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Chapter 1

Introduction

Self-similar processes, introduced by Lamperti [23], are the ones that are invariant under suitable
translations of time and scale. In the past few years there has been an explosive growth in the
study of self-similar processes, cf. e.g. Taqqu [40], Maejima [24], Samorodnitsky and Taqqu [38],
Willinger et al. [42], Michna [27], and Rogers [33].

This caused that various examples of such processes have been found and relationships with
distinct types of processes have been studied. In Chapter 2 we establish the uniqueness of the
Lamperti transformation leading from self-similar to stationary processes, and conversely. We
discuss a-stable processes, which allow to understand better the difference between the Gaussian
and non-Gaussian cases. As a by-product we get a natural construction of two distinct a-stable
Ornstein—Uhlenbeck processes via the Lamperti transformation for 0 < o < 2. Also a new class
of mixed linear fractional a-stable motions is introduced which is further exploited in the next
chapter.

It seems natural to try to find all H-ss processes and to characterize them. In Chapter 3 we
establish a spectral representation of any symmetric stable self-similar process in terms of multi-
plicative flows and cocycles. A structure of this class of self-similar processes is studied. Applying
the Lamperti transformation we obtain a unique decomposition of a symmetric stable self-similar
process into three independent parts: mixed fractional motion, harmonizable and evanescent. This
decomposition is illustrated by graphical presentation of corresponding kernels of their spectral
representations.

Self-similar processes are closely connected with limit theorems for identical and in general
strongly dependent variables. Moreover, since they allow heavy-tailed distributions and provide
an additional “adjusting” parameter H they appear to be interesting in the area of risk models.
Chapters 4 and 5 are devoted to some applications of self-similar processes in insurance and finance
mathematics. In Chapter 4 we prove that only self-similar processes with stationary increments
appear naturally as weak limits of a risk reserve process and conversely every finite mean H-self-
similar process with stationary increments, for % < H < 1 can result as the weak approximation. A
lower bound for general self-similar processes with drift is also provided. In Chapter 5 we illustrate
a test of self-similarity (namely variance-time plots) on a DJIA index data in order to justify the
use of self-similar processes in financial modelling. Last but not least we propose an alternative
model for stock price movements incorporating a martingale which generates the same filtration
as the fractional Brownian motion. This leads to an option pricing formula different from the
Black—Scholes one. Chapters 2 and 3 are based on two author’s papers : Burnecki et al. [6] and
Burnecki et al. [7].



1.1 Foundations

Stochastic processes X = (X (t));er (another equivalent notation used is X = {X;}e7) in this
thesis are always assumed to be defined for ¢t € T', where T' = [0, 00) or R. By (X (¢)) i(Y(t)) we
mean the equality of all finite dimensional distributions. Sometimes we simply write X (¢) éY(t).
X (t) i Y (t) means the equality of one-dimensional distributions for fixed t. We also mean, by

X, (t) A Y (t), the convergence of all finite-dimensional distributions as n — oo, and by (, N ¢
the convergence in distribution of real-valued random variables ((,) to (.

Definition 1.1.1 X is said to be degenerate if X (t) = X (0) a.s. for anyt € T, and non-degenerate
otherwise.

Definition 1.1.2 (Lamperti [23]) A process X = (X (t))¢>o is self-similar (ss) if for some H > 0,
X (ct) L AX(t) for every ¢> 0. (1.1)

We call this X an H-ss process. The parameter H is called the index or the exponent of the
self-similarity. X is said to be trivial if X (t) = t" X (1) a.e., t > 0.

Remarks.

1. Notice that (1.1) indeed means “scale-invariance” of the finite-dimensional distributions of
X. It does not imply this property for the sample paths. Therefore, pictures trying to explain
self-similarity by zooming in and out on one sample path, are by definition misleading. A
convenient tool to observe self-similarity are so-called quantile lines (see Section 2.1).

