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Voting rules as statistical estimators∗

Marcus Pivato, Trent University

April 13, 2011

Abstract

We adopt an ‘epistemic’ interpretation of social decisions: there is an objectively
correct choice, each voter receives a ‘noisy signal’ of the correct choice, and the social
objective is to aggregate these signals to make the best possible guess about the
correct choice. One epistemic method is to fix a probability model and compute the
maximum likelihood estimator (MLE), maximum a posteriori estimator (MAP) or
expected utility maximizer (EUM), given the data provided by the voters. We first
show that an abstract voting rule can be interpreted as MLE or MAP if and only
if it is a scoring rule. We then specialize to the case of distance-based voting rules,
in particular, the use of the median rule in judgement aggregation. Finally, we show
how several common ‘quasiutilitarian’ voting rules can be interpreted as EUM.

Let S be a set of possible states of nature, and let s∗ ∈ S be the unknown true state. Let
I be a collection of voters, and for all i ∈ I, let vi be a signal from voter i communicating
her beliefs about the true state. Epistemic social choice theory1 concerns the problem of
how to aggregate the opinion profile {vi}i∈I so as to make the ‘best guess’ about the true
value of s∗.

For example, let S = {±1}, and suppose {vi}i∈I are independent, identically distributed
(i.i.d.), {±1}-valued random variables, with Prob [vi = s∗] > 1

2
for all i ∈ I. Let v :=∑

i∈I vi (so sign(v) ∈ {±1} is the choice of the majority). Then the well-known Condorcet

Jury Theorem (CJT) says that Prob [sign(v) = s∗] approaches 1 as |I| becomes large. In
other words, the outcome of majority vote is likely to produce the correct answer, even
when the reliability of each individual voter is barely better than a coin toss.2 Adopting an
epistemic interpretation of preference aggregation, Young (1986, 1988, 1995, 1997) showed
that the Kemeny rule can be seen as the maximum-likelihood estimator (MLE) of the
‘true’ preference ordering over a set of candidates, while the Borda rule is the MLE of the

∗This paper was written while visiting the Department of Economics at the Université de Montréal,
and the Centre for Philosophy of Natural and Social Sciences at the London School of Economics. I would
like to thank the UdM, CIREQ, and LSE-CPNSS for their hospitality. This research was also supported
by NSERC grant #262620-2008.

1This terminology originates with Cohen (1986) and Estlund (1997).
2There is now a large literature extending the CJT to choices amongst three or more alternatives, or

models where voters have different competencies and/or have correlated errors. For example, see Nitzan
(2010, Part III), Hummel (2010), Kaniovski (2010), or Dietrich and Spiekerman (2011).
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best candidate. More recently, Conitzer and Sandholm (2005), Conitzer et al. (2009), and
Xia et al. (2010) have investigated which other preference aggregators can be interpreted
as MLEs.

However, preference aggregation is only one social choice problem, and not necessarily
the one where the epistemic interpretation is the most plausible. This paper is concerned
with the more general problem of when any sort of voting rule can be interpreted as a
statistical ‘estimator’ of some kind. Section 1 introduces abstract voting rules and several
kinds of of statistical estimator. Theorems 1.1 and 1.4 show that a voting rule can be
interpreted as maximum likelihood or maximum a posteriori (MAP) estimator if and only
if it is a ‘scoring rule’. Examples include the Borda rule, the Kemeny rule, and approval
voting. Section 2 specializes to the case when the space of social alternatives has a metric
structure, which governs the sorts of errors which voters tend to make. In this setting, one
MAP estimator is the metric voting rule, which chooses the alternative with minimal aver-
age distance to the voters (Theorem 2.1). We apply this interpretation to cyclic parameter
estimation, the plurality rule, and the Borda rule. Section 3 specializes the model of §2
to the case when each voter’s error probability density decays exponentially with distance
from the correct solution. In this case, the metric voting rule is the median rule. We first
apply the median rule to the estimation of a parameter on an interval (Proposition 3.2).
Then we apply it to judgement aggregation (Proposition 3.3), with focus on committee
selection, Arrovian preference aggregation, and certain partition problems. Finally, Sec-
tion 4 considers when a voting rule can be interpreted as an expected utility maximizer
(EUM). We provide EUM interpretations of approval voting, classic utilitarianism, relative
utilitarianism, and variant of the Borda rule. All proofs are in an Appendix at the end of
the paper.

Notation. R denotes the real numbers, N := {1, 2, 3, . . .}, and R+ := [0,∞). Upper-
case caligraphic letters (e.g. A, I, K, S, X , V , etc.) will denote sets, which are either
finite, or countably infinite, or assumed to be measurable subsets of nonzero Lebesgue
measure in some Euclidean space R

N . Lower-case Roman letters (e.g. a, i, k, s, x, v, etc.)
will denote elements of these sets (or numbers), while upper case Roman letters generally
denote functions. Boldface or sans serif letters (e.g. v or v) will denote n-tuples, and
boldface and sans serif (e.g. v) will denote m-tuples of n-tuples. Lower-case Greek letters
(e.g. α, ρ, etc.) denote functions, which are often probability densities (i.e. nonnegative
functions whose total sum or integral is 1). If a set X is finite or countable, we always
‘integrate’ with respect to the counting measure on X . Thus, if φ : X−→R is any function
and ρ is any probability density, then

∫

X

φ(x) ρ(x) dx should be read as
∑

x∈X

φ(x) ρ(x), (1)

and represents the ‘ρ-expected value’ of φ, sometimes denoted Eρ(φ). However, if X is
a measurable subset of R

N , then this integral should be read as integration with respect
to the Lebesgue measure (and in this case, ρ and F are always assumed to be Lebesgue-
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measurable functions).3 For any Y ⊆ X , let |Y| :=
∫
Y

1 dy. (So if X is finite or countable,
then |Y| is just the cardinality of Y .) A function π : X−→X is measure-preserving if π is
almost-everywhere injective, and |π−1(Y)| = |Y| for all Y ⊆ X . (If X is finite or countable,
this just means that π is bijective —that is, π is a permutation of X .) Let ΠX denote the
set of all measure-preserving maps from X to itself. (So if X is finite, then ΠX is the
corresponding permutation group.) Let ∆(X ) denote the set of all probability density
functions on the set X .

1 Voting rules and estimators

Let X be a space of outcomes, and let V be a space of ‘signals’ or possible ‘votes’ which
could be cast be each voter. If I is a set of voters, then a profile is an element v ∈ VI

which assigns a vote vi ∈ V to each i ∈ I. A voting rule is a multifunction F : VI
⇉ X ,

which assigns to each profile v a nonempty subset F (v) ⊆ V .
For example, in the CJT, we have X = V = {±1}, representing a decision about the

truth/falsehood of a single statement. In ordinal social choice, there is a set A of ‘social
alternatives’, and X = A, while V is the space of all strict preference orders over A. Thus,
each voter submits a preference order, and the rule selects one or more elements from
A. In cardinal social choice, X = A and V ⊆ R

A is some set of possible cardinal utility
functions on A. In Arrovian preference aggregation, X = V are both the space of preference
orders over A. In judgement aggregation, V = X ⊆ {±1}K, where K is a set of statements,
each of which could be either true or false, and X represents the set of logically possible
truth-valuations of these statements.

Let ΠI be the group of all permutations of I. For any v ∈ VI and π ∈ ΠI , we define
π(v) := v′ ∈ VI by setting v′i := vπ(i) for all i ∈ I. A voting rule F is anonymous if
F (π(v)) = F (v) for all v ∈ VI and π ∈ ΠI .

Estimators. Now, suppose S represents a space of possible states of nature, and let
s∗ ∈ S be the unknown true state. Again, let V be a space of possible ‘messages’ or
‘signals’ from voters. For all i ∈ I, let vi ∈ V be message indicating the beliefs of voter i
about the true state; we regard vi as a ‘noisy signal’ of s∗. We can then apply statistical
techniques to find the best ‘estimator’ of s∗ given the data {vi}i∈I . For all i ∈ I, s ∈ S and
v ∈ V, let ρi

s(v) be the conditional probability that voter i will send the signal v, when the
true state is in fact s; this defines a function ρ : I ×S−→∆(V), called the error model. The
error model is anonymous if ρ does not depend on i —that is, ρi

s(v) = ρj
s(v) for all i, j ∈ I,

s ∈ S and v ∈ V. In this case, we can regard the error model as a function ρ : S−→∆(V).
Conditional on s∗, we assume the signals {vi}i∈I are independent random variables.

Define the function R : S−→∆(VI) by

R(s;v) :=
∏

i∈I

ρi
s(v

i), (2)

3All of our results can be generalized to arbitrary measures over arbitrary measure spaces, but it isn’t
really worth the extra technical overhead to work at that level of generality.
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for any s ∈ S and v = (vi)i∈I ∈ VI . Then R(s;v) is the conditional probability of seeing
the signal profile v := (vi)i∈I , given that the true state is s.

Let α ∈ ∆(X ) be an a priori probability density on S, and let βv ∈ ∆(X ) be the
a posteriori distribution on S, given the data v. For all s ∈ S, the value of βv(s) can be
computed using Bayes rule:

βv(s) =
R(s;v)α(s)

R(v)
, where R(v) :=

∫

S

R(s;v)α(s) ds. (3)

Finally, let A be a space of possible ‘actions’, and let U : A×S−→R be a utility function.
Suppose our goal is to choose the action which will maximize expected utility, given our
information about the unknown s∗. For any a ∈ A, the a posteriori expected utility of
action a, given v and α, is

EU(a;α,v) :=

∫

S

U(a, s) βv(s) ds =
1

R(v)

∫

S

U(a, s)R(s;v)α(s) ds. (4)

Thus, the expected utility maximizer (EUM) is the set

EUMS,U
α,ρ (v) := argmax

a∈A
EU(a; α,v)

(∗)
argmax

a∈A

∫

S

U(a, s)R(s;v)α(s) ds, (5)

where (∗) is because the denominator R(v) in eqn.(4) is independent of the choice of a ∈ A.
In some cases, we do not have a particular utility function in mind; we simply want

to know the truth about s∗. The maximum a posteriori (MAP) estimator is the set of all
s ∈ S which have maximal a posteriori probability:

MAPS
α,ρ(v) := argmax

s∈S
βv(s)

(∗)
argmax

s∈S

(
R(s;v)α(s)

)
, (6)

where (∗) is because the denominator R(v) in eqn.(3) is independent of s. (Equivalently,
MAPS

α,ρ(v) = EUMS,U
α,ρ (v), where we set A := S and use the degenerate utility function U

defined by U(a, s) := 1 if s = a and U(a, s) := 0 if s 6= a.)
If we assume the prior distribution α is uniformly distributed over S, then MAPS

α,ρ(v)
coincides with the maximum likelihood estimator (MLE), defined

MLES
ρ (v) := argmax

s∈S
R(s;v). (7)

The CJT says that the majority voting rule is an MLE when S = V = {±1}. The goal of
this paper is to determine which other voting rules can function as EUM, MAP, or MLE
for some plausible choice of U , ρ and α.

