Vigfusson (2009) on empirical evidence against such price asymmetries. See also 
Hamilton (2010). 
6 See also Kilian (2008b) for a different definition of oil shocks that are treated as strictly exogenous.  
These concepts correspond to weak and strong exogeneity in Engle, Hendry and Richard (1983). 
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restrictive set-up for the analysis of the effects of oil shocks that treats all variables as 

endogenous and allows for rich dynamics in the interrelations across markets.7  

 

Killian’s approach has recently been used by several authors to investigate the impact of 

oil price shocks on stock prices or oil prices. Kilian and Park (2009) use four variables  

(the percentage change in world crude oil production, global real economic activity, the 

real oil price, and return on U.S. stocks)  to investigate the relationship between U.S. 

stock prices and oil price shocks within the same modeling framework as in Kilian 

(2009). They find that while oil demand shocks do depress stock prices oil supply shocks 

have much less impact on stock prices. Apergis and Miller (2009) use a SVAR approach 

to analyze the effect of structural oil market shocks on the stock prices in eight developed 

economies (Australia, Canada, France, Germany, Italy, Japan, the United Kingdom, and 

the United States). They find that oil market shocks do not have a very large or 

significant impact on the stock prices in the countries studied. Killian’s index of real 

economic activity has recently been used by He, Wang and Lai (2010) investigate the 

relationship between real economic activity and oil prices. They find that real oil futures 

prices are cointegrated with the real economic activity index and a trade weighted US 

dollar index. They also find evidence of Granger causality running from the real 

economic activity index to real oil prices. 

 

The approach taken in this paper is to use a SVAR to model the dynamic relationship 

between real oil prices, an exchange rate index for major currencies, emerging market 

stock prices, interest rates, global real economic activity and oil supply. The empirical 

results show that the six-variable SVAR model fits the data well in supporting some 

stylized facts. Impulse responses are calculated in two alternative ways (standard and 

local projection based methods) in order to check their robustness. The results presented 

in this paper help to further deepen our understanding of the relationship between oil 

prices, exchange rates and emerging markets equity prices. 

                                                           
7 We do not require the statistically un-testable assumption of pre-determinedness.  Also, our approach does 
not cause problems with autocorrelated errors and generated regressors (the estimated oil shocks used in 
secondary regressions) when constructing confidence intervals (see Kilian, 2009). 
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The rest of the paper is organized as follows. Section 2 discusses the theoretical and 

empirical relationship between oil prices, exchange rates and emerging stock prices. 

Section 3 describes the data and the identification of the structural VAR model. Section 4 

presents the main results of the paper. It also includes the discussion of impulse responses 

based on the local projection methods and a discussion on the forecast error variance 

decomposition . Some concluding remarks appear in Section 5.  

 

2. Relationships between oil prices, exchange rates and emerging stock markets 

 

Theoretically, oil prices can affect stock prices in several ways. The price of a share in a 

company at any point in time is equal to the expected present value of discounted future 

cash flows (Huang, Masulis and Stoll, 1996). Oil prices can affect stock prices directly by 

impacting future cash flows or indirectly through an impact on the interest rate used to 

discount the future cash flows. In the absence of complete substitution effects between 

the factors of production, rising oil prices, for example, increase the cost of doing 

business and, for non-oil related companies, reduce profits. Rising oil prices can be 

passed on to consumers in the form of higher prices for final goods and services, but this 

will reduce demand for final goods and services and once again reduce profits. Rising oil 

prices are often seen as inflationary by policy makers and central banks respond to 

inflationary pressures by raising interest rates which affects the discount rate used in the 

stock pricing formula. 

 

There is a fairly sizable literature showing that oil price movements affect stock prices 

(see, for example, Kaneko and Lee, 1995; Ferson and Harvey, 1994, 1995; Jones and 

Kaul, 1996; Huang, Masulis and Stoll, 1996; Sadorsky, 1999; Faff and Brailsford, 1999; 

Papapetrou, 2001; Sadorsky, 2001; Hammoudeh and Aleisa, 2004; Hammoudeh, 

Dibooglu and Aleisa, 2004; Hammoudeh and Huimin, 2005; El-Sharif, Brown, Burton, 

Nixon and Russell, 2005; Huang, Hwang and Peng, 2005; Basher and Sadorsky, 2006; 

Boyer and Filion, 2007; Henriques and Sadorsky, 2008; Park and Ratti, 2008).  
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While most of the research investigating the relationship between oil prices and stock 

prices has been conducted using developed economies, there is some research looking 

into the relationship between oil prices and emerging stock markets (see for example, 

Hammoudeh and Aleisa, 2004; Hammoudeh and Huimin, 2005; Basher and Sadorsky, 

2006). On balance, these papers provide evidence that changes in oil prices affect 

emerging market stock prices. 

 

Oil price movements are expected to depend upon the demand for oil. While the demand 

for oil in most developed economies is growing very slowly or hardly at all, demand for 

oil in emerging economies is rapidly increasing. Between 1999 and 2009, for example, 

oil consumption has grown the fastest in developing and emerging economies like Qatar, 

China, Kazakhstan, Algeria, Kuwait, Saudi Arabia, United Arab Emirates, Ecuador, 

Singapore, and India (Table 1). Over the past ten years, most of these countries have 

experienced growth rates in oil consumption in excess of 50%. China is a particularly 

interesting country, because in 2009 China’s share of global oil consumption was 10%, 

making it the second largest oil consuming country after the United States. For 

comparison purposes, the United States is included in Table 1. Notice that for the US, oil 

consumption growth is actually negative (-10.39%) in the period 1999-2009. The US is a 

very important player in the global oil market because it accounts for 22% of global oil 

consumption, but future growth and pricing pressure is likely to come from emerging 

economies. Over the past five years and ten years, the fastest growing oil consuming 

region has been the Middle East (Table 2). The second fastest growing oil consuming 

region over the past ten years has been Asia Pacific. Notice also, that as a region, Asia 

Pacific now accounts for approximately one third of global oil consumption. Regionally, 

the demand for oil is growing the fastest in the Middle East, Asia Pacific and Africa. 

