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Chapter �

Introduction

Self�similar processes� introduced by Lamperti ����� are the ones that are invariant under suitable
translations of time and scale� In the past few years there has been an explosive growth in the
study of self�similar processes� cf� e�g� Taqqu ���� Maejima ����� Samorodnitsky and Taqqu ��
��
Willinger et al� ����� Michna ����� and Rogers �����

This caused that various examples of such processes have been found and relationships with
distinct types of processes have been studied� In Chapter � we establish the uniqueness of the
Lamperti transformation leading from self�similar to stationary processes� and conversely� We
discuss ��stable processes� which allow to understand better the di�erence between the Gaussian
and non�Gaussian cases� As a by�product we get a natural construction of two distinct ��stable
Ornstein�Uhlenbeck processes via the Lamperti transformation for  � � � �� Also a new class
of mixed linear fractional ��stable motions is introduced which is further exploited in the next
chapter�

It seems natural to try to 	nd all H�ss processes and to characterize them� In Chapter � we
establish a spectral representation of any symmetric stable self�similar process in terms of multi�
plicative �ows and cocycles� A structure of this class of self�similar processes is studied� Applying
the Lamperti transformation we obtain a unique decomposition of a symmetric stable self�similar
process into three independent parts� mixed fractional motion� harmonizable and evanescent� This
decomposition is illustrated by graphical presentation of corresponding kernels of their spectral
representations�

Self�similar processes are closely connected with limit theorems for identical and in general
strongly dependent variables� Moreover� since they allow heavy�tailed distributions and provide
an additional �adjusting� parameter H they appear to be interesting in the area of risk models�
Chapters � and � are devoted to some applications of self�similar processes in insurance and 	nance
mathematics� In Chapter � we prove that only self�similar processes with stationary increments
appear naturally as weak limits of a risk reserve process and conversely every 	nite mean H�self�
similar process with stationary increments� for �

� � H � � can result as the weak approximation� A
lower bound for general self�similar processes with drift is also provided� In Chapter � we illustrate
a test of self�similarity �namely variance�time plots� on a DJIA index data in order to justify the
use of self�similar processes in 	nancial modelling� Last but not least we propose an alternative
model for stock price movements incorporating a martingale which generates the same 	ltration
as the fractional Brownian motion� This leads to an option pricing formula di�erent from the
Black�Scholes one� Chapters � and � are based on two author�s papers � Burnecki et al� ��� and
Burnecki et al� ����

�



��� Foundations

Stochastic processes X � �X�t��t�T �another equivalent notation used is X � fXtgt�T � in this
thesis are always assumed to be de	ned for t � T � where T � ���� or R� By �X�t�� d��Y �t�� we
mean the equality of all 	nite dimensional distributions� Sometimes we simply write X�t�

d
� Y �t��

X�t�
d� Y �t� means the equality of one�dimensional distributions for 	xed t� We also mean� by

Xn�t�
d� Y �t�� the convergence of all 	nite�dimensional distributions as n � �� and by �n d� �

the convergence in distribution of real�valued random variables ��n� to ��

De
nition ����� X is said to be degenerate if X�t� � X�� a�s� for any t � T � and non�degenerate
otherwise�

De
nition ����� �Lamperti ����� A process X � �X�t��t�� is self�similar �ss� if for some H � �

X�ct�
d
� cHX�t� for every c � � �����

We call this X an H�ss process� The parameter H is called the index or the exponent of the
self�similarity� X is said to be trivial if X�t� � tHX��� a�e�� t � �

Remarks�

�� Notice that ����� indeed means �scale�invariance� of the 	nite�dimensional distributions of
X � It does not imply this property for the sample paths� Therefore� pictures trying to explain
self�similarity by zooming in and out on one sample path� are by de	nition misleading� A
convenient tool to observe self�similarity are so�called quantile lines �see Section �����

�� If we interpret t as �time� and �X�t�� as �space� then ����� tells us that every change of time
scale c �  corresponds to a change of space scale cH � The bigger H � the more dramatic the
change of the space coordinate�

�� Self�similarity is convenient for simulations� a sample path of �X�t�� on �� �� multiplied by
cH and re�scaling of the time axis by c immediately provide a sample path on �� c� for any
c � �

De
nition ����� X � �X�t��t�� is said to have stationary increments if for any b � �

�X�t� b��X�b��
d
��X�t��X����

We call X simply a si process�

De
nition ����� �X�t��t�� is said to have independent increments if for any  � t� � t� � � � � � tn�
X�t���X�t��� X�t���X�t��� � � � � X�tn��X�tn��� are independent� We call X simply an ii process�

There exist the following relations between the moment condition and the parameter H of ss
si processes�

Proposition ����� �Maejima ���� Let X be H�ss� si� H �  and non�degenerate�

�i� If EjX�t�j� �� for some � � �� then H � ����

�ii� If EjX�t�j��� then H � ��

�



�iii� If EjX�t�j�� and  � H � �� then E�X�t�� � �

Proposition ����� �Vervaat ���� If X is ��ss� si and EjX�t�j��� then X�t� � tX��� a�s�

The study of ss processes is mainly focused on processes with strongly dependent increments
�cf� Section �����

Fix now  � H � �� Since the function fjt�j�H� jt�j�H�jt��t�j�H � t�� t� � Rg is non�negative
de	nite� there exist a Gaussian process �X�t��t�� with mean zero and autocovariance function

R�t�� t�� � Cov�X�t��� X�t��� �
�

�

n
jt�j�H � jt�j�H � jt� � t�j�H

o
V arX���� �����

It is easy to check that this process is H�ss� si� It is called a fractional Brownian motion
�FBM� and is often denoted by BH�t� �or equivalently B

H
t �� Are there any other Gaussian H�ss si

processes for  � H � �� The following proposition yields the negative answer�

Proposition ����� �Maejima ���� Let X be an H�ss si Gaussian process with  � H � �� Then
X is essentially equivalent �see De�nition 	�	��� to the fractional Brownian motion BH�t��

Remark� An integral representation of a FBM is given by ����� for � � ��

De
nition ����	 A process Y � �Y �t��t�R is stationary if

Y �t� 	�
d
� Y �t� for every 	 � R�

Y is said to be trivial if Y �t� � Y �� a�e�� t � R �it is degenerate��

The following theorem makes clear that self�similarity is very closely related to stationarity� a
logarithmic time transform translates shift invariance of the stationary process into scale invariance
of the self�similar process�

Proposition ����� �Lamperti ���� If Y � �Y �t��t�R is a stationary process and if for some
H � 

X�t� � tHY �log t�� for t � � X�� � �

then X � �X�t�� is H�ss� Conversely� every non�trivial ss�process with X�� �  is obtained in
this way from some stationary process Y �

This tool is extensively used in Chapters � and �� For further applications see Maejima and Sato
����� where the transformation is proved to be a link between semi�selfsimilar and periodically
stationary processes�

Self�similar processes are of interest in probability theory because they are closely connected
with limit theorems� Namely� every limiting process with scaling is self�similar� and all self�similar
processes are characterized in such way� as was observed by Lamperti �����

Proposition ����	 �Lamperti ���� Suppose X � �X�t��t�� is continuous in probability at t � 
and the distribution of X�t� is non�degenerate for each t � �

�i� If there exist a stochastic process Y � �Y �t��t�� and reals A�
����� with A�
� � �
lim���A�
� �� such that as 
���

�

A�
�
Y �
t�

d� X�t�� �����

then for some H � � X is H�ss� Furthermore� A�
� is of the form A�
� � 
HL�
�� L�
�
being a slowly varying function�

�



�ii� If X is H�ss� then there exist Y and �A�
����� satisfying ���
��

Remark� Notice that part �ii� is trivial by taking Y � X and A�
� � 
H �

Proposition ����� can be specialized to the following result�

Proposition ����� �Lamperti ���� Let ����k�� be a stationary sequence of R�valued random

variables with the partial sum process Y �t� �
P�t�

k�� �k for t � � If
�

an
Y �nt�

d� X�t� as n�� through the reals�

where an � � an �� and X��� 	�  with positive probability� then there is an H �  such that

an � nHL�n��

for L being a slowly varying function and X is H�ss� si� Conversely� all H�ss si X with H �  can
be obtained in this way�

Remark� For the last statement take an � nH and �k � X�k��X�k� �� for k � N�

If we strengthen the assumption of stationary increments to stationary independent increments�
we enter a classical domain of probability� Note that Proposition ����� remains true with the
same substitution and ��k� a sequence of independent identically distributed random variables�
Thus� almost by de	nition� self�similar processes X with stationary and independent increments
are strictly stable motions �see De	nition ����� below�� It turns out that H � �

� � with H � �
�

corresponding to the Brownian motion�
In order to state other relations between self�similar and ��stable processes we start with some

necessary de	nitions�

De
nition ����� A random variable X is said to have a stable distribution if for any positive
numbers A and B� there is a positive number C and a real number D such that

AX� �BX�
d� CX �D� �����

where X� and X� are independent copies of X�

A stable random variable is called strictly stable if ����� holds with D � � A stable random
variable is called symmetric stable if its distribution is symmetric� that is� if X and �X have the
same distribution� A symmetric stable random variable is obviously strictly stable� Moreover the
constant C in ����� can be taken as C � �A� � B����� for some � � �� ��� Hence � is one of the
characteristics of X � and in this case X is said to be ��stable� When � � �� ��stable is Gaussian�
In the following� � always satis	es  � � � ��

Explicit forms of stable density functions only exist in the cases � � �
� �L�evy distribution��

� � � �Cauchy distribution� and � � � �Normal distribution�� The tails of non�Gaussian stable
distributions decrease like a power function� The rate of decay mainly depends on the parameter
�� The smaller the �� the slower the decay and the heavier the tails� For a stable random variable
X with index � � � one has EjX j� �� for any � � � and EjX j� �� for  � � � ��

The second de	nition states that stable distributions are the only distributions that can be
obtained as limits of normalized sums of i�i�d� variables �compare Proposition ����� for self�similar
processes��

�



De
nition ����� �Equivalent to De
nition ������ A random variable X is said to have a sta�
ble distribution if it has a domain of attraction� i�e� if there is a sequence of i�i�d� random variables
Y�� Y�� � � � and sequences of positive numbers �dn� and real numbers �an�� such that

Y� � Y� � 
 
 
Yn
dn

� an
d� X�

The de	nition of stability in Rd is analogous to that in R��

De
nition ����� A random vector X � �X�� X�� � � � � Xd� is said to be a stable random vector in
Rd if for any positive numbers A and B there is a positive number C and a vector D � Rd such
that

AX��	 �BX��	 d
� CX�D� �����

where X��	 and X��	 are independent copies of X�

The vector X is called strictly stable if ����� holds with D �  for any A �  and B � � The
vector is called symmetric stable if it is stable and satis	es in addition the relation PfX � Ag �
Pf�X � Ag for any Borel set A of Rd� As in R�� a symmetric stable vector is strictly stable�

De
nition ����� A stochastic process �X�t��t�T is stable if all its �nite�dimensional distributions
are stable� It is strictly stable or symmetric stable of all its �nite distributions are� respectively�
strictly stable or symmetric stable�

