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1. Short-term electricity price forecasting with 
time series models: A review and evaluation 

1.1. Introduction  

In the last decades, with deregulation and introduction of competition a new challenge has 
emerged for power market participants. Extreme price volatility, which can be even two orders of 
magnitude higher than for other commodities or financial instruments, has forced producers and 
wholesale consumers to hedge not only against volume risk but also against price movements. 
Price forecasts have become a fundamental input to an energy company's decision-making and 
strategy development. This in turn has propelled research in electricity price modeling and 
forecasting [5][35].  
 
The proposed solutions can be classified both in terms of the planning horizon's duration and in 
terms of the applied methodology. In the first case it is customary to talk about short-term 
(STPF), medium-term (MTPF) and long-term price forecasting (LTPF). The main objective of 
LTPF is investment profitability analysis and planning, such as determining the future sites or 
fuel sources of power plants. Lead times are typically measured in years. Medium-term or 
monthly time horizons are generally preferred for balance sheet calculations, risk management 
and derivatives pricing. In many cases not the actual point forecasts but the distributions of 
future prices over certain time periods are evaluated. As this type of modeling has a long-dated 
tradition in finance, inflow of “finance solutions” is readily observed [6][16][35].  
 
However, not only monthly or annual time horizons are interesting for generators, utilities and 
power marketers. When bidding for spot electricity in a power exchange or a pool-type market, 
actors are requested to express their bids in terms of prices and quantities. Buy (sell) orders are 
accepted in order of increasing (decreasing) prices until total demand (supply) is met. A power 
plant that is able to forecast spot prices can adjust its own production schedule accordingly and 
hence maximize its profits. Since the day-ahead spot market typically consists of 24 hourly (or 
48 half-hourly) auctions that take place simultaneously one day in advance, STPF with lead 
times from a few hours to a few days is of prime importance in day-to-day market operations 
[4][8][35]. It is also the topic of this study, which concentrates on proposing several time series 
models and comparing their short-term forecasting performance during normal as well as 
extremely volatile periods in the history of the deregulated California power market. An 
assumption is made that only publicly available information is used to predict spot prices, i.e. 
generation constraints, line capacity limits or other fundamental variables are not considered. 
 
The chapter is structured as follows. In Section 1.2 we review modeling approaches for spot 
electricity prices. In the following section we present relevant time series models. We start with 
linear time series, followed by their extensions that allow for incorporating exogenous 
(fundamental) factors. Since the residuals of the linear models typically exhibit 
heteroscedasticity, next we discuss implementations of AR-GARCH type models. Finally, we 
introduce threshold autoregressive models that, by construction, should be well suited for 
modeling the non-linear nature of electricity prices. In Section 1.4 we describe the dataset, 
introduce our models, present calibration details and define error measures. In Section 1.5 we 
provide empirical forecasting results for the studied models and compare the results with those 
of other authors. Finally, in Section 1.6 we summarize the results and draw conclusions. 



1.2. Overview of modeling approaches  

Electricity spot price modeling and forecasting techniques generally can be traced back to 
models that originate either in electrical engineering or in finance. For some time power 
engineers have been familiar with both scheduling and dispatching units in the system  and load 
forecasting. With the restructuring of the electric power industry, it has been very natural for the 
engineers to adapt these models to price forecasting under the new economic conditions. 
Production-cost models were directly transferred or amended with strategic bidding 
considerations, while load forecasting techniques were additionally supplied with past price data 
to yield price forecasts.  
 
On the other hand, price modeling and forecasting has long been at the center of intense studies 
in other commodity and financial markets. Depending on the objectives of the analysis, a number 
of methods for modeling price dynamics have been proposed, ranging from parsimonious 
stochastic models to fundamental and game theoretic approaches. It was only a question of time 
before these methods were put into use in the power markets.   
 
The various approaches that have been developed to analyze and predict power markets' 
behavior and the resulting electricity prices may be broadly divided into six classes [35]:  
 Production-cost (or cost-based) models, which simulate the operation of generating 

units aiming to satisfy demand at minimum cost. They have the capability to forecast 
prices on an hour-by-hour, bus-by-bus level. However, they  ignore the strategic bidding 
practices, including execution of market power [22]. They were appropriate for the 
regulated markets with little price uncertainty, stable structure and no gaming, but are not 
well suited for the recently established competitive markets. 

 Equilibrium (or game theoretic) approaches, which may be viewed as generalizations of 

cost-based models amended with strategic bidding considerations. They may give good 
insight into whether prices will be above marginal costs and how this might influence the 
players' outcomes. But they pose problems if more quantitative conclusions have to be 
drawn. Furthermore, a number of components have to be defined: the players, their 
potential strategies, the ways they interact and the set of payoffs. Obviously, a substantial 
modeling risk is present. In general, two types of approaches have been proposed 
[13][34]: the Cournot-Nash framework (see eg. [7][38]), which tends to provide higher 
prices than those observed in reality, and the supply function equilibrium framework (see 
eg. [19][37]), which requires considerable numerical computations and, consequently, has 
limited applicability in day-to-day market operations.  

 Fundamental (or structural) methods, which describe price dynamics by modeling the 

impact of important physical and economic factors on the price of electricity [4][32]. The 
functional associations between fundamental drivers – loads, weather conditions, system 
parameters, etc. – are postulated (consequently, there exists a significant modeling risk) 
and the fundamental inputs are independently modeled and predicted, often via statistical, 
econometric or non-parametric techniques. Some recent examples include [14][33]. 
Because of the nature of fundamental data (which is typically collected over longer time 
intervals; data availability is a separate issue), pure fundamental models are better suited 
for medium-term rather than short-term predictions.  

 Quantitative (or stochastic, econometric, reduced-form) models, which characterize 

the statistical properties of electricity prices over time, with the ultimate objective of 
derivatives evaluation and risk management. Consequently, these models are not 
required to accurately forecast hourly prices but to recover the main characteristics of 
electricity prices (in particular, seasonality, mean-reversion, high volatility and the 
occurrence of spikes), typically at the daily time scale. The tools and approaches used are 
generally adopted from methods developed for modeling interest rates or other 
commodities [6][16]. Based on the type of the market in focus, the stochastic techniques 
can be divided into two main classes: spot and forward price models. The former have 
problems with pricing derivatives, i.e. with identifying the risk premium linking spot and 
forward prices. The latter lack the data that can be used for calibration and are often 
unable to yield the properties of spot prices from the analysis of forward curves.  