Emerging market economic and financial activity is likely to be a factor behind oil price 

movements. The idea that oil prices respond to strong economic growth in emerging 

economies, and especially Asia, has recently been discussed by Benassy-Quere, Mignon 

and Penot (2007). 
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The idea that there is a relationship between oil prices and exchange rates has been 

around for some time (early papers, for example, include, Golub, 1983 and Krugman 

1983a,b). Bloomberg and Harris (1995) provide a good description, based on the law of 

one price, of how exchange rate movements can affect oil prices. Commodities like oil 

are fairly homogeneous and internationally traded. The law of one price asserts that as the 

US dollar weakens relative to other currencies, ceteris paribus, international buyers of oil 

are willing to pay more US dollars for oil. Bloomberg and Harris (1995) find that, 

empirically the negative correlation between commodity prices and the US dollar 

increased after 1986. In addition to the theoretical and empirical work by Bloomberg and 

Harris (1995), empirical papers by Pindyck and Rotemberg (1990) and Sadorsky (2000) 

find that changes in exchange rates impact oil prices. Zhang, Fan, Tsai and Wei (2008) 

find a significant influence of the US dollar exchange rate on international oil prices in 

the long run, but short run effects are limited. Akram (2009) also finds that a weaker 

dollar leads to higher commodity prices. Current observations suggest that oil prices and 

exchange rates do move together. Figure 1, for example, shows a plot of oil prices 

(measured in US dollars) and a trade-weighted US dollar exchange rate (with a higher 

value indicating an appreciation of the US dollar while a lower value indicates a 

depreciation of the US dollar). From Figure 1, it appears that rising oil prices do coincide 

with a weakening of the US dollar. 

 

Golub (1983) and Krugman (1983a) put forth compelling arguments as to why 

movements in oil prices should affect exchange rates. Golub reasons that since oil prices 

are denominated in U.S. dollars, an increase in oil prices will lead to an increase in 

demand for U.S. dollars. Golub’s analysis depends upon the crucial assumption that the 

demand for oil in oil-importing countries is price inelastic and if the price elasticity is 

greater than one (in absolute value) an increase in oil prices will lower total expenditure 

on oil and the demand for U.S. dollars would fall. Krugman’s (1983a) analysis is based 

on the relationship between the investment portfolio preferences of oil exporters and 

movements in exchange rates. Rising oil prices will increase the investment portfolio 

possibilities of oil exporters. In Krugman’s (1983a) analysis, exchange rate movements 

are determined primarily by current account movements. If rising oil prices lead to a 
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country’s current account deterioration, then exchange rates will fall. Research by Golub 

(1983), Amano and van Norden (1998), Huang and Guo (2007), Chen and Chen (2007), 

and Lizardo and Mollick (2010) find empirical support for the hypothesis that movements 

in oil prices affect exchange rates. 

 

This discussion on the relationship between oil prices and exchange rates highlights that 

there are strong theoretical arguments for why exchange rates should affect oil prices and 

there are strong theoretical arguments for why oil prices should affect exchange rates. 

Ultimately, the relationship between these two variables can only be resolved through 

empirical analysis. 

 

Interest rates may also affect oil prices through a connection with inflation.  Unexpected 

inflation erodes the real value of investments like stocks and bonds. Central banks can 

respond to inflationary pressures by raising interest rates. International investors looking 

for better investments in inflationary times may prefer to invest in real assets like oil, 

which drives the price of oil up and puts further pressure on inflation.  Recycled petro-

dollars from oil rich countries can help to reduce the impact of increases in interest rates 

(IEA, 2006, p.39). Akram (2009) finds that commodity prices increase in response to 

reductions in real interest rates.  

 

3. Model specification 

 

3.1 Choice of variables 

 

For this study, monthly data is collected on global oil production, oil prices, global real 

economic activity, exchange rates, emerging market stock prices and interest rates. Our 

monthly data cover the sample period from 1988:01 to 2008:12. Following a large body 

of research on the significant effect of energy supply disruptions on economic activity,8 

an oil production variable is included in our model to capture oil a supply shock. 

                                                           
8 See Hamilton (2003, 2009) and the references therein. Hamilton (2009) concludes that “historical oil price 
shocks were primarily caused by significant disruptions in crude oil production that were brought about by 
largely exogenous geopolitical events.”  
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Following Kilian (2009), the oil supply shocks are defined as unpredictable innovations 

to global oil production. Data on global oil production over the 1987:12—2008:4 period 

were taken from Hamilton (2009),9 while the remaining data were updated from the US 

Energy Information Department (EIA) database. In the EIA data, global oil supply is 

defined as crude oil including lease condensate. 

 

Recent research has documented that oil price reacts differently to oil demand shocks 

than oil supply shocks. In particular, Kilian (2009) finds that oil price increases due to 

surging global demand produce a less disruptive effect than those caused by losses in 

supply. Persistent increase in the (real) price of oil from 2002 to mid-2008 was mainly 

driven by strong and increasing global demand for crude oil particularly from India, 

China and other emerging countries (Kilian, 2008a; Hamilton, 2009). Therefore, to 

account for the effect of global demand on changes of oil price shocks, we have included 

a measure of global real economic activity. In so doing, we have followed Kilian (2009) 

and use the index of global real economic activity as a proxy for global demand for 

industrial commodities. The index is based on dry cargo single voyage ocean freight rates 

of different commodities: grain, oilseeds, coal, iron ore, fertilizer and scrap metal. It is 

likely to capture shifts in the demand for industrial commodities in global business 

markets. The detailed construction of the index is described in Kilian (2009). Unlike 

OECD indices of industrial production, used in some previous studies on the role of oil, 

Kilian’s measure captures recent large increases in global demand for industrial 

commodities from emerging countries such as Brazil, China and India. Such a dry goods 

measure is more useful for gauging what are happening globally and the movements in 

economic and financial activity in emerging economies in particular, where 

manufacturing plays an important role. The index is deflated by US consumer price index 

(CPI) and is linearly detrended in order to remove the effects of technological advances 

in ship-building and other long-term trends in the demand for sea-transport.  The 

                                                           
9 The global oil production data can be downloaded from James Hamilton’s homepage: 
http://weber.ucsd.edu/~jhamilto/  
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detrended index therefore should capture the cyclical variations in ocean freight rates. 

The index is available to download from Lutz Kilian’s homepage.10  

  

Oil prices are measured in dollars per barrel using spot market prices on West Texas 

Intermediate crude oil. West Texas Intermediate crude oil is widely seen as a benchmark 

for world oil markets. Exchange rates are measured using a trade-weighted exchange rate 

index which is a weighted average of the foreign exchange value of the US dollar against 

a set of the most widely traded currencies. Globally, there are only a few currencies that 

have enough trading volume to affect the foreign exchange markets and oil prices. We 

therefore use an exchange rate that captures movements in the most widely traded 

currencies.  Also, several other currencies not included peg or have pegged their domestic 

currency to the US dollar.  Higher values of the exchange rate index indicate a stronger 

US dollar. Emerging market stock prices are measured using the MSCI emerging stock 

market index (measured in US dollars).11 In this paper, the proxy variable for global 

interest rate movements is calculated as the difference in the yield spread between the 

three month Eurodollar LIBOR (London Interbank Borrowing Rate) and the three month 

US Treasury bill rate (the “TED spread”). The yield spread is an interesting variable to 

include because movements in the yield curve are often a good predictor of future 

economic performance. Further, fluctuations in the TED spread may capture fluctuations 

in global credit risks (Ferson and Harvey, 1994, 1995). 