If the 	nite�dimensional distributions are stable� then� by consistency they must all have the
same index of stability �� We use the term ��stable when we wish to specify the index of stability�
We will often refer to the symmetric case� Thus� we recall the following� For � � �� ��� a
process �X�t��t�T is symmetric ��stable �which will be referred to as S�S� if for arbitrary n � N �

a�� � � � � an � R� t�� � � � � tn � T a random variable
nP
i��

aiX�ti� has a S�S distribution� A S�S

process �X�t��t�T is called a S�S L�evy motion if it has stationary and independent increments� is
continuous in probability and X�� �  a�e� We denote it by Z� � �Z��t��t�T � For a comprehensive
survey of properties of ��stable random variables and processes we refer to Janicki and Weron ���
and Samorodnitsky and Taqqu ��
��

If an ��stable process is self�similar� then the self�similarity parameter H can never exceed
max��� ����� It is easy to see that strictly ��stable L�evy motions are �

� �ss si ��stable processes�
Are there any others� In the Gaussian case � � �� the answer is easily to be negative �when � � �
only Brownian motion has such property�� The answer is positive when � � � � � �see Maejima
������ The answer is positive when � � � as well� because if X��� has a ��stable law then the linear
function with random slope X�t� � tX���� t � � is ��ss� si� The problem for the case  � � � � is
settled through the following result�

Proposition ����� �Samorodnitsky and Taqqu ���� The only non�degenerate ��stable �
� �ss

si processes with  � � � � are the strictly ��stable L�evy motions�

�



Chapter �

The Lamperti transformation

Lamperti de	ned a transformation which changes stationary processes to the corresponding self�
similar ones �see Proposition ������� In this context a question arises whether the transformations
proposed by Lamperti are unique� In this chapter we search for functions �� � � and � such that

X�t� � ��t�Y ��t�� is H�ss for a non� trivial stationary process Y

and
Y �t� � ��t�X���t�� is stationary for a non � trivial H�ss process X�

There are two theorems presented in Section ��� which lead to the conclusion that essentially
��t� � tH � �t� � a log t� ��t� � e�bHt and ��t� � ebt for some a� b � R according to our convention
�see De	nition ������� In Section ���� a computer visualization of the Lamperti transformation is
provided� Section ��� is devoted to the study of the in�uence of various a�s and b�s on distributions
of corresponding processes� This is illustrated by four processes chosen to express a di�erence
between the Gaussian and non�Gaussian case� As a result of this investigation� we construct� in
a natural way� a pair of distinct ��stable Ornstein�Uhlenbeck processes for � � �� already known
in the literature �Adler et al� ����� This supports the conjecture that there are only two such
processes� In the last section �Section ����� we discuss a new class of self�similar stable processes
whose corresponding stationary processes Y through the Lamperti transformation are stable mixed
moving averages� The class is called mixed fractional motions and is precisely de	ned and exploited
in Section ������

��� Computer visualization of the Lamperti transformation

Before we present main results of this chapter we 	nd it interesting to illustrate the Lamperti
transformation by demonstrating graphically self�similar processes and corresponding stationary
ones� We generate the fractional stable motion with parameters H and �� applying its integral
representation� that is�

X�t� �

Z �

��
�jt� ujH� �

� � jujH� �
� �Z��du� �

Z t

�
jt� ujH� �

�Z��du�� �����

which is well de	ned for  � H � � and  � � � ��
In order to approximate the integral� we use the method introduced by Mandelbrot and Wallis

���� replacing a sequence of Gaussian with ��stable random variables� In Fig� ��� we can see four
trajectories of the process �thin lines� for � � ��
 and H � ��� To give the insight view on the
nature of the process� we follow Janicki and Weron ���� We evaluate a large number of realizations

�



of the process and compute quantiles in the points of discretization for some 	xed p � � p � ����
i�e� we compute F���p� and F���� � p�� where F is the distribution function� Fig� ��� and Fig�
��� have the same graphical form of output� The number of considered realizations is �� The
thin lines represent four sample trajectories of the process� The thick lines stand for quantile lines�
the bottom one for p � �� and the top one for � � p � ��� The lines determine the subdomain
of R� to which the trajectories of the approximated process should belong with probabilities �

at any 	xed moment of time� In Fig� ��� we can see the corresponding process transformed by
the Lamperti transformation for the parameter H � ��� We can see that the quantile lines are
�parallel�� This means they are time invariant� demonstrating the stationarity of the process�

Figure ���� Visualization of the fractional stable motion for H � �� and � � ��
�

��� Uniqueness of the Lamperti transformation

De
nition ����� When for two stochastic processes X � �X�t�� and Y � �Y �t��� X�t�
d
� aY �t�

for some a � Rnfg� we say that X and Y are essentially equivalent�

Henceforth we will not distinguish between such processes� Furthermore� we will assume that all
considered processes throughout this chapter are stochastically continuous�

In this section we establish the uniqueness of the Lamperti transformations leading from
stationary to self�similar processes� and conversely� The following lemma on stationary processes
makes a technical argument used in the proof of Theorem ����� �ii��

Lemma ����� Let �Y �t��t�R be a non�trivial stochastically continuous stationary process and let
f � R� R be a continuous monotone increasing function� If

Y �f�t��
d
� Y �t�� �����

then f�t� � t � h for some h � R�

�



Figure ���� Visualization of the stationary process obtained from the fractional stable motion by
the Lamperti transformation�

Proof� Suppose that the conclusion is not true� Then �i� there exist an interval �a� b� and � � �� ��
such that for every t � �a� b��  � f�t� � f�a� � ��t � a�� or �ii� there exist an interval �a� b� and
� � � such that for every t � �a� b�� f�t� � f�a� � ��t � a�� Note that since f is continuous and

monotone increasing� it follows from ����� that Y �f���t��
d
� Y �t�� Thus without loss of generality�

we suppose �i��
For any t� � �� b� a�� de	ne t� � f�a � t��� f�a�� Then  � t� � �t�� From the assumption

and the stationarity of Y � we have

�Y ��� Y �t���
d
� �Y �a�� Y �a� t���

d
� �Y �f�a��� Y �f�a� t����

d
� �Y ��� Y �t����

For every n � �� �� � � � � de	ne tn � f�a � tn��� � f�a�� Then  � tn � �tn�� and by the same
argument as above� we have

�Y ��� Y �t���
d
� �Y ��� Y �tn���

Since tn �  as n��� it follows from the stochastic continuity of Y that

�Y ��� Y �t���
d
� �Y ��� Y ����

Namely
Y �t�� � Y �� a�s�

Since t� � �� b� a� was taken arbitrary� this together with the stationarity of Y gives us that

Y �t� � Y �� a�s for every t � R�

which is an contradiction to that Y is non�trivial� Therefore it must be that for some h � R

f�t� � t� h for any t � R� �






Theorem ����� Let  � H ���

�i� If �Y �t��t�R is a stationary process and a � R� then

X�t� �

�
tHY �a log t�� for t � 
� for t � 

is H�ss�

�ii� Conversely� if for some continuous functions ��  on ���� and for a non�trivial stationary
process Y � �Y �t��t�R�

X�t� �

�
��t�Y ��t��� for t � 
� for t � 

�����

is H�ss� then ��t� � tH and �t� � a log t for some a � R�

Proof� �i� Note that

X�ct� � cHtHY �a log t � a log c�
d
� cHX�t��

hence we conclude that �X�t��t�� is H�ss�
�ii� Since �X�t��t�� in ����� is H�ss� we have

��ct�Y ��ct��
d
� cH��t�Y ��t�� for every c � � �����

which leads to
��ct� � cH��t� for every t �  and c � �

since ����� must agree with respect to marginal distributions as well� Consequently� ��t� �
tH����� t � � The constant ���� is of no importance by De	nition ������ thus we consider ��t�
only of the form ��t� � tH � t � � Now ����� can be phrased as

cH tHY ��ct��
d
� cHtHY ��t���

namely

Y ��ct��
d
� Y ��t�� for every c � � �����

This yields that  is monotone on ����� In order to see it� suppose a�contrario that �t�� � �t��
for some t� 	� t�� Since

�Y ��ct���� Y ��ct����
d
� �Y ��t���� Y ��t����

d
� �Y ��� Y ���

for every c � � �ct�� � �ct�� is continuous with respect to variable c and Y is stationary� we
infer that Y �t� � Y �� a�s� for every t � R� Thus Y is trivial� Therefore  must be monotone
on ����� Furthermore�  takes every value in R� One can see this from ����� letting c �  and
c���

Taking
fc�t� � �c���t��� �����

we obtain by Lemma ����� that for some h � R

�c���t�� � t� h� for every t � R� �����

�



Notice that  can be either decreasing or increasing� Nevertheless fc de	ned by ����� is always
increasing� Clearly� ����� can be rewritten as

�ct� � �t� � h�c�� for any t �  and c � �

where h�c� is a function depending only on c� From this and De	nition ������ one can easily see
that for some a � R

�t� � a log t� t � � �

Theorem ����� Let  � H ���

�i� If �X�t��t�� is an H�ss process and b � R� then

Y �t� � e�bHtX�ebt�� t � R�

is stationary�

�ii� Conversely� if for some continuous functions �� �� where � is invertible� and for a non�trivial
H�ss process �X�t���

Y �t� � ��t�X���t��� t � R�

is stationary� then
��t� � e�bHt and ��t� � ebt for some b � R�

Proof� �i� We have

Y �t� 	� � e�bH�t
�	X�eb�t
�	�
d
� e�bH�t
�	ebH�X�ebt� � Y �t��

Thus we conclude that Y is stationary�
�ii� Since Y �t� � ��t�X���t�� is stationary and � is invertible� one can easily claim that the

process
�

������t��
Y �����t�� � X�t�

is H�ss� Thus� by Theorem ����� we obtain

����t� � a log t for some a � Rnfg�
This is equivalent to

��t� � ebt� for some b � R�

Using the same arguments for �� we have ��a log t� � t�H � This yields ��t� � e�bHt� �

Remarks�

�� Marginal distributions do not depend on the choice of a and b� that is�

X�t� � tHY �a log t�
d� tHY ���

since Y is stationary� and

Y �t� � e�bHtX�ebt�
d� X���

since X is H�ss�

�� The parameters a and b are meaningful when considering 	nite�dimensional distributions�
The in�uence of a and b will be discussed in the sequel�

�



��� Finite�dimensional distributions in the ��stable case

We want to establish the in�uence of a�s and b�s on distributions of the corresponding processes�
To this end we need the following lemma�

Lemma ����� If Y � �Y �t��t�R is a non�trivial stationary stochastic process and if

Y �ct�
d
� Y �t�� for some c � Rnfg� ���
�

then either c � �� or c � ��
Proof� It is enough to prove that if Y satis	es ���
� for some c with  � jcj � �� then Y is trivial�
Since

�Y �t��� � � � � Y �tm��
d
� �Y �cnt��� � � � � Y �c

ntm��

for  � t� � � � � � tm� and n � �� it follows from the stochastic continuity that