2. If we interpret ¢t as “time” and (X (¢)) as “space” then (1.1) tells us that every change of time
scale ¢ > 0 corresponds to a change of space scale ¢/, The bigger H, the more dramatic the
change of the space coordinate.

3. Self-similarity is convenient for simulations: a sample path of (X (¢)) on [0, 1] multiplied by

cH and re-scaling of the time axis by ¢ immediately provide a sample path on [0, ¢] for any

c> 0.
Definition 1.1.3 X = (X (t));>0 is said to have stationary increments if for any b > 0,

(X (1 +) = X () Z(X (1) = X (0)).
We call X simply a si process.

Definition 1.1.4 (X (t))¢>0 is said to have independent increments if for any0 <t; <t; <...<t,,
X(ty)—X(t1), X(ts)—X(t2), ..., X (tn) =X (t,—1) are independent. We call X simply an ii process.

There exist the following relations between the moment condition and the parameter H of ss
si processes.

Proposition 1.1.1 (Maejima [24]) Let X be H-ss, si, H > 0 and non-degenerate.
(i) If E|X ()|" < oo for some v < 1, then H < 1/~.

(ii) If E|X ()] < oo, then H < 1.



(tit) If B]X ()] < oo and 0 < H <1, then E[X(t)] =0.
Proposition 1.1.2 (Vervaat [41]) If X is -ss, si and E|X (t)| < oo, then X (t) =tX(1) a.s.

The study of ss processes is mainly focused on processes with strongly dependent increments
(cf. Section 5.1).

Fix now 0 < H < 1. Since the function {|t;|*# +|to|* —|t; —t5|*, 1,15 € R} is non-negative
definite, there exist a Gaussian process (X (t));>0 with mean zero and autocovariance function

R(ty,ty) = Cov(X (1), X (t2)) = % {16 + [ = |6 — 6]} VarX (1), (1.2)

It is easy to check that this process is H-ss, si. It is called a fractional Brownian motion
(FBM) and is often denoted by By (t) (or equivalently Bf). Are there any other Gaussian H-ss si
processes for 0 < H < 17 The following proposition yields the negative answer.

Proposition 1.1.3 (Maejima [24]) Let X be an H-ss si Gaussian process with 0 < H < 1. Then
X is essentially equivalent (see Definition 2.2.1) to the fractional Brownian motion By (t).

Remark. An integral representation of a FBM is given by (2.1) for a = 2.
Definition 1.1.5 A process Y = (Y (t));cR is stationary if

Y(t+o) L Y (t) for every o € R.
Y is said to be trivial if Y (t) = Y (0) a.e., t € R (it is degenerate).

The following theorem makes clear that self-similarity is very closely related to stationarity: a
logarithmic time transform translates shift invariance of the stationary process into scale invariance
of the self-similar process.

Proposition 1.1.4 (Lamperti [23]) If Y = (Y())eRr is a stationary process and if for some
H>0
X(t) =t"Y (logt), for t>0, X(0)=0,

then X = (X(t)) is H-ss. Conversely, every non-trivial ss-process with X (0) = 0 is obtained in
this way from some stationary process Y .

This tool is extensively used in Chapters 2 and 3. For further applications see Maejima and Sato
[25], where the transformation is proved to be a link between semi-selfsimilar and periodically
stationary processes.

Self-similar processes are of interest in probability theory because they are closely connected
with limit theorems. Namely, every limiting process with scaling is self-similar, and all self-similar
processes are characterized in such way, as was observed by Lamperti [23].

Proposition 1.1.5 (Lamperti [23]) Suppose X = (X (t))¢>0 is continuous in probability at t = 0
and the distribution of X (t) is non-degenerate for each t > 0.

(i) If there exist a stochastic process Y = (Y (t));>0 and reals A(N)) >0 with A(X) > 0,
limy_yeo A(X) = 00 such that as A — oo,

L

A

then for some H > 0, X is H-ss. Furthermore, A(\) is of the form A(X) = M L(X), L(\)

being a slowly varying function.