 

The data on oil prices, exchange rates and interest rates are available from the Federal 

Reserve Bank of St. Louis.12  Stock price data are available from Datastream. Oil prices 

and stock prices are converted to real values by deflating by the US CPI. For modeling 

purposes, they are expressed in natural logarithms. A dummy variable, which takes on the 

value of one from September 1998, is included to capture structural change due to the 

Asian financial crises. 

                                                           
10 http://www-personal.umich.edu/~lkilian/ 
11 The countries classified as emerging markets changes somewhat from year to year but typically includes 
the following countries: Brazil, Chile, Colombia, Mexico, Peru, Czech Republic, Egypt, Hungary, Israel, 
Morocco, Poland, Russia, South Africa, Turkey, China, India, Indonesia, Korea, Malaysia, Philippines, 
Taiwan and Thailand (http://www.mscibarra.com/products/indices/international_equity_indices/). 
12 http://research.stlouisfed.org/fred2/; the exchange rate used is denoted TWEXMMTH (1973=100). 
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3.2 The Structural VAR Model 

 

The empirical model uses global oil production (OILPROD), the logarithm of global real 

economic activity (rea), real emerging market stock prices (EMR), real oil prices (OILR), 

trade-weighted exchange rates (TWE) and an interest rate spread (TED).  Our VAR 

model is based on monthly data for oilprod , rea , emr , TED , twe , oilr , where 

oilprodt  is the logarithm of global crude oil production (OILPROD).  The index of real 

economic activity is already in logarithms and is denoted reat.  The logarithms of the 

remaining variables are expressed in lower case letters.   The TWE is an index expressed 

in US dollars. The reduced form VAR is given by 

 

∑ ,   (1) 

 

where c is a vector of constant, p denotes the maximum lag length, Ai are the 6 × 6 

parameter coefficient matrices, Dt is a dummy variable to capture the possible effect of 

the Asian financial crisis on emerging market stock  prices and ut is a vector of error 

terms. The structural representation of (1) is given by 

 

∑ ,    (2) 

 

where εt denotes the vector of structural shocks. Note that the Asian financial crisis 

dummy variable does not enter in (2). Denote the total number of variables in the VAR 

by K. Assuming B = IK, that is restricting the structural shocks hitting the system to be 

mutually uncorrelated innovations with unit variance, now premultiplying (2) with A-1 

yields the relationship between the reduced form errors ut and the structural shocks εt as13 

 

.     (3) 

 

                                                           
13 See e.g. Hamilton (1994, Ch. 11) for further details.  
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After normalizing the K diagonal elements of A to 1’s, an exact identification of the 

structural equation requires imposing K(K-1)/2 restrictions on A. We employ only short-

run restrictions on contemporaneous relations and no long-run restrictions. Moreover, we 

do not impose any restrictions on the lagged coefficients in equation (2). The short-run 

restrictions impose some contemporaneous feedback effects among the variables in the 

model. Christiano, Eichenbaum and Vigfusson (2007) argue that structural VARs based 

on short-run restrictions perform “reasonably well”. Since we do not attempt to test any 

particular model, we base our identification restrictions on different economic models as 

well as economic ad-hoc reasoning. 

 

3.3 Identification of Structural Shocks 

 

The identification procedure for equation (3) is given as 

 

0 0 0 0 0
0 0 0 0 0
0
0 0 0
0 0

0 0 0

  

  

  

  

  

  

    (4) 

The restrictions on  may be motivated as follows. The identifying restriction in the 

equations for oil supply and global demand takes these two variables as being 

contemporaneously exogenous to the other variables in the system. We have thus 

assumed that both oil supply and global (oil) demand, due to real economic activity, do 

not contemporaneously react to shocks to other variables in the system within a month. 

These exclusion restrictions seem quite plausible since it is very unlikely for, say, Saudi 

Arabia to react immediately within the same month with a change to its crude production 

level following, for example, an oil price or an exchange rate shock. Likewise, it is quite 

probable that there might be a significant time delay before consumers and businesses 

revise their consumption plans following a shock. Needless to say, lagged values of oil 
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supply and global demand are allowed to react to macroeconomic shocks after the first 

month has passed.14   

 

Following the discussion in Section 2, emerging market equity prices are allowed to 

contemporaneously react to interest rate, exchange rate and oil price shocks, besides 

reacting to aggregate demand shocks. Unlike the long delay in adjustments in the goods 

sectors, financial markets react swiftly to changes in macroeconomic news. For example, 

energy based equities will react instantaneously to a positive change in the oil price, 

while a dollar appreciation effectively makes emerging equities less competitive than 

dollar-denominated assets. In the fourth equation, the interest rate spread is allowed to 

react contemporaneously to a global demand shock and an oil price shock, with the 

former predicted to generate a positive impact on interest rates while the latter is 

presumably inversely related to interest rates. 

 

Changes in global demand, emerging market equity prices and oil prices result in a 

contemporaneous change in the trade-weighted US dollar index. Since oil is denominated 

in dollars, in the face of a declining dollar, with the relative price of oil being set in 

equilibrium, the dollar price of oil must rise instantaneously. Figure 1, which depicts the 

time series of the oil price and the trade-weighted value of the dollar (along with the 

remaining model’s variables), does seem to lend support to this idea, especially since the 

start of 2002. Relative strength in global demand is also likely to impact the US dollar 

within the same month because of the dollar’s role as the dominant invoicing currency in 

international trade (see, Goldberg and Tille, 2008). In the sixth and final equation we 

assume that changes in global oil production and global aggregate demand 

contemporaneously affect real oil prices. 

 

 

 

  

                                                           
14 Crude oil price shocks affect shipping freight rates because bunker fuel oil is an input to shipping 
services.  However, following Kilian (2009), we assume that the effect occurs with a delay and not within 
the same month.  Kilian (2009) found no contemporaneous correlation between the two time series. 
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4. Empirical results 

 

This section is divided into four parts. First, we present preliminary results on the time 

series properties of our data. Second, we present the main results of the paper, the 

restricted structural VAR analysis for the model discussed in Section 3.3.  Third, we 

study the robustness of the impulse response analysis by employing local projection 

instead of standard methods. Fourth, we present the results obtained from forecast error 

variance decomposition. 