�Y �t��� � � � � Y �tm��
d
� �Y ��� � � � � Y ��� �

The following theorem is a direct consequence of Lemma ������

Theorem ����� Let  � H ���

�i� If Y � �Y �t��t�R is a non�trivial stationary process and if for some a� a� � Rnfg
tHY �a log t�

d
� tHY �a� log t��

then either a � a� or a � �a��
�ii� If X � �X�t��t�� is a non�trivial H�ss process and if for some b� b� � Rnfg

e�bHtX�ebt�
d
� e�b

�HtX�eb
�t��

then either b � b� or b � �b��
Proof� Part �i� follows directly from Lemma ������ In order to prove �ii� it is enough to apply
Lemma ����� to Y �t� � e�HtX�et�� �

Up to now we have considered processes merely assuming that they are stochastically con�
tinuous� In order to gain insight into the in�uence of di�erent a�s and b�s on 	nite�dimensional
distributions of corresponding processes we are to concentrate on ��stable processes� We will study
Gaussian and non�Gaussian examples to take a di�erent view of the foregoing results�

Note that for Gaussian stationary processes Y �t�
d
� Y ��t�� Hence if Y is Gaussian� then the

statement �i� in Theorem ����� can be replaced by that tHY �a log t�
d
� tHY �a� log t� if and only if

a � �a�� and if X is Gaussian� then �ii� can be replaced by that e�bHtX�ebt�
d
� e�b

�HtX�eb
�t� if

and only if b � �b�� Therefore we have the following�
Example ����� Let  � H � � and �Y��t��t�R be a Gaussian Ornstein�Uhlenbeck process�
namely

Y��t� �
Z t

��
e���t�x	B�dx�� t � R�

where �B�t�� is a standard Brownian motion� Then

tHY��a log t�
d
� tHY��a

� log t�� t � 

if and only if a � �a��

��



Example ����� Let �X�t��t�� be a Gaussian H�ss process and  � H � �� �If� in addition� it
has stationary increments� it is the fractional Brownian motion de�ned by ���	� and the stochastic
integral with � � � in �	����� Then

e�bHtX�ebt�
d
� e�b

�HtX�eb
�t�� t � R�

if and only if b � �b��

Remarks�

�� Let us recall that the Gaussian Ornstein�Uhlenbeck process can be obtained by transforming
the Brownian motion by the Lamperti transformation and there exists only one such process
�this was observed by Doob ���� and It�o ������ How does this fact match the above theorems
and examples� Comparing the covariance functions of the transformed Brownian motion
and the Gaussian Ornstein�Uhlenbeck process �characterized by parameter 
� leads to the
conclusion

Brownian motion G�O�U� process

B�t�
gen	Lamp	tr	 with a

�� Y��at�
�where 
 � �

���

Y��at� and Y��a�t� are di�erent processes when a 	� �a� �with respect to 	nite�dimensional
distributions� but nevertheless they are still in the same class of processes because Y��at�

d
�p

aYa��t�� �see Example �������

�� Due to the above generalization of the Lamperti theorem we are able to obtain the complete
class of Ornstein�Uhlenbeck processes from the standard Brownian motion�

�� Using the generalized Lamperti transformation with di�erent a�s� one can generate the entire
class of H�ss Gaussian Markov processes starting from the standard Ornstein�Uhlenbeck
process with 
 � �� �see Example ������� They are given by the covariance function in the
following way�

E�X�t�X�s�� � tHsHE�Y��a log t�Y��a log s�� � tHsHe�a�log t�log s	 � tH�asH
a�

where a �  and s � t�

We proceed to non�Gaussian stable cases�

Example ����� Let  � H �� and �Y��t��t�R be a S�S Ornstein�Uhlenbeck process� namely

Y��t� �

Z t

��
e���t�x	Z��dx�� t � R

where  � � � �� Then
tHY��a log t�

d
� tHY��a

� log t�� t � � �����

if and only if a � a��

��



Proof� We compute the characteristic function of vector �Y��as�� Y��at��� Fixing s � t and a � �
we have the following equations �

E expfi���Y��as� � ��Y��at��g
� E expfi���� � ��e

��a�t�s	�Y��as� � ���Y��at�� e��a�t�s	Y��as���g
� E expfi��� � ��e

��a�t�s	�

Z as

��
e���as�x	Z��dx�g 
E expfi��

Z at

as
e���at�x	Z��dx�g

� expf��j�� � ��e
��a�t�s	j�

Z as

��
e����as�x	dx� j��j�

Z at

as
e����at�x	dx�g

� expf� �

�

���� e���a�t�s	�j��j�

�j� � e���a�t�s	j��� 

���� ��

j� � e���a�t�s	j��� �
��e

��a�t�s	

j� � e���a�t�s	j���
������g�

Thus the spectral measure of vector �Y��as�� Y��at�� is given by the formula

� �
�

��

���� e���a�t�s	������ ��� �������� � ��� e�
�a�t�s	���
���c� d� � ���c��d����

where

c �
�

�� � e���a�t�s	����
� d �

e��a�t�s	

�� � e���a�t�s	����

and ��p� q� is the delta measure at �p� q� � R�� Similarly� when a �  the spectral measure of vector
�Y��as�� Y��at�� is given by

� �
�

��

���� e���a�s�t	������ ��� ����� ��� � ��� e�
�a�s�t	���
���d� c� � ���d��c����

Because of the uniqueness of the spectral measure � � formula ����� �as concerns bivariate distribu�
tions� holds only if a � a�� This completes the proof� �

Example ����� Let  � � � �� H � �
� and �Z��t��t�� be a S�S L�evy motion� Then

e�bHtZ��e
bt�

d
� e�b

�HtZ��e
b�t�� t � R

if and only if b � b��

Proof� By Theorem ����� it is enough to show that

e�HtZ��e
t�

d
	� eHtZ��e

�t��

which is equivalent to

Z��t�
d
	� t�HZ��t

����

For that� we show that the process on the right hand side does not have independent increments�

To this end� it su�ces to represent the process by a stable integral t�H
R t��

� dZ��u� and to check its
increments� Use the fact that two non�Gaussian stable random variables

R
fdZ� and

R
gdZ� are

independent if and only if f 
 g �  a�e� �

Remarks�

�� As in the Gaussian case there is a correspondence between the S�S L�evy motion �character�
ized by the parameter �� and the S�S Ornstein�Uhlenbeck process �determined by � and 
�
through the Lamperti transformation�

��



S�S L�evy motion S�S O�U� process

Z��t�
gen	Lamp	tr	 with a

�� Y��at�
�where 
 � �

���

�See Adler et al� ���� Theorem ��� for � � � � � and for general  � � � � compute
and compare the characteristic functions of processes fe�at��Z��eat�g and fY����at�g� which
can be calculated in a way similar to the above proof of Example �������

�� Contrary to the Gaussian case� Y��at� de	nes distinct processes for a and for�a �see Example
������� For example� a � � and a� � �� produce the S�S Ornstein�Uhlenbeck and the reverse
S�S Ornstein�Uhlenbeck process� respectively �which are di�erent when  � � � ��� �see

Adler et al� ����� Since Y��at�
d
� a���Ya��t�� so we can construct only two di�erent Ornstein�

Uhlenbeck processes�

��� Mixed linear fractional ��stable motions

In the paper� Surgailis et al� ����� a new class of stationary non�Gaussian S�S processes�
namely stable mixed moving averages� is introduced� This includes the well�studied class of moving
averages� In this section� we discuss the self�similar stable processes whose corresponding stationary
processes �Y �t�� through the Lamperti transformation are stable mixed moving averages�

Although more general class is introduced in Surgailis et al� ����� we focus here only on the
following type of stable mixed moving averages �which are sums of independent usual moving
averages��

Y �t� �
KX
k��

Z �

��
fk�t� v�Z�k	

� �dv�� t � R� �����

where the Z
�k	
� �s are independent S�S L�evy motions� fk � L������� and where the f �ks are not

�equivalent� in the sense that for k 	� �� there do not exist c and � such that fk�
� � cf��
� ��� We
call the process ����� the K�sum stable moving average� It is observed in Surgailis et al� ���� that
K�sum stable moving average with K � � is di�erent in law from the ordinary moving average�

We remark here that ����� is a special case of stable mixed moving averages introduced in
Surgailis et al� ����� but 	nite sums of independent S�S moving averages as in ����� are dense in
the class of stable mixed moving averages�

In the following� we give examples of self�similar processes with stationary increments� whose
corresponding stationary processes are K�sum stable moving averages�

De
nition ����� Let  � H � ��  � � � �� H 	� �
� � and

X�t� �
NX
n��

Z �

��

�
pn��t� u�

H� �
�


 � ��u�H�
�
�


 � � qn��t� u�
H� �

�
� � ��u�H�

�
�

� �

�
Z�n	
� �du�� ������

where a
 and a� stand for maxfa� g and maxf�a� g� respectively� The process �X�t�� is called
mixed linear fractional stable motion �cf� Section 
�
����

It is easy to check that �X�t�� is H�self�similar and has stationary increments� When N � �
and pn � �� qn � �� it is a linear fractional stable motion in ������ The distribution of �X�t�� is
distinct for di�erent collection of fpn� qn� n � �� 
 
 
 � Ng unless pn � p� qn � q for all n�

In the following� we restrict ourselves to the stationary process Y
�t� � e�HtX�et�� However�
as we pointed out in Section ���� �Y
�t�� is distinct from �Y��t��� where Y��t� � eHtX�e�t�� since

��



we are dealing with non�Gaussian stable case� As to �Y��t��� we have a similar argument� We shall
write below Y �t� for Y
�t� and � � H � �

� for the notational simplicity�

Theorem ����� The mixed linear fractional stable process X�t� given by �	���� corresponds via
the Lamperti transformation to a K�sum stable moving average for some K � �N �

Proof� From ������� we have

Y �t� � e�HtX�et�

�
NX
n��

e�Ht
Z �

��

n
pn��e

t � u��
 � ��u��
�

�qn��e
t � u��� � ��u����

o
Z�n	
� �du�

�
NX
n��

e�Ht
�
pn

Z �

��
��et � u�� � ��u�� �Z�n	

� �du�

�

Z et

�
�pn�e

t � u�� � qnu
� �Z�n	

� �du�

�qn

Z �

et
��u� et�� � u��Z�n	

� �du�

�

�
NX
n��

e�Ht
�Z �

��
pn��e

t � u�� � ��u�� �Z�n	
� �du�

�

Z �

�

�
I � � u � et��pn�e

t � u�� � qnu
� �

�I �et � u�qn��u� et�� � u��
�
Z�n	
� �du�

�
�

Thus� for cj � R�

� logE�expfi
X
j

cjY �tj�g�

�
NX
n��

�Z �

��

������
X
j

cje
�Htjpn��e

tj � u�� � ��u���
������
�

du

�
Z �

�

����X
j

cje
�HtjfI � � u � etj ��pn�e

tj � u�� � qnu
��

�I �etj � u�qn��u� etj�� � u� �g
�����du

�

by the change of variables juj � ev�

�
NX
n��

�Z �

��

���X
j

cje
�Htjpn��e

tj � ev�� � e�v�
����evdv

�

Z �

��

���X
j

cje
�HtjfI �v � tj ��pn�e

tj � ev�� � qne
�v�

�I �tj � v�qn��e
v � etj �� � e�v�

����evdv
�

��



�
NX
n��

�Z �

��

���X
j

cje
�Htj
�vpn��e

tj�v � ��� � ��
����evdv

�

Z �

��

���X
j

cje
�Htj
�vfI �tj � v � ��pn�e

tj�v � ��� � qn�

�I �tj � v � �qn���� etj�v�� � ��g
����evdv

�

�
NX
n��

�Z �

��

���X
j

cje
�H�tj�v	pn��e

tj�v � ��� � ��
����dv

�
Z �

��

���X
j

cje
�H�tj�v	fI �tj � v � �qn���� etj�v�� � ��

�I �tj � v � ��pn�e
tj�v � ��� � qn�g

����dv
�

�
NX
n��

	

