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Abstract

This paper presents methods for detecting the period of non Gaussian
PC processes. A new statistic for testing periodic correlation is proposed.
It is based on the bootstrap procedure which is used to estimate confidence
intervals of coherence statistic. This method is linked to that of Hurd and
Gerr based on Goodman’s tests so both methodologies are also compared. It
is demonstrated that in some situations the new test appears to be better.
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1 Introduction

We start with the definition of periodic correlation used in this paper.

Definition 1 A stochastic sequence {X(n), n ∈ Z} ∈ L2(Ω, F, P ) is periodi-
cally correlated (PC) with period T if :

a) µX(n) = E(X(n)) = µX(n + T )

b) RX(m, n) = E[(X(m) − µX(m))(X(n) − µX(n))] = RX(m + T, n + T )

for every m, n ∈ Z.
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It is known that one of the most important problems in the analysis of
periodically correlated sequences is the detection of the period T. The period
of the process can be detected from the support of the coherence statistic.
The main difficulty is that we don’t know the distribution of the sample
coherence, so we can’t calculate confidence intervals.

In this paper we will present a new method for the detection of the period
based on the bootstrap methodology, which enables the approximation of
confidence intervals of the sample coherence. We will also compare this
method with methods presented by Hurd and Gerr [2].

We shall assume henceforth, without loss of generality, that µ(n) ≡ 0, so
the correlation and the covariance are identical.

The methodology presented here is based on the spectral representa-
tion of periodically correlated sequences. Gladyshev [1] showed that all
PC sequences are harmonizable in the sense of Loéve [4], so the covariance
RX(m, n) has representation

RX(m, n) =

∫

2π

0

∫

2π

0

eimω1−inω2rZ(dω1, dω2) (1)

The support of spectral correlation measure rZ(dω1, dω2) is then contained
in the set of 2 · [T ] − 1 diagonal lines

S =
⋃

k∈Z
{[ω1, ω2] ∈ [0, 2π) × [0, 2π) : ω1 = ω2 + 2kπ/T}

where T is the period of the correlation function (see Hurd and Gerr). So
follows that the spectral density function is given by

fZ(ω1, ω2) =

{

fZ(ω1, ω2) [ω1, ω2] ∈ S
0 [ω1, ω2] /∈ S

The main statistic , which we consider is the coherence statistic

|γ(ω1, ω2)|
2 =

|fZ(ω1, ω2)|
2

fZ(ω1, ω1)fZ(ω2, ω2)
. (2)

It takes only real values between 0 and 1 and it is easy to see that the statistic
is different from zero only if [ω1, ω2] ∈ S.

2 Coherent and incoherent statistics

To estimate the coherence statistic we use sample coherence.

|γ(p, q, M)|2 =
|
∑M−1

m=0
IN(ωp+m)IN(ωq+m)|2

∑M−1

m=0
|IN(ωp+m)|2

∑M−1

m=0
|IN(ωq+m)|2

(3)
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where IN(ω) is the finite Fourier transform

IN(ω) =

N−1
∑

n=0

Xne−iωn (4)

There are also two tests for determining the presence of periodic correla-
tion proposed by Hurd and Gerr [2] based on the sample coherence.

The coherent statistic is defined as |γ(0, d, N)|2 where N is the dimension
of the vector (length of the sample).

The incoherent statistic is given by

δ(d, M) =
1

L + 1

L
∑

p=0

|γ(pM, pM + d, M)|2 , (5)

where L = [N−1−d
M

].

3 Bootstrap methodology

There are various nonparametric methods to estimate densities and confi-
dence intervals. We only use the Moving Blocks Bootstrap (MBB) method
([5], [3]), not because none of the other methods would be appropriate or
relevant but because it seems most convenient and it also performs well for
PC processes.

Let {X1, . . . , XN} be the observed time series. We consider following
testing problem:

H0 : |γ̂(ωp, ωq)|
2 = 0 versus HA : |γ̂(ωp, ωq)|

2 > 0

for p, q ≤ N and p 6= q. Rejection of H0 for some (p, q) is equivalent to
detecting nonstationarity in time series. For periodically correlated time
series in every point [ω1, ω2] ∈ S hypothesis H0 should be rejected. To
solve the testing problem we need to know the confidence interval. The
methodology for computing confidence interval based on bootstrap runs as
follows [5]:

1. we construct B bootstrap replications {X∗

1,b, . . . , X
∗

N,b} using the MBB
procedure;

2. we compute replication of coherence statistic |γ∗

i (p, q, M)|2 in each point
(p, q) B times (for each bootstrap sample);
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3. approximate bootstrap confidence interval of level α is given by [0, ĉα]
where ĉα is the quantile of order 1−α of the bootstrap distribution (it
is [α ·N ] largest value of sequence {|γ∗

1(p, q, M)|2, . . . , |γ∗

B(p, q, M)|2} ).

Knowing the solution of this problem we can easily produce two-dimensional
diagonal spectral coherence plots for confidence level α. The main disad-
vantage of the diagonal spectral coherence plot is interpretation problem.
Without having any fit level measure it is difficult to say how strong this
plot fits that of spectral mass location for periodically correlated sequences.
As measure of fitness we propose the statistic given by

MoF (d, M) =
1

N

N
∑

p=1

κα(p, p + d, M) (6)

where

κα(p, q, M) =

{

1 |γ(p, q, M)|2 ≥ ĉα, (when H0 is rejected)
0 |γ(p, q, M)|2 < ĉα

(7)

We called this statistic the measure of fitness (MoF). It is the function
of the difference frequency d and takes only values between 0 and 1 (it can
be also interpreted as 0-100%). To compute this statistic we use IN(ω) =
IN (ω + 2π).

4 Simulations

The coherence plots presented here were produced using MATLAB from
simulated samples of length N=400 and for B=100 bootstrap replications.
N(a, b) denotes normal distribution with mean a and standard deviation b,
U(c, d) denotes uniform distribution on the interval from c to d.

Peaks in one-dimensional plots (detecting period T) are in points d1, 2 ·
d1, 3 · d1, . . . where d1 = N/T and N is length of sample.

Figure 1. shows that for some processes the MoF statistic is more effec-
tive then other one-dimensional statistics. In this case the fast increasing
function causes rising of correlation values (even very small). The result is
that coherent and incoherent statistics don’t detect the real period of the
process.

It is important to understand the difference between the two forms of de-
tecting periodic correlation. We easily see that the height of the peak in MoF
plots depends on the distinctness of support lines on the two-dimensional
plot, so it depends only on the presence of periodic correlation. Statistics
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Figure 1: Xn = Un · exp(8 · (1 + sin(2πn/4) · Nn); Nn are N(0, 4

5
) i.i.d., Un

are U(1

2
, 1

2
) i.i.d., M=20, α = 0.01

presented by Hurd and Gerr depend on the relationship between determin-
istic and random components (on strength of correlation). This is the main
reason why sometimes those statistics are worse.

5 Conclusion

The new method (the MoF statistic) presented here has some disadvantages.
Using bootstrap procedure we can only approximate real distribution or con-
fidence interval and there is a possibility for appearance of some errors. An-
other disadvantage is the computational complexity. However, the examples
suggest that it may be more effective than other known methods. Therefore
bootstrap methodology appears to be a good tool for detecting the period of
periodically correlated processes.
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