 

4.1 Preliminary results 

 

4.1.1 Graphical analysis 

Figure 1 shows a plot of global oil production (OILPROD), the logarithm of real global 

economic activity (rea), emerging market stock prices (EM), the TED spread, exchange 

rates (TWE) and oil prices (OIL).  Each variable is expressed in nominal terms, except 

when noted otherwise. Notice how closely oil prices and emerging market stock prices 

track each other. Both tend to rise and fall often at the same time. Also notice that 

exchange rates and oil prices tend, for the most part, to move in opposite directions. A 

lower US dollar coincides with higher oil prices and vice versa. 

 

4.1.2 Descriptive statistics 

Table 3 presents some summary statistics of the model’s variables. Some remarks are in 

order. The average oil price during the sample period is about $32.50, with a maximum 

of nearly $134 observed during mid-2008. A 5.863% decline in the rate of change of 

global oil production took place in August 1990, as a result of the Iraqi invasion of 

Kuwait (the first Gulf war). Interestingly, this decline is immediately compensated by a 

4.473% increase in global oil production in the following month (September 1990). The 

yield spread between the 3-month Eurodollar LIBOR and the 3-month US T-bill (the 

TED spread) was generally higher during the end of the sample, reflecting the effect of 

the 2007-08 global financial crisis. For example, a 4.620 spread was observed in October 

2008, a month after the collapse of Lehman Brothers, which is extremely large by 
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comparison to the pre-2007 period. The coefficient of variation, a normalized measure of 

dispersion, which is defined as the ratio of the standard deviation to the mean, portrays 

highest variability for real global activity followed by the percentage change in global oil 

supply and the TED spread. The US dollar exchange rate index (TWE) has the least 

variability compared with other variables. Further, the skewness and kurtosis statistic for 

the dollar index is very close to normality, which is further supported by the Jarque-Bera 

test statistic, suggesting that the null hypothesis of normality is not rejected for the 

exchange rate, while the null of normality is strongly rejected for the remaining 

variables.15 

 

4.1.3 Unit roots and cointegration  

Table 4 presents results of unit root tests of the variables. We apply the DF-GLS test of 

Elliott, Rothenberg and Stock (1996) for our unit root test. When testing for I(1), we 

allow for a constant and deterministic time trend in the regression, except for the yield 

spread (TED) and exchange rate (twe). The DF-GLS test is based on applying the well-

known Dickey-Fuller τ-test to locally demeaned or demeaned and detrended series. It is 

generally more powerful than the standard Augmented Dickey-Fuller unit root test. Ng 

and Perron (2001) study the size and power properties of the DF-GLS test in finite 

samples.  They recommended using a modified Akaike criterion (MAIC) for selecting the 

lag length. Results show that, save for oil production, the variables are non-stationary, as 

the null hypothesis of a unit root cannot be rejected at the conventional 5% level of 

significance. 

 

We tested the null hypothesis of no cointegration.  We applied three commonly used 

cointegration tests: the Engel-Granger (with MAIC), Phillips-Ouliaris and Johansen trace 

and maximum eigenvalue tests.  We applied these tests to all possible pairs, triplets, 

quadruplets and quintuplets of variables and also to the six variables together.  We found 

rather mixed evidence (not reported) depending on the test used, whether or not a linear 

time trend is considered, and on the lag selection method used.  The VAR with all six 

variables shows two cointegrating vector with the trace test, however, only one with the 

                                                           
15 VARs are generally quite robust to such non-normalities.   
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maximum eigenvalue test, at the usual 5% significance level.  Our conflicting evidence 

here is consistent with the findings of Gregory, Haug and Lomuto (2004) for Monte 

Carlo simulations and for a comparison of alternative cointegration tests applied to 132 

data sets from 34 studies. 

   

The finding of unit roots in variables raises the question whether to estimate the structural 

VAR in levels (i.e., with variables in non-stationary form), first-differenced (i.e., with 

variables in stationary form) or in a VAR that imposes cointegration (i.e., in an error-

correction model).  A considerable literature on this issue tends to suggest that even if the 

variables have unit roots, it is still desirable to estimate a structural VAR in level. Sims, 

Stock and Watson (1990) show that the estimated coefficients of a VAR are consistent 

and the asymptotic distribution of individual estimated parameters is standard (i.e., the 

asymptotic normal distribution applies) when variables have unit roots and there are some 

variables that form a cointegrating relationship.16 We do not impose possible unit roots 

and cointegration in our VAR.  We justify the specification in levels based on the Monte 

Carlo results of Lin and Tsay (1996).  The problem is that cointegration tests often 

indicate too many, or occasionally too few, cointegrating vectors and therefore lead to 

misspecification.  On the other hand, a VAR specified in first differences assumes that 

variables are not cointegrated because no error-correction terms are included. If there is 

cointegration, then such a model in first differences is misspecified.  The impulse 

response functions of the VAR model in levels are also consistent estimators of their true 

impulse response functions both in the short- and medium-run, except in the longer-run.  

As shown by Phillips (1998), in the longer-run the standard impulse responses do not 

converge to their true values with a probability of one when unit roots or near-unit roots 

are present and the lead time of the impulse response function is a fixed fraction of the 

sample size.  For this reason, we apply an alternative method for estimating the impulse 

responses based on local linear projections suggested by Jordà (2005) that is robust to this 

problem. 

 

 

                                                           
16 See also Hamilton (1994, pp. 561-562) for a related discussion. 
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4.2 The main SVAR model 

 

The VAR consists of the six variables as defined previously:  oilprodt , reat , emrt , TEDt , 

twet and oilrt. The VAR lag length p is set at 4. The AIC chooses 3 lags. Following the 

approach of Toda and Yamamoto (1995) one additional lag is added for unit roots. With 

this lag length, the residuals are randomly distributed and the VAR has stable roots. The 

identification system is given by (4).  

 

Figure 2 displays the response of global oil production, real economic activity, equity 

prices, interest rates, exchange rates and oil prices to a one-standard deviation structural 

innovation. The two-standard-error confidence intervals are shown by short-dashed lines. 