�
Z �

��

���X
j

cjfn�tj � v�
����dv � Z �

��

���X
j

cjgn�tj � v�
����dv

�
� �

where

fn�t� � e�Htpn��e
t � ��� � ��

gn�t� � e�HtfI �t � �qn���� et�� � �� � I �t � ��pn�e
t � ��� � qn�g�

Thus we have

Y �t�
d
�

NX
n��

Z �

��
fn�t� v�Z�n	

� �dv�

�
NX
n��

Z �

��
gn�t � v�Z�N
n	

� �dv��

where Z
�n	
� � n � �� �� 
 
 
 � �N are independent stable motions� �

Example ����� If N � �� p� � � q� 	� � then

Y �t�
d
�

Z �

��
g��t� v�Z��dv��

and hence K � �� The linear fractional stable motion corresponds to a stable moving average�

Example ����� If N � �� p� 	�  �whatever q� is�� then f��
� � �cg��
� �� is not true� Hence

Y �t�
d
�

Z �

��
f��t� v�Z��	

� �dv� �

Z �

��
g��t� v�Z��	

� �dv��

which is 	�sum stable moving average� Thus� the linear fractional stable motion can also correspond
to a stable mixed moving average�

Example ����� Let K � � and choose N such that �N � K� Then by choosing pn and qn� zero or
non�zero suitably� we can construct K�sum stable moving average from the mixed linear fractional
stable motion�

��



Next we consider the case of H � �
� �

Example ����� Let  � � � �� H � �
� and X�t� � Z��t�� Then

Y �t� � e�
�
�
tX�et� � e�

�
�
tZ��e

t�

� e�
�
�
t
Z et

�
Z��du� � e�

�
�
t
Z s

��
Z��e

vdv�

d
� e�

�
�
t
Z s

��
e
�
�
vZ��dv� �

Z s

��
e�

�
�
�t�v	Z��dv�

�

Z �

��
f�t� v�Z��du��

where
f�t� � e�

�
�
tI �t � ��

Example ����	 Let � � � � �� H � �
� and

X�t� �

Z �

��
log

���� t � u

u

����Z��du��
This �X�t�� is called a log�fractional stable motion� �See Kasahara et al� 	���� Then

Y �t� � e�
�
�
tX�et�

� e�
�
�
t
Z �

��
log

�����e
t � u

u

�����Z��du� � e�
�
�
t
Z �

�
log

�����e
t � u

u

�����Z��du�
d
� e�

�
�
t
Z �

��
log

�����e
t � ev

�ev
�����Z��	

� ��evdv� � e�
�
�
t
Z �

��
log

�����e
t � ev

ev

�����Z��	
� �evdv�

d
� e�

�
�
t
Z �

��
log

���et�v � ���� e �
�
vZ��	

� �dv� � e�
�
�
t
Z �

��
log

���et�v � ���� e �
�
vZ��	

� �dv�

�

Z �

��
f��t� v�Z��	

� �dv� �

Z �

��
f��t � v�Z��	

� �dv��

where
f��t� � e�

�
�
t log jet � �j

and
f��t� � e�

�
�
t log jet � �j

Thus� the log�fractional stable motion also corresponds to a 	�sum moving average as in the case
of the linear fractional stable motion in Example 	���	�

��



Chapter �

Integral representation of stable H�ss

processes

In this section we establish and exploit the connection between theory of self�similar stable processes
and ergodic theory of nonsingular �ows� Using this connection and the Lamperti transformation� a
special decomposition of self�similar processes is obtained� In Section ��� we show that a minimal
spectral representation of an H�self�similar S�S process fXtgt�R�

is of the form

Xt �
Z
S
tH �atf � �t�m���

t dM� t � R
�

Here f�tgt�R�
is a nonsingular multiplicative �ow on �S� ��� fatgt�R�

is a cocycle for this �ow
taking values in f��� �g� mt � d�� � �t��d�� f � L��S� �� and M is a S�S random measure�

As a consequence we prove in Section ��� that every stable self�similar process admits a unique
decomposition into three independent parts

Xt � X
��	
t �X

��	
t �X

��	
t � t � R
�

such that fX��	
t gt�R�

corresponds to a superposition of moving averages in the theory of stationary

processes� the second class fX��	
t gt�R�

is harmonizable and fX��	
t gt�R�

is called evanescent� This
result shows how rich the class of stable self�similar processes actually is�

��� Preliminaries and de�nitions

De
nition ����� A map t � ft� where fftgt�T  L��S�B� ��� �S�B� �� is a standard Lebesgue
space� is said to be a spectral representation of a S�S process fXtgt�T if

fXtgt�T d
�

�Z
S
ft�s�M�ds�

�
t�T

� �����

where M is an independently scattered random measure on B such that

E expfiuM�A�g � expf�juj���A�g� u � R�

for every A � B with ��A� � �� The family of functions fftgt�T is called the kernel of a spectral
representation�

�




It is well�known that every separable in probability S�S process admits a spectral represen�
tation such that S is a unit interval or a countable discrete set or the union of the latter two
and � is the direct sum of Lebesgue measure acting on the unit interval and a counting measure
acting on the discrete part of S �cf� Hardin ������ On the other hand� many interesting classes
of stable processes are de	ned by explicitly given families of functions ft and control measure �
given on various spaces� Because a spectral representation is a natural characterization of a stable
process� the question of its uniqueness is important� Spectral representation is not unique� even
when S and � are 	xed� We study the problem of uniqueness in the context of so�called minimal
representations� Minimal representations are unique and other representations of the same process
are transformations of the minimal ones �see� e�g� Rosi�nski ������

De
nition ����� A spectral representation t� ft is said to be minimal if 	fft�fu � t� u � Tg � B
modulo ��

Every separable in probability S�S process has a minimal representation �see Hardin ����� and
Janicki and Weron �����

We will also consider complex stable processes� However� in the complex case we restrict our
attention to those processes fXgt�T for which all linear combinations PaiXti � ai � C� ti � T
have rotationally invariant stable distributions� In that case� a family of complex ��integrable
functions fftgt�T de	ned on a standard Lebesgue space �S�B� �� is called the kernel of a spectral
representation of the process fXgt�T if ����� holds with a complex independently scattered random
measure M such that

E expfi��uM�a�g � expf�juj���A�g� u � C�

��� Minimal spectral representation of stable self�similar pro�

cesses

From now on we will consider processes indexed by T � R
 � ����� In this section we will
characterize the kernel of a spectral representation of an H�self�similar S�S stochastic process�
Without loss of generality we may and do assume that underlying measure space �S�B� �� for the
kernel is Borel� A collection f�tgt�� of measurable maps from S onto S such that

�t�t��s� � �t���t��s�� �����

and ���s� � s for all s � S and t�� t� �  is called a multiplicative �ow� Such �ow is said to be
measurable if the map R
 � S � �t� s� �� �t�s� � S is measurable� Given a 	�	nite measure � on
�S�B�� f�tgt�� is said to be nonsingular if ���

��
t �A�� �  if and only if ��A� �  for every t � 

and A � B�
Let A be a locally compact second countable group� A measurable mapR
�S � �t� s�� at�s� � A

is said to be a cocycle for a measurable �ow f�tgt�� if for every t�� t� � 

at�t��s� � at��s�at���t��s�� for all s � S� �����

Theorem ����� Let fftgt��  L��S� �� be the kernel of a measurable minimal spectral representa�
tion of a measurable H�ss S�S process fXtgt��� Then there exist a unique modulo � nonsingular
�ow f�tgt�� on �S� �� and a cocycle fatgt�� taking values in f��� �g �fjzj � �g in the complex case�
such that for each t � 

ft � tHat
nd� � �t

d�

o���
�f� � �t� � � a�e� �����

��



Proof� Since t � ft is minimal� then� for each c �  f��cHfctgt�� and fftgt�� are kernels of
minimal representations of the the same H�ss S�S process� Applying Theorem ��� in Rosi�nski ����
there exist a one�to�one and onto function  c � S � S and a function hc � S � R� fg such that�
for each t � �

fct � �c
H��hc��ft �  c� � � a�e�� �����

and
d�� �  c�

d�
� jhcj�� � � a�e� �����

Since� for every t� c�� c� � � it is true that� �� a�e

fc�c�t � �c
H
� ��hc���fc�t �  c�� � �cH� cH� ��hc���hc� �  c���ft � c� �  c�� �����

and
fc�c�t � �c

H
� c

H
� ��hc�c���ft �  c�c���

we infer from Theorem ��� in Rosi�nski ���� that� for every c�� c� � �

hc�c� � �hc���hc� �  c��� �� a�e�� ���
�

and
 c�c� �  c� �  c� � �� a�e� �����

In order to conclude the proof it is enough to rewrite the arguments of the proof of Theorem ���
in Rosi�nski ���� replacing the additive group R with the multiplicative R
� Therefore� �t �  t is
the map and putting at � ht�jhtj ends the proof� �

Remark� It is possible to present an alternative proof of the theorem using the Lamperti transfor�
mation� That is� 	rst we need to see that the Lamperti transformation leading from self�similar to
stationary processes preserves the minimality of a spectral representation� To this end it is enough
to verify condition �iii� of Theorem ��
 in Rosi�nski ���� with F � fe�tHfetgt�R� It is trivially
satis	ed as the condition is ful	lled for F � fftgt�R�

� Now� taking Yt � e�tHXet we obtain a sta�
tionary process which minimal representation is de	ned by Theorem ��� in Rosi�nski ���� in terms
of a unique �ow and a corresponding cocycle on the additive group R� In order to conclude the
proof we apply the reciprocal transformation Xt � tHYlog t which leads to the minimal spectral
representation of the process X as stated in Theorem ������ �

Corollary ����� Since there is a correspondence between self�similar and stationary processes
through Lamperti transformation every minimal representation t � ft �
��� given in terms of a
�ow �t and a cocycle at de�nes the kernel of a minimal spectral representation ff�t gt�R of the
corresponding stationary process as follows

f�t � a�t

�
d� � ��t
d�

����

�f� � ��t �� �� a�e� �����

such that
��t �s� � �et�s�� a

�
t �s� � aet�s�� f

�
� �s� � f��s� for all s � S and t � R�

Conversely if �
���� is the kernel of a minimal spectral representation of a stationary process then
�
��� de�nes the kernel of a minimal representation of an H�ss process in terms of a pair fat� �tgt��

such that

�t�s� � ��log t�s�� at�s� � a�log t�s�� f��s� � f�� �s� for all s � S and t � �

�



Remark� Combining results of Theorem ��� in Rosi�nski ���� and Theorem ����� we may try to prove
Theorems ����� and ����� describing classes of transformations leading from self�similar to stationary
processes and conversely� Let us concentrate on the �ii� part of Theorem ������ We will support
the thesis that � � tH and  � a log t using Theorem ��� in Rosi�nski ���� and Theorem ����� which
concern minimal spectral representations of stationary and self�similar processes� respectively� First
we notice that any transformation of the form Xt � ��t�Y�t	 for a non�trivial stationary process
Y and functions ��  � ���� � R such that  is onto preserves minimality of the spectral
representation� It is obvious since F � f��t�f��t	gt�� satis	es condition �iii� of Theorem ��
 in