Scoring rules. Let R := R ∪ {−∞}. Let S : I × V × X−→R be a function. The
scoring rule determined by S is the correspondence FS : VI

⇉ X defined as follows. For
all v ∈ VI ,

FS(v) := argmax
x∈X

S(v, x), where S(v, x) :=
∑

i∈I

Si(vi, x), for all x ∈ X . (8)

4



In other words, for each i ∈ I and x ∈ X , the vote vi contributes Si(vi, x) ‘points’ to the
‘score’ S(v, x); we then choose the element(s) of X with the highest score. Note that, if
Si(v, x) = −∞, then i voting for v is tantamount to i ‘vetoing’ alternative x; thus, we say
FS has no vetos if Si(v, x) > −∞ for all (i, v, x) ∈ I×V×X . The scoring rule is anonymous

if the score function S does not depend on I —that is, for all i, j ∈ I, v ∈ V, and x ∈ X ,
we have Si(v, x) = Sj(v, x). In this case, we can treat S as a function S : V × X−→R. A
scoring rule F is balanced if F = FS for some scoring function S such that for all i ∈ I
and all x, y ∈ X , we have

∫

V

exp[Si(v, x)] dv =

∫

V

exp[Si(v, y)] dv. (This is a technical

condition which can be seen as a weak form of ‘neutrality’.)
If α ∈ ∆(X ) and ρ : I×X−→∆(V), then the ordered pair (α, ρ) will be called a scenario

on I × X × V. A voting rule F : VI
⇉ X is MAP-rationalizable if there exists a scenario

(α, ρ) such that F (v) = MAPX
α,ρ(v) for all v ∈ VI . In particular, F is MLE-rationalizable

if it is MAP-rationalizable with α being the uniform density on X . An error model ρ has
no impossibilities if ρx(v) > 0 for all (x, v) ∈ X × V. Here is the first major result of the
paper.

Theorem 1.1 Let F : VI
⇉ X be a voting rule.

(a) F is MAP-rationalizable if and only if F is a scoring rule.

(b) F is MLE-rationalizable if and only if F is a balanced scoring rule.

Now suppose F is a scoring rule.

(a) F is anonymous if and only if there exists an anonymous score function for F , if

and only if there exists an anonymous error model which MAP-rationalizes F .

(b) F has no vetos if and only if the error model of F has no impossibilities.

Say that F is anonymously MLE-rationalizable if F is MLE-rationalizable for some anony-
mous error model. Thus, Theorem 1.1(a,b,c) together imply:

F is anonymously MLE-rationalizable if and only if F is an anonymous,

balanced scoring rule.

The proof of Theorem 1.1(a)“=⇒” is based on identifying the expression S(x,v) in eqn.(8)
with the the logarithm of the expression R(x;v)α(x) in eqn.(6). The logarithm converts
the product (2) into a sum, which we can reformulate as a sum of suitably defined scoring
functions {Si; i ∈ I}. The proof of “⇐=” simply reverses this argument, by identifying
exp[S(x,v)] as the product R(x;v)α(x), which is then factored in terms of a suitable
prior α and error model ρ. The details are in the Appendix. However, it will be useful to
illustrate the argument for two familiar voting rules.

Example 1.2. Let X be a set of social alternatives. One of these alternatives is truly the
‘best’ alternative; call it x∗. The true identity of x∗ is unknown; our goal is to discover it
(thus, in this model, S = X ).
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(a) (Borda rule) Let V := PRF(X ) be the set of all strict preference orders over X , and let
N := |X |. For any x ∈ X and v ∈ V, let S(v, x) = N −n if there are n alternatives ranked
higher than x in the ordering v. (In particular, S(v, x) = N − 1 if x is the best alternative
according to v.) Then FS is the Borda rule.

To MLE-rationalize this rule, we suppose each voter is most likely to choose a preference
order that judges x∗ to be best, and less likely to choose a preference order where x∗ has
lower rank, with probability exponentially decreasing according to the rank of x∗. To be
precise, let ǫ ∈ (0, 1), and for all x ∈ X and v ∈ V, suppose that

ρx(v) :=
ǫS(v,x)

C
, where C := (N − 1)!

ǫN − 1

ǫ− 1
. (9)

This yields an anonymous error model ρ : X−→∆(V); it is easy to verify that FS = MLEX
ρ .

(See also Proposition 2.5.)

This MLE-rationalization of Borda is equivalent to the one given by Young (1986, p.117).4

Young supposes that there is some p ∈
(

1
2
, 1
)

such that, for all i ∈ I, and all y ∈ X \ {x∗},
voter i correctly recognizes that that x∗ ≻ y with probability p, whereas she falsely believes
y ≻ x∗ with probability 1 − p. Meanwhile, for any distinct y, z ∈ X \ {x∗}, she has an
equal probability of thinking y ≻ z or z ≻ y (and these events are all independent). If we
set ǫ := 1−p

p
, then error model (9) follows.

(b) (Approval voting) Let V := {0, 1}X . (A typical element of V will be written as
v = (vx)x∈X , where vx ∈ {0, 1} for all x ∈ X .) For any x ∈ X and v ∈ V, if vx = 1, then v

‘approves’ of alternative x, whereas if vx = 0, then v ‘does not approve’ of x. The approval

voting rule Appr : VI
⇉ X chooses the alternative(s) which are ‘approved’ by the most

voters (Brams and Fishburn, 1983). Formally, for any profile v := (vi)i∈I (where v
i ∈ V

for all i ∈ I), we define Appr(v) := argmax
x∈X

∑

i∈I

vi
x.

Define S(v, x) := vx for all v ∈ V and x ∈ X ; then Appr = FS. We will show that Appr is
anonymously MLE-rationalizable in terms of a very natural error model.

Let p ∈
(

1
2
, 1
]
. For each i ∈ I and x 6= y ∈ X , we suppose

Prob
[
vi

x = 1
∣∣∣ x∗ = x

]
= p and Prob

[
vi

x = 0
∣∣∣ x∗ = x

]
= 1 − p,

while Prob
[
vi

y = 1
∣∣∣ x∗ = x

]
= 1

2
= Prob

[
vi

y = 0
∣∣∣ x = x∗

]
.

(10)

We further assume that the random variables {vi
y; y ∈ X \ {x}, i ∈ I} are jointly inde-

pendent, conditional on x∗ = x. So, if x is the best alternative, then each voter has a
better-than-50% chance of approving of x, while her approvals of the other alternatives are
generated by independent fair coin flips.

Define c := p/(1 − p) (so c > 1), let N := |X |, and define M := 2N−1(c + 1). It is easy
to check that (10) corresponds to the anonymous error model ρ : X−→∆(V) defined by

4Young (1988, p.1238 and 1997, §5) provides a different and more complicated MLE-rationalization
of Borda. Young (1988) speculates that Condorcet (1785) probably understood —or at least, suspected
—the MLE-rationalizability of the Borda rule, but he ignored it, so as to snub his rival.

6



ρx(v) := cvx/M for all x ∈ X and v ∈ V (recall that vx ∈ {0, 1}, so cvx ∈ {1, c}). For any
profile v := (vi)i∈I ∈ VI and x ∈ X , observe that

c
P

i∈I vi
x =

∏

i∈I

cv
i
x = M I

∏

i∈I

ρx(v
i). Thus,

Appr(v) = argmax
x∈X

∑

i∈I

vi
x = argmax

x∈X
c

P
i∈I vi

x = argmax
x∈X

∏

i∈I

ρx(v
i)

(∗)
MLES

ρ (v),

as desired. Here, (∗) is by formulae (2) and (7). (See Example 4.2 for another statistical
interpretation of approval voting.) ♦

Note that the scenario which MAP-rationalizes a voting rule F is not unique. Two score
functions S, S̃ : I×V×X−→R are equivalent if we have FS(v) = FeS(v) for all v ∈ VI . For

example, if there exists some r > 0 and q : I×V−→R such that S̃i(v, x) = r Si(v, x)+qi(v)

for all (i, v, x) ∈ I × V × X , then clearly S̃ is equivalent to S. Such a ‘linear’ relationship

between S̃ and S is sufficient, but not necessary for equivalence; S̃ will still be equivalent
to S if S̃i = r Si(v, x)+ qi(v)+ ǫi(v, x), where r and q are as before, and ǫ : I ×V ×X−→R

is some sufficiently small ‘perturbation’ term. The set of all score functions equivalent to S
forms a convex cone in the vector space R

I×V×X . The next result characterizes the amount
of freedom we have in picking a scenario which MAP-rationalizes a given voting rule F .

Proposition 1.3 Let (α, ρ) and (α̃, ρ̃) be two scenarios on I × X × V. For all (i, v, x) ∈
I × V ×X , define Si(v, x) := log

(
ρi

x(v)α(x)1/I
)

and S̃i(v, x) := log
(
ρ̃i

x(v) α̃(x)1/I
)
. Then

MAPX
α,ρ = MAPX

eα,eρ if and only if the score functions S and S̃ are equivalent.

Let V∗ :=
⊔∞

n=1 Vn. A variable population voting rule is a correspondence F ∗ : V∗
⇉ X . For

all I ∈ N, let F I be the restriction of F ∗ to a rule on VI . We say that F ∗ is anonymous if
F I is anonymous for all I ∈ N.

For any n ∈ N
V , let ‖n‖ :=

∑
v∈V nv. Define N

V
fin := {n ∈ N

V ; ‖n‖ < ∞}. For
any profile v ∈ V∗, we can define a vector n(v) ∈ N

V
fin by setting n(v)w := #{i ∈ N;

vi = w}, for each w ∈ V. This yields a surjection n : V∗−→N
V
fin. The rule F ∗ : VI−→X

is anonymous if and only if there exists some correspondence f : N
V
fin ⇉ X such that

F ∗(v) = f(n(v)) for all v ∈ V∗.
For example, let S : V × X−→R be an anonymous scoring function. Then we define

the (anonymous, variable-population) scoring rule F ∗
S : V∗

⇉ X by

F ∗
S(v) := argmax

x∈X
S(v, x), where S(v, x) :=

I∑

i=1

S(vi, x), ∀ I ∈ N, v ∈ VI , x ∈ X .

Equivalently, we could define fS : N
V
fin ⇉ X by

fS(n) := argmax
x∈X

S(n, x), where S(n, x) :=
∑

v∈V

nv S(v, x), for all n ∈ N
V
fin and x ∈ X .

An anonymous, variable-population rule F ∗ is (anonymously) MLE-rationalizable if there
exists an anonymous error model ρ : V−→∆(X ) such that, for any profile v ∈ V∗, we have
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F ∗(v) = MLEX
ρ (v). The next result extends Theorem 1.1 to variable populations, but

it also provides a much tighter characterization of the rationalizing error model than the
one given by Proposition 1.3.

Theorem 1.4 Let F ∗ : V∗
⇉ X be an anonymous, variable-population voting rule.

(a) F ∗ is MLE-rationalizable if and only if F ∗ is a balanced scoring rule.

(b) Suppose that, for all x, y ∈ X , there exists some v ∈ V∗ such that F (v) = {x, y}.
Let ρ, ρ̃ : X−→∆(V) be two anonymous error models, and suppose F = MLEX

ρ . Then

F = MLEX
eρ if and only if there is a constant r > 0 and a function τ : V−→R+ such

that ρ̃x(v) = τ(v) · ρx(v)
r for all (x, v) ∈ X × V.