 Statistical (or technical analysis) approaches, which either are direct applications of the 

statistical techniques of load forecasting or power market implementations of econometric 
models. While the efficiency and usefulness of technical analysis in financial markets is 
often questioned, in power markets these methods do stand a better change. The reason 
for this is the seasonality prevailing in electricity price processes during normal, non-spiky 
periods. It makes the electricity prices more predictable than those of “very randomly” 
fluctuating financial assets. Moreover, to enhance their efficiency many of the statistical 
approaches considered in the literature often incorporate one or two fundamental factors, 
like loads or fuel prices. Examples of statistical models are further discussed in Section 
1.3.  

 Artificial intelligence-based (or non-parametric) techniques, which model price 

processes via non-parametric tools such as neural networks, fuzzy logic, etc. AI-based 
models tend to be flexible and can handle complexity and non-linearity. This makes them 
promising for short-term predictions and a number of authors have reported their excellent 
performance in STPF. Like in load forecasting, artificial neural networks (ANNs) have 
probably received the most attention [30][39]. Other non-parametric techniques have 
been also applied, however, typically in hybrid constructions [29]. 

 
Of the six above mentioned approaches, statistical and AI-based models are best suited for 
STPF, in particular at the hourly time horizon. It would be interesting to compare representatives 
from both groups, however, because of limited space here we will only review one group. The 
choice is backed by results of a recent study by Conejo et al. [8], who compared different 
methods of STPF: three time series specifications (transfer function, dynamic regression and 
ARIMA), a wavelet multivariate regression technique and a multilayer perceptron with one 
hidden layer. For a dataset comprising PJM prices from year 2002, the ANN technique was the 
worst out of the five tested models! Surely more research is needed but this report already 
indicates that there might be serious problems with the efficiency of ANNs and AI-based 
methods in general. Consequently, in this chapter we will utilize statistical approaches. 

1.3. Time series models 

1.3.1. ARMA models and their extensions 

In the engineering context the standard model that takes into account the random nature and 
time correlations of the phenomenon under study is the autoregressive moving average (ARMA) 
model. In the ARMA model the current value of the process (say, the price) is expressed linearly 
in terms of its past values (autoregressive part) and in terms of previous values of the noise 
(moving average part) [2]: 
 

    tt BPB   , (1) 

 

where B  is the backward shift operator, i.e. htt

h PPB  ,  B  is a shorthand notation for 

  p

pBBB   11  and  B  is a shorthand notation for   q

qBBB   11 . 

Furthermore, p ,,1   and q ,,1   are the coefficients of autoregressive and moving average 

polynomials, respectively, and t  is independent and identically distributed (iid) noise with zero 

mean and finite variance. For 0q  we obtain the well known autoregressive AR(p) model.  

 
The ARMA modeling approach assumes that the time series under study is (weakly) stationary. 
If it is not, then a transformation of the series to the stationary form has to be done first. This can 
be performed by differencing. The resulting ARIMA model contains autoregressive as well as 
moving average parts, and explicitly includes differencing in the formulation [2]. If differencing is 
performed at a larger lag than 1 then the obtained model is known as seasonal ARIMA or 
SARIMA.  
 



Cuaresma et al. [11] applied variants of AR(1) and general ARMA processes (including ARMA  
with jumps) to STPF in the German market. They concluded that specifications, where each hour 
of the day was modeled separately presented uniformly better forecasting properties than 
specifications for the whole time-series, and that the inclusion of simple probabilistic processes 
for the arrival of extreme price events (jumps) could lead to improvements in the forecasting 
abilities of univariate models for electricity spot prices. In a related study, Weron and Misiorek 
[36] used various autoregression schemes for modeling and forecasting prices in California. 
They observed that an AR model where each hour of the day was modeled separately 
performed better than a single for all hours, but large (S)ARIMA specification proposed by 
Contreras et al. [10]. The reduction in MWE reached even 30% for a normal, non-spiky out-of-
sample test period (first week of April 2000). 
 
Conejo et al. [9] proposed a wavelet-ARIMA technique. It consists of a level 3 decomposition of 
the price series using a discrete wavelet transform, modeling the resulting detail and 
approximation series with ARIMA processes to obtain 24 hourly predicted values and applying 
the inverse wavelet transform to yield the forecasted prices for the next 24 hours. The 
performance of the wavelet-ARIMA technique is generally better than that of a standard ARIMA 
process. In all four weekly test samples (Spanish market, year 2002) the MWE's were reduced; 
for the winter week the error dropped even by 25%.  

1.3.2. Time series models with exogenous variables 

ARIMA-type models relate the signal under study to its own past and do not explicitly use the 
information contained in other pertinent time series. However, electricity prices may also be 
influenced by the present and past values of various exogenous factors, most notably the load 
profiles and ambient weather conditions. To accurately capture these relationships, time series 
models with exogenous or input variables can be used. These hybrid models do not constitute a 
new class, rather they can be viewed as generalizations of the existing ones.  
 

The autoregressive moving average model with exogenous variables 
kvv ,,1  , or 

ARMAX( krrqp ,,,, 1  ), can be compactly written as [21]:  
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where ir ’s are the orders of the exogenous factors (e.g. system load, temperature, power plant 

availability) and 
i

j ’s are the relevant coefficients. Alternatively, the ARMAX model is often 

defined in a “transfer function” form: 
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(3) 

 

where 
i

j~ ’s are the appropriate coefficients. Additionally, the differencing transformation can be 

imposed leading to ARIMAX and seasonal ARIMAX models. Models with input variables are also 
known as transfer function, dynamic regression, Box-Tiao, intervention or interrupted time series 
models [2]. Some authors distinguish among them, others use the names interchangeably 
causing a lot of confusion in the literature.  
 
Time series models with exogenous variables have been extensively applied to STPF. Nogales 
et al. [26] utilized ARMAX and ARX models (which they called “transfer function” and “dynamic 
regression”, respectively) for predicting hourly prices in California and Spain. Both models 
performed comparably, with the weekly MAPE (note that Nogales et al. called it the “Mean 
Weekly Error”; consult also Section 1.4.4) just below 3% for the first week of April 2000 in 



California and around 5% for the third weeks of August and November 2000 in Spain. The 
results were significantly better than for the ARIMA and ARIMA-E (ARIMA with load as an 
explanatory variable) models proposed by Contreras et al. [10]. It is somewhat surprising that the 
“transfer function” and “dynamic regression” models – which also utilized one common multi-
parameter specification for all hours – outperformed by over 40% the ARIMA-E model. After all, 
“transfer function” and ARIMA-E are more or less equivalent in terms of variables used. Possibly 
this is related to the way the load data is included in both methods. In ARIMA-E it is just an 
explanatory variable, but in the “transfer function” specification it is bundled with the 
autoregressive part of the model. What is even more surprising, ARIMA performed comparably 
to ARIMA-E, even though the latter additionally used an important exogenous variable [10].  
 
