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Abstract

In this paper we introduce a generalization of the De Vylder approximation. Our idea is to
approximate the ruin probability with the one for a different process with gamma claims, matching
first four moments. We compare the two approximations studying mixture of exponentials and
lognormal claims. In order to obtain exact values of the ruin probability for the lognormal case
we use Pollaczeck-Khinchine formula. We show that the proposed 4-moment gamma De Vylder
approximation works even better than the original one.
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1. Introduction

In a very interesting paper Grandell (2000) demonstrates that between possible simple approx-
imations of ruin probabilities in infinite time the most successful is the De Vylder approximation,
which is based on the idea to replace the risk process with the one with exponentially distributed
claims and ensuring that the first three moments coincide.

We introduce a modification to the De Vylder approximation by changing the exponential dis-
tribution to the gamma and making the first four moments match. This modification is promising
and works in many cases even better than the original approximation. In order to compare De
Vylder and 4-moment gamma De Vylder (4MGDV) approximations we consider mixture of two
exponentials and lognormal claims. We compute relative errors of the methods with respect to the
exact values of the ruin probability. The ruin probability in the lognormal case is calculated via
Pollaczeck-Khinchine formula.

In our paper we consider a classical risk model (see e.g. Grandell, 1991). Let (Ω,F ,P) be a
probability space carrying Poisson process {Nt}t≥0 with intensity λ, and sequence {Xk}∞k=1 of
independent, positive, identically distributed random variables, with mean µ and (if existing) µ2,
µ3, ... being the raw moments. Furthermore, we assume that {Xk} and {Nt} are independent.
The classical risk process {Rt}t≥0 is given by

Rt = u+ ct−
Nt∑
i=1

Xi, (1)

where c is some positive constant and u is nonnegative.
This is the standard mathematical model for an insurance surplus process. The initial capital

is u, the Poisson process Nt describes the number of claims in (0, t] interval and claim severities
are random, given by sequence {Xk}∞k=1. To cover its liability, the insurance company receives
premium at a constant rate c, per unit time, where c = (1 + θ)λµ and θ > 0 is often called the
relative safety loading. The loading has to be positive, otherwise c would be less than λµ and thus
with probability 1 the risk business would become negative in infinite time.

For mathematical purposes, it is sometimes more convenient to work with an aggregate loss
process {St}t≥0, namely St = u − Rt =

∑Nt

i=1Xi − ct. Now, we are going to recall the definition
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of ruin probability, i.e. the probability that the surplus drops below zero. Time to ruin is defined
as τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u}. Let M = sup0≤t<∞{St} and MT =
sup0≤t≤T {St}. Ruin probability in finite time is given by ψ(u, T ) = P(τ(u) ≤ T ) = P(MT > u)
and ruin probability in infinite time is defined as

ψ(u) = P(τ(u) <∞) = P(M > u). (2)

In the sequel we assume c = 1, but it is not a restrictive assumption. Following Asmussen
(2000), let c 6= 1 and define R̃t = R t

c
. Then relations between ruin probabilities ψ(u), ψ(u, T )

for the process Rt and ψ̃(u), ψ̃(u, T ) for the process R̃t are given by equations: ψ(u) = ψ̃(u),
ψ(u, T ) = ψ̃(u, Tc).

In the classical risk model framework the infinite time ruin probabilities have been studied
recently in Grübel and Hermesmeier (1999, 2000) with emphasis on Panjer recursion and transform
methods, and Usábel (2001) who presented a method of inverting the Laplace transform. For a
detailed discussion how to create accurate bounds and approximations of ψ see Dufresne and
Gerber (1989).

2. De Vylder and 4MGDV approximations

The idea of the De Vylder approximation is to replace the risk process with the one with θ = θ̄,
λ = λ̄ and exponential claims with parameter β̄, fitting first three moments, see De Vylder (1978).

Let

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ.

Then De Vylder’s approximation is given by (see e.g. Grandell, 1991)

ΨDV (u) =
1

1 + θ̄
e−

θ̄β̄u
1+θ̄ . (3)

Obviously, in the exponential case the method gives the exact result. For other claim distribu-
tions, in order to apply the approximation, the first three moments have to exist.