As an illustration of (a), the MLE-rationalizations of the Borda and approval voting rules
(Example 1.2) carry over verbatim to the variable-population context. As an illustration of
(b), suppose that, for all x, y ∈ X , there exists a measure-preserving function5 πxy : V−→V
such that ρy = ρx ◦ πxy. (Thus, the error model ‘looks the same’ for every x ∈ X . For
example, this is true for distance-based error models on homogeneous spaces; see Corollary
2.2 below.) Then, for any r > 0, there is a constant Tr > 0 such that

∫
V
ρx(v)

r dv = Tr, for
all x ∈ X . (In particular, T1 = 1, because ρx is a probability density.) Define τr(v) := T−1

r

for all v ∈ V. Then define ρr : X−→∆(V) by ρr
x(v) := τr(v) · ρx(v)

r = ρx(v)
r/Tr for

all (x, v) ∈ X × V . Then for any r > 0, the function ρr is an error model which MLE-
rationalizes F . Note that, as r→0, the density ρr

x becomes almost uniformly distributed
over the support of ρx. In particular, if ρx(v) > 0 for all (x, v) ∈ X ×V, then ρr

x converges
to the uniform density on V (so reach voter receives an extremely ‘noisy’ signal of the true
state). On the other hand, as r→∞, note that ρr

x concentrates almost all its mass on
argmax

v∈V
ρx(v) (so each voter receives a ‘high fidelity’ signal).

Reinforcement. Let ΠV be the group of permutations of V , and let ΠX be the group of
permutations of X . For any π ∈ ΠV , and any profile v ∈ VI , define π(v) := (π(vi))i∈I ∈ VI .
A variable-population rule F ∗ is neutral if, for any π ∈ ΠX , there exists some π̃ ∈ ΠV such
that F [π̃(v)] = π[F (v)] for all v ∈ V∗. This means the rule treats all the alternatives
equally; for any x, x′ ∈ X , and any profile v ∈ V∗ such that x ∈ F ∗(v), there exists a
permuted profile v′ ∈ V∗ such that x′ ∈ F ∗(v′).

If I, J ∈ N, and v ∈ VI and w ∈ VJ are two profiles, then let vw denote the element
of VI+J obtained by concatenating v and w in the obvious way. The rule F ∗ satisfies
reinforcement6 if, for all v,w ∈ V∗, we have F ∗(vw) = F ∗(v) ∩ F ∗(w) whenever this
intersection is nonempty. Interpretation: if two disjoint subpopulations (represented by
v and w) each regard every element of some subset X ′ ⊂ X as optimal (i.e. if X ′ =
F ∗(v)∩F ∗(w)), then the combined population (represented by vw) should also regard the
elements of X ′ —and only these elements —as optimal.

Observe that n(vw) = n(v) + n(w). Thus, if F ∗ is anonymous, then F ∗ satisfies
reinforcement if and only if, for all v,w ∈ N

V
fin, we have f(n+m) = f(n)∩f(m) whenever

5Recall: if V is finite or countable, then this is just any permutation of V.
6Sometimes this property is called separability or consistency.
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this intersection is nonempty. For example, any variable-population scoring rule satisfies
reinforcement.

An anonymous, variable-population rule F ∗ satisfies overwhelming majority7 if, for any
n1,n2 ∈ N

V
fin, there exists some M ∈ N such that, for all m > N , we have f(n1 +M n2) ⊆

f(n2). Interpretation: if one sub-population of voters (represented by M n2) is much larger
than another sub-population (n1), then the choice of the combined population should
be determined by the choice of the large sub-population —except that the small sub-
population may act as a ‘tie-breaker’ in some cases. For example, any variable-population
scoring rule satisfies overwhelming majority. By combining Theorem 1.4 with a result of
Myerson (1995), we obtain the following.

Corollary 1.5 Suppose X and V are finite. Let F ∗ : V∗
⇉ X be a neutral, anonymous,

variable-population voting rule. Then F ∗ is MLE-rationalizable if and only if F ∗ satisfies

reinforcement and overwhelming majority.

For example, it is clear that the Borda and approval voting rules (Example 1.2) satisfy
neutrality, reinforcement and overwhelming majority.

Example 1.6. Let A be a finite set of alternatives, and let PRF(A) be the set of all
strict preference orders over A. A (variable-population) preference aggregator is a corre-
spondence F : PRF(A)∗ ⇉ PRF(A). (Thus, in this model, V := X := PRF(A).) The
rule F ∗ respects unanimity if F ∗(v) = x whenever v ∈ PRF(A)∗ is a ‘unanimous’ profile
such that vi = x for all i ∈ I. (This is a very natural requirement, if we regard F ∗ as
a statistical estimator of the ‘true’ preference order over A.) A score-based preference

aggregator is determined by a score function S : PRF(A)×PRF(A)−→R. For example, the
Kemeny (1959) rule is an anonymous, neutral, score-based preference aggregator, where,
for any v, x ∈ PRF(A), S(v, x) is the number of pairwise comparisons where v and x agree.
Thus, Theorems 1.1(b,c) and 1.4(a) imply that the Kemeny rule is anonymously MLE-
rationalizable. This was first observed by Young (1986, 1988, 1995, 1997) (see Example
3.4 for details). Thus, Corollary 1.5 implies that the Kemeny rule satisfies reinforcement
and overwhelming majority. Indeed, Young and Levenglick (1978) have shown that the
Kemeny rule is the only neutral, anonymous, variable-population preference aggregator
which respects unanimity, satisfies reinforcement, also also satisfies a condition they call
‘local independence of irrelevant alternatives’ (LIIA). Thus, Corollary 1.5 implies: the Ke-

meny rule is the only neutral, anonymous, variable-population preference aggregator rule

which is MLE-rationalizable, respects unanimity, and satisfies LIIA. ♦

Remarks. (a) Conitzer et al. (2009; Theorem 1) have proved a special case of Theorem
1.1(a) for anonymous, neutral, preference aggregators. Earlier, the “⇐=” direction had
been proved by Conitzer and Sandholm (2005; Theorem 1); they also (2005; Lemma 1)
proved a special case of Corollary 1.5 “=⇒” for anonymous, neutral, preference aggregators.
These papers investigated the MLE-rationalizability of many common ordinal social choice

7Sometimes this is propertyy called continuity or the Archimedean property.
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rules and preference aggregators. More recently, Xia et al. (2010) have investigated this
problem in the special case when the space of social alternatives is a Cartesian product.

(b) Note that Theorem 1.1(a) (the MAP-rationalizability of unbalanced scoring rules)
does not generalize cleanly to the variable-population setting. The reason is that the
a priori density α which is imputed from an unbalanced score function S depends upon
the population size. Proposition 3.2(b) (below) illustrates this.

2 Metric voting rules

The results of §1 are rather abstract. The fact that there exists a scenario which MAP-
rationalizes a particular voting rule F does not imply that this scenario is very plausible.
We will now show how the class of ‘metric’ voting rules are MAP-rationalized by plausible
‘metric’ scenarios. Throughout this section, we will implicitly assume that V = S = X . Let
d be a metric8 on X , and let E : R+−→R+ be a bounded function (usually nonincreasing).
Define E : X−→X by

E(x) :=

∫

X

E
(
d(x, y)

)
dy, for all x ∈ X . (11)

Say E is a generator if E decays quickly enough that E(x) is finite for all x ∈ X .9 The
metric error model generated by E on (X , d) is the function ρE : X−→∆(X ) defined

ρE
x (v) :=

E[d(x, v)]

E(x)
, for all x, v ∈ X .10 (12)

Now, for all i ∈ I, let Li : R+−→R+ be a function (usually nondecreasing). (Roughly
speaking, the greater the value of Li, the more ‘weight’ voter i will have.) The metric

voting rule defined on (X , d) by the system L := (Li)i∈I is the function MinΣX
d,L : X I−→X

defined
MinΣX

d,L(v) := argmin
x∈X

∑

i∈I

Li
(
d(x, vi)

)
, for all v ∈ VI . (13)

Theorem 2.1 Let (X , d) be a metric space. For all i ∈ I, let Ei be a generator, define

Ei : X−→R as in eqn.(11), and define ρi := ρEi : X−→∆(X ) as in eqn.(12). Let Li(r) :=
− ln[Ei(r)] for all r ∈ R+ and i ∈ I. For all x ∈ X , define

α(x) :=
1

C

∏

i∈I

Ei(x), where C :=

∫

X

∏

i∈I

Ei(x) dx. (14)

(a) α ∈ ∆(X ), and MinΣX
d,L(v) = MAPX

α,ρ(v) for all v ∈ X I.

8Note that d is not necessarily related to the Euclidean metric, even if X is a subset of R
N .

9As E is bounded, this is always true if (X , d) is bounded and |X | < ∞. In particular, it holds
automatically if X is finite, or if X is bounded in both the Euclidean metric and the d-metric.

10We divide by E(x) to ensure that ρE
x is a probability distribution on X .
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(b) If Ei is a constant function for all i ∈ I, then MinΣX
d,L(v) = MLEX

ρ (v) for all

v ∈ X I.

In most of our examples, the metric voting rule (13) is anonymous: there is some L :
R+−→R+ such that Li = L for all i ∈ I. Clearly, in Theorem 2.1, this occurs if and only
if the error model ρ is anonymous, which means there is some generator E : R+−→R such

that Ei = E for all i ∈ I. In this case, α(x) = E(x)I/C, where C =
∫
X
E

I
(x) dx.

An isometry of (X , d) is a measure-preserving function11 f : X−→X such that, for all
x, y ∈ X , we have d[f(x), f(y)] = d(x, y). Let Isom(X , d) be the group of all isometries of
(X , d). Say that (X , d) is homogeneous if Isom(X , d) acts transitively on X ; that is, for all
x, y ∈ X , there exists f ∈ Isom(X , d) such that f(x) = y.

Corollary 2.2 If (X , d) is homogeneous, then Ei is constant on X for all i ∈ I; thus,

MLEX
ρ = MinΣX

d,L.