In a review study, Conejo et al. [8] compared different methods of STPF: three time series 
specifications (“transfer function”, “dynamic regression” and ARIMA), a wavelet multivariate 
regression technique and a multilayer perceptron ANN with one hidden layer. For a dataset 
comprising PJM prices from year 2002, the time series models with exogenous variables yielded 
the best performance; for the last week of July 2002 better by over 75% (!) than the ARIMA 
predictions. Interestingly, the worst results were obtained for the ANN. 
 
Weron and Misiorek [36] and Misiorek et al. [23] took a different line of approach. They used a 
set of 24 relatively small ARX models, one for each hour of the day, with the CAISO day-ahead 
load forecast as the exogenous variable and three dummies for recovering the weekly 
seasonality. They concluded that these models performed much better than a single for all 
hours, but large (S)ARIMA specification proposed by Contreras et al. [10] and slightly worse than 
the “transfer function” and “dynamic regression” models of Nogales et al. [26]. However, only the 
results for the first week of April 2000 in the California power market could be compared as this 
was the only common test sample used in all four papers. Consequently, the question whether 
the common for all hours, multi-parameter specification is also superior for other periods (and 
other data sets) remains open. 
 
Knittel and Roberts [20] considered various econometric models for modeling and STPF in the 
California market, including mean-reverting diffusions and jump diffusions, a seasonal ARMA 
process (called “ARMAX”), an AR-EGARCH (Autoregressive Exponential GARCH) and a 
seasonal ARMA model with temperature, squared temperature and cubed temperature as 
explanatory variables. They found all temperature variables to be highly statistically significant 
during the pre-crisis period (April 1, 1998 to April 30, 2000). The WRMSE (Weekly Root Mean 
Square Error) was also the lowest of all models examined, though the difference from the 
seasonal ARMA process was small.  

1.3.3. Autoregressive GARCH models 

The linear ARMA-type models assume homoscedasticity, i.e. a constant variance and 
covariance function. From an empirical point of view, financial time series – and electricity spot 
prices in particular – present various forms of non-linear dynamics, the crucial one being the 
strong dependence of the variability of the series on its own past. Some non-linearities of these 
series are a non-constant conditional variance and, generally, they are characterized by the 
clustering of large shocks or heteroskedastity [35].  
 
The AutoRegressive Conditional Heteroskedastic (ARCH) model of Engle [15] was the first 
formal model which successfully addressed the problem of heteroskedastity. In this model the 
conditional variance of the time series is represented by an autoregressive process, namely a 
weighted sum of squared preceding observations. In practical applications it turns out that the 
order of the calibrated model is rather large. Surprisingly, if we let the conditional variance 
depend not only on the past values of the time series but also on a moving average of past 
conditional variances the resulting model allows for a more parsimonious representation of the 
data. This model, the Generalized AutoRegressive Conditional Heteroskedastic GARCH( qp, ) 

model put forward by Bollerslev [1] is defined as:  
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(4) 

 

where t  are as before and the coefficients have to satisfy 0,0,   ji  to ensure that the 

conditional variance is strictly positive. Identification and estimation of GARCH models is 
performed analogously to that of (S)AR(I)MA models; maximum likelihood is the preferred 
algorithm [35].  
 
The GARCH model by itself is not attractive for STPF, however, coupled with autoregression (or 
a more general (S)AR(I)MA model) presents an interesting alternative – the AR-GARCH model, 
where the residuals of the regression part are further modeled with a GARCH process. 
Nevertheless, the general experience with GARCH-type components in statistical or econometric 
STPF models is mixed. There are cases when modeling heteroscedasticity is advantageous, but 
there are at least as many examples of poor performance of such models.  
 
Knittel and Roberts [20] evaluated an AR-EGARCH specification and found it superior to five 
other models during the crisis period (May 1, 2000 to August 31, 2000) in California. However, 
the AR-EGARCH process yielded the worst forecasts of all models examined during the pre-
crisis period (April 1, 1998 to April 30, 2000). A similar result was obtained by Garcia et al. [18] 
who studied ARIMA models with GARCH residuals and concluded that ARIMA-GARCH 
outperforms a generic ARIMA model, but only when high volatility and price spikes are present. 

In a related study Mugele et al. [25] proposed ARMA-GARCH time series with -stable 

innovations for modeling the asymmetric and heavy-tailed nature of electricity spot price returns 
from the Nordic and German power markets. 

1.3.4. Regime-switching models 

The “spiky” character of spot electricity prices suggests that there exists a non-linear mechanism 
switching between normal and high-price states or regimes. As such these processes should be 
prone to modeling with the so-called regime switching models. The available specifications of 
regime switching models differ in the way the regime evolves over time. Roughly speaking, two 
main classes can be distinguished [35]: those where the regime can be determined by an 
observable variable (and, consequently, the regimes that have occurred in the past and present 
are known with certainty) and those where the regime is determined by an unobservable, latent 
variable (which implies that we can never be certain that a particular regime has occurred at a 
particular point in time, but can only assign probabilities to their occurrences). 
 
The most prominent member of the first class is the Threshold AutoRegressive (TAR) model, 

which assumes that the regime is specified by the value of an observable (threshold) variable tv  

relative to a threshold value/level T : 
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where  Bi  is a shorthand notation for   p

piii BBB ,1,1    . To simplify the exposition, 

in this study we have specified a two-regime model only, however, generalization to multi-regime 
models is straightforward. The Self Exciting TAR (SETAR) model arises when the threshold 

variable is taken as the lagged value of the price series itself, i.e. dtt Pv  . It can be further 

modified by allowing for a gradual transition between the regimes, leading to the Smooth 
Transition AR (STAR) model [17]. A popular choice for the transition function is the logistic 
function; the resulting model is known as the Logistic STAR (LSTAR) model. 
 



There are only a few documented applications of regime-switching TAR-type models to 
electricity prices. Robinson [28] fitted an LSTAR model to prices in the English and Welsh 
wholesale electricity Pool and showed that it performed superior to a linear autoregressive 
alternative. Stevenson [31] calibrated AR and TAR processes to wavelet filtered half-hourly data 
from the New South Wales (Australia) market. He concluded that the TAR specification (with the 

observable threshold variable being the change in demand and the threshold value 0T ) 

outperformed the AR alternative in forecasting performance.  
 