We now introduce a new 4-moment gamma De Vylder approximation based on the De Vylder’s
idea to replace the risk process with another one for which the expression for ψ(u) is explicit.
We fit the four moments in order to calculate the parameters of the new process with gamma
distributed claims and apply the exact formula for the ruin probability in this case which is given
e.g. in Grandell and Segerdahl (1971). The risk process with gamma claims is determined by the
four parameters (λ̄, θ̄, µ̄, µ̄(2)). Since

ESt = −θλµt,
ES2

t = λµ(2)t+ (θλµt)2,

ES3
t = λµ(3)t− 3(λµ(2)t)(θλµt)− (θλµt)2,

ES4
t = λµ(4)t− 4(λµ(3)t)(θλµt) + 3(λµ(2)t)2 + 6(λµ(2)t)(θλµt)2 + (θλµt)4

and for the gamma distribution µ̄(3) = µ̄(2)

µ̄ (2µ̄(2) − µ̄2), µ̄(4) = µ̄(2)

µ̄2 (2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2), the
parameters (λ̄, θ̄, µ̄, µ̄(2)) must satisfy the equations

θλµ = θ̄λ̄µ̄, λµ(2) = λ̄µ̄(2), λµ(3) = λ̄
µ̄(2)

µ̄2
(2µ̄(2)−µ̄2), λµ(4) = λ̄

µ̄(2)

µ̄2
(2µ̄(2)−µ̄2)(3µ̄(2)−2µ̄2).

Hence

λ̄ =
λ(µ(3))2(µ(2))3

(µ(2)µ(4) − 2(µ(3))2)(2µ(2)µ(4) − 3(µ(3))2)
, θ̄ = θµ(2(µ(3))2−µ(2)µ(4))

(µ(2))2µ(3) ,

µ̄ =
3(µ(3))2 − 2µ(2)µ(4)

µ(2)µ(3)
, µ̄(2) = (µ(2)µ(4)−2(µ(3))2)(2µ(2)µ(4)−3(µ(3))2)

(µ(2)µ(3))2
.

We also need to assume that µ(2)µ(4) < 3
2 (µ3)2 and µ(2)µ(4) > 1

2 (µ3)2 to ensure that µ̄, µ̄(2) > 0
and µ̄(2) > µ̄2. In case this assumption can not be fulfilled, we simply set µ̄ = µ and do not
calculate the fourth moment. This case leads to
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λ̄ =
2λ(µ(2))2

µ(µ(3) + µ(2)µ)
, θ̄ =

θµ(µ(3) + µ(2)µ)
2(µ(2))2

, µ̄ = µ, µ̄(2) =
µ(µ(3) + µ(2)µ)

2µ(2)
. (4)

All in all, we get the approximation

ψ4MGDV (u) =
θ̄(1− R

ᾱ )e−
β̄R
ᾱ u

1 + (1 + θ̄)R− (1 + θ̄)(1− R
ᾱ )

+
ᾱθ̄sin(ᾱπ)

π
· I, (5)

where

I =
∫ ∞

0

xᾱe−(x+1)β̄u dx[
xᾱ

(
1 + ᾱ(1 + θ̄)(x+ 1)

)
− cos(ᾱπ)

]2 + sin2(ᾱπ)
,

and (ᾱ, β̄) are given by ᾱ = µ̄2

µ̄(2)−µ̄2 , β̄ = µ̄
µ̄(2)−µ̄2 .

In the exponential and gamma case this method gives the exact results. For other claim distri-
butions in order to apply the approximation, the first four (or three) moments have to exist. In
Section 3 will show that it gives a slight correction to the De Vylder approximation, which is said
in Grandell (2000) to be the best among ”simple” approximations.