Example 2.3. (Cyclic parameter estimation) Fix N ∈ N, and let X = [0 . . . N) with the
metric d(x, y) = min{|x−y|, N−|x−y|}. Thus, X represents N points arranged uniformly
around a circle. A vote over X represents an attempt to estimate some parameter ranging
over this circle (e.g. an angle, a cyclical time unit such as day of the week). For all
m ∈ [0 . . . N), define Fm : X−→X by Fm(n) := (n +m) mod N . Then Fm is an isometry
of X , and X is clearly homogeneous under this group of isometries. Thus, Corollary 2.2
says that, for any metric error model on X , the MLE will be the corresponding metric
voting rule. ♦

Example 2.4. (Weighted plurality vote; the trivial metric) Suppose X is finite, and
d(x, y) = 1 for all x 6= y. (This represents an ‘abstract’ decision problem, with no structure
on the space of alternatives.) This space is clearly homogeneous (every permutation is an
isometry). For all i ∈ I, if ρi is a metric error model (12), then there is some ǫi ∈ (0, 1)
(measuring the ‘error rate’ of voter i) such that ρi

x(y) = ǫi/Ei for all x 6= y ∈ X , while
ρi

x(x) = 1/Ei. Here, Ei := (1 + (|X | − 1)ǫi)
−1. In the notation of Theorem 2.1, we have

Ei(r) = ǫri and thus, Li(r) = λi r, where λi := − ln(ǫi) > 0 for all i ∈ I. Thus, Corollary
2.2 says

MLEX
ρ (v) = MinΣX

d,L(v)
(13)

argmin
x∈X

∑

i∈I: vi 6=x

λi, for all v ∈ VI . (15)

Define λ := (λi)i∈I . Then (15) is clearly equivalent to the λ-weighted plurality voting rule:

PluralityX
λ
(v) := argmax

x∈X

∑

i∈I: vi=x

λi, for all v ∈ VI . (16)

This MLE-rationalization of the weighted plurality rule is similar to Ben-Yashar and
Paroush (2001, §4, eqn.(12)). In particular, if ǫi = ǫj for all i, j ∈ I (all voters are equally
competent), then (16) is just standard (anonymous) plurality voting rule. If |X | = 2, then
we obtain the CJT. If |X | ≥ 3, then we obtain a special case of List and Goodin (2001). ♦

11Recall: if X is finite or countable, then this is just any permutation of X .
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The quasigaussian error model, the mean rule, and Borda. Let X ⊆ R
N . Suppose

the state of nature is a vector in X , and the voters make observations of this vector,
corrupted by Gaussian random noise. We can approximate this process with a quasigaussian

error model, defined as follows. Let dE be the Euclidean metric on X . Let σ > 0 be a
‘standard deviation’ and define Eσ(r) := exp(−r2/2σ2) for all r ∈ R+ in eqn.(12). Thus,
for all x, y ∈ X , we have ρσ

x
(y) = exp(−dE(x, y)2/2σ2)/E(x), where E is defined as in (11).

In the notation of Theorem 2.1, we have L(r) = r2/2σ for all r ∈ R+. Thus, MinΣX
d,L

is the mean voting rule, defined

MeanX (v) := argmin
x∈X

∑

i∈I

dE(x, vi)2
(∗)

argmin
x∈X

dE(x, v), (17)

where v :=
1

|I|
∑

i∈I

vi, for all v ∈ VI .

(Here (∗) is by a classic result of Christiaan Huygens, which states that
∑

i∈I dE(x, vi)2 =
|I| · dE(x, v)2 +

∑
i∈I dE(v, vi)2 for any x ∈ R

N .) Equation (17) yields an interesting
interpretation of ‘score-based’ preference aggregators like the Borda Rule. Let A ∈ N, let
A be some set of A ‘alternatives’, and let R := {r1 < r2 < r3 < · · · < rA} ⊂ R be a set
of A ‘ranks’. A bijective function v : A−→R is called a ranking of A. Let RA be the set
of all rankings of A (regarded as a subset of R

A). The R-scoring rule is the voting rule
FR : (RA)I ⇉ PRF(A) defined as follows. For any profile v ∈ (RA)I , let v :=

(∑
i∈I v

i
)
/|I|

be its arithmetic mean (an element of R
A). Then FR(v) is the set of all strict orderings

(≻) of A such that, for all a, b ∈ A, we have (v(a) > v(b)) =⇒ (a ≻ b).12 For example:
if the elements of R are evenly spaced (e.g. R = {1, 2, 3, . . . , A}), then FR is the Borda

rule.13

Proposition 2.5 Let ρσ : RA−→∆(RA) be a quasigaussian error model. Then MLERA
ρσ (v) =

MeanRA
(v) for any profile v ∈ (RA)I. Thus, FR(v) is the set of strict orderings of A de-

termined by MLERA
ρσ (v).

Remarks. (a) Scoring rules like the Borda rule are usually seen as preference aggrega-
tors. Each voter i declares a preference order (≻i) in PRF(A), and we ‘impute’ a quasi-
cardinal ranking from RA to (≻i) only as a computational device; the final output is
another element of PRF(A). However, if voters know that their preferences will be aggre-
gated using the R-scoring rule, then they understand that, in declaring a preference order
in PRF(A), they are effectively declaring a ranking in RA. In the model of Proposition
2.5, we make this awareness explicit. Each voter attempts to perceive the ‘true’ ranking of
the alternatives, but she is subject to idiosyncratic errors which are (roughly) independent
normal random variables. The scoring rule is then the MLE of the ‘true’ ranking (and
hence, the ‘true’ ordering) of A. The problem with Proposition 2.5 is that the ranking

12Generically, the coordinates of v are all distinct (hence strictly ordered); in this case, then FR(v) is
the unique element of PRF(A) which represents this ordering.

13In this case, the quasigaussian error model in RA is the Mallows (1957) θ-model: for any x, y ∈ RA,
we have ρσ

x
(y) = A · BSp(x,y), where A,B > 0 are constants, and Sp(x, y) is the Spearman (1904) rank

correlation between x and y; see Kendall (1970, p.101-102). (Compare this to footnote 17.)
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system R seems totally arbitrary. It would seem more natural to let R = R or [0, 1], or
at least, some high-density subset of these spaces. However, the proof of Proposition 2.5
breaks down if |R| > |A| (we lose homogeneity).

(b) In the setting of judgement aggregation (where X ⊆ {±1}K ⊆ R
K for some set K),

the mean rule (17) is sometimes called the fusion procedure; its suitability as a statistical
estimator has been studied by Hartman et al. (2011). The fusion procedure can be MAP-
rationalized by positing a quasigaussian error model on {±1}K, but the plausibility of such
a model is debatable.

3 The exponential error model and the median rule

For all i ∈ I, let ǫi ∈ (0, 1) be the ‘error rate’ of voter i, and define Ei(r) := ǫri for
all r ∈ R+. Thus, in eqn.(12), we have ρEi = ρǫi , where for all x, y ∈ X , we define

ρǫi

x (y) := ǫ
d(x,y)
i /Ei(x), with Ei defined as in (11). This is the exponential error model. For

all i ∈ I, let λi := − ln(ǫi); then λi > 0 (because ǫ < 1) and in Theorem 2.1, we have
Li(r) = λi r for all r ∈ R+. Thus, MinΣX

d,L is the (d,λ)-median voting rule, defined

MedianX
d,λ(v) := argmin

x∈X

∑

i∈I

λi d(x, v
i), for all v ∈ VI . (18)

That is, MedianX
d,λ(v) is the set of elements in X minimizing the λ-weighted average

distance to the beliefs of the voters. In the anonymous case, ǫi = ǫj (and hence, λi = λj)

for all i, j ∈ I; then MedianX
d,λ(v) simply minimizes the unweighted sum

∑

i∈I

d(x, vi).

Example 3.1. Let (X , d) be the trivial metric space from Example 2.4. Then any distance-
based error model is an exponential error model, and the corresponding weighted median
rule (18) is the weighted plurality rule (16). ♦

3.1 The interval

For any N ∈ N, let XN := { n
N

; n ∈ [−N . . .N ]}, with the standard Euclidean metric dE as
a subset of [−1, 1]. A vote over XN thus represents an attempt to estimate some numerical
parameter ranging over a ‘discretized’ version of the interval [−1, 1]. Let v = (vi)i∈I ∈ X I

N

be a profile, and suppose without loss of generality that I = [1...I] and v1 ≤ v2 ≤ · · · ≤ vi.
Then MedianX

d,λ(v) corresponds to the ordinary ‘median’ of the set {vi}i∈I . That is: if

I is odd (i.e. I = 2J + 1 for some J), then MedianX
d,λ(v) = vJ , whereas if I is even

(i.e. I = 2J), then MedianX
d,λ(v) = XN ∩

[
vJ , vJ+1

]
. For all i ∈ I, suppose that voter i

has a ‘single-peaked’ preference relation on XN , with the peak occuring at her ideal point
vi. Then Black (1948) showed that MedianX

d,λ(v) is the set of Condorcet winners in XN

—that is, the set of alternatives which can beat or tie every other alternative in a pairwise
majority vote. Thus, MedianX

d,λ(v) will be the outcome of any Condorcet consistent voting
rule.14

14Balinski and Laraki (2007, 2011) have recently analyzed the median rule on XN in great detail.
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We will now analyze the anonymous MAP-rationalization of the median rule on XN

using an anonymous exponential error model. First we introduce a useful notation. For
any set X and any function f : X−→R+ such that C :=

∫
X
f(x) dx is finite, we define the

probability density 〈f〉X ∈ ∆(X ) by setting 〈f〉X (x) := f(x)/C for all x ∈ X . For example,
equation (14) could be rewritten: α(x) :=

〈∏
i∈I Ei(x)

〉
X
, for all x ∈ X . Likewise, the

standard normal probability density on R is given by ρ(r) :=
〈
e−r2

〉
R

, for all r ∈ R.

Now, assume there is some ǫ > 0 such that Ei(r) := ǫr for all r ∈ R+ and all i ∈ I.
The metric space (XN , dE) is not homogeneous, so Corollary 2.2 does not apply. However,
Theorem 2.1(a) still tells us that MedianX

d,λ is the MAP estimator for a certain a priori

probability density αǫ,N,I ∈ ∆(XN), defined:

αǫ,N,I(x) :
(14)

〈
Eǫ,N(x)I

〉
XN

where Eǫ,N(x) :
(11)

∑

y∈XN

ǫd(x,y) for all x ∈ XN . (19)

(Note the dependency on ǫ, I and N). The next result says that, if I and N are large
enough, then αǫ,N,I looks like a normal distribution with mean 0 and very small vari-
ance. Thus, as a statistical estimator on XN , the median rule (and hence, any Condorcet-
consistent voting rule) is heavily ‘centre biased’. In particular, it is not even a crude
approximation of the MLE for the exponential error model on an interval.

Proposition 3.2 Fix ǫ > 0. Let σ2
ǫ :=

1 − ǫ

ln(ǫ)2 · ǫ .

(a) Fix I ∈ N. For all s ∈ [−1, 1] and N ∈ N, let sN ∈ XN be the element of XN

closest to s. Then define

αǫ,I(s) := lim
N→∞

2N αǫ,N,I(sN). (20)

Then αǫ,I : [−1, 1]−→R+ is a probability density on [−1, 1].

(b) For all s ∈ [−1, 1], we have lim
I→∞

〈
αǫ,I

(
s√
I

)〉

[−1,1]

=

〈
exp

(−s2

2σ2
ǫ

)〉

[−1,1]

.

For example, if ǫ = 0.01, then σ2
ǫ ≈ 4.668139501; thus, if, N > 100 and I = 500, then the

a priori density αǫ,N,I is a discrete approximation of a normal distribution15 with mean 0
and variance 0.009336279. Virtually all the mass of this distribution is concentrated in a
tiny interval around 0.

More generally, if X is a similar ‘discrete’ model of the D-dimensional cube [−1, 1]D

(with independent errors in different dimensions), then the limit distribution will be a
D-dimensional normal distribution.