Recently Rambharat et al. [27] introduced a SETAR-type model with an exogenous variable 
(temperature recorded at the same time as the maximum price of the day) and a gamma 
distributed jump component. A common threshold level was used both for determining the 
autoregression coefficients and the jump intensities. Rambharat et al. estimated the model by 
using a Markov chain Monte Carlo approach with 3 years of daily data from Allegheny County, 
Pennsylvania, and found it superior (both in-sample and out-of-sample) to a jump-diffusion 
model (i.e. an AR(1)-type process). 
 
These examples show that non-linear regime-switching time series models might provide us with 
good models of electricity price dynamics. However, is the regime-switching mechanism simply 
governed by a fundamental variable or the price process itself? Perhaps not. The spot electricity 
price is the outcome of a vast number of variables including fundamentals (like loads and 
network constraints) but also the unquantifiable psycho- and sociological factors that can cause 
an unexpected and irrational buyout of certain commodities or contracts leading to pronounced 
price spikes. In this context the Markov regime-switching (or simply regime-switching) models, 
where the regime is determined by an unobservable, latent variable, seem interesting. However, 
the adequacy of these models for forecasting has been questioned [12][23]. We will leave them 
out from this study and concentrate only on models with observable threshold variables.  

1.4. Data and models 

1.4.1. The data 

Like in [23] and [36], we forecast hourly CalPX market clearing prices from the period preceding 
and including the California market crash. This lets us evaluate the performance of the models 
during normal (calm) weeks, as well as during highly volatile periods. Moreover, the out-of-
sample interval spans over half a year and allows for a more thorough analysis of the forecasting 
results than typically used in the literature single week test samples. 
 
The time series of hourly system prices, system-wide loads, and day-ahead load forecasts was 
constructed using data obtained from the UCEI institute (www.ucei.berkeley.edu) and the 
California independent system operator CAISO (oasis.caiso.com). The missing and “doubled” 
data values corresponding to the changes to and from the daylight saving time (summer  time) 
were treated in the usual way. The former were substituted by the arithmetic average of the two 
neighboring values, while the latter by the arithmetic average of the two values for the “doubled” 
hour. Likewise, the few outliers (but not the spikes; spike preprocessing is addressed in Section 
1.4.3) were substituted by the arithmetic average of the two neighboring values. The obtained 
time series are depicted in Figure 1. The day-ahead load forecasts (i.e. the official forecasts of 

the system operator CAISO) are indistinguishable from the actual loads at this resolution; only 
the latter have been plotted. 
 



 

Figure 1. Hourly system prices (top panel) and hourly system loads (bottom panel) in California 

for the period July 5, 1999 – December 3, 2000. The changing price cap  

(750 → 500 → 250 USD/MWh) is clearly visible in the top panel. 

 
We used the data from the period July 5, 1999 – April 2, 2000 solely for the purpose of 
calibration. Such a relatively long period of data was needed to achieve high accuracy. For 
example, limiting the calibration period to data coming only from the year 2000, like in [10] and 
[26], led to a decrease in forecasting performance by up to 70%. Consequently, the period April 
3 – December 3, 2000 was used for out-of-sample testing. Since in practice the market-clearing 
price forecasts for a given day are required on the day before, we used the following testing 
scheme. To compute price forecasts for hour 1 to 24 of a given day, data available to all 
procedures included price and demand historical data up to hour 24 of the previous day plus 
day-ahead load predictions for the 24 hours of that day. 

1.4.2. Model specifications 

The models considered in this study comprised simple time series specifications with and 
without exogenous variables, namely ARMAX and ARMA processes, more elaborate 
autoregression models with GARCH residuals and regime-switching models. The calibration was 
performed in Matlab (prediction error estimate) and SAS (maximum likelihood and conditional 
least squares estimates) computing environments.  
 

The logarithmic transformation was applied to price,  tt Pp log , and load,  tt Zz log , data 

to attain a more stable variance. Furthermore, the mean (the median for loads) was removed to 
center the data around 0. Since each hour displays a rather distinct price profile reflecting the 
daily variation of demand, costs and operational constraints the modeling was implemented 
separately across the hours, leading to 24 sets of parameters. This approach was also inspired 
by the extensive research on demand forecasting, which has generally favored the multi-model 
specification for short-term predictions [4][30]. 
 
Seasonal market conditions were captured by the autoregressive structure of the models: the 
log-price was made dependent on the log-prices for the same hour on the previous days, and 
the previous weeks, as well as a certain function (e.g. mean, minimum) of all prices on the 



previous day. The latter created the desired link between bidding and price signals from the 
entire day. 
 
Since the system load partly explains the price behavior (especially on the daily scale) it was 
used as the fundamental variable, see Figure 2. In the calm period (till mid-May 2000) the 

dependence between the log-price and the log-system load is almost linear with a slight 
downward bend for small values of the load. Later that year the prices tend to jump during high 
load hours, leading to an S-shaped curvilinear dependence. This observation suggests that non-
linear regression models should outperform the linear approaches during the spiky periods.  
 

 

Figure 2. The dependence between hourly log-prices and hourly log system loads in California 
for the period January 1 – May 21, 2000 (top panel) and May 22 – July 2, 2000 (bottom panel). 

The relation changes from a nearly linear (except for a few very low loads) in the calm period to 
an S-shaped curvilinear dependence during the spiky period. 

 
In our time series models we used only one exogenous variable: the hourly values of the 
system-wide load. At lag 0 the CAISO day-ahead load forecast for a given hour was used, while 
for larger lags the actual system load was used. Interestingly, the best models turned out to be 
the ones with only lag 0 dependence. Using the actual load at lag 0, in general, did not improve 
the forecasts either. This phenomenon can be explained by the fact that the prices are an 
outcome of the bids, which in turn are placed with the knowledge of the CAISO load forecasts 
but not actual future loads. 
 
Furthermore, a large moving average part typically decreased the performance, despite the fact 
that in many cases it was suggested by Akaike's Final Prediction-Error (FPE) criterion [21]. The 

best results were obtained for pure ARX models, i.e. with   ttB   . Likewise, a large 

autoregression part generally led to overfitting and worse out-of-sample forecasts. The optimal 
AR structure was found to be of the form:  
 

,)( 41683482241 tttttt mpapapapappB    (6) 

 

where tmp  was a function of all prices on the previous day. The best results were obtained for 

the minimum of the 24 hourly prices. Note, that we have simplified the notation: the coefficients 



are now numbered consecutively and their indices are not directly related to the indices of the 
corresponding variables as in eqn. (1).  
 