Our discussion of the impulse response functions (IRFs) mainly centers on the responses 

of oil supply, emerging equity prices, exchange rate, and oil prices to their own and other 

shocks, which is the main interest of the paper. Given oil production shocks and global 

demand shocks, as captured by global real economic activity shocks, are treated as 

contemporaneously exogenous to the other variables in the system, it is interesting to 

analyze how the two variables react to their own shock. As can be seen from Figure 2, a 

positive oil supply shock causes a statistically significant increase in global oil production 

over a 20-month period.17 This possibly reflects the discovery of new oil fields, better 

extraction technologies or a decline in OPEC’s control over the oil supply.  By 

comparison, a positive global demand shock stimulates real economic activity in the first 

few months after the impact and then slowly winds down in a persistent fashion.  It 

becomes statistically insignificantly different from zero after about 15 months, reflecting 

typical short-run macroeconomic multiplier effects over the business cycle from 

aggregate demand stimulation.18  A positive oil supply shocks has little effect on 

emerging market equity prices and the effect is also not statistically significantly different 
                                                           
17 Kilian (2009), among others, use the percentage change in oil production instead of the log levels.  We 
tried this measure but found no significant changes in the IRF graphs. In principal, one should treat all 
variables the same so that a log-levels specification for oil production would seem preferable. Also, the 
two-standard-error confidence bands in our graphs are roughly equal to 95% confidence bands. 
18Unanticipated demand expansion also leads to a sustained increase in oil production and in oil prices 
because of the associated increase in real economic activity.  However, these effects are somewhat 
borderline cases in regards to their significance because the lower confidence band weaves along the 
horizontal axis, except for the oil price increases that are significantly different from zero over the first 12 
months.  Also, the exchange rate declines significantly over the first 15 months as demand expands.   
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from zero. On the other hand, an unanticipated demand expansion generates a small but 

persistently positive impact on equity prices.  However, this effect is only statistically 

significant for the first 3 months.  The reaction of equity prices to their own shock is 

corrected rather slowly. Following an unexpected increase, equity prices decline mostly 

linearly over the experiment period and reach a level that is insignificantly different from 

zero after about 18 months.  This may indicate some inefficiencies in financial markets in 

emerging economies because one would expect shocks to dissipate more rapidly in well 

functioning markets.  The effect of an unanticipated increase in the TED spread has a 

persistently negative and statistically significant effect for 16 months, from the time of 

the impact, on the real emerging market equity index. This is to be expected since a rising 

TED spread is an indication of a potential market downturn as liquidity is withdrawn, 

which negatively affects capital flows.  Positive exchange rate shocks (measured by the 

trade-weighted US index) serve to place eventually downward pressure on emerging 

stock prices; however, the effect is not statistically significant.19 We should mention that 

the effects are somewhat imprecisely measured as reflected in the rather wide confidence 

band in the first half of the 24-month horizon.  A stronger dollar encourages investors to 

invest in US dollar denominated assets, thereby slowing down investment activity in 

emerging markets.20 Finally, although the emerging stock price index reacts negatively to 

an oil price shock, quite surprisingly the effect is quite small and not significant (or a 

borderline case at the beginning). 

 

The responses of the US dollar trade-weighted exchange rate index to various 

macroeconomic shocks support fairly conventional theoretical views of open economy 

macroeconomics. Global oil supply shocks appear to have no visible effect on the 

exchange rate, judging by the nearly horizontal impulse function and its statistical 

insignificance. On the contrary, an unanticipated global demand expansion produces a 

                                                           
19 A rising trade-weighted index indicates appreciation of the US dollar vis-à-vis trading partner currencies, 
and vice versa. 
20 Many emerging countries, to some extent, tied their national currencies to the US dollar.  Thus, another 
way to interpret the effect of the exchange rate shock on the emerging market price is that, if a stronger 
dollar is a consequence of tighter monetary policy in the USA, monetary authorities in the emerging 
markets would like to implement similar monetary tightening to maintain the fixed relation between the US 
dollar and their national currencies. Hence, tighter domestic monetary conditions could drag equity prices 
downward in emerging markets. 
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lasting significant downward impact on the US dollar (i.e. depreciation) over the initial 

15 months after the impact.  This seems to suggest that the source of the global demand 

buoyancy is not US originated. Indeed, the collapse of the US dollar over the 2002-2008 

period combined with the simultaneous expansion of many emerging economies (e.g. 

Brazil, China and India) appears to be consistent with this evidence. The response of the 

US dollar index to an emerging market equity price shock is very small and insignificant. 

A positive TED spread shock only slightly rises at first the US dollar index for 5 months 

but then afterwards persistently increases it, though the effects are only of borderline 

significance.  The eventual appreciation of the US dollar is likely a reflection of 

investors’ deleveraging activity where a lasting rise in the TED spread leads investors to 

rush away from risky assets and favor dollar-denominated assets.21  The exchange rate 

initially rises after the impact to its own shock and thereafter stays at the elevated level, 

indicating a permanent effect of the shock.  This effect is statistically significant for 15 

months after the shock occurred. The US dollar response to a positive oil price shock is 

negative, reflecting the numeraire effect as oil is priced in US dollar, and eventually 

dissipates.  These effects are small and significant only for the first 5 months. This result 

is consistent with Krugman’s (1983a) analysis that exchange rate movements are 

determined primarily by current account movements. In the case of a large net importer 

of oil like the United States, rising oil prices lead to a current account deterioration and 

then exchange rates will fall. 

 

The reaction of the oil price to a positive oil production shock is negative for the first 8 

months, as one would expect; effects are barely statistically significant for the first 5 

months.   A positive global demand shock increases the oil price after the impact for 

about 6 months, thereafter it stays at an elevated level and becomes insignificantly 

different from zero in 12 months after the impact.  By contrast, the oil price displays a 

positive hump-shaped response to a positive equity shock but the effect is mostly not 

significant, except for the 2-8 month period after the impact, where it is of borderline 
                                                           
21 When the crisis intensified after the bankruptcy of Lehman Brothers, private foreign investors lowered 
the risk in their portfolios by turning to US Treasury securities. The global flight to safety into US Treasury 
bills during the recent financial crisis had in turn strengthened the US dollar (see, McCauley and McGuire, 
2009). See also Melvin and Taylor (2009) for the implications of the deleveraging in financial markets on 
foreign exchange markets during the recent financial crisis.   
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statistical significance. A positive TED spread shock leads to a fall in oil prices after the 

impact for the first 3 months, staying permanently lower, though the effects fade into 

insignificance after the initial 8 months.  Unanticipated exchange rate increases lower oil 

prices, the effect being significant for the first 8 months.  Finally, oil prices increase after 

an oil price shock for 2-3 months and then fall steadily back to the original level.  These 

effects are statistically significant for the first 15 months after the impact. 

 

The results from our six-variable SVAR can be compared to the results for the oil market 

in Kilian’s (2009) three-variable VAR with recursive identification.   The data sets for the 

oil-market variables are not identical because we use updated data.  The 

contemporaneous identification scheme for the three variables in our SVAR is almost 

identical, except that we set  equal to zero so that aggregate demand does not respond 

contemporaneously to an oil price shock, however, we explore in Section 4.3.2 whether 

this restriction affects our results.  An oil supply shock (positive in our case) has very 

much the same effects on global oil production and on real oil prices as in Kilian (2009).  