Y (a) 2 X (1), (1.3)



(i1) If X is H-ss, then there exist Y and (A(X))rso satisfying (1.3).
Remark. Notice that part (i) is trivial by taking ¥ = X and A(\) = AF.
Proposition 1.1.5 can be specialized to the following result.

Proposition 1.1.6 (Lamperti [23]) Let (¢)32, be a stationary sequence of R-valued random
variables with the partial sum process Y (t) = Zg]zl Cp fort > 0. If

1
—Y (nt) 4 X(t) asn — oo through the reals,

Uy,

where a, > 0, a, — oo and X (1) # 0 with positive probability, then there is an H > 0 such that

a, =n L(n),

Jor L being a slowly varying function and X is H-ss, si. Conversely, all H-ss si X with H > 0 can
be obtained in this way.

Remark. For the last statement take a,, = n and ¢, = X (k) — X (k — 1) for k € N.

If we strengthen the assumption of stationary increments to stationary independent increments,
we enter a classical domain of probability. Note that Proposition 1.1.6 remains true with the
same substitution and ((x) a sequence of independent identically distributed random variables.
Thus, almost by definition, self-similar processes X with stationary and independent increments
are strictly stable motions (see Definition 1.1.9 below). It turns out that H > %, with H = %
corresponding to the Brownian motion.

In order to state other relations between self-similar and a-stable processes we start with some

necessary definitions.

Definition 1.1.6 A random variable X is said to have a stable distribution if for any positive
numbers A and B, there is a positive number C' and a real number D such that

AX;+BX, £ CX + D, (1.4)
where Xy and Xs are independent copies of X.

A stable random variable is called strictly stable if (1.4) holds with D = 0. A stable random
variable is called symmetric stable if its distribution is symmetric, that is, if X and —X have the
same distribution. A symmetric stable random variable is obviously strictly stable. Moreover the
constant C'in (1.4) can be taken as C' = (A% + B*)Y/* for some « € (0,2]. Hence « is one of the
characteristics of X, and in this case X is said to be a-stable. When o = 2, 2-stable is Gaussian.
In the following, o always satisfies 0 < o < 2.

Explicit forms of stable density functions only exist in the cases o = % (Lévy distribution),
a = 1 (Cauchy distribution) and « = 2 (Normal distribution). The tails of non-Gaussian stable
distributions decrease like a power function. The rate of decay mainly depends on the parameter
«. The smaller the «, the slower the decay and the heavier the tails. For a stable random variable
X with index a < 2 one has E|X|® = oo for any § > o and E|X|° < 0o for 0 < § < a.

The second definition states that stable distributions are the only distributions that can be
obtained as limits of normalized sums of i.i.d. variables (compare Proposition 1.1.6 for self-similar
processes).



Definition 1.1.7 (Equivalent to Definition 1.1.6) A random variable X is said to have a sta-
ble distribution if it has a domain of attraction, i.e. if there is a sequence of i.i.d. random variables

Y1, Y3, ... and sequences of positive numbers (d,,) and real numbers (a,), such that
Y+ Yy 4 oY,
L+ 2d+ + a, il> X.

The definition of stability in R? is analogous to that in R'.

Definition 1.1.8 A random vector X = (X1, Xa, ..., X4) is said to be a stable random vector in
R? if for any positive numbers A and B there is a positive number C' and a vector D € R such
that

AXM 4 BX® £ X 4+ D, (1.5)

where X and X2 are independent copies of X.

The vector X is called strictly stable if (1.5) holds with D = 0 for any A > 0 and B > 0. The
vector is called symmetric stable if it is stable and satisfies in addition the relation P{X € A} =
P{—X € A} for any Borel set A of R?. As in R', a symmetric stable vector is strictly stable.

Definition 1.1.9 A stochastic process (X (t))ier is stable if all its finite-dimensional distributions
are stable. It is strictly stable or symmetric stable of all its finite distributions are, respectively,
strictly stable or symmetric stable.