This very simple structure was unable to cope with the weekly seasonality, the results for 
Mondays, Saturdays, and Sundays were significantly worse than for the other days. Separate 
modeling of each hour of the week (leading to 168 ARX models) was not satisfactory, probably 
due to a much smaller calibration set. Incorporation of 7 dummy variables (one for each day of 
the week) did not improve the results significantly. However, inclusion of 3 dummy variables (for 
Monday, Saturday and Sunday) helped a lot. The best model structure, in terms of forecasting 
performance for the first week of the test period (April 3-9, 2000), turned out to be (denoted later 
in the text as ARX): 

 

,)( 3211 tSunSatMontt DdDdDdzpB    (7) 

 

where 321 ,, ddd  denote the coefficients of the dummies SunSatMon DDD ,, , respectively. Its 

simplified version without the exogenous variable (AR):   

 

,)( 321 tSunSatMont DdDdDdpB    (8) 

 
also performed relatively well. 
 
The residuals obtained from the fitted ARX and AR models seemed to exhibit a non-constant 

variance. Indeed, when tested with the Lagrange multiplier “ARCH” test statistics [15] the 
heteroscedastic effects were significant at the 5% level. This motivated us to calibrate ARX-G 
and AR-G models to the data (“G” stands for GARCH). They differ from ARX and AR models in 

that the noise terms in eqns. (7) and (8), respectively, are not just  2,0 iid  but are given by th  

from eqn. (4) with 1 qp . 

 
Because of the non-linear nature of electricity prices, we also calibrated regime-switching TAR-
type models to the spot price time series. They are natural generalizations of the ARX and AR 
models defined above. Namely, the TARX model is given by: 

 









,when)(

,when)(

3,22,21,21,22

3,12,11,11,11

TvDdDdDdzpB

TvDdDdDdzpB

ttSunSatMontt

ttSunSatMontt




 

 
(9) 

 

where tv  and T  are the threshold variable and the threshold level, respectively. We tried 

different threshold variables (including various combinations of past prices and loads) and 
threshold values (constant and variable). The best results – in terms of forecast errors during the 

first week of the test period – were obtained for tv  equal to the price for hour 24 on the previous 

day and T  estimated for every hour in a multi-step optimization procedure with ten equally 
spaced starting points spanning the entire parameter space. The simpler TAR model was 

obtained when 01,21,1  , i.e. when no exogenous variables were used.   

 
Finally, note that all models were estimated using an adaptive scheme, i.e. instead of using a 
single model for the whole sample, for every day (and hour) in the test period we calibrated the 
model (given its structure) to the previous values of prices and loads and obtained a forecasted 
value for that day (and hour). Originally, at each time step also the model structure was 
optimized by minimizing the FPE criterion [3] for a given set of model structures. However, this 
procedure, apart from being time consuming, did not produce satisfactory results. The models 
were apparently overfitted. Hence, we decided to use only one model structure for all hours and 
all days.  



1.4.3. Spike preprocessing 

Price spikes pose a serious problem for linear time series models, which assume stationarity of 
the signal. Possible solutions involve excluding or limiting price spikes [30][35]. In the first case 
we treat the abnormal prices as outliers and substitute them with the average of the neighboring 
observations or with “similar-day” prices. However, price spikes are inherent in electricity prices, 
so we do not want to delete them completely from the calibration process. Instead of excluding 
them, we can limit their severity or damp all observations above a certain threshold. 
 
We have evaluated three preprocessing schemes (applied to prices, not log-prices):  

 In the first one we treated the spikes, i.e. prices exceeding a certain threshold T , as 
outliers and substituted them with “similar-day” (see Section 1.5) prices. Note that we 
could not substitute them with the average of the neighboring observations since very 
often consecutive hourly prices exceeded the specified threshold.  

 In the second scheme we set an upper limit on prices – if the price was higher than the 

specified threshold T , it was set to T .  

 In the third scheme we damped the spikes. Like before we set an upper limit, T , and if 

the price tP  was higher than T , it was set to  TPTT t10log . This scheme allowed to 

differentiate between “regular” and “extreme” spikes. 
The optimal (in terms of forecast errors during the first week of the test period) preprocessing 

scheme turned out to be the latter one with T  equal to the mean plus three standard deviations 
of the calibration sample prices. Spike preprocessing was used only in combination with ARX 
and AR models. The resulting models (calibrated to spike-damped data) are denoted by p-ARX 
and p-AR, respectively. 

1.4.4. Forecast error measures 

To assess the prediction performance of the models, different statistical measures can be 
utilized. The most widely used measures are those based on absolute errors, i.e. absolute 

values of differences between  the actual, hP , and predicted, hP̂ , prices for a given hour, h . The 

Mean Absolute Error (MAE) is a typical example. For hourly prices it is given by: 
 

 


24

1
.ˆ

24

1
h hhdaily PPMAE  

 
(10) 

 
Sometimes not the absolute, but the relative or percentage difference is more informative. For 
instance, when comparing results for two distinct data sets. In such cases the Mean Absolute 
Percentage Error (MAPE) is preferred. For hourly prices the daily MAPE takes the form: 
 

 
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

24

1
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ˆ
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(11) 

 
The MAPE measure works well in load forecasting, since actual load values are rather large. 
However, when applied to electricity prices, MAPE values could be misleading. In particular, 
when electricity prices drop to zero, MAPE values become very large regardless of the actual 

absolute differences hh PP ˆ . The reason for this is the normalization by the current (close to 

zero, and hence very small) price hP .  

 
Alternative normalizations have been proposed in the literature [30][35]. For instance, the 

absolute error hh PP ˆ  can be normalized by the average price attained during the day. The 

resulting measure, also known as the Mean Daily Error [8][23], is given by: 
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24

1
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(12) 

 

where  


24

124
24

1
h hPP . In general, MDE compared to MAPE puts more weight to errors in the 

high-price range. Analogously to MDE, the Mean Weekly Error can be computed as: 
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1
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(13) 

 

where 168P  is the mean price for a given week. Note that instead of the mean, the median price 

could be used for normalization. As the median is more robust to outliers (or spikes), the 
resulting measures – Median Daily Error (MeDE) and Median Weekly Error (MeWE) – in some 
cases exhibit yet better performance. However, they are not as popular as MDE and MWE.  
 