It leads to a sharp increase in global oil production on impact, followed by a decline in 

months 5 to 8 after the shock but then stays at a higher level afterwards.  However, an 

aggregate demand shock shows a somewhat different profile.  It is persistent and highly 

significant as in Kilian (2009), but in our case the effect starts to decline already after 3-4 

months instead of after 14 months in Kilian, and becomes insignificant after 15 months in 

our case but not in his case.  An aggregate demand shock also increases oil prices for the 

first 6 months after the impact and then stays at an elevated level.  In Kilian (2009) the 

increase is steady but significant only during the first 7-8 months, whereas in our case it 

is significant for 12 months.  A positive oil price shock, interpreted by Kilian (2009) as a 

precautionary oil-specific demand shock, shows as similar profile over time in both 

analyses.22  The effects of oil price shocks on real economic activity and oil production 

are not significant in our case, whereas Kilian (2009) found a positive but small effect on 

real economic activity.         

 

 

                                                           
22 Hamilton (2009) questions the interpretation of these price shocks as precautionary demand shocks.   
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4.3 Robustness of the impulse responses 

 

4.3.1 Different estimation method: Local projection based impulse responses 

The preceding impulse response functions were derived with standard impulse response 

function analysis. The standard method is based on a moving average representation of 

the VAR model. The VAR is estimated first and then a vector moving-average (VMA) is 

formed in order to derive the effects of experimental shocks on the variables over time. 

The impulse responses are derived iteratively, moving forward period-by-period, relying 

on the same set of original VAR parameter estimates each time. There are several 

problems with the standard approach to impulse response analysis. These problems are 

magnified by the iterative process. 

 

First, the true and generally unknown data-generating process of the economic model 

may be poorly approximated by a VAR, even with relatively long lag structures.23 The 

reason is that moving average components in the data may not be captured adequately by 

the VAR. Second, VMA representations of the VAR may not be unique and different 

invertibility assumptions can lead to vastly different impulse responses.24 Third, unit or 

near-unit roots and cointegration in the VAR can lead to inconsistent impulse responses 

at longer horizons when the lead time of the impulse response function is a fixed fraction 

of the sample size (Phillips, 1998; Pesavento and Rossi, 2006). These problems open 

various possibilities for misspecification of the VAR that might be relatively small. 

However, the highly non-linear transformations used in the derivation of standard 

impulse responses will amplify the effects of misspecifications and lead to unreliable 

impulse response functions. 

 

Jordà (2005) has proposed an alternative approach for deriving impulse response 

functions. Instead of non-linear transformations, local linear projections are applied in 

order to obtain impulse responses. An impulse response can be regarded as a revision in 

the forecast of a variable at a future horizon t+s to a one-time experimental shock at time 

                                                           
23 See, Kapetanios, Pagan and Scott (2007), among others. 
24 See, Hansen and Sargent (1980), Frenández-Villaverde et al. (2007) and Sims (2009).  
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t.  Jordà (2005) applies multi-step direct forecast for every horizon. The forecast or 

projection is local to the horizon, or put differently, a separate forecasting regression is 

run for every horizon. Jordà (2005) proves that impulse responses based on direct 

forecasts are consistent and asymptotically normal. Furthermore, he demonstrates in 

Monte Carlo simulations that local linear projections estimate impulse responses more 

accurately than standard methods, especially at medium to longer horizons. Also, the loss 

of efficiency from using local projection impulse responses (instead of a correctly 

specified VAR) appears to be very small. Local projection based impulse responses are 

more robust to misspecification than standard ones. 

 

Jordà’s (2005) local projection based impulses use a recursive causal ordering for 

structural shocks, which cannot be compared with the non-recursive identification 

schemes discussed in the previous section. Recently, Haug and Smith (2011) have 

extended Jordà’s (2005) method to a non-recursive identification scheme, which is 

appropriate for our purpose. Briefly, Jordà’s (2005) method can be summarized as 

follows. Consider an n-dimensional vector  of random variables. Following Jordà 

(2005), we define the impulse response (IR) at time t+s arising from the ith experimental 

shocks  at time t as: 

, , | ; | ; , 

where 0,1,2, … , ;  0,1,2, … ; , , … ;  is a vector additively 

conformable to ; and 0 is a vector of zeroes. The expectations are formed by linearly 

projecting  onto the space of : 

… , 

where  is a vector of constants and the  are coefficient matrices at lag j and 

horizon s+1. For every horizon 0,1,2, … , , a projection or forecast regression is done 

in order to estimate the coefficients in . The estimated IRF is then given by: 

, ,  

with the normalization , the identity matrix. Thus, an innovation or impulse to the 

ith variable in the vector , denote , produces an impulse response of   . The 

horizon of the forecast is s and | ;  shows the forecast after a shock in period t. 
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The impulse responses from local approximations can be calculated from univariate least 

squares regressions for each variable at every horizon.  Jordà’s (2005) demonstrates that 

inference can be performed with standard heteroscedastic and autocorrelation (HAC) 

robust standard errors, such as Newey-West standard errors that we apply. These HAC 

standard errors correct for the moving average terms that exist in forecast errors. 

 

Figure 3 shows projection based impulse responses for the SVAR system with two 

standard error confidence bands and Figure 4 reports results for one standard error 

confidence band, as is common in the literature (e.g., Kilian, 2009). With some 

exceptions, we can see that the projection based IRFs (indicated by dashed blue lines) 

generally follow a pattern remarkably similar to that of VMA-based IRFs (indicated by 

the solid black line). One notable difference is that the local-projection IRFs show less 

pronounced responses of the TED spread to an oil production shock, of oil prices to a real 

economic activity shock, of real economic activity to a TED shock, of oil prices to a TED 

shock and of the TED to an oil price shock.   Most importantly, the response of equity 

prices to an oil price shock is statistically significant for projection based IRFs for the 

first 2 months in Figure 3 and for the first 3 months in Figure 4.  Furthermore, a positive 

oil price shock leads to a more pronounced drop in the exchange rate that is statistically 

significant for the first 4 months after the impact in Figure 3 and the first 6 months in 

Figure 4.  Aside from this, there are only small differences in the overall evolvement of 

the IRF graphs over time.  Further, confidence bands have similar coverage, with a few 

initial responses becoming less significant.   Overall, the IRFs show considerable 

robustness with respect to the two different estimation methods.  This demonstrates the 

reliability of our model as specified. 
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4.3.2 Different identification schemes 

We consider two modified identification schemes to our baseline model given in equation 

(4).25  We do not provide graphs in order to conserve space, but they are available on 

request from the authors.  The first scheme does not restrict  to be equal to zero.  This 

is motivated by Kilian’s (2009) recursive (Choleski) scheme for his three-variable oil-

market VAR that does not allow him setting  to zero.  It means that we allow for the 

possibility that global aggregate demand responds to an oil supply shock within the same 

month.  In other words, oil supply shocks have immediate effects.  This change has no 

noticeable effect on all our IRFs reported in Figure 2, consistent with our assumption in 

the baseline identification scheme that oil supply (production of crude oil) shocks 

stimulate or depress aggregate demand with a delay.    