If the finite-dimensional distributions are stable, then, by consistency they must all have the
same index of stability cv. We use the term a-stable when we wish to specify the index of stability.
We will often refer to the symmetric case. Thus, we recall the following. For «a € (0,2], a
process (X (¢))¢er is symmetric a—stable (which will be referred to as Sa.) if for arbitrary n € N,

n

a,...,a, € R, t1,...,t, € T a random variable > ;X (#;) has a SaS distribution. A SaS
=1

process (X (t))¢er is called a Sa.S Lévy motion if it has stationary and independent increments, is

continuous in probability and X (0) = 0 a.e. We denote it by Z, = (Z,(t))+er. For a comprehensive

survey of properties of a-stable random variables and processes we refer to Janicki and Weron [20]

and Samorodnitsky and Taqqu [38].

If an a-stable process is self-similar, then the self-similarity parameter H can never exceed
max(1,1/a). It is easy to see that strictly a-stable Lévy motions are é—ss si a-stable processes.
Are there any others? In the Gaussian case a = 2, the answer is easily to be negative (when o = 2
only Brownian motion has such property). The answer is positive when 1 < o < 2 (see Maejima
[24]). The answer is positive when a = 1 as well, because if X (1) has a 1-stable law then the linear
function with random slope X (¢) =tX (1), t > 0, is 1-ss, si. The problem for the case 0 < a < 1 is
settled through the following result.

Proposition 1.1.7 (Samorodnitsky and Taqqu [37]) The only non-degenerate a-stable é-ss
st processes with 0 < « < 1 are the strictly a-stable Lévy motions.



Chapter 2

The Lamperti transformation

Lamperti defined a transformation which changes stationary processes to the corresponding self-
similar ones (see Proposition 1.1.4). In this context a question arises whether the transformations
proposed by Lamperti are unique. In this chapter we search for functions ¢, 1,  and 7 such that

X(t) =¢(t)Y (¢(t)) is H—ss for anon — trivial stationary process Y

and
Y (t) =¢(t) X (n(t)) is stationary for a non — trivial H —ss process X.

There are two theorems presented in Section 2.2 which lead to the conclusion that essentially
o(t) =t p(t) = alogt, C(t) = e "t and n(t) = € for some a,b € R according to our convention
(see Definition 2.2.1). In Section 2.1, a computer visualization of the Lamperti transformation is
provided. Section 2.3 is devoted to the study of the influence of various «’s and b’s on distributions
of corresponding processes. This is illustrated by four processes chosen to express a difference
between the Gaussian and non-Gaussian case. As a result of this investigation, we construct, in
a natural way, a pair of distinct a-stable Ornstein—Uhlenbeck processes for o < 2, already known
in the literature (Adler et al. [1]). This supports the conjecture that there are only two such
processes. In the last section (Section 2.4), we discuss a new class of self-similar stable processes
whose corresponding stationary processes Y through the Lamperti transformation are stable mixed
moving averages. The class is called mixed fractional motions and is precisely defined and exploited
in Section 3.3.1.

2.1 Computer visualization of the Lamperti transformation

Before we present main results of this chapter we find it interesting to illustrate the Lamperti
transformation by demonstrating graphically self-similar processes and corresponding stationary
ones. We generate the fractional stable motion with parameters H and «, applying its integral
representation, that is,

X(t):/o (|t —ulf~% - |u|H—%)Za(du)+/Ot|t—u|H—%Za(du), (2.1)

which is well defined for 0 < H < 1 and 0 < o < 2.