Apart from absolute value-type norms, square-type norms are also often used, even exclusively  
[20]. Perhaps the most popular are the Daily Root Mean Square Error (DRMSE) and the Weekly 
Root Mean Square Error (WRMSE), calculated as the square root of the average of 24 and 168, 
respectively, square differences between the predicted and the actual prices: 
 

    .ˆ
168

1
,ˆ

24

1 168

1

224

1

2

 
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h hhh hh PPWRMSEPPDRMSE  
 

(14) 

 

Like in the absolute error-based measures, the square differences  2ˆ
hh PP   in the above two 

formulas can be normalized by (the square of) the current actual price, the mean daily (weekly) 
price or the median daily (weekly) price.    
 
Finally, we have to note that there is no “industry standard” and the error benchmarks used in 
the literature vary a lot. What is worse, they cause a lot of confusion as the names are not used 
consistently either. As a result, the forecasts are not comparable from paper to paper even if the 
same data sets are used. For instance, Nogales et al. [26], Contreras et al. [10] and Garcia et al. 
[18] defined the “Mean Weekly Error” as the weekly MAPE (literally as the average of the seven 
daily “average prediction errors”, i.e. daily MAPE values) while Conejo et al. [8] used formula 

(13). Likewise, in the latter two papers the WRMSE, denoted by FMSE , was computed using 

formula (14), while in the former two articles the normalization by 1681  was missing.   

1.5. Forecasting results 

The forecast accuracy was checked afterwards, once the true market prices were available. For 
all weeks under study, three types of average prediction errors were computed: one 
corresponding to the 24 hours of each day (MDE) and two to the 168 hours of each week (MWE 
and WRMSE). Following Conejo et al. [8] and Misiorek et al. [23] a naïve but challenging test 
was used as a benchmark for all forecasting procedures. The forecasts were compared to the 24 
prices of a day similar to the one to be forecast. A “similar day” is characterized as follows. A 
Monday is similar to the Monday of the previous week and the same rule applies for Saturdays 
and Sundays; analogously, a Tuesday is similar to the previous Monday, and the same rule 
applies for Wednesdays, Thursdays, and Fridays. The naïve test is passed if errors for the 
estimates are smaller than for the prices of the similar day. Quite often the forecasting 
procedures did not pass this test. See for instance Table 1, where Mean Daily Errors for the first 

week of the test period (April 3-9, 2000) are given; the results for some of the models are also 



plotted in Figure 3. The p-ARX model performed best in terms of the MDE criterion: it yielded 

the smallest errors for Tuesday, Wednesday and Thursday. For all seven days it was better than 
the naïve forecast; the only other model that passed the naïve test was AR-GARCH (surprisingly 
not ARX-GARCH). The p-AR model also performed reasonably well with smallest errors for 

Monday and Sunday. Note also that the performance of the non-linear regime-switching models 
was only moderate and they produced large errors either for Saturday (TAR) or for Sunday 
(TARX). On the weekly scale both criteria (MWE and WRMSE; see Table 2 and Table 3) 
favored the p-ARX model, with ARX being second best; both AR-GARCH and p-AR failed to 

predict Saturday's prices.  
 

Table 1. Mean Daily Errors (MDE) for the first week of the test period (April 3-9, 2000). Best 

results are emphasized in bold. Results not passing the naïve test are underlined. 

Day AR ARX AR-G ARX-G TAR TARX p-AR p-ARX Naïve 

Mon 3,73 3,91 3,32 3,86 3,31 3,60 3,01 3,64 5,68 

Tue 3,01 2,33 2,35 2,79 3,25 2,64 2,68 2,21 3,77 

Wed 2,30 2,06 2,05 2,53 2,31 1,93 1,99 1,89 2,19 

Thu 1,96 1,58 2,10 2,05 2,21 1,79 1,87 1,49 2,97 

Fri 3,63 2,92 2,54 3,48 3,94 3,04 3,41 2,79 2,89 

Sat 5,43 3,96 7,60 6,86 6,91 4,85 6,15 4,32 8,72 

Sun 3,94 4,85 4,17 4,20 4,20 6,14 3,87 4,37 10,11 

 

 

Figure 3. Prediction results for the first week of the test period (April 3-9, 2000) for the naïve, 
ARX, p-ARX (preprocessed ARX) and TARX models. 

 
Nogales et al. [26] and Contreras et al. [10] fitted and evaluated transfer function (TF), dynamic 
regression (DR) and ARIMA (also with explanatory variables) models on exactly the same out-
of-sample test period. Interestingly, they used single models (though very large) for all 24 hours 
of a day. Their conclusion was that TF (equivalent to ARMAX with system load as the 
exogenous variable) was best for the first week of April, followed closely by DR (equivalent to 
ARX, again with system load as the exogenous variable). The WRMSE’s for these two models 
were 1.04 and 1.05, respectively, which is better than that of our p-ARX specification (1.12; see 



Table 3). Unfortunately, we were not able to obtain as good results with the ARMAX models we 

tried. Perhaps, different software implementations of the calibration schemes (Matlab and SAS 
vs. SCA) prevented us from converging to the same model. Since only the results for the first 
week of April were reported by Nogales et al., the question whether this common for all hours, 
multi-parameter TF specification is also superior for other periods (and other data sets) remains 
open. 
 
Mean Weekly Errors and Weekly Root Mean Square Errors for all 35 weeks of the test period 
are given in Table 2 and Table 3; see also Figure 4. The overall winner was the relatively 
simple ARX model – it yielded the best forecasts for 8 (or 9 in terms of the WRMSE criterion) 

weeks and was only 6 times worse than the naïve approach. Compared to other models, its 
performance deteriorated during highly volatile, yet not very spiky periods towards the end of the 
year. However, during spiky weeks and even spiky price-capped periods it was the best or next 
to the best model. Not surprisingly, the preprocessing scheme was optimal only for the relatively 
calm periods. During the first seven weeks p-ARX was best 5 times (4 according to the WRMSE 
criterion) and very close to being the best for the remaining weeks. The simpler p-AR model 

followed closely. However, during spiky and abnormal periods both models had problems with 
forecasting future prices and failed to pass the naïve test 13 (12 in terms of the WRMSE 
criterion) times in the whole test sample. 
 

 

Figure 4. Hourly system prices (top panel) and Mean Weekly Errors for all forecasting methods 
(bottom panel; note the logarithmic scale) during the whole test period:  

April 3 – December 3, 2000.  