15Strictly speaking, a normal distribution is defined on R, not on [−1, 1]. But when the variance is this
small, only a tiny fraction (i.e. 10−10000) of the density’s mass lies outside [−1, 1], so this is irrelevant for
practical purposes.
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3.2 Judgement aggregation

Let {±1}K be the Hamming cube; a typical element will be denoted x := (xk)k∈K, where
xk ∈ {±1} for all k ∈ K. Let dH be the Hamming metric on {±1}K, defined: dH(x, v) :=
#{k ∈ K; xk 6= vk}, for all x, v ∈ {±1}K. We intepret each element of K as representing
some proposition which could be either true or false. An element of {±1}K represents
a judgement on the truth or falsehood of each of these propositions. The propositionwise

majority voting rule Maj : ({±1}K)I ⇉ {±1}K is defined as follows: for any profile v :=
(vi)i∈I ∈ ({±1}K)I , and any k ∈ K, define mk :=

∑
i∈I v

i
k. Thus, mk ≥ 0 if and only if a

majority of voters assert vi
k = 1. Now define Maj(v) := {x ∈ {±1}K; mk · xk ≥ 0}; this is

the set of all judgements which agree with the majority on every proposition.
Let x

∗ := (x∗k)k∈K ∈ {±1}K be the (unknown) true judgement. The next result says
that the exponential error model arises in the Hamming cube when voters make indepen-
dent random errors on each coordinate of their judgement. (Part (a) is a straightforward
computation. Part (b) can be derived from part (a) via Corollary 2.2, but it can be seen
more directly by applying the classic CJT to each of the K dimensions independently.)

Proposition 3.3 (a) Fix δ ∈
(
0, 1

2

)
, let ǫ := δ

1−δ
, and let ρǫ : {±1}K−→∆({±1}K)

be the exponential error model.

For all i ∈ I and k ∈ K, suppose Prob [vi
k 6= x∗k] = δ and Prob [vi

k = x∗k] = (1 − δ),

and these events are independent for distinct i and k. Then Prob
[
v

i = v

∣∣∣ x
∗ = x

]
=

ρǫ
x
(v) for all x, v ∈ {±1}K and i ∈ I.

(b) MLE
{±1}K

ρǫ (v) = Maj(v) for all v ∈ ({±1}K)I.

A judgement space is a subset X ⊆ {±1}K. This arises when there are logical interdepen-
dencies between the propositions in K, so that some judgements in {±1}K are logically
impossible. Social choice over a judgement space is called judgement aggregation (List and
Puppe, 2009). The propositionwise majority voting rule (Maj) often yields judgements
outside of X , making it unattractive as a judgement aggregation rule (List and Pettit,
2002). Fortunately, the median rule (18) is still well-behaved, when we endow X with the
Hamming metric dH (Miller and Osherson, 2009; Nehring et al., 2009).

If ρǫ : {±1}K−→∆({±1}K) is the exponential error model described in Proposition
3.3(a), then we can define a ‘restricted’ error model ρǫ

|X : X × X−→R as follows: for all
x, v ∈ X , we have

ρǫ
x|X (v) :=

ρǫ
x
(v)

ρǫ
|X (x)

, where ρǫ
|X (x) :=

∑

y∈X

ρǫ
x|X (y). (21)

In general, the error model (21) cannot be justified as in Proposition 3.3(b), in terms
of voters making independent errors in each coordinate of K. (A voter’s errors cannot

be independent, because X imposes logical relationships between different coordinates).
Nevertheless, the exponential error model (21) is still a simple and plausible model of
voter error. If X is homogeneous, then Corollary 2.2 says that MLEX

ρǫ

|X
= MedianX

dH
.
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Example 3.4. (The Kemeny rule) Let A be some set of alternatives, and let K := A2.
Then any x ∈ {±1}K represents a tournament (i.e. a complete, antisymmetric binary
relation) ( ≻

x
) on A, where, for all a, b ∈ A, we define a ≻

x
b if and only if xa.b = 1.

Every tournament on A corresponds to a unique element of {±1}K in this way. Let
PRF(A) ⊂ {±1}K be the set of all strict preference orderings (i.e. transitive tournaments) on
A. Classical Arrovian preference aggregation is simply judgement aggregation on PRF(A).
In the Appendix, we show that (PRF(A), dH) is homogeneous; thus, Corollary 2.2 says that

MLE
PRF(A)
ρǫ = Median

PRF(A)
dH

. But the dH-median rule on PRF(A) is the Kemeny (1959)
rule. This MLE-rationalization of the Kemeny rule was first discovered by Young (1986,
1988, 1995, 1997). 16,17 ♦

Example 3.5. (Committee selection) Suppose K represents a set of ‘candidates’. Then
any element of x ∈ {±1}K represents the ‘committee’ {k ∈ K; xk = 1}. A judgement space
X ⊆ {±1}K thus represents a set of possible committees satisfying certain constraints
on size or membership. Judgement aggregation over X thus represents the problem of
electing an admissible committee from the candidates in K. For any x ∈ {±1}K, let
‖x‖ := #{k ∈ K ; xk = 1} (the size of the committee represented by x).

(a) FixN ∈ [1...K), and let COM(N) :=
{
x ∈ {±1}K ; ‖x‖ = N

}
; that is, the set of all com-

mittees comprised of exactly N candidates. In the Appendix we show that (COM(N), dH)

is homogeneous; thus, Corollary 2.2 says that MLE
COM(N)
ρǫ = Median

COM(N)
dH

.

(b) Let COM(odd) = {x ∈ {±1}K; ‖x‖ is odd}. Aggregation over COM(odd) represents an
attempt to elect a committee from K having any odd cardinality (presumably to avoid the
possibility of ties when the committee votes). In the Appendix we show that (COM(odd), dH)

is homogeneous; thus, MLE
COM(odd)
ρǫ = Median

COM(odd)
dH

. ♦

Example 3.6. (Partitions) Let M1,M2, . . . ,ML ∈ N, and let N be a set with |N | =
M1 + M2 + · · · + ML. An (M1, . . . ,ML)-partition on N is an equivalence relation (∼)
which has exactly L equivalence classes M1, . . . ,ML ⊂ N , such that |Mℓ| = Mℓ for
all ℓ ∈ [1 . . . L]. (For example: if M1 = · · · = ML, then this would be an unlabelled
equipartition of N .) Let K := N 2; then any binary relation (∼) on N (and in particular,
any equivalence relation) corresponds to a unique element x ∈ {±1}K such that xn,m = 1
if and only if n ∼ m. Let E(M1, . . . ,ML) ⊂ {±1}K be the space of all (M1, . . . ,ML)-
partitions. In the Appendix, we show that (E(M1, . . . ,ML), dH) is homogeneous; thus,

Corollary 2.2 says that MLE
E(M1,...,ML)
ρǫ = Median

E(M1,...,ML)
dH

. ♦

In spite of Examples 3.4-3.6, most judgement spaces are not homogeneous. For example,
unlike Example 3.5, most committee-selection spaces are not homogeneous. Also, unlike
Example 3.6, the space of all equivalence relations on N is not homogeneous. Neither

16 Young argues that Condorcet (1785) had discovered the Kemeny rule and its MLE interpretation,
but was unable to clearly explain his ideas. See also Example 1.6.

17 Note that, when restricted to PRF(A), the Hamming metric dH is Kendall’s (1938) metric, and the
exponential error model is the Mallows (1957) φ-model. (Compare this to footnote 13.) In fact, the MLE
for the Mallows φ-model was first derived by Feigin and Cohen (1978, §3.1), and had earlier been suggested
by Hays (1960, p.332); however, unlike Young, these authors did not connect it with the Kemeny rule.
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are most truth-functional spaces (which represent the logically consistent answers to a
set of logically interconnected propositions),18 convexity spaces (representing classification
problems), or simplex spaces (which represent resource allocation problems). Thus, in
general, the a priori density α which the median rule imputes upon a judgement space X
(via Theorem 2.1) will not be the uniform density, so the median rule cannot be interpreted
as MLE on X . The density α will tend to give more mass to elements of X which are more
‘central’, meaning that they have the most other elements of X close to them in the
Hamming metric. Furthermore, as in Proposition 3.2(b), the density α will become more
and more ‘concentrated’ on these central elements as the number of voters becomes large.
Thus, just on the interval, the median rule on a generic judgement space will be heavily
biased towards these ‘central’ elements.

4 EUM-rationalizability

A voting rule F : VI−→A is anonymously EUM-rationalizable if there exists a set S, a
utility function U : A×S−→R, an anonymous error model ρ : S−→∆(V), and an a priori

probability density α ∈ ∆(S), such that F (v) = EUMS,U
α,ρ (v) for all v ∈ VI , as defined in

eqn.(5).
Let R ⊂ R be a finite or infinite set, and let A be a set of alternatives. Set V := RA

(a typical element denoted by v = (va)a∈A, where va ∈ R for all a ∈ A). We define the
R-quasiutilitarian voting rule QUR : V ⇉ A as follows. for any profile v = (vi)i∈I ∈ (RA)I ,

QUR(v) := argmax
a∈A

∑

i∈I

vi
a ⊆ A. (22)

In other words, each vote v ∈ RA is treated as an R-valued ‘cardinal utility function’ on
A, and we choose the alternative(s) with the highest average utility. For example, the
classic utilitarian voting rule is quasiutilitarian (with R = R). The relative utilitarian rule
is quasiutilitarian, with R = [0, 1]. Approval voting is quasiutilitarian (R = {0, 1}). The
Borda rule is not quasiutilitarian, because it imposes a constraint that the coordinates of
the vote v

i must all take distinct values. However, suppose we set R = {1, 2, . . . , A}, and
allow voters to assign the same rank to two or more alternatives (e.g. due to indifference);
then we get a variant of the Borda rule (the relaxed Borda rule), which is quasiutilitarian.

We shall see that quasiutilitarian rules are EUM-rationalizable for a broad and plausible
range of scenarios. In these scenarios, S := R

A, and U : R
A ×A−→R is simply defined by

U(r, a) := ra for all r ∈ R
A and a ∈ A. In other words, the unknown state of nature is just

a vector u
∗ ∈ R

A, encoding the ‘true’ utility of each alternative in A. Let ρ : R−→∆(R)
be a one-dimensional error model (so ρr ∈ ∆(R) for all r ∈ R), Define ρA : R

A−→∆(RA)
by setting ρA

u
(v) :=

∏
a∈A ρua

(va) for all u ∈ R
A and v ∈ RA. Thus, we suppose that

each voter’s vote v
i is a noisy signal of the ‘true’ utility function u

∗, but with independent,
identically distributed ρ-random noise in each coordinate.

18The maximum likelihood approach to truth-functional judgement aggregation has been considered by
List (2005), Fallis (2005), Bovens and Rabinowicz (2006) and Hartman et al. (2011).
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Let α ∈ ∆(RA) be an a priori density, which is symmetric under permutation of
the coordinates. (Thus, all the alternatives in A are a priori interchangeable.) Let
R := {r1 + r2 + · · · + rI ; r1, . . . , rI ∈ R}, a subset of R. Define v :=

∑
i∈I v

i (a vector

in RA
). For any r ∈ R, we define Eα,ρ(r) := E

[
u∗a

∣∣∣ va = r
]
. (This function does not

depend on a, because we assume the same noise model for all coordinates.) This yields
a function Eα,ρ : R−→R. The scenario (α, ρ) is regular if the function Eα,ρ : R−→R is
strictly increasing. The proof of the next result is straightforward.

Proposition 4.1 If (α, ρ) is regular, then QUR = EUMS,U
α,ρ .