 

The second identification scheme restricts  to equal zero, i.e. the exchange rate does 

not respond contemporaneously to an oil price shock.  We expect this to be an unrealistic 

assumption because foreign exchange markets are efficient markets.  Unless oil price 

shocks are perceived in this market as irrelevant, we expect to see changes in the IRFs.  

Indeed, this change affects four IRF graphs in a significant way.  A positive exchange 

rate shock has now a long lasting and significant effect on the emerging stock market for 

about a year, even though the exchange rate itself is not reacting in any significant way to 

its own shock.   Similarly, an emerging stock market shock has no significant effects on 

the stock market but seems to affect negatively the exchange rate in a significant and 

permanent way.  Therefore, our baseline identification scheme that does not restrict  

to equal zero seems more reasonable.  

    

4.4 Variance decomposition 

 

After discussing the findings for the impulse response functions in the previous sub-

sections, we now turn to the results for the variance decomposition. Figure 5 displays the 

forecast error variance decomposition results for all the variables involved in the SVAR 

                                                           
25 We tried other identification schemes for the contemporaneous relations but either could not estimate the 
matrix A-1 because of non-convergence or the IRF results did not make economic sense. 
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model. It is based on a structural decomposition of the covariance matrix. From Figure 5 

it appears that both global oil production and the interest rate spread dominate the system 

to some extent as their forecast errors are largely attributable to own innovations; about 

70% of the forecast error variance is explained by their own innovations at the end of the 

24-month period considered in the variance decomposition. Nevertheless, forecast errors 

of the interest rate spread are partly determined by the changes in global real economic 

activity, emerging stock market prices and US dollar exchange index – at least for longer 

term forecasts. This is consistent with the findings for the impulse responses of the 

previous sub-sections. Forecast errors of both global oil production and global real 

economic activity in the first month are purely explained by their own shock (100%), 

which supports the contemporaneous identification scheme in equation (4). Among all 

the variables, changes in the US dollar exchange index are not fully explained by its own 

innovation (76%) in the first period, while by the end of 24-month horizon only a quarter 

of its movement is due to own shocks and the remainder is due to shocks to the interest 

rate spread and global real economic activity. Likewise, over the medium to longer-term 

(12-24 months), changes in real oil prices (aside from the effects of its own shock) are 

also explained by shocks to the interest rate spread and global real economic activity. The 

interest rate spread shock also accounts about for 26%–46% of changes in emerging 

stock returns over the 12-24 months horizon. Overall, the evidence from the variance 

decomposition supports the informational feedback process assumed for our structural 

identification scheme. 

 

5. Conclusions 

 

Recognizing the importance of the relationship between stock prices and oil prices and 

the relationship between oil prices and exchange rates, this paper combines these two 

streams of literature together into one empirical structural vector autoregression model. In 

doing so, it is possible to gain a more complete understanding of the dynamic relationship 

between oil prices, emerging market stock prices and exchange rates. This is important 

because emerging economies have, over the past ten years, been accounting for a larger 

proportion of global GDP and this trend is expected to continue. Emerging economies are 
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among the fastest growing economies (with GDP growth rates much higher than the 

growth rates observed in developed economies) and this combination of size and growth 

is likely to influence the dynamics between oil prices, emerging market stock prices and 

exchange rates. 

 

The short term dynamics between oil prices, emerging market stock prices and exchange 

rates are analyzed using two sets of impulse response functions (standard and local 

projection based). In most cases the projection based IRFs provide similar results as the 

standard IRFs. Where the two approaches differ, the projection based approach tends to 

provide impulse responses that are more likely to adequately capture the cyclical 

response of a variable to an unexpected structural shock. Both approaches for example 

report that stock prices respond negatively to a positive oil price shock, and that oil prices 

respond positively to a positive emerging market shock. However, the first effect is only 

statistically significant for the projection based impulses for the first 2-3 months after the 

impact.  The second effect is barely statistically significant in the period 2-8 months after 

the impact for standard impulses and is statistically significant in that period (4-13 

months) for projection based responses with one standard error confidence bands.  These 

results indicate that while increases in oil prices depress stock prices (a result widely 

supported by the literature documenting the effects of oil prices on stock markets, see for 

example Basher and Sadorsky (2006) and the references they cite) it is also the case that 

increases in emerging market stock market prices lead to an increase in oil prices. This 

latter result makes sense within the context of global oil markets and global economic 

activity. Oil consumption in most developed economies is flat or in decline and as a result 

emerging market economic growth (as proxied by emerging market stock prices) is likely 

to be an important source of demand side pricing pressure in the oil market.  

 

The results in this paper offer support for the hypothesis that exchange rates respond to 

movements in oil prices and that most of the dynamic interaction takes place in the short 

run. In particular, a positive oil price shock leads to an immediate drop in the trade-

weighted exchange rate. This result has a statistically significant impact for about 5-6 

months. These results are broadly consistent with other empirical papers that find 
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movements in oil prices affect exchange rates (eg. Golub, 1983; Amano and van Norden, 

1998; Huang and Guo, 2007; Chen and Chen, 2007; and Lizardo and Mollick, 2010). 

 

The results in this paper show that oil prices respond negatively to an unexpected 

increase in oil supply and oil prices respond positively to an unexpected increase in 

demand. These results are consistent with the predictions from a demand and supply 

model for the oil market. Oil prices respond positively to a positive shock to emerging 

stock markets. These results are important in establishing, that in addition to global 

supply and demand conditions for oil, oil prices also respond to emerging market equity 

markets.  

 

The results in this paper have a number of policy implications. As expected, oil prices 

respond to global oil production (supply) and real global economic activity (demand). 

Rapidly rising stock prices in emerging economies can also put pressure on oil prices to 

rise. While it has typically been the case that macroeconomic policy in developed 

economies, like the G7,  was seen as an important factor affecting the global economy, it 

now must be recognized that monetary and fiscal policy in large emerging economies 

(like China and India) can affect their own economic growth prospects as well as global 

financial markets.  As the results in this paper have shown, oil prices respond not just to 

economic fundamentals like oil supply and real economic activity but also to movements 

in emerging stock prices. Stock markets are often seen as leading economic indicators. 

Rapidly rising stock prices in emerging markets signal the expectation of higher 

economic growth ahead. If emerging market stock prices get trapped in a bubble, 

however, oil prices will overshoot in relation to economic fundamentals. This means that 

consumers in developed economies could end up paying more for oil and oil related 

products even if their own domestic economic growth remains sluggish and future 

realized economic growth in emerging economies is less than what the financial markets 

expected. 
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Table 1. The top 10 countries with the largest increase in oil consumption over the past 
10 years. 