 
 



 

Table 2. Mean Weekly Errors (MWE) in percent for all weeks of the test period. Best results are 

emphasized in bold. Results not passing the naïve test are underlined. 

Week AR ARX AR-G ARX-G TAR TARX p-AR p-ARX Naïve 

1 3,37 3,03 3,34 3,60 3,65 3,33 3,20 2,90 5,00 

2 5,29 4,71 4,84 5,46 6,05 5,10 5,36 4,63 8,62 

3 8,41 8,37 8,67 8,92 8,62 8,63 8,43 8,39 9,74 

4 13,99 13,51 14,10 13,48 14,13 13,45 13,92 13,54 17,14 

5 18,26 17,82 19,12 18,22 18,16 17,73 18,05 17,62 19,31 

6 8,40 8,04 8,24 8,26 8,76 8,50 8,31 7,94 14,70 

7 10,32 9,43 9,32 10,72 38,81 15,64 9,98 9,25 12,56 

8 50,35 48,15 51,40 45,55 91,06 96,92 49,41 48,76 62,97 

9 13,44 13,11 14,93 15,19 34,23 32,43 14,33 13,95 33,22 

10 7,81 7,39 9,23 8,10 87,92 73,65 7,71 7,52 16,23 

11 46,82 46,23 50,04 53,64 42,75 41,09 67,00 65,48 35,59 

12 19,77 19,23 19,78 19,18 38,52 29,92 24,01 23,19 19,41 

13 43,88 44,19 47,90 56,00 37,33 35,69 71,82 70,69 23,31 

14 29,53 28,01 34,45 28,22 78,21 31,62 22,83 21,76 49,47 

15 12,61 11,11 12,53 16,99 41,99 23,87 12,46 11,66 22,37 

16 27,07 25,46 29,22 33,45 36,70 30,59 43,02 42,07 32,35 

17 19,34 19,24 22,61 32,49 31,46 24,79 60,36 59,26 27,74 

18 13,58 11,71 16,29 26,47 12,34 13,64 63,15 61,78 15,00 

19 14,10 14,46 15,15 14,02 19,29 13,71 35,75 35,24 18,20 

20 10,43 9,18 11,25 15,19 9,55 9,10 33,43 32,52 8,60 

21 14,13 13,90 13,60 18,51 12,94 21,02 35,87 36,13 18,22 

22 20,71 20,28 24,26 22,40 21,52 19,57 26,70 26,93 50,33 

23 25,21 23,28 24,88 24,64 30,96 23,11 23,76 22,25 44,17 

24 14,80 14,30 15,77 17,83 18,92 16,08 19,64 18,96 22,86 

25 19,03 17,27 22,60 22,92 14,84 13,17 23,49 21,86 27,90 

26 14,50 13,98 13,94 13,30 18,20 16,54 13,87 13,43 22,99 

27 11,57 10,65 10,34 11,13 15,55 13,39 10,94 10,31 16,98 

28 8,09 7,95 8,76 7,57 12,53 11,52 8,15 7,92 13,96 

29 6,97 7,34 7,22 8,41 9,28 11,88 7,17 7,56 7,11 

30 9,24 10,21 8,48 8,73 11,34 13,38 9,02 9,90 8,66 

31 13,12 13,35 12,19 11,94 16,68 15,90 12,58 12,82 11,12 

32 10,38 11,41 10,13 11,29 12,61 15,92 10,19 11,37 12,62 

33 10,65 11,07 11,33 12,92 12,10 16,54 12,68 14,23 18,57 

34 9,80 12,39 9,22 10,30 12,54 19,02 11,94 14,98 15,15 

35 3,87 5,06 4,00 4,74 5,64 10,20 6,80 7,94 6,09 

# best 3 8 3 4 1 4 0 8 4 

# better 
than 
naïve 

29 29 28 25 19 20 22 22 - 

 



Table 3. Weekly Root Mean Square Errors (WRMSE) for all weeks of the test period. Best 

results are emphasized in bold. Results not passing the naïve test are underlined. 