Example 4.2. (Approval voting) Suppose R = {0, 1}, so QUR is approval voting (Exam-
ple 1.2(b)). This means the alternatives in a ∈ A can have one of two ‘quality levels’: either
‘good’ (u∗a = 1) or ‘bad’ (u∗a = 0). Our goal is then simply to select any ‘good’ alternative.
(For example: A might be a set of candidates for some position; each candidate is either
‘competent’ or ‘incompetent’. Or, A might be a set of possible solutions to some problem;
each solution could either be ‘successful’ or ‘unsuccessful’. The ‘quality level’ of a might
not completely determine the utility which a will generate; however, perhaps the quality
level is the only information we can obtain about a. Thus, u∗a can also be interpreted as
the expected utility of a, conditional on knowing whether a is ‘good’ or ‘bad’.)

For each i ∈ I and a ∈ A, suppose voter i receives a noisy signal vi
a about the true quality u∗a

of alternative a, which is incorrect with probability δ ∈
(
0, 1

2

)
. The errors are independent

random variables. Thus, in this model, V = S = {0, 1}A, with a one-dimensional error
model ρ : {0, 1}−→∆({0, 1}) given by ρu(v) := δ if u 6= v and ρu(v) := 1 − δ if u = v.
Finally, assume the true utilities {u∗a}a∈A are i.i.d. random variables; thus, there is some
p ∈ [0, 1] such that α[u∗a = 1] = p for each a ∈ A. Clearly, R = {0, 1, . . . , N}, and for all

a ∈ A and n ∈ R, we have Eα,ρ(n) := Prob
[
u∗a = 1

∣∣∣
∑

i∈I v
i
a = n

]
. In the Appendix, we

show that (α, ρ) is regular; thus, Proposition 4.1 says that Appr(v) = EUMS,U
α,ρ (v) for all

v ∈ VI . ♦

Example 4.3. (Classic utilitarianism) QU
R

is the classic utilitarian social choice function.
For all a ∈ A, suppose the true utility u∗a is a normal random variable, and for each voter
i ∈ I, suppose the error ei

a := (vi
a − u∗a) is another, independent, normal random variable.

Assume that {u∗a}a∈A are identically distributed, that {ei
a}a∈A are identically distributed,

and that all these random variables are jointly independent. Formally, this means that α
is a normal distribution on R, and R := R, and there is another normal distribution ǫ on
R (the density of the errors {ei

a}a∈A), such that ρu(v) = ǫ(v−u) for all (u, v) ∈ R×R. It
is easy to show that the scenario (α, ρ) is regular (see Appendix); thus, QU

R
is the EUM

for this error model. ♦

‘Regularity’ is a weak condition, which will be true for almost any scenario where the
average vote v is some kind of ‘noisy signal’ of u

∗. Note that we do not require v to be a
particularly accurate or unbiased estimate of u

∗. Indeed, the scenario (α, ρ) can be regular
even if the random error (u∗a − va) has a large bias and a large variance. Thus, QUR is
EUM-rationalizable by a very broad range of noise models.
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For example, the next result says: if we begin with a regular scenario, and transform the
votes via a nondecreasing function, then the result will be another regular scenario. For-
mally: let R, R̃ ⊆ R, and let f : R−→R̃ be a nondecreasing function. Let ρ : R−→∆(R)

be an error model. For all x ∈ R, define ρ̃x ∈ ∆(R̃) to be the distribution of f(r), where

r is a ρx-random variable on R. Then ρ̃ : R−→∆(R̃) is another error model. We use the
notation f(ρ) := ρ̃.

Lemma 4.4 Let R, R̃ ⊆ R, and let (α, ρ) be a regular scenario on R. If f : R−→R̃ is a

nondecreasing function, and ρ̃ = f(ρ), then the scenario (α, ρ̃) is also regular.

Example 4.5. Suppose R = R, and let (α, ρ) be a regular scenario (e.g. Example 4.3).

(a) QU[0,1] is the relative utilitarian social choice rule (also called range voting). So, let

R̃ := [0, 1], and define f : R−→[0, 1] by f(r) := max{0,min{1, r}} for all r ∈ R. Then f
is nondecreasing. Thus, if ρ̃ = f(ρ), then Lemma 4.4 says (α, ρ̃) is regular, so Proposition
4.1 says QU[0,1] is an EUM for (α, ρ̃).

(b) Fix N ∈ N, and let R̃ := [0 . . . N ]. If N = |A| − 1, then QU[0...N ] is the relaxed Borda

rule. If N = 1, then we get QU{0,1} —i.e. Approval Voting. Let R̃ := [0 . . . N ], and define

f : R−→R̃ by f(r) := max{0,min{N, ⌊r⌋}} for all r ∈ R. Then f is nondecreasing. Thus,
if ρ̃ = f(ρ), then Lemma 4.4 says (α, ρ̃) is regular, so Proposition 4.1 says QU[0...N ] is an
EUM for (α, ρ̃). ♦

Conclusion

This paper shows that many common voting rules (e.g. scoring rules, distance-based rules)
can be interpreted as a maximum a priori estimator or expected utility maximizer for a
suitably chosen error model. If a particular error model provide a plausible description of
the epistemic problem faced by the voters, then these results provide a strong argument
for using the corresponding voting rule. However, this ‘statistical rationalization’ approach
has several fundamental shortcomings.

First, this paper assumes that the mistakes made by different voters are independent
random variables. This is highly unrealistic: voters often draw on common information
sources and deliberate with one another. However, Conitzer and Sandholm (2005; Propo-
sition 1) have shown that any voting rule can be MLE-rationalized, if we allow arbitrary
correlations between voters.19 Thus, to obtain a meaningful statistical interpretation of
voting rules, we must impose some constraints on voter interdependencies. For example,
Dietrich and Spiekerman (2011) have extended the CJT to a model where the information

19For example, Bühlmann and Huber (1963) begin with the model of preference aggregation from Ex-
ample 3.4. They suppose that each a ∈ A has some ‘true’ quality level θa ∈ R, and that the voters’ errors
are correlated such a way that the probability of a majority asserting a ≻ b is exactly (1+eθb−θa)−1 —and
these majorities are conditionally independent. Under this (implausible) error model, they show (Theorem
2) that the Copeland rule is the expected utility maximizer for a wide variety of utility functions. But
they also show (Theorem 1) that this EUM-rationalizaton of Copeland holds only for implausible error
models of this kind. Thus, it is unlikely to be useful in practice.
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flow between voters is described using a causal network. Can this approach be applied to
other epistemic social choice problems?

Second, and somewhat related, this paper completely neglects strategic considerations;
it assumes that all voters will vote truthfully. But Austen-Smith and Banks (1996) demon-
strated the possibility for strategic voting in the CJT, even when all voters have the same
objectives, and differ only in their beliefs. (Hummel (2010) summarizes more recent liter-
ature on this phenomenon.) To what extent does strategic voting undermine the perfor-
mance of a voting rule as a statistical estimator?

Third, the statistical rationalization approach begins with a familiar voting rule, and
then contrives some probabilistic scenario to rationalize it as a statistical estimator ex post

facto. But this is backwards. One should begin by specifying the scenario which best
describes the epistemic problem faced by the voters, and then derive the correct statistical
estimator for this scenario. This estimator may or may not turn out to be a familiar
voting rule. For example, Remage and Thompson (1964, 1966) characterized the MLE
preference aggregator under a general error model, and Kendall (1970) studied a variety of
related problems. Cohen and Feigin (1978, §3.1) derived the MLE preference aggregator
the Mallows (1957) φ-model in Example 3.4 (i.e. the Kemeny rule). This was extended
by Fligner and Verducci (1986, 1988, 1990, 1993) and Lebanon and Lafferty (2002; §3.3),
who developed MLEs for generalizations of the Mallows φ-model. More recently, Drissi-
Bakhkhat (2002), Drissi-Bakhkhat and Truchon (2004), Truchon (2008), and Truchon and
Gordon (2008, 2009) have analyzed the MAP and EUM preference aggregators under a
logistic error model. But little work has been done on developing general-purpose statistical
estimators in other social choice frameworks, such as judgement aggregation (except for
footnote 18).

Finally, the statistical rationalization approach requires a fairly precise specification of
the error model of the voters. But sometimes this is not possible. The Condorcet Jury
Theorem and the EUM results of §4 are fairly robust to underspecification of the error
model (e.g. Lemma 4.4), but the MAP-rationalization results are not (Proposition 1.3 and
Theorem 1.4(b)). Furthermore, in some cases, it may simply be inappropriate to model
the epistemic problem using probabilities. What is the best approach to epistemic social
choice which does not rely on statistical estimation?

Appendix: Proofs

Proof of Theorem 1.1. (a) “=⇒” Suppose there exists an error model ρ : I ×X−→∆(V)
and a priori probability α ∈ ∆(X ) such that F (v) = MAPX

α,ρ(v) for all v ∈ VI . Let

I := |I|. For all i ∈ I, v ∈ V and x ∈ X , define Si(v, x) := log
(
ρi

x(v) · α(x)1/I
)
. Then

for any v ∈ VI ,

F (v) = MAPX
α,ρ(v)

(∗)
argmax

x∈X
α(x) ·

∏

i∈I

ρi
x(v

i) = argmax
x∈X

∏

i∈I

(
α(x)1/I · ρi

x(v
i)
)

= argmax
x∈X

log

(
∏

i∈I

α(x)1/I · ρi
x(v

i)

)
= argmax

x∈X

∑

i∈I

log
(
α(x)1/I · ρi

x(v
i)
)
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= argmax
x∈X

∑

i∈I

Si(vi, x), as desired. Here, (∗) is by equations (2) and (6).

“⇐=” Suppose there exists a score function S : I × V × X−→R such that F = FS.
For all i ∈ I, v ∈ V and x ∈ X , define ρ̃i

x(v) := exp (Si(v, x)). Then, for i ∈ I and
x ∈ X , define M i(x) :=

∫
V
ρ̃i

x(v) dv. Finally, for all i ∈ I, v ∈ V and x ∈ X , define
ρi

x(v) := ρ̃i
x(v)/M

i(x). Thus, ρi
x ∈ ∆(V) for all i ∈ I and x ∈ X .

Next, for all x ∈ X , define α̃(x) :=
∏

i∈I M
i(x). Let M :=

∫
X
α̃(x) dx, and for all x ∈ X ,

define α(x) := α̃(x)/M . Thus, α ∈ ∆(X ). For all v ∈ VI and x ∈ X , observe that

exp

(
∑

i∈I

Si(vi, x)

)
=

∏

i∈I

exp
(
Si(vi, x)

)
=

∏

i∈I

ρ̃i(vi, x)

=
∏

i∈I

(
M i(x) · ρi(vi, x)

)
= α̃(x) ·

∏

i∈I

ρi(vi, x)

= M · α(x) ·
∏

i∈I

ρi(vi, x).

Thus, F (v) = argmax
x∈X

∑

i∈I

Si(vi, x) = argmax
x∈X

exp

(
∑

i∈I

Si(vi, x)

)

= argmax
x∈X

M · α(x) ·
∏

i∈I

ρi(vi, x) = argmax
x∈X

α(x) ·
∏

i∈I

ρi(vi, x)

(∗)
MAPX

α,ρ(v), as desired. Here, (∗) is by equations (2) and (6).