3. Pollaczeck–Khinchine formula

This time we use the representation (2) of the ruin probability and the decomposition of the
maximum M as a sum of ladder heights. Let L1 be the value that process {St} reaches for the first
time above the zero level. Next, let L2 be the value which is obtained for the first time above the
level L1; L3, L4, . . . are defined in the same way. The values Lk are called ladder heights. Since the
process {St} has stationary and independent increments, {Lk}∞k=1 is the sequence of independent
and identically distributed variables. One may show that the number of ladder heights K to the
moment of ruin is given by a geometric distribution with parameters p = 1

1+θ and q = θ
1+θ . Thus,

random variable M may be expressed by

M =
K∑

i=1

Li, (6)

This implies that random variable M has a compound geometric distribution given by the distri-
bution function

FM (x) =
θ

1 + θ

∞∑
n=0

G∗n(x), (7)

where G is the defective density

g(x) =
1

µ(1 + θ)
F̄X(x) =

1
1 + θ

b0(x) (8)

and the density

b0(x) =
F̄X(x)
µ

. (9)

The above fact together with the representation (2) leads to the Pollaczeck–Khinchine formula
for the ruin probability:

ψ(u) = P(M > u) =
θ

1 + θ

∞∑
n=0

(
1

1 + θ

)n

B∗n0 (u), (10)

where B̄0 is the tail of the distribution function corresponding to the density b0.
One can use it to derive explicit solutions for a variety of claim amount distributions, particularly

those whose Laplace transform is a rational function, cf. Panjer and Willmot (1992). Unfortunately,
the lognormal case in not included. However, in order to calculate the ruin probability the formula
can be also applied directly. It incorporates an infinite sum, hence we use the Monte Carlo method.
Using (10), the ruin probability ψ(u) = EZ, where Z = 1(M > u), may be generated as follows,
cf. Asmussen (2000).

(1) Generate a random variableK from the geometric distribution with the parameters p = 1
1+θ

and q = θ
1+θ .
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(2) Generate random variables X1, X2, · · · , XK from the density b0(x).
(3) Calculate M = X1 +X2 + · · ·+XK .
(4) If M > u, let Z = 1, otherwise let Z = 0.

The main problem seems to be simulating random variables from the density b0(x). In the
lognormal case the density does not have a closed form. Consequently, in order to generate random
variables Xk we use formula (9) and controlled numerical integration.

4. De Vylder vs 4MGDV approximation

We now aim to compare De Vylder and 4-moment gamma De Vylder approximations. To this
end we consider the ruin probability as a function of the initial capital u, with two claim amount
distributions, namely mixture of two exponentials representing the light-tailed case and lognormal
being a prominent example of the heavy-tailed case, cf. Embrechts et al. (1997). In order to show
the relative errors of the methods we compare results of the approximations with the exact values.

In the case of mixture of two exponentials distribution, exact values of the ruin probability can
be computed using inversion of Laplace transform technics, see e.g. Panjer and Willmot (1992).
Figure 1a depicts the exact ruin probability values and results of the De Vylder and 4-moment
gamma De Vylder approximations. Figure 1b demonstrates that the relative error of the latter is
less than 8% and proves that it gives much better results than the original method which reaches
the 50% error.

When the claim amount distribution is lognormal, the formula for the ruin probability does not
have a closed form, cf. Thorin and Wikstad (1977). Therefore we employ the Pollaczeck–Khinchine
formula to obtain exact results. For the Monte Carlo method purposes we generate 100 blocks of
100000 simulations. We also note that the variance within the results derived from the blocks was
always below 3 · 10−6. Figure 2a illustrates the exact ruin probability values and results of the De
Vylder and 4-moment gamma De Vylder approximations. Figure 2b shows that the relative error
of the 4-moment gamma De Vylder approximation is always significantly less than the error of the
original one.
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Figure 1. Illustration of the ruin probability (a) and the relative error (b) of
the approximations (with respect to exact values). Mixture of exponentials case
with β1 = 0.04, β2 = 2, weights a1 = 0.002, a2 = 0.998, θ = 0.1 and u ≤ 1000.

Finally, let us note that we have conducted similar studies for other light- and heavy-tailed
claim size distributions, e.g. Weibull, Pareto, Burr and loggamma, with different parameters.
They justify the thesis the 4-moment gamma De Vylder approximation often works better than
the De Vylder approximation.

Acknowledgements. The authors would like to thank the Editor and anonymous referees for
their valuable remarks which led to many improvements of the paper.
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Figure 2. Illustration of the ruin probability (a) and the relative error (b) of the
approximations (with respect to the values obtained via the Pollaczeck–Khinchine
formula). Lognormal case with µ = −3 i σ = 2.1, θ = 0.1 and u ≤ 1000.
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