Oil Consumption ('000 
barrels per day) 2008 2009 

Growth 
past 
5 years 

Growth 
past 
10 years 

Change 2009  
over 2008 

2009 
share of 
total 

Qatar 198 209 54.09% 140.41% 5.00% 0.21% 
China 8086 8625 24.19% 65.57% 6.69% 10.42% 
Kazakhstan 263 260 13.32% 57.15% -3.34% 0.31% 
Algeria 311 331 32.00% 57.06% 6.49% 0.38% 
Kuwait 370 419 24.79% 54.33% 9.79% 0.49% 
Saudi Arabia 2390 2614 32.96% 52.71% 9.79% 3.14% 
United Arab Emirates 475 455 22.28% 51.81% -4.95% 0.56% 
Ecuador 207 216 42.62% 49.90% 5.24% 0.25% 
Singapore 968 1002 29.23% 48.14% 3.49% 1.34% 
India 3071 3183 21.25% 39.99% 3.70% 3.83% 
USA (ranked 52) 19498 18686 -10.39% -4.36% -4.87% 21.71% 

Source: BP 2010 
 
Table 2. Oil consumption growth by region. 

Oil Consumption 
('000 barrels per day) 2008 2009 

Growth 
past 
5 years 

Growth 
past 
10 years 

Change 
2009  
over 2008 

2009 
share of 
total 

Total Middle East 6864 7146 22.51% 42.14% 3.83% 8.66% 
Total Asia Pacific 25662 25998 8.18% 23.67% 1.01% 31.07% 
Total Africa 3045 3082 13.59% 21.33% 1.08% 3.71% 
Total S. & Cent. America 5681 5653 14.88% 14.20% -0.82% 6.59% 
Total World 85239 84077 2.18% 10.56% -1.70% 100.00% 
Total Europe & Eurasia 20193 19372 -3.88% -1.99% -4.21% 23.54% 
Total North America 23795 22826 -8.69% -2.00% -4.71% 26.42% 

Source: BP 2010 
 
 
Table 3. Summary statistics: January 1988 to December 2008 

 Δoilprod rea EM TED TWE OIL 
 Mean  0.096 -0.001  633.043  0.448  90.493  32.473 
 Median  0.134 -0.039  538.432  0.300  89.615  22.034 
 Maximum  4.473  0.568  2213.413  4.620  111.990  133.930 
 Minimum -5.863 -0.487  109.838  0.030  70.320  11.280 
 Coefficient of 
variation  10.910 -126.701  0.690 1.117 0.096 0.714 
 Skewness -0.775  0.607  1.680  3.911  0.239  2.115 
 Kurtosis  8.976  2.823  5.489  25.886  2.977  7.514 

       
 Jarque-Bera  400.257  15.825  183.770  6142.212  2.411  401.938 
 Probability  0.000  0.000  0.000  0.000  0.299  0.000 

       
 Observations  252  252  252  252  252  252 
Note: Δoilprod (percentage change in global oil production); rea (log of global real economic activity); EM 
(emerging market equity price index); TED (spread between a 3-month Eurodollar T-bill and a 3-month US T-bill); 
TWE (trade-weighted US dollar exchange rate index); and OIL (oil prices). 
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Table 4. DF-GLS unit root tests 
Variables DF-GLS statistic 
Log of oil production (oilprod) -3.71*** (trend) 
Log of global real economic activity (rea) -2.62 (trend) 
Log of real emerging equity prices (emr) -1.45 (trend) 
TED spread (TED) -0.78 
Log of US dollar index (twe) -1.55 
Log of real oil prices (oilr) -2.57 (trend) 
Note: The lag length is chosen using the modified AIC criteria. The maximum 
number of lags allowed is 15. *** denotes statistical significant at the 1% level. A 
deterministic linear time trend is included where noted. 
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Figure 1. Global oil production, real economic activity, emerging market stock prices, the 
                US treasury/Euro interest rate spread, exchange rates, and oil prices. 

 

 
Note: See Table 3 for an explanation of the abbreviations.  OILPROD is oil production in barrels per day. 
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Figure 2. Structural VAR impulse responses. 
 

 
 
Note: the logarithm of global oil production is denoted oilprod; rea is the logarithm of global real economic activity; emr is the 
logarithm of real emerging market stock prices; TED is the interest rate spread; twe is the logarithm of trade-weighted US dollar index 
and oilr is the logarithm of real oil prices. 
 
 
 
 
 
  

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to oilprod shock

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to rea shock

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to emr shock

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to TED shock

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to twe shock

-.02

-.01

.00

.01

.02

5 10 15 20

Response of oilprod to oilr  shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to oilprod shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to rea shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to emr shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to TED shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to twe shock

-.12

-.08

-.04

.00

.04

.08

5 10 15 20

Response of rea to oilr shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to oilprod shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to rea shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to emr shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to TED shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to twe shock

-.2

-.1

.0

.1

5 10 15 20

Response of emr to oilr shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to oilprod shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to rea shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to emr shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to TED shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to twe shock

-.2

-.1

.0

.1

.2

.3

5 10 15 20

Response of TED to oilr shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to oilprod shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to rea shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to emr shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to TED shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to twe shock

-.04

-.02

.00

.02

.04

.06

5 10 15 20

Response of twe to oilr shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr  to oilprod shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr to rea shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr to emr shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr to TED shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr to twe shock

-.2

-.1

.0

.1

.2

5 10 15 20

Response of oilr to oilr shock

Response to structural one standard deviation innovations with two standard error confidence bands



37 
 

 
Figure 3. Structural VAR local projection-based impulse responses with two standard error confidence bands 

 
 

 
 
Note: See “Note” to Figure 2 for an explanation of the abbreviations.  Local projection-based IRFs are indicated by blue-dashed lines 
with red-dashed two standard error (approximately 95%) confidence bands. The solid black line denotes the impulse responses from 
standard IRFs from Figure 2, repeated here for ease of comparison. 
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Figure 4. Structural VAR local projection-based impulse responses with one standard error confidence bands 
 
 

 
 

Note: See “Note” to Figure 3. The red-dashed lines indicate here the approximate 68% , or equivalently one standard error, confidence 
bands for local projection-based IRFs  (blue-dashed lines). 
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Figure 5: Variance decomposition 
 
 

 
 
Note: Shock1 (logarithm of global oil production, oilprod); Shock2 (logarithm of global real economic activity, rea); Shock3 
(logarithm of real emerging market stock prices, emr); Shock4 (interest rate spread, ted); Shock5 (logarithm of trade-weighted US 
dollar index, twe); and Shock6 (logarithm of real oil prices, oilr). 
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