Week AR ARX AR-G ARX-G TAR TARX p-AR p-ARX Naïve 

1 1,29 1,17 1,32 1,37 1,41 1,29 1,26 1,12 2,06 

2 1,76 1,60 1,64 1,78 1,98 1,71 1,76 1,56 2,93 

3 2,56 2,51 2,57 2,65 2,60 2,55 2,56 2,52 3,20 

4 4,70 4,51 4,77 4,46 4,73 4,60 4,65 4,52 5,59 

5 7,46 7,35 7,78 7,54 7,35 7,23 7,16 7,18 8,55 

6 3,48 3,37 3,50 3,46 3,67 3,58 3,45 3,34 6,15 

7 4,85 4,60 4,68 5,06 77,62 8,39 4,75 4,57 6,41 

8 87,89 85,53 88,30 88,72 163,08 160,17 98,18 97,24 97,98 

9 10,04 9,78 10,67 11,27 75,34 44,54 10,79 10,58 30,35 

10 5,35 5,14 6,33 5,57 141,44 124,08 5,35 5,45 12,95 

11 126,97 125,59 133,52 148,33 115,77 106,86 196,75 193,66 99,88 

12 28,11 26,55 26,13 30,60 59,23 35,81 39,02 37,90 27,66 

13 154,07 151,05 162,93 196,8 123,69 127,79 275,72 273,27 93,17 

14 23,42 21,05 26,69 20,84 127,80 38,81 15,44 14,39 37,34 

15 9,42 8,58 9,81 12,77 49,53 22,51 9,57 9,06 18,58 

16 68,40 64,60 74,87 82,65 72,66 64,78 103,55 101,76 69,83 

17 70,53 68,30 79,78 103,16 95,87 74,79 176,79 174,52 96,73 

18 48,31 42,45 55,67 98,19 58,09 51,01 222,49 218,46 61,97 

19 27,29 27,03 29,67 26,98 35,26 25,55 67,54 66,61 33,73 

20 21,96 19,85 22,53 30,32 18,89 17,38 69,89 67,92 16,70 

21 32,53 32,71 30,52 41,70 34,59 47,49 79,22 79,71 45,10 

22 34,38 33,39 38,38 34,73 36,30 27,79 42,41 42,67 77,40 

23 31,83 29,80 32,19 33,04 41,29 29,95 30,41 29,55 60,34 

24 30,11 27,96 31,46 35,30 39,54 30,96 39,45 37,52 41,54 

25 34,80 33,92 38,17 37,62 29,34 25,51 39,60 36,39 50,21 

26 19,88 19,97 19,70 19,88 26,29 23,37 19,65 19,91 34,64 

27 15,97 14,41 14,30 15,88 23,45 19,80 14,90 13,90 25,39 

28 9,45 9,28 10,47 9,16 15,31 13,29 9,61 9,29 20,11 

29 8,76 9,28 9,12 10,66 12,52 14,21 8,94 9,52 9,12 

30 11,25 12,54 10,79 11,31 15,29 16,28 11,07 12,36 11,01 

31 16,03 15,90 14,51 14,43 23,02 19,65 15,07 15,19 13,41 

32 16,14 17,56 16,24 18,24 19,69 23,60 15,83 17,59 19,66 

33 25,58 26,87 27,37 31,01 28,06 39,24 29,81 32,67 42,13 

34 27,09 34,27 25,00 27,56 35,03 54,56 30,92 39,19 41,09 

35 14,82 16,67 14,81 15,99 18,96 30,57 19,16 22,05 26,24 

# best 2 9 5 2 0 3 3 7 4 

# better 
than 
naïve 

29 29 29 25 19 18 23 23 - 

 
 
 



Surprisingly, inclusion of the system load as a fundamental variable was not always optimal (a 
similar observation was made by Contreras et al. [10] who calibrated (seasonal) ARIMA models 
to California and Spanish data). While for the first 28 weeks of the test period ARX and p-ARX 
were better than or roughly the same as AR and p-AR, the situation changed in favor of the 

latter in late 2000 when the minimum daily price increased above 70 USD/MWh. For the 
relatively calm periods a ca. 10% decrease in MWE was observed, however, during the spiky 
weeks the improvement was negligible. For the autoregressive models with GARCH noise this 
effect was even more striking. There was no clear winner among the two considered models, 
perhaps AR-GARCH was even slightly better. In terms of WRMSE  (see Table 3) it yielded the 
best predictions for 5 weeks (compared to 2 weeks for ARX-GARCH) and was better than the 

naïve method 29 times (compared to 25). 
 
Despite the heteroscedastic nature of the residuals, addition of a GARCH component in the 
specification, in general, did not improve the forecasts. ARX-GARCH  performed considerably 
worse than ARX while AR-GARCH was comparable to AR, the simplest of all autoregressive 

models. These results somewhat contradict the reports of Garcia et al. [18] who concluded that 
(seasonal) ARIMA-GARCH models outperformed simpler (seasonal) ARIMA models fitted to 
California (!) and Spanish data. 
 

 

Figure 5. Prediction results for the 8
th
 week of the test period (May 22-28, 2000) for the naïve, 

ARX, p-ARX (preprocessed ARX) and TARX models. Note that the vertical scale is limited to 
500 USD/MWh. For some hours, price forecasts of the TARX model (and TAR as well) were well 

above 750 USD/MWh. 

 
Finally, we found the performance of the regime-switching models to be disappointing. Despite 
the fact that these models are able to cope with the nonlinear nature of the signal, the out-of-
sample forecasting results were well below acceptable levels. They were the worst of the studied 
techniques with over 15 violations (in 35 weeks) of the naïve benchmark! The problems these 
models had can be very well seen in Figure 5 where the 8

th
 week of the test period is depicted. 

This is the first week where extremely high prices (exceeding 450 USD/MWh) were experienced 
in California. The calibration algorithm classifies some hours as belonging to the spiky regime 
and most as belonging to the normal regime. This classification, however, has two shortcomings. 
Firstly, it tends to be “chaotic” – quite often the regime switches from hour to hour leading to a 
jagged plot. Secondly, since the parameters of the spiky autoregression are estimated from the 



very few hours that were earlier classified as being in the spike regime, the parameter estimates 
are highly susceptible to outliers or single extreme observations. Later in the test sample, when 
the regime switches are more common and the price stays in the spiky regime for longer periods 
of time, the models (TARX in particular) yield much better forecasts and for 3 weeks even 

outperform the competitors. 
 
Interestingly, if the threshold variable and level are not chosen to minimize MWE for the first 
week of the test period but the former one is set a priori to the difference in mean prices for 
yesterday and eight days ago and the latter to zero, then the results for the whole test period 

improve significantly. In fact, such a choice of tv  and T  leads to a TARX model that on average 

beats the ARX model during volatile periods and performs equally well for the calm weeks of the 
test period [23]. Moreover, as Misiorek and Weron [24] have shown, the TAR/TARX models yield 
much more accurate interval forecasts than their linear counterparts, especially for the volatile 
periods.  

1.6. Conclusions 

In this chapter we investigated the forecasting power of different time series models for electricity 
spot prices. The models included different specifications of linear autoregressive time series with 
heteroscedastic noise and/or additional fundamental variables. Further, non-linear regime-
switching TAR-type models were considered. The models were tested on a time series of hourly 
system prices and loads from the California power market. Data from the period July 5, 1999 – 
April 2, 2000 was used for calibration and from the period April 3 – December 3, 2000 for out-of-
sample testing. 
 
Our findings support the adequacy of the tested linear models for forecasting electricity spot 
prices, also in comparison to earlier empirical studies. The best results in normal (calm) periods 
were obtained using an ARX model combined with a spike preprocessing scheme that damped 
prices exceeding a certain threshold with a logarithmic function (p-ARX). During the first seven 
weeks p-ARX was best 5 times (4 according to the WRMSE criterion) and very close to being 

the best for the remaining weeks. However, during volatile periods the preprocessing scheme 
was not optimal, as obviously it considerably changed input data. In practical applications spike 
preprocessing should be used, but only as long as the price series is relatively normal and does 
not exhibit too many (consecutive) spikes. When the nature of the process changes the ARX 
model becomes the best choice. 
 
Somewhat surprisingly, we found the performance of the non-linear models – autoregressions 
with GARCH residuals and regime-switching threshold autoregressions – to be disappointing. 
Despite the heteroscedastic nature of the residuals, addition of a GARCH component in the 
specification, in general, did not improve the forecasts. ARX-GARCH  performed considerably 
worse than ARX while AR-GARCH was comparable to AR. Also the out-of-sample forecasting 

results for the threshold models were not satisfactory. During normal (calm) periods the regime-
switching approach provided only moderate results. Interestingly, during spiky periods TAR-type 
models performed well below acceptable levels as well. However, as Misiorek et al. [23] have 
shown, other choices of the threshold variable and level (i.e. ones that do not minimize MWE for 
the first week of the test period) can lead to a significantly better overall performance. 
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