Rosi�nski ���� as ff�t gt�R �the spectral representation of process Y � is rigid in L��S� ��� Thus X is
H�ss with the spectral representation as follows

ft � ��t�a��t	

nd� � ���t	
d�

o���
�f� � ���t	� �� a�e�

Now we use the fact that the process X has a spectral representation de	ned by ����� and compare
them� We immediately obtain that ��t� � tH � Furthermore� it is easy to see that the spectral
representations are equivalent if

���t�t�	 � ���t�	
�t�	 and ��� � �

This yields either
�t�t�� � �t�� � �t�� for all t�� t� �  ������

or
�t�t�� � �t�� � �t�� � c for some t�� t� �  and c 	� �

Since  is continuous the latter implies that Y is trivial� The equivalence ������ leads to the
statement �t� � a log t for some real constant a�

��� Decomposition of stable self�similar processes

Every measurable stable self�similar process is generated by a nonsingular �ow� First we will show
that certain standard decompositions of �ows in ergodic theory induce natural decompositions
of stable self�similar processes� To this end let us recall basic de	nitions and facts concerning
nonsingular maps and �ows�

A nonsingular map V � S � S is said to be conservative if there is no wandering set of positive
� measure �a set is called wandering if the sets V �kB are disjoint�� Given a nonsingular map V �
there exist a decomposition of S into two disjoint measurable sets C and D � the conservative and
the dissipative parts � such that

�i� C and D are V �invariant�

�ii� the restriction of V to C is conservative and

�iii� D � ��k���V kB for some wandering set B�

The decomposition of S into C and D is unique �modulo �� and is called the Hopf decomposition�
Given a nonsingular �ow f�tgt�T � for each t � T � fg one has the Hopf decomposition of S�
S � Ct �Dt� generated by the map �t� Since all Ct �Dt� resp�� are equal to each other modulo �
�see Krengel ������ one can choose a set C that is invariant under f�tgt�T and such that C � Ct�
and D � S � C � Dt modulo � for every t � T � fg� This is the Hopf decomposition of S

��



corresponding to the �ow f�tgt�T � A �ow is called dissipative if S � D and conservative if S � C
modulo ��

Similarly as in the case of stationary S�S processes� Theorem ����� allows one to use ergodic
theory ideas in the study of S�S self�similar processes� In particular� the Hopf decomposition of
the underlying space S of the spectral representation ����� into invariant parts C and D� such
that the �ow �t is conservative on C and dissipative on D� generates a decomposition of fXtgt��

into two independent S�S H�ss processes fXC
t gt�� and fXD

t gt��� We will characterize the latter
process�

����� Mixed fractional motions

The simplest H�ss S�S process is obtained from a kernel of the form

ft�s� � tH�
�
� f

�
s

t

�
� t� s � � ������

considered with Lebesgue control measure on ����� f � L������� Leb�� A S�S process with
such representation will be called a fractional motion �FM�� A superposition of independent FM
processes of type ������ is called a mixed fractional motion �MFM��

De
nition ����� An H�ss S�S process fXtgt�� is said to be a MFM if it admits a spectral rep�
resentation with a kernel fgtgt�� de�ned on �W � �����BW � B����	� � � Leb�� for some Borel
measure space �W�BW � ��� such that

gt�w� u� � tH�
�
� g

�
w�

u

t

�
� ������

�w� u� � W � ����� t � �

Theorem ����� fXD
t gt�� is a MFM and one can choose a minimal representation of fXD

t gt�� of
the form �
��
�� Furthermore� fXD

t gt�� is a FM if and only if f�tgt�� restricted to D is ergodic�

Proof� Using Corollary ����� we infer that the process fXD
t gt�� corresponds� by Lamperti trans�

formation� to a stationary S�S process fYtgt�R generated by a dissipative �ow� From Theorem
��� in Rosi�nski ���� we get that fYtgt�R is a mixed moving average� implying that fXD

t gt�� is a
MFM�

We will now prove the second part of the theorem� Since a moving average representation
kernel is minimal �see� e�g� Rosi�nski ������ ������ is minimal as well� Since ft in ����� is minimal�
then also ft restricted to D is minimal� By Theorem ��� in Rosi�nski ���� we infer that the �mul�
tiplicative� �ow �t is equivalent to the �ow t�s� � t��s� t� s � � Since ftg is ergodic� so is
f�tg� Now suppose that f�tg is ergodic� By the 	rst part of this theorem� fXtg admits a minimal
representation of the form ������ whose �ow is given by t�w� u� � �w� t

��u�� Since the latter �ow
is equivalent to f�tg by the foregoing theorem� it must be ergodic which is only possible when � is
a point�mass measure� Thus ������ reduces to ������� �

We will give a few examples of FM and MFM processes� We begin with the simplest one�

Example ����� Let  � � � �� H � �
� and fXgt�� be a L�evy motion� Then

Xt �
Z t

�
M�ds� �

Z �

�
f�s�t�M�ds��

where
f�s� � I � � s � ��

and M is S�S on ���� with Lebesgue control measure �see Figure 
����

��



Example ����� Let f � L��Rd� Leb�� Let

ft�s� � tH�
d
� f

�
s

t

�
� s � Rd� t � �

and let M be a S�S random measure on Rd with Lebesgue control measure� It is easy to check that
a S�S process fXtgt�� with such spectral representation is H�ss� We will show that fXtgt�� is a
MFM� Indeed� let W � Sd be the unit sphere in Rd equipped with the uniform probability measure
� and let

g�w� u� � �cdu
d������f�uw�� �w� u� � Sd � �����

where cd � ��d���!�d��� is the surface area of Sd� Using polar coordinates� we get for every
a�� � � � � an � R� t�� � � � � tn � � Z

Rd
j
X

ajftj�s�j� ds

� cd

Z
Sd

Z �

�
j
X

aj t
H� d

�
j f

�
uw

tj

�
j�ud�� du��dw�

�
Z
Sd

Z �

�
j
X

aj t
H� �

�
j g

�
w�

u

tj

�
j� du��dw��

which proves the claim�

Comparing the kernel from the above example with the general form ����� we get that S �
Rd n fg� �t�s� � t��s� f��s� � f�s�� and d���t

d� � t�d� The following well�known H�ss processes
are special cases of Example ������

Example ����� Let � � � � � and H � �
�� Then a log�fractional motion �cf� Kasahara et al�

	��� fXtgt�� is de�ned by

Xt �
Z �

��
log

���� t� s

s

����M�ds� �
Z �

��
f�s�t�M�ds��

where
f�s� � log j��s� �j

and M is S�S on R with Lebesgue control measure �see Figure 
�	��

Example ����� Let  � H � ��  � � � �� H 	� �
�� Put � � H � �

�� Then a linear fractional
stable motion �cf� Cambanis et al� ��� fXtgt�� is de�ned by

Xt �
Z �

��
p��t� s�� � ��s���M�ds��

Z �

�

�
I � � s � t��p�t� s�� � qs� � � I �t � s�q��s� t�� � s� �

�
M�ds�

�

Z �

��
t�f�s�t�M�ds��

where
f�s� � I �s � �p���� s�� � ��s�� ��

I � � s � ���p��� s�� � qs�� � I �s � ��q��s� ��� � s� ��

and M is S�S on R with Lebesgue control measure �see Figure 
�
��

��



Next Theorem shows that the kernel of a spectral representation of any MFM can be de	ned
on R� in a canonical way�

Theorem ����� �Canonical representation of a MFM� � Let 	 be a 	��nite measure on the
unit circle S� of R� and let � be a measure on R� n fg whose representation in polar coordinates
is

��dr� d�� � r�H��dr 	�d��� r � � � � S�� ������

Let f � R� n fg �� R �or C� be such thatZ
R�nf�g

jf�z�j���dz� ���

Then the family of functions fftgt��  L��R� n fg� �� given by

ft�z� � f�t��z� ������

is the kernel of a spectral representation of a S�S process� which is H�ss and MFM� Conversely�
every MFM admits a �canonical� representation �
������
�����

Proof� We are to show only the converse part� Consider a MFM with a representation �������
Since S is a Borel space� S is measurably isomorphic to a Borel subset S�� Let  � S �� S� denote
this isomorphism and let 	 � � �  ��� De	ne a function f on R� n fg as follows

f�z� �

�
g
�
 ��

�
z
jzj

�
� jzj

�
jzj����H� if z

jzj �  �S�
� otherwise�

Let � be a measure on R� n fg given by ������� ThenZ
R�nf�g

j
X

ajftj�z�j� ��dz� �
Z
R�nf�g

j
X

ajf�t
��
j z�j� ��dz�

�
Z
S�

Z �

�
j
X

ajf�t
��
j r��j� r�H�� dr	�d��

�
Z
S

Z �

�
j
X

ajf�t
��
j r �s��j� r�H�� dr��ds�

�
Z
S

Z �

�
j
X

aj t
H����
j g�s� t��

j r�j� dr��ds��

for every t�� � � � � tn �  and a�� � � � � an � R �C�� This ends the proof� �

Remark� The Lamperti transformation maps FMs onto moving average processes and MFMs onto
mixed moving averages �see Surgailis et al� ������ Considering above examples it seems that MFMs
appear more naturally than FMs� This is quite opposite to the relation between mixed and the
usual moving averages�

It is clear that a stable process may have many spectral representations with di�erent kernels
de	ned on various measure spaces� However� we can identify one property� common to all such
representations� which characterizes MFMs�

��



Theorem ����� Let fXtgt�� be a S�S H�ss process with an arbitrary representation �
���� Then
X is MFM if and only if Z �

�
t��H��jft�s�j�dt �� �� a�e� ������

Proof� The condition ������ is equivalent toZ �

��
e��Htjfet�s�j�dt �� �� a�e�

By Theorem ��� in Rosi�nski ���� and the Lamperti transformation this concludes the proof� �

����� Harmonizable processes

The class generated by conservative �ows consists of harmonizable processes and processes of
a third kind �evanescent��

De
nition ����� An H�ss S�S process fXtgt�� is said to be harmonizable if it admits the repre�
sentation

fXtgt��
d
�

�Z
R

tH
isN�ds�

�
t��

� ������

where N is a complex�valued rotationally invariant S�S measure with the �nite control measure �
on S�

Notice that the representation ������ is minimal and it is generated by an identity �ow acting on
S with at�s� � tis as the corresponding multiplicative cocycle� It is easy to prove the converse�

Proposition ����� Let fXtgt�� be a measurable complex�valued H�ss S�S process generated by
an identity �ow� Then fXtgt�� is harmonizable�

Proof� Let
S� � fs � at�t��s� � at��s�at��s� for Leb� Leb a�a� �t�� t��g �

Now it is enough to show that for each s � S� there exist a unique k�s� � R such that

at�s� � tik�s	�

To this end we follow the proof of Proposition ��� in Rosi�nski ���� and next de	ne a 	nite measure
���ds� � jf�s�j���ds� on S� Therefore� ������ holds with � � �� � k��� �

Theorem ����� Let fftgt�� be the kernel of a minimal spectral representation of the form �
���
for a complex�valued S�S harmonizable process fXtgt��� Then f�tgt�� is the identity �ow and
�
��� reduces to

ft�s� � tH
isf�s� ����
�

Proof� Since ����
� follows from the proof of the previous proposition� we only need to show that
f�tgt�� is the identity �ow� However� the representation ������ is minimal and is induced by the
identity �ow t�s� � s� for all t� s� so that by Theorem ��� in Rosi�nski ����� �t being equivalent to
the identity �ow must be identity� �

��



Example ����	 Let

fXtgt��
d
�

�Z �

��
tH
is e

is � �
is

jsj��H��
���	M�ds�

�
t��

�

where M is a complex�valued rotationally invariant S�S measure� The process X corresponds via
the Lamperti transformation to the complex harmonizable fractional stable noise �cf� Samorodnitsky
and Taqqu 
����

Remark� There can not be any non�zero real�valued stationary harmonizable process� Using
Lamperti transformation� the same statement is valid about real�valued harmonizable self�similar
processes� However� the class of real�valued self�similar processes whose spectral representation is
generated by the identity �ow is slightly larger� Any process of this class must be of the form
Xt � tHX� �cf� Proposition ��� in Rosi�nski ������

As it was in the case of a MFM �see Theorem ������ we can verify whether an H�ss S�S
process is harmonizable given its arbitrary spectral representation�

Theorem ����	 Let fXtgt�� be a S�S H�ss process with an arbitrary representation �
���� Then
X is harmonizable if and only if

ft�t��s�f��s� � ft��s�ft��s� for �Leb� Leb� �� a�a� �t�� t�� s� � R
 �R
 � S�

Proof� It is a direct consequence of Theorem ��� in Rosi�nski ���� and the Lamperti transformation�
�

����� Evanescent processes

De
nition ����� A stochastic process whose minimal representation �
��� contains a conservative
�ow without �xed points will be called evanescent�

This class is not well understood at present� The next theorem is useful to verify whether or not a
process is evanescent�

Theorem ����� Let fXtgt�� be a S�S H�ss process with an arbitrary representation �
���� Then
fXtgt�� is evanescent if and only if

�fs � S �

Z �

�
t��H��jft�s�j� dt ��g � 

and
�fs � S � ft�t��s�f��s� � ft��s�ft��s� for a�a� t�� t� � g � 

Proof� Theorems ����� and ����� combined with the results of Section � in Rosi�nski ���� yield the
thesis� �

We will give two examples of evanescent processes�

Example ����� Let

fXtgt��
d
�

�Z �

�
tH cos ��log t � s�M�ds�

�
t��

�

where �x� denotes the largest integer not exceeding x �see Figure 
���� Then X does not have a
corresponding harmonizable nor mixed moving average component� so provides an example of an
evanescent component�

��



Example ����� Let fXtgt�� be the real part of a harmonizable process� i�e�

fXtgt��
d
�

�Z
�����	�R

tH cos �s� w log t�Z�ds� dw�

�
t��

�

where Z is a real�valued S�S random measure with control measure Leb � � and � is a �nite
measure on R �see Rosi�nski 
��� Example ����� Here �t�s� w� � �s ��� w log t� w�� where � ��� �
denotes addition modulo ���

Now we conclude this section with the following theorem�

Theorem ����� Every S�S self�similar process fXtgt�� admits a unique decomposition into three
independent parts

fXtgt��
d
�fX��	

t gt�� � fX��	
t gt�� � fX��	

t gt���

where the �rst process on the right�hand side is a MFM� the second is harmonizable� and the third
one is an H�ss evanescent process�

Proof� Since the set D of Hopf decomposition and the set of 	xed points for a �ow are invariant�
we obtain a decomposition of self�similar processes analogous to the decomposition of stationary
processes �see Theorem ��� in Rosi�nski ������ �
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Chapter �

Weak convergence of the risk process

to H�ss si processes

The traditional approach in the collective risk theory is to consider a model of the risk business
of an insurance company� and to study the probability of ruin� i�e� the probability that the risk
business ever will be below some speci	c �negative� value� The classical risk process R is de	ned
by

R�t� � u� ct�
N�t	X
k��

Yk � �����

where u �  denotes the initial capital� c is a positive real constant�N � �N�t��t�� is a point process
independent of �Yk� and �Yk�

�
k�� forms a stationary sequence of independent random variables�

having the common distribution function F � with F �� � � mean value �� and variance 	�� N�t�
is to be interpreted as the number of claims on the company during the interval �� t�� At each
point of N the company has to pay out a stochastic amount of money� and the company receives
�deterministically� c units of money per unit time� The constant c is called the premium income
rate�

However� in reality claims are mostly modelled by heavy�tailed distributions like e�g� Pareto�
Moreover� the independence of Yk �s seems unrealistic since a correlation between claims is be�
ing observed� Therefore� in our approach we do not restrict ourselves to independent Yk�s with
EY �

k ��� We merely assume that � � EjYkj ���
Already in ��� Hadwiger compared a discrete�time risk process with di�usion� This can

be viewed� though theoretically not comparable with modern approach� as the 	rst treatment of
di�usion approximations in the risk theory� A more modern version� based on weak convergence�
is due to Iglehart ��
�� The idea is to let the number of claims grow in a unit time interval and
to make the claim sizes smaller in such way that the risk process converges weakly to a di�usion�
We shall consider weak approximations where the idea is to approximate the risk process with a
self�similar si process with drift� While the classical theory of di�usion approximation requires
either short�tailed or independent claims� these assumptions can be dropped in our approach�

��� Preliminaries and de�nitions

Let us specify in detail the assumptions in our model� We assume that the claims occur at jumps
of a point process �N�t��t��� While most work in the collective risk theory has assumed that

�



N�t� is a Poisson process� this restrictive assumption plays no role in our analysis� The succes�
sive claims Yk are supposed to form a stationary sequence� strongly dependent in general� with
EYk � � � � Furthermore� we assume that the initial risk reserve of the company is u �  and
that the policyholders pay a gross risk premium of c �  per unit time� Thus the risk process is of
the form ������

One of the key problems of the collective risk theory concerns calculating the ruin probability�
i�e� the probability that the risk process becomes negative�

De
nition ����� The ruin probability  �u� T � in �nite time �or within �nite horizon� of a company
facing the risk process ����� is given by

 �u� T � � P �R�t� �  for some t � T ��  � T ��� u � �
Consequently� the ruin probability  �t� in in�nite time can be de�ned as

 �u� �  �u����

We also assume that the net pro	t condition

lim
t��

ER�t�

t
� 

holds�

����� Weak convergence of stochastic processes

Let D � D���� be the space of cadlag functions� i�e� all real�valued functions that are right�
continuous and have left�hand limits� on ����� Endowed with the Skorokhod J� topology� D
is a Polish space� i�e� separable and metrizable with a complete metric� A stochastic process
X � �X�t��t�� is said to be in D if all its realizations are in D�

De
nition ����� A sequence �X�n	�n�N of stochastic processes is said to converge weakly in the
Skorokhod topology to a stochastic process X if for every bounded continuous functional f on D it
follows that

lim
n��

Ef�X�n	� � Ef�X��

In this case one writes X�n	 � X�

Weak convergence implies� for example� convergence of the 	nite�dimensional distributions
provided that the limit process X is continuous in probability�

Hereafter through this chapter we shall only consider processes in D and continuous in prob�
ability�

��� General results

The main aim of this section is to show the following�

Statement ����� The only processes that emerge in a �natural way� as weak approximations of
the risk reserve process are H�self�similar processes with stationary increments with  � H � ��
Conversely� every H�self�similar si process X with EX�t� � � in D and �

� � H � � can serve as
the weak approximation of some risk process�

��



In order to justify this statement 	rst we need Proposition ������ Combining that with Propo�
sition ����� and the fact that weak convergence in the Skorokhod topology implies convergence with
respect to 	nite�dimensional distributions we may assert the following�

Corollary ����� Let �Yk�k�N be stationary sequence with common distribution function F and
mean � such that

�

��n�

�nt�X
k��

Yk � X�t� as n��

for some reals ���n��n��� ��n� � � limn����n� � � and X is a non�degenerate stochastic
process� then for some  � H � � X is H�ss� si and � is of the form ��n� � nHL�n� for L being a
slowly varying function� Conversely� every H�ss si process X in D� of the mean EX�t� �  can be
obtained this way�

Proof� The last part of the thesis follows from the fact that the convergence in the converse part
of Proposition ����� is in fact weak provided that X is in D� �

Now we can state the theorem that yields our statement�

Theorem ����� Let �Yk�k�N be a stationary sequence with common distribution function F and
mean � �  and let �N �n	�n�N be a sequence of point processes such that

N �n	�t�� 
nt

��n�
�  �����

in probability in the Skorokhod topology for some positive constant 
� Assume also that

lim
n��

�
c�n	 � 
n

�

��n�

�
� c �����

and

lim
n��

u�n	 � u�

If

�

��n�

�nt�X
k��

�Yk � ��� X�t� as n�� �����

for some non�degenerate process X� then

�i� there exists an  � H � �� that X is H�ss� si� � is of the form ��n� � nHL�n� for L being a
slowly varying function� and

�ii�

Q�n	�t� � u�n	 � c�n	t� �

��n�

N �n��t	X
k��

Yk � Q�t� � u� ct� 
HX�t� �����

in the Skorokhod topology as n���

Conversely� every H�ss si process X in D� with EX�t� �  and �
� � H � � can be obtained via

������

��



Proof� The �i� part of the thesis is obvious by Corollary ������ In order to prove the �ii� part let
us recall the following Whitt theorem on random time change� Let �Zn�n�N� Z be processes in
D���� and suppose that Zn � Z� Let �Nn�n�N be a sequence of processes with nondecreasing
sample paths starting from  such that Nn � 
I � 
 � � For each n � N� Zn and Nn are assumed
to be de	ned on the same probability space� Then

Zn�Nn�� Z�
I�� �����

Now let us rewrite the process Q�n	�t� in the following form

Q�n	�t� � u�n	 � c�n	�t�� �

��n�

N �n��t	X
k��

Yk � �����

u�n	 � t

�
c�n	 � 
n

�

��n�

�
� �

�
N �n	�t�� 
nt

��n�

�
� �

��n�

N �n��t	X
k��

�Yk � ��� ���
�

From assumptions ������ ����� and the Whitt theorem ����� we obtain that

�

��n�

N �n��t	X
k��

�Yk � ��� 
HX�t�

as n��� Since

u�n	 � t

�
c�n	 � 
n

�

��n�

�
� �

�
N �n	�t�� 
nt

��n�

�

converges to u�ct in probability in the Skorokhod topology� the proof is of the �ii� part is complete�
By Corollary ����� setting Yk � X�k� � X�k � �� � �� k � �� �� � � �� where � �  in order

to conclude the converse part we merely have to construct a sequence �N �n	�n�N that ful	lls the
condition ������ To this end we consider the case where the occurrence of the claims is described
by a renewal process N �

N�t� � maxfn �
nX

k��

Tk � tg�

The inter�occurrence times �Tk�k�N are assumed to be independent� positive random variables with
mean �

� and variance 	
�� We de	ne

N �n	�t� � N�nt��

Then for �
� � H � � and ��n� � nH the condition ����� is ful	lled �see Furrer et al� ������ This

completes the proof� �

Remarks�

�� We could omit the point ���
� and use just the previous relation ����� with slightly modi	ed
assumptions to state a more general result on the weak convergence to a self�similar si process�
That is� it is enough to assume that instead of ����� we have limn�� c�n	 � c and change

����� to the condition N �n��t	
n � 
t� Then� if we do not restrict Yk �s to variables with the

	nite mean� the resulting H�self similar si process X may be quite general with in	nite
mean� Nevertheless� this as a consequence would lead us to an arti	cial collective risk model
interpretation of the 	nal process Q �cf� Section ����� Thus we do not intend to generalize
this theorem�

�� H � � corresponds to the case when X is trivial� see Proposition ������

��



��� Approximation of ruin probability

Collective risk theory has paid considerable attention to the ruin functional in in	nite and 	nite
time� The weak convergence of Q�n	 to Q implies� for example

inf
�	t	t�

Q�n	�t�
d� inf

�	t	t�
Q�t�

for any t� ��� and thus

lim
n��

P

�
inf

�	t	t�
Q�n	�t� � 

�
� P

�
inf

�	t	t�
Q�t� � 

�
� �����

Therefore we may approximate the 	nite�time ruin probability of a risk process by the ruin prob�
ability in 	nite time of the corresponding weak approximation�

Theorem ����� Consider a risk process R�t� � u � ct � PN�t	
k�� Yk� Denote the corresponding

�nite�time ruin probability by "�u� T �� If the assumptions from Theorem ��	�� are satis�ed for
Yk�s� the sequence N �n	�t� � N�nt�� ��n� � nH and  � H � �� and the relative safety loading
� � c

�� � � � � then

"�u� T � �n�� P

�
inf

�	s	T
�u� �
�s � 
HXH�s�� � 

�
�

Proof� For each n � N� we have

"�u� T � � P

	

� inf

�	s	T

�
�u� cs�

N�s	X
k��

Yk

�
A � 

�
�

� P

	

� inf

�	s	T

�
� u

��n�
�

cs

��n�
� �

��n�

N�s	X
k��

Yk

�
A � 

�
�

� P

	

� inf

�	s	T�n

�
� u

��n�
�

cns

��n�
� �

��n�

N�ns	X
k��

Yk

�
A � 

�
�

� P

	

� inf

�	s	T�n

�
� u

��n�
� s

�
cn

��n�
� 
�n

��n�

�
� �

�
N�ns�� 
ns

��n�

�
� �

��n�

N�ns	X
k��

�Yk � ��

�
A � 

�
� �

Now assume that T� � T�n� �� �
���n
��n	 and u� � u���n� are constants� i�e� we increase T and

u with n� and decrease at the same time the safety loading � with n �as H � ��� This means that
a small safety loading is compensated by a large initial capital� Then we obtain

"�u� T � � P

	

� inf

�	s	T�

�
�u� � ��s� �

�
N�ns�� 
nt

��n�

�
� �

��n�

N�ns	X
k��

�Yk � ��

�
A � 

�
� �

Applying Theorem ����� and ����� we obtain that

"�u� T �� P

�
inf

�	s	T�
�u� � ��s � 
HXH�s�� � 

�
�

By self�similarity this concludes the proof� �

��



��� Ruin probabilities for general self�similar processes

In the previous sections we showed that the process Q de	ned in ����� can be looked as an approxi�
mation of a risk process� Our aim in this section is to investigate the probability that the process Q
reaches the level  before time t� In the Brownian case the probability can be calculated explicitly
�see for instance Asmussen �����

P

�
sup

�	s	t
�
���B�s�� cs� � u

�
� # 

�
u� ctp


t

�
� e�

�uc
�  

��u� ctp

t

�
�

where  is the standard normal distribution and # � ��  � The following theorems from Furrer
et al� ���� and Michna ���� provide upper bounds where XH�t� is a standard symmetric ��stable
L�evy motion Z� or a standard fractional Brownian motion BH � respectively�

Proposition ����� �Furrer et al� �	�� Let Z� be a standard S�S L�evy motion� For positive
numbers u� c and 
 we have

P

�
sup
�	s	t

�
���Z��s�� cs� � u

�
� � #G

�
u

�
t�
�
�

�
�

where #G � �� G and G denotes the cumulative distribution function of a standard S�S variable�

Proposition ����� �Michna ���� Let BH be a standard fractional Brownian motion with
�
� � H � �� Then

P

�
sup

�	s	t
�
HBH�s�� cs� � u

�
� # 

�
u� ct

�
t�H

�
� exp

���uct
�
t��H

�
# 

�
u� ct

�
t�H

�
�

Now let us state a theorem which yields a lower bound for the ruin probability of the process
Q for an arbitrary self�similar process XH with H � �

Theorem ����� Let �XH�t��t�� be an arbitrary self�similar process with the exponent H � �
If  � H � � and t is su�ciently large� namely uH

ct���H	 � ��
then

P

�
sup

�	s	t
�
HXH�s�� cs� � u

�
� #G

��
u

��H

���H � c


H

�H�
� �����

otherwise

P

�
sup

�	s	t
�
HXH�s�� cs� � u

�
� #G

�
u� ct

�
t�H

�
� ������

where #G � �� G and G denotes the distribution function of XH����

Proof� Since the process XH is H�self�similar we have

P

�
sup

�	s	t
�
HXH�s�� cs� � u

�
� P

�
sup

�	s	�
�
HtHXH�s�� cts� � u

�
�

Furthermore� it is obvious that

P

�
sup

�	s	�
�
HtHXH�s�� cts� � u

�
� P

n

HtHXH���� ct� � u

o
�

��



for all � � �� ���
Eventually� applying one more time the de	nition of self�similarity we obtain

P

�
sup
�	s	t

�
HXH�s�� cs� � u

�
� P

�
XH��� �

u� ct�


HtH�H

�

� �� G

�
u� ct�

�
t��H

�
� ������

for all � � �� ��� where G stands for the distribution function of XH����
In order to 	nd the best possible lower bound for the ruin probability in 	nite time we are

to 	nd minimum of the function f��� � u
ct�
��t�	H

on the interval �� ��� To this end we calculate the

derivative of the expression� �u��H � ct���H� and 	nd out that it is equal to  for

� � �� �

�
uH

ct���H	 if H � ��
� if H � ��

Hence� if �� � �� then the minimum of the function f on �� �� is

f���� �

�
u

��H

���H � c


H

�H

otherwise

f��� �
u� ct

�
t�H
�

This proves the theorem� �

Remark� The condition  � H � � corresponds to the case when XH�t� is non�trivial� has
stationary increments and 	nite 	rst moment for each t�

Since the lower bound ����� does not depend explicitly on t� it can serve as well as a bound
for the ruin probability for Q in in	nite time� Furthermore� the bound de	ned in ������ tends to
#G�c�
� when H � � and to #G�� when H � � as t��� Therefore� we may claim the following�

Corollary ����� Let �XH�t��t�� be an arbitrary self�similar process with the exponent H � �
Then we have

P

�
sup
s��
�
HXH�s�� cs� � u

�
�

	��

���
#G

��
u

��H

���H � c
�H

�H� if H � ��

#G
� c
�

�
if H � ��

#G�� if H � ��

������

where #G � �� G and G denotes the distribution function of XH����

Remarks�

�� The lower bound ������ was already obtained by Norros ��
� for a special case when X is a
FBM �H � ��� in the storage model setting�

�� Du�eld and O�Connell ���� using the result from Norros ��
� showed the bound is in fact
accurate in the logarithmic sense �the case when X is a FBM��

��



Considering speci	c cases when XH is a standard Gaussian or a standard S�S process� and
letting the initial risk reserve u become large we obtain the following results�

Corollary ����� If XH is Gaussian with XH��� being a standard normal variable and  � H � ��
then

P

�
sup
s��
�
HXH�s�� cs� � u

�
� exp

�
��
�

�
u

��H

����H � c


H

��H
�
�

Proof� Recall the elementary relation

��  �x� � �

x
f�x� � exp��x����� for x���

where �� f stand for a distribution and density function of the standard normal distribution�
respectively� �

Corollary ����� If XH is standard S�Sand  � H � �� then

P

�
sup
s��
�
HXH�s�� cs� � u

�
�
�
��H

u

�����H	�
H
c

��H
�

Proof� This stems from the fact that the tail probabilities of a standard S�S distribution behave
like C�x

��� where C� is constant�

The construction of the lower bound ����� in the proof of Theorem ����� suggests that the
bound should be quite a good estimate� For instance� the bound in Corollary ����� for H � �

� gives
in fact exact result for the Brownian motion� Michna ���� shows the lower bound ������ yields
a good approximation of the ruin probability for the fractional Brownian motion� when u is large�

��



Chapter �

H�ss processes in �nancial modelling

A �self�similar� structure is one that looks the same on a small or a large scale� For example�
share prices of stock when plotted against time have very much the same shape on a yearly�
monthly� weekly and even on a daily basis� Brownian motion ��� �ss process� as a limit process
is an unavoidable tool in 	nance� In his famous paper� Bachelier ��� proposed Brownian motion
as an appropriate model for pricing� More recently� in the traditional approach to contingent
pricing� in the Black�Scholes model� the log�Brownian model for the movement of share prices was
used� However it has been empirically demonstrated to be incorrect in a number of ways� Certain
attempts have been made to replace Brownian motion by another self�similar process � ��stable
L�evy motion$ see Rachev and Samorodnitsky ���� and Janicki and Weron ���� It is believed that�
to some extent� such model would explain the large jumps which evidently occur in prices and
which are caused by dramatic political or economic events �see Embrechts et al� ������ Moreover�
various alternatives have been suggested to account for empirically observed de	ances� among them
the fractional Brownian motion which displays dependence between returns on di�erent days� in
stark contrast to Brownian motion �cf� Peters ��� and Bouchaud and Sornette ����� However� FBM
is not a semimartingale �except in the Brownian case�� and therefore there can be no equivalent
martingale measure� Hence� by general results �cf� Rogers ����� this leads to a conclusion that there
must be arbitrage� This practically disquali	es the FBM model� Nonetheless� FBM has recently
attracted some attention in mathematical 	nance �see� e�g� Cutland et al� ��� and Dai and Heyde
������

In Section ��� we present a test on a DJIA index data which justi	es using self�similar models
as asset price processes� In Section ��� a modi	cation of the Black�Scholes model is presented�
The idea is to change� in the stochastic di�erential equation describing discounted stock prices
process Zt with respect to the reference measure Q� the di�erential d %Bt to dMt� where Mt is a
martingale generating the same 	ltration as BH

t and is well de	ned for �
� � H � �� As a result

of the investigation we obtain an option pricing formula which appears to be distinct from the
Black�Scholes one� The di�erences are illustrated graphically�

��� Variance	time plots

We are going to apply a method from Willinger et al� ����� which was called variance�time plots�
for the DJIA index process� The method can be summarized as follows� Let �Xt�t�� be an H�self�

similar process with stationary increments� It is well known that if EX�
t � � and H �

�
�
� � �

�
then the increment process �Yk � �Xk
��Xk� � k � � �� � � �� exhibits long�range dependence� This
means the time series Yk has the autocovariance function of the form

�




r�k� � Cov�Y�� Yk� �k�� L��k�k
�H��� H �

�
�

�
� �

�
� �����

where L��k� is a slowly varying function as k � �� Property ����� implies that the correlations
are not summable and the spectral density has a pole at zero� More speci	cally� under suitable
conditions on L��
�� the spectral density has the property

f�x� �
�

��

�X
k���

r�k� exp��ikx� �jxj�� L��x�jxj���H �����

for some L��
� that is slowly varying at the origin� The best known models with ����� and ����� are
the fractional Gaussian noise model and the fractional autoregressive integrated moving�average
model �FARIMA�� The parameter H describes the long�memory behaviour of the series� Now�

for each m � �� �� � � � � let
�
Y �m	 �

�
Y

�m	
k

�
� k � �� �� � � �

�
denote a new time series obtained by

averaging the original series Y over nonoverlapping blocks of size m$ that is� for each m � �� �� � � � �
Y �m	 is given by

Y
�m	
k � ��m�Ykm�m
� � 
 
 
� Ykm�� k � �� �� � � �

From a statistical point of view� the most salient feature of the process Yk is that the variance of
the arithmetic mean decreases more slowly than the reciprocal of the sample size$ that is it behaves

like n�H�� for some H �
�
�
� � �

�
instead of like n�� for the processes whose aggregated series

converge to a second�order pure noise� Cox ��� showed that a speci	cation of the autocovariance
function satisfying ����� �or equivalently of the spectral density function satisfying ������ is the
same as a speci	cation of the sequence �V ar�Y �m	 � m � �� with the property

V ar�Y �m	� �m�� am�H���

where a is a 	nite positive constant independent of m� and H �
�
�
� � �

�
� On the other hand� for

covariance stationary processes whose aggregate series Y �m	 tend to second�order pure noise it is
easy to see that the sequence �V ar�Y �m	 � m � �� satis	es

V ar�Y �m	� �m�� bm���

where b is a 	nite positive constant independent of m� Thus� for self�similar processes with station�
ary increments the variances of the aggregated processes Y �m	� m � �� �� � � � � decrease lineary �for
large m� in log�log plots against m with slopes arbitrary �atter than ��� The so�called variance�
time plots are obtained by plotting log�V ar�Y �m	� against log�m� ��time�� and by 	tting a line
through the resulting points in the plane� ignoring the small values for m� Values of the estimate
�H of the asymptotic slope between �� and  suggest self�similarity�

Example 	���� Let us consider the DJIA index analysed from January 	� ���� to May ��� �����
We de�ne Yk�s as log�returns of the index� We normalize the data in order to set the variance of
the process Yk to ��� Figure ��� shows an asymptotic slope that is clearly di�erent from �� and is
estimated to be about ����� resulting in an estimate of the parameter H of about ����

��� Alternative approach to contingent pricing

First let us recall assumptions in the Black�Scholes model�

��
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Figure ���� Variance�time plot of the sequence of log�returns of DJIA index from January �� ���
to May ��� �����

����� Black�Scholes model for arbitrary contingent pricing

Let Bt be� as usually� a standard �zero drift and unit variance� Brownian motion on some probability
space �&� F� P �� Let r� � and 	 be real constants with 	 � � A market in the classical Black�Scholes
model is de	ned as a pair �'t� St�� where

't � exp�rt��

St � S� exp�	Bt � �t�� �����

Interpret 't as the price at time t of a riskless bond and St as the price� in dollars per share� of a
stock which pays no dividents� Furthermore r is called a 	xed �riskless� interest rate� 	 the volatility
of the stock price process St and � is his drift� Moreover� in the model� we assume a frictionless
market with continuous trading� namely we demand that the two fundamental securities are traded
continuously with no transaction costs with publically announced prices� Now we consider a ticket
which entitles its bearer to buy one share of stock at the terminal date T � if he wishes� for a speci	ed
price of K dollars� This is a European call option on the stock� with exercise price K and expiration
date T � It is easy to see that the call option is equivalent to a ticket which entitles a bearer to a
payment of X � �ST � K�
 dollars at time T � Black and Scholes ��� asserted that there exist a
unique rational value V for the option� namely

V � S� 

�
log S�

K � �r� �
�	

��T

	
p
T

�
�Ke�rT 

�
log S�

K � �r � �
�	

��T

	
p
T

�
�

Originally Black and Scholes obtained the valuation formula by solving a di�erential equation�
Our approach to option pricing is based on a martingale method presented by Harrison and Pliska
����� which generalizes the ideas to arbitrary contingent pricing� The Black�Scholes formula in
this approach is proved by considering so called completeness of the market� 	nding the reference
measureQ via Girsanov theorem� asserting the measure is unique� due to the representation theorem
for martingales� and computing

V � exp��rT �EQ�X��

�



where X � �ST �K�
�
The latter valuation formula is true for an arbitrary contingent claim X �

Now we are going to modify the assumptions of this model�

����� Martingale approach through the fractional Brownian motion

A modi	cation of the Black�Scholes model which is going to be consider throughout this section is
de	ned as follows� In ����� model stock price �uctuations are modelled by a stochastic di�erential
equation with respect to the white noise dBt� i�e�

dSt � St

�
	dBt �

�
� �

�

�
	�
�
dt

�
�

If we introduce discounted stock price process

Zt � '
��
t St�

then applying It�o formula and Girsanov theorem for the Brownian motion we may claim the
existance of a measure Q� such that

dZt � 	Ztd %Bt under Q� �����

where %Bt is a standard BM with respect to that measure�
Now the idea is to substitute the process %Bt in the stochastic di�erential equation ����� for

a process Mt� namely

Mt �

Z t

�
c�s

�
�
�H �t� s�

�
�
�HdBH

s �

c� �

�
H��H � ��B

�
�

�
�H�H � �

�

����

�

where B stands for the Beta function and �
� � H � ��

First let us take a closer look at the properties of such de	ned process Mt� It turns out �see
Norros et al� ����� that Mt is

� a martingale which generates the same 	ltration as BH
t �

� Gaussian with EMt �  and the second moment EM�
t � c��t

���H � where

c� �

�
H��H � ����� �H�B�H � �

�
� �� �H�

���

�

� ���H��ss�

� a process of independent but not stationary increments�
� a process of continuous paths�

Thus we obtain

dZt � 	ZtdMt�

Since Mt is a martingale� the equation has a unique solution given by a stochastic exponential �cf�
Protter �����

��



Zt � Z� exp

�
	Mt � �

�
c��	

�t���H
�
�

which is a martingale with continuous paths�
Now let us de	ne

Et � E�'��
T X jFt��

It is a martingale with respect to Ft �the 	ltration generated by Mt� so B
H
t �� Nonetheless� since

the martingale Zt does not satisfy the representation theorem for martingales we can not guarantee
the existence of a unique predictable process Ht such that

Et � E� �

Z t

�
HsdZs

for an arbitrary contingent claim X �the model is not complete�� Thereby we can not construct
an appropriate self�	nancing strategy� Nevertheless we may compute a non�arbitrage price E�'��

T X�
for a speci	c contingent claim X � Let us take as an example X � �ST �K�
�

Example 	���� �M price� An European call option value in the model� driven by the martingale
of FBM Mt� is given by

VM � S� 

�
log S�

K � rT � �
�c

�
�	

�T ���H

c�	T ��H

�
�Ke�rT 

�
log S�

K � rT � �
�c

�
�	

�T ���H

c�	T ��H

�
�

Proof� We are to compute

VM � e�rTE�ST �K�
�

Since we have

Zt � e�rtSt�

the process St can be expressed as

St � S� exp

�
	Mt � rt� �

�
c��	

�t���H
�
�

Hence� it is enough to calculate

VM � e�rTE�S� exp�Z � rT ��K�
�

where Z � N���
�c

�
�	

�T ���H � c��	
�T ���H��

This concludes the proof� �

The formula we obtained is di�erent from the Black�Scholes one� It is not surprising as
we are aware that the model we use in modelling stock prices has changed� i�e we incorporated
an additional parameter H � index of self�similarity�

We will compare the two formulas using the data from Example ����� in order to compute
DJIA index options� We take into consideration values of the DJIA index from February �� ��� to
May ��� ����� Analysing the data we obtain that the estimated standard deviation �	 � ������

��
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Figure ���� M minus BS price for the DJIA index option�

We assume that S� � 
 and the striking price K � �� � � �
�� We consider index options
on the interval �� � days� and set the interest rate r to ��(���� Furthermore� Example �����
justi	es the parameter H equal to ���� Figure ��� depicts the di�erence between M �obtained by
the martingale Mt� and BS price�

To summarize� we have just presented a martingale model based on a fractional Brownian
motion� the model which stems from the classical Black�Scholes one� We may claim that despite of
its disadvantages �further we can add an inevitable Gaussianity of the model� it possesses interesting
features and the new parameter H provides additional information allowing to improve adjustment
to the real�world phenomena�

��



Chapter �

Conclusions

Self�similar processes form exactly the class of possible �asymptotes� which can be obtained by
taking some 	xed random process and expanding inde	nitely the units in which space and time are
measured� This is the basic reason why such processes play a very large role in many aspects of
probability theory and its applications� The limit theorems �see Propositions ����� and ������ gener�
alize the role played by stable laws and processes within the limiting theory of sums of independent
random variables� Due to that fact self�similar processes were originally called �semi�stable� �see
Lamperti ������

Self�similar processes are closely related to stationary processes through the Lamperti trans�
formation� In Chapter � we describe the classes of transformations leading from self�similar to
stationary processes� and conversely� The relationship is used in Chapter � to characterize stable
symmetric self�similar processes via their minimal integral representation� This leads to a unique
decomposition of a symmetric stable self�similar process into three independent parts which are
then characterized� The class of such processes appears to be quite broad and can stand as a basis
of di�erent risk models�

In Chapters � and � we give examples of applications of self�similar processes in risk modelling�
We come to the conclusion that they appear naturally as weak limits of risk reserve processes in
insurance �Chapter ��� There is much to be done in investigating di�erent self�similar models as the
weak approximations� We already know that quite a vast class of self�similar processes can serve as
the examples� Applying the approximations we can try to cope with the most important functionals
of the risk process� namely the ruin probability in 	nite and in	nite time� In Chapter � we intend
to justify that self�similar processes can be used as risk models in 	nance� We demonstrate this
on a DJIA index data� As the classical Black�Scholes model is the log�Brownian model we try to
look for an alternative model incorporating some of the features of the fractional Brownian motion�
This as a result provides an option pricing formula distinct from the Black�Scholes one�

Summarizing� self�similar models� as we gain inside the structure of self�similar processes� can
be widely used in the risk theory�

��
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