(b) Adapt the proof of Theorem 1.4 below. (c) and (d) are straightforward. 2

Proof of Proposition 1.3. This follows immediately from the proof of Theorem 1.1(a). 2

Proof of Theorem 1.4. (a) “=⇒” Suppose there is an anonymous error model ρ such that,
for every v ∈ V∗, we have F ∗(v) = MLEX

ρ (v). Define S : V × X−→R by S(v, x) :=
log(ρx(v)) for all (x, v) ∈ X × V . Then by applying the natural logarithm to defining
formulae (2) and (7), it is easy to see that

MLEX
ρ (v) = argmax

x∈X
log

(
∏

i∈I

ρx(vi)

)
= argmax

x∈X

∑

i∈I

S(vi, x) = F ∗
S(v),

for all v ∈ V∗. A straightforward computation shows that S is balanced.

“⇐=” Suppose there is a balanced, anonymous scoring function S such that, for every
v ∈ V∗, we have F ∗(v) = F ∗

S(v). Define ρ̃ : X × V−→R+ by ρ̃x(v) := exp[S(v, x)].
Since S is balanced, there is some constant M > 0 such that, for all x ∈ X , we have
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∫

V

ρ̃x(v) dv = M . Thus, if we define ρx(v) := ρ̃x(v)/M for every x ∈ X , then ρx ∈ ∆(V).

By applying the exponential map to defining formula (8), it is easy to see that

F ∗
S(v) = argmax

x∈X

∏

i∈I

ρ̃x(v
i) = argmax

x∈X
M I

∏

i∈I

ρx(v
i) = MLES

ρ (v),

for all v ∈ V∗.

(b) Suppose ρ, ρ̃ : X−→∆(V) are two anonymous error models which MLE-rationalize F ∗.

Let S := log ◦ρ and S̃ := log ◦ρ̃; then the proof of (a) shows that F ∗ = F ∗
S and F ∗ = F ∗

eS .
Thus, a result of Pivato (2011) implies that there is some r > 0 and some function

t : V−→R such that S̃(v, x) = r S(v, x) + t(v) for all v ∈ V and x ∈ X . But that
implies that ρ̃x(v) = τ(v) · ρx(v)

r, where we define τ(v) := exp(t(v)) > 0 for all v ∈ V.
2

Proof of Corollary 1.5. “=⇒” If F ∗ is MLE-rationalizable, then Theorem 1.4(a) says
F ∗ is a scoring rule. It is easy to verify that any scoring rule satisfies reinforcement and
overwhelming majority.

“⇐=” If X and V are finite, and F ∗ is neutral and satisfies reinforcement and over-
whelming majority, then a theorem of Myerson (1995) says that F ∗ is a scoring rule.
Furthermore, if F ∗ is neutral, then it is easy to check that the score function must be
balanced. Finally, F ∗ is anonymous by hypothesis. Thus, Theorem 1.4(a) implies that
F ∗ is anonymously MLE-rationalizable. 2

Proof of Theorem 2.1. (a) For all x ∈ X and v ∈ X I , we have

R(x,v)
(†)

∏

i∈I

Ei[d(x, v
i)]

Ei(x)
(⋄)

1

C α(x)

∏

i∈I

exp(−Li[d(x, v
i)]), so

R(x;v) · α(x) = C
∏

i∈I

exp
(
−Li[d(x, v

i)]
)

= C exp

(
−
∑

i∈I

Li[d(x, v
i)]

)
, (23)

so MAPX
α,ρ(v)

(6)
argmax

x∈X
R(x;v) · α(x)

(23)
argmax

x∈X
exp

(
−
∑

i∈I

Li[d(x, v
i)]

)

(∗)
argmin

x∈X

∑

i∈I

Li[d(x, v
i)]

(13)
MinΣX

d,L(v).

Here, (†) comes from substituting eqn.(12) into eqn.(2). Next, (⋄) comes from eqn.(14),
and the fact that Ei(r) = exp(−Li(r)) for all r ∈ R. Finally, (∗) is because the expo-
nential function is increasing.

(b) If Ei is constant for all i ∈ I, then α is the uniform density, so MLEX
ρ (v) = MAPX

α,ρ(v).
2
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Proof of Corollary 2.2. Fix i ∈ I. Let x, y ∈ X . If f ∈ Isom(X , d) and f(x) = y, then
it is easy to see that Ei(x) = Ei(y). Thus, if (X , d) is homogeneous, then Ei must be
constant, for all i ∈ I. Now apply Theorem 2.1(b). 2

Proof of Proposition 2.5. First we will show that the metric space (RA, dE) is homo-
geneous. For any permutation π : A−→A, we can define an isometry π∗ : RA−→RA

by π∗(v)(a) := v(π(a)) for all a ∈ A and v ∈ RA. To see that RA is homogeneous,
let v,w ∈ RA, and define π : A−→A by π(a) = v

−1 ◦ w(a) for all a ∈ A. Then π is
well-defined because v is bijective; and π is itself bijective because w is also bijective;
hence π is a permutation of A, so π∗ ∈ Isom(X , d). It is easy to verify that π∗(v) = w.

Thus, for any v ∈ RI
A, Corollary 2.2 says MLES

ρ (v) = MinΣX
d,L(v) = MeanX (v). 2

Proof of Proposition 3.2. (a) Define Eǫ : [−1, 1]−→R by Eǫ(s) := 2 − ǫ1−s − ǫ1+s for all
s ∈ [−1, 1]. Define Eǫ,N(s) as in eqn.(19).

Claim 1: For any N ∈ N and s ∈ [−1, 1], define Ẽǫ,N(s) :=
(
1 − ǫ1/N

)
Eǫ,N(sN).

Then the sequence of functions {Ẽǫ,N}∞N=1 converges uniformly to the function Eǫ on
[−1, 1], as N→∞.

Proof: Let s ∈ [−1, 1], and suppose sN = n/N for some n ∈ [−N . . .N ]. Then

Eǫ,N(sN)
(19)

∑

y∈XN

ǫd(sN ,y) = 1 +

N+|n|∑

r=1

ǫr/N +

N−|n|∑

r=1

ǫr/N

= 1 + ǫ1/N · 1 − ǫ(N+|n|)/N

1 − ǫ1/N
+ ǫ1/N · 1 − ǫ(N−|n|)/N

1 − ǫ1/N

= 1 +
ǫ1/N

1 − ǫ1/N
·
(
2 − ǫ1+|sN | − ǫ1−|sN |

)
, because |sN | = |n|/N .

Thus, Ẽǫ,N(sN) =
(
1 − ǫ1/N

)
· Eǫ,N(sN)

=
(
1 − ǫ1/N

)
+ ǫ1/N ·

(
2 − ǫ1+|sN | − ǫ1−|sN |

)

= 1 + ǫ1/N − ǫ1+
1
N

+|sN | − ǫ1+
1
N
−|sN |.

Meanwhile, Eǫ(s) = 2 − ǫ1+s − ǫ1−s = 2 − ǫ1+|s| − ǫ1−|s|. Thus, for all s ∈ [−1, 1],
we have
∣∣∣Eǫ(s) − Ẽǫ,N(s)

∣∣∣ =
∣∣∣2 − ǫ1+|s| − ǫ1−|s| − 1 − ǫ1/N + ǫ1+

1
N

+|sN | + ǫ1+
1
N
−|sN |

∣∣∣

≤
(△)

∣∣1 − ǫ1/N
∣∣+
∣∣∣ǫ1+

1
N

+|sN | − ǫ1+|s|
∣∣∣+
∣∣∣ǫ1+

1
N
−|sN | − ǫ1−|s|

∣∣∣

≤
∣∣1 − ǫ1/N

∣∣+ ǫ1+|s| ·
∣∣∣ǫ

1
N

+|sN |−|s| − 1
∣∣∣+ ǫ1−|s| ·

∣∣∣ǫ|s|+
1
N
−|sN | − 1

∣∣∣

≤
(∗)

∣∣1 − ǫ1/N
∣∣+
∣∣∣ǫ

1
N

+|sN |−|s| − 1
∣∣∣+
∣∣∣ǫ|s|+

1
N
−|sN | − 1

∣∣∣
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≤
(†)

2λ · 1

N
+ 2λ ·

∣∣∣∣
1

N
+ |sN | − |s|

∣∣∣∣+ 2λ ·
∣∣∣∣|s| +

1

N
− |sN |

∣∣∣∣ (with λ := ln(ǫ))

≤
(△)

2λ ·
(

1

N
+

1

N
+
∣∣∣|sN | − |s|

∣∣∣+
1

N
+
∣∣∣|s| − |sN |

∣∣∣
)

(‡)
2λ ·

(
1

N
+

1

N
+

1

N
+

1

N
+

1

N

)
=

10λ

N
.

Here, (△) is by the triangle inequality, while (∗) is because ǫ1+|s| ≤ 1 and ǫ1−|s| ≤ 1
because 0 ≤ ǫ ≤ 1 and because −1 ≤ s ≤ 1. To see (†), define f(x) := ǫx; then f(0) =
1 and f ′(0) = λ, so if x is close to 0, then |1−ǫx| = |f(0)−f(x)| ≤ 2f ′(0)·|0−x| = 2λ|x|.
Finally, (‡) is because

∣∣∣|sN | − |s|
∣∣∣ ≤ 1

N
.

This bound holds for all s ∈ [−1, 1]. Thus,
∥∥∥Eǫ − Ẽǫ,N

∥∥∥
∞

≤ 10λ/N −−−−
N→∞−→ 0, as

desired. 3 Claim 1

Claim 2: For all s ∈ [−1, 1], we have αǫ,I(s) =
〈
Eǫ(s)

I
〉

[−1,1]
. (Thus, αǫ,I ∈ ∆[−1, 1].)

Proof: Fix I ∈ N. We have
(
1 − ǫ1/N

)I

2N

∫

XN

Eǫ,N(x)I dx
(⋄)

(
1 − ǫ1/N

)I

2N

N∑

n=−N

Eǫ,N(n/N)I (24)

(∗)

∫ 1

−1

ẼI
ǫ,N ds −−−−(†)

N→∞−→
∫ 1

−1

Eǫ(s)
I ds. (25)

Here, (⋄) is just the notational convention (1), (∗) is by the (piecewise constant)

definition of Ẽǫ,N , and (†) is because the sequence of functions {ẼI
ǫ,N}∞N=1 converges

uniformly to the function E
I

ǫ on [−1, 1] (by Claim 1). Thus, for any s ∈ [−1, 1],

2N αN,ǫ,I(sN)
(19)

Eǫ,N(sN)I

1

2N

∫

XN

Eǫ,N(x)I dx
=

(
1 − ǫ1/N

)I · Eǫ,N(sN)I

(
1 − ǫ1/N

)I

2N

∫

XN

Eǫ,N(x)I dx

−−−−(∗)

N→∞−→
Eǫ(s)

I

∫ 1

−1

Eǫ(s)
I ds

=
〈
Eǫ(s)

I
〉
[−1,1]

.

Thus, αǫ,I(s) :
(20)

lim
N→∞

2N αǫ,N,I(sN) =
〈
Eǫ(s)

I
〉

[−1,1]
,

as desired. (To see (∗), note that
(
1 − ǫ1/N

)I · Eǫ,N(sN)I = Ẽǫ,N(s)I−−−−
N→∞−→Eǫ(s)

I by
Claim 1, while the denominator converges by eqn.(25).) 3 Claim 2

(b) We will adapt a standard proof of the Central Limit Theorem (Folland, 1984,
Theorem 9.14, p.299). Let λ := ln(ǫ). For all s ∈ [−1, 1], define

ψǫ(s) :=
Eǫ(s)

Eǫ(0)
=

2 − ǫ1−s − ǫ1+s

2 − 2ǫ
. (26)
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Then ψ′
ǫ(s) =

λ

2 − 2ǫ
·
(
ǫ1−s − ǫ1+s

)
,

and ψ′′
ǫ (s) =

−λ2

2 − 2ǫ
·
(
ǫ1−s + ǫ1+s

)
.

Thus, ψǫ(0) = 1, ψ′
ǫ(0) = 0, and ψ′′

ǫ (0) =
−λ2 · ǫ
1 − ǫ

.

Thus, Taylor’s Theorem says that, for all s ∈ [−1, 1],

ψǫ(s) = 1 − λ2 · ǫ
2(1 − ǫ)

· s2 + O(s2) = 1 − s2

2σ2
ǫ

+ O(s2).

where O(s2) is some function of s such that lim
s→0

O(s2)

s2
= 0. Thus, for all s ∈

[
−
√
I,
√
I
]
,

we have

ψǫ

(
s√
I

)
= 1 − s2

2Iσ2
ǫ

+ O

(
s2

I

)
.

Thus, ln

[
ψǫ

(
s√
I

)]
= ln

[
1 − s2

2Iσ2
ǫ

+ O

(
s2

I

)]
(∗)

− s2

2Iσ2
ǫ

+ O

(
s2

I

)
.

Thus, ln

[
ψǫ

(
s√
I

)I
]

= I · ln
[
ψǫ

(
s√
I

)]
= − s2

2σ2
ǫ

+ I · O
(
s2

I

)

−−−−(†)

I→∞−→ − s2

2σ2
ǫ

.

Thus, ψǫ

(
s√
I

)I

−−−−(‡)

I→∞−→ exp

(
− s2

2σ2
ǫ

)
.

Thus, Eǫ

(
s√
I

)I

(26)
(2 − 2ǫ)I · ψǫ

(
s√
I

)I

−−−−
I→∞−→ (2 − 2ǫ)I · exp

(
− s2

2σ2
ǫ

)
.

Thus,

〈
αǫ,I

(
s√
I

)〉

[−1,1]
(⋄)

〈
Eǫ

(
s√
I

)I
〉

[−1,1]

−−−−
I→∞−→

〈
exp

(
− s2

2σ2
ǫ

)〉

[−1,1]

,

as desired. Here, equality (∗) is because Taylor’s Theorem says that ln(1+ s) = s+O(s)
for all s ∈ [0, 2]. Limit (†) is by definition of O(•), and (‡) is because the exponential
function is continuous on R. Finally, (⋄) is by Claim 2. 2

The Hamming cube {±1}K admits two kinds of isometries:

• Coordinate permutations. Let π : K−→K be a permutation. Define the bijection
π∗ : {±1}K−→{±1}K by π∗(x)k := xπ(k) for all x = (xk)k∈K ∈ {±1}K and k ∈ K.
Then π∗ is an isometry.

• Coordinate reflections. For any x, y ∈ {±1}K, define x ⊙ y := z ∈ {±1}K by zk :=
xk · yk, for all k ∈ K. For any x ∈ {±1}K, define the involution Fx : {±1}K−→{±1}K
by Fx(y) := x ⊙ y for all y ∈ {±1}K. Thus, Fx simply acts on {±1}K by ‘flipping’
certain coordinates and leaving the rest alone; this map is also an isometry.
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Let X ⊆ {±1}K, and let f ∈ Isom({±1}K, dH). Then f ∈ Isom(X , dH) if and only if
f [X ] = X .

Proof of Example 3.4. For any permutation π : A−→A, we can define a permutation
π̃ : K−→K by π̃(a, b) = (π(a), π(b)); and then define π̃∗ : {±1}K−→{±1}K. To see that
π̃∗(PRF(A)) = PRF(A), suppose x ∈ PRF(A) represents the preference order “a1 ≺ a2 ≺
· · · ≺ aN”; then π̃∗(x) represents the preference order “π(a1) ≺ π(a2) ≺ · · · ≺ π(aN)”.
Thus, π̃∗ ∈ Isom(PRF(A), dH) for all π ∈ ΠA.

To see that (PRF(A), dH) is homogeneous, let x, y ∈ PRF(A); we need some f ∈ Isom(PRF(A), dH)
such that f(x) = y. Suppose x represents “a1 ≺ a2 ≺ · · · ≺ aN” while y represents
“b1 ≺ b2 ≺ · · · ≺ bN ’ (where N := |A|). Define permutation π : A−→A by π(an) := bn
for all n ∈ [1...N ]. We have already seen that π̃∗ ∈ Isom(PRF(A), dH), and it is clear
that π̃∗(x) = y, as desired. 2

Proof of Example 3.5. (a) If π : K−→K is any permutation, then it is clear that π∗(COM(N)) =
COM(N); thus, π∗ ∈ Isom(COM(N)). Furthermore, the group of coordinate permuta-
tions acts transitively on COM(N). Thus, COM(N) is homogeneous, so Corollary 2.2 says

MLE
COM(N)
ρǫ = MinΣ

COM(N)
dH ,L = Median

COM(N)
dH

.

(b) For any z ∈ {±1}K, if ‖z‖ is even, then it is easy to see that the coordinate reflection
Fz is an isometry of COM(odd). For any x, v ∈ COM(odd), let z := v ⊙ x; then ‖z‖ is even

and Fz(x) = v. Thus, COM(odd) is homogeneous, so Corollary 2.2 says MLE
COM(odd)
ρǫ =

MinΣ
COM(odd)
dH ,L = Median

COM(odd)
dH

. 2

Proof of Example 3.6. Let E := E(M1,...,ML). For any permutation π : N−→N , define
π̃∗ : {±1}K−→{±1}K as in Example 3.4. If x ∈ E represents the equivalence relation
(∼), then π̃∗(x) represents the equivalence relation (≈) such that (n ≈ m) ⇐⇒ (π(n) ∼
π(m)). Thus, π̃∗ ∈ Isom(E , dH) for all π ∈ ΠN .

To see that (E , dH) is homogeneous, let x, x′ ∈ E represent equivalence relations (∼) and
(∼′). Let M1,M2, . . . ,ML be the equivalence classes of (∼), and let M′

1,M′
2, . . . ,M′

L

be the equivalence classes of (∼′), where |Mℓ| = |M′
ℓ| = Mℓ for all ℓ ∈ [1 . . . L]. Let

πℓ : Mℓ−→M′
ℓ be any bijection. Define π := π1 ⊔ π2 ⊔ · · · ⊔ πL. Then π : N−→N is

well-defined (because N = M1 ⊔ M2 ⊔ . . . ⊔ ML) and bijective (because N = M′
1 ⊔

M′
2 ⊔ . . . ⊔M′

L), and clearly, π̃∗(x) = x
′. 2

Proof of Example 4.2. For all v ∈ VI and a ∈ A, let Sa(v) :=
∑

i∈I v
i
a. Then for all

n ∈ [0...N ], we have Eα,ρ(n) := Prob
[
u∗a = 1

∣∣∣ Sa(v) = n
]
. We will use Bayes theorem

to get a formula for Eα,ρ(n).
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If the value of u∗k were known, then {vi
k}i∈I would be i.i.d random variables; thus, Sa(v)

would be a binomially distributed random variable. For all n ∈ [0...I], we have

Prob
[
Sa(v) = n

∣∣∣ u∗k = 1
]

=

(
I
n

)
(1 − δ)n · δI−n

and Prob
[
Sa(v) = n

∣∣∣ u∗k = 0
]

=

(
I
n

)
(1 − δ)I−n · δn.

Thus, Prob [u∗k = 1 & Sa(v) = n] = Prob
[
Sa(v) = n

∣∣∣ u∗k = 1
]
· Prob [u∗k = 1]

=

(
I
n

)
(1 − δ)n · δI−n · p, (27)

and

Prob [Sa(v) = n] = Prob [Sa(v) = n & u∗k = 1] + Prob [Sa(v) = n & u∗k = 0]

=

(
I
n

)
(1 − δ)n · δI−n · p+

(
I
n

)
(1 − δ)I−n · δn · (1 − p). (28)

Thus, Bayes Theorem says,

Eα,ρ(n) =
Prob [u∗k = 1 & Sa(v) = n]

Prob [Sa(v) = n] (∗)

(1 − δ)n · δI−n · p
(1 − δ)n · δI−n · p+ (1 − δ)I−n · δn · (1 − p)

=
1

1 + (1 − δ)I−2n · δ2n−I · (1 − p)/p
=

(
1 +

(
1 − δ

δ

)I−2n

· 1 − p

p

)−1

.

where (∗) is by equations (27) and (28). Now,
(

1−δ
δ

)
> 1 because 0 < δ < 1

2
. Thus, as n

increases, the expression
(

1−δ
δ

)I−2n
decreases; hence Eα,ρ(n)−1 decreases; hence Eα,ρ(n)

itself increases, as desired. 2

Proof of Example 4.3. Let I := |I|, let ea := 1
I

∑
i∈I e

i
a, and let v

′ := v/I. Then u∗a
and ea are independent, normal random variables, so the random variables v′a = u∗a + ea

and wa := (u∗a − ea) are also independent, normal random variables, and clearly, u∗a =
(v′a + wa)/2. Thus, for any r ∈ R, if r′ := r/I, then

Eα,ρ(r) = E

[
u∗a

∣∣∣ v′a = r′
]

= E

[
(r′ + wa)/2

∣∣∣ v′a = r′
]

(∗)

r′ + E [wa]

2
=

r/I + U − E

2

where U := E[u∗a] (the mean of α) and E := E[ea] (the mean of ǫ). (Here, (∗) is because
va and wa are independent.) Thus, Eα,ρ(r) is an increasing (indeed, affine) function of
r, so (α, ρ) is regular. 2
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Proof of Lemma 4.4. Define α̂ ∈ ∆(R) by α̂(r) :=
∫

R
ρx(r)α(x) dx, for all r ∈ R; this

is the (unconditional) probability density of the noisy signal produced by the scenario

(α, ρ). For all r̃ ∈ R̃, define g(r̃) := inf{r ∈ R; f(r) = r̃} and g(r̃) := sup{r ∈ R;
f(r) = r̃}. Then g(r̃) ≤ g(r̃), and we have

Eα,eρ(r̃) =

∫ g(er)

g(er)
Eα,ρ(r) α̂(r) dr

∫ g(er)

g(er)
α̂(r) dr

if g(r̃) < g(r̃),

and Eα,eρ(r̃) = Eα,ρ(r) if g(r̃) = g(r̃) = r for some r ∈ R.

(29)

Now, for any r̃1, r̃2 ∈ R, if r̃1 < r̃2, then g(r̃1) ≤ g(r̃2), and either g(r̃1) < g(r̃2) or
g(r̃1) < g(r̃2). By hypothesis, the function Eα,ρ is strictly increasing. Thus, eqn.(29)
implies that Eα,eρ(r̃1) < Eα,eρ(r̃2). 2
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