In order to approximate the integral, we use the method introduced by Mandelbrot and Wallis
[26] replacing a sequence of Gaussian with a-stable random variables. In Fig. 2.1 we can see four
trajectories of the process (thin lines) for & = 1.8 and H = 0.7. To give the insight view on the
nature of the process, we follow Janicki and Weron [20]. We evaluate a large number of realizations



of the process and compute quantiles in the points of discretization for some fixed p (0 < p < 0.5),
i.e. we compute F'~1(p) and F~1(1 — p), where F' is the distribution function. Fig. 2.1 and Fig.
2.2 have the same graphical form of output. The number of considered realizations is 4000. The
thin lines represent four sample trajectories of the process. The thick lines stand for quantile lines,
the bottom one for p = 0.1 and the top one for 1 — p = 0.9. The lines determine the subdomain
of R? to which the trajectories of the approximated process should belong with probabilities 0.8
at any fixed moment of time. In Fig. 2.2 we can see the corresponding process transformed by
the Lamperti transformation for the parameter H = 0.7. We can see that the quantile lines are
“parallel”. This means they are time invariant, demonstrating the stationarity of the process.
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Figure 2.1: Visualization of the fractional stable motion for H = 0.7 and o = 1.8.

2.2 Uniqueness of the Lamperti transformation

Definition 2.2.1 When for two stochastic processes X = (X (t)) and Y = (Y (1)), X(t) L aY (t)
for some a € R\{0}, we say that X and Y are essentially equivalent.

Henceforth we will not distinguish between such processes. Furthermore, we will assume that all
considered processes throughout this chapter are stochastically continuous.

In this section we establish the uniqueness of the Lamperti transformations leading from
stationary to self-similar processes, and conversely. The following lemma on stationary processes
makes a technical argument used in the proof of Theorem 2.2.1 (ii).

Lemma 2.2.1 Let (Y (t));cr be a non-trivial stochastically continuous stationary process and let
f:R = R be a continuous monotone increasing function. If

V(1) =Y (@), (2.2)
then f(t) =t+ h for some h € R.
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Figure 2.2: Visualization of the stationary process obtained from the fractional stable motion by
the Lamperti transformation.

Proof. Suppose that the conclusion is not true. Then (i) there exist an interval [a,b] and 8 € (0,1)
such that for every ¢t € [a,b], 0 < f(t) — f(a) < §(t — a), or (ii) there exist an interval [a, b] and

§ > 1 such that for every ¢ € [a,b], f(t) — f(a) > 8(t — a). Note that since f is continuous and

monotone increasing, it follows from (2.2) that Y (f~1(¢)) L Y (t). Thus without loss of generality,

we suppose (i).
For any tg € (0,b — a], define t; = f(a +to) — f(a). Then 0 < #; < 6tg. From the assumption
and the stationarity of Y, we have

d d d
(Y(0),Y(t0)) = (Y(a), Y(a+10)) = (Y(f(a)),Y(f(a+10))) = (Y(0), Y (tr)).
For every n = 2,3,..., define t, = f(a +t,-1) — f(a). Then 0 < ¢, < 6t,_1 and by the same
argument as above, we have
d
(Y(0),Y(t0)) = (Y(0),Y(tn))-
Since t,, — 0 as n — 00, it follows from the stochastic continuity of Y that

(Y(0),Y (to)) £ (Y(0),Y(0)).

Namely
Y(to) =Y (0) a.s.

Since tg € (0,b — a] was taken arbitrary, this together with the stationarity of ¥ gives us that
Y(t)=Y(0) a.s for everyt € R,
which is an contradiction to that Y is non-trivial. Therefore it must be that for some h € R

f&)=t+h foranyte R. O



Theorem 2.2.1 Let 0 < H < co.

(1) If (Y (t))seRr is a stationary process and a € R, then

X(t) = t"Y (alogt), fort>0
10, fort=20

1s H-ss.

(ii) Conversely, if for some continuous functions ¢, 1 on (0,00) and for a non-trivial stationary
process Y = (Y (t))icR:

X(t) = { 3(t)y(¢(t))’ §§:§§8 (2.3)

is H-ss, then ¢(t) =t and o (t) = alogt for some a € R.

Proof. (i) Note that
X(ct) = MY (alogt + alog c) L X1,

hence we conclude that (X (t));>q is H-ss.
(ii) Since (X (t))s>0in (2.3) is H-ss, we have

d(et)Y (¢(et)) 2 CH¢(t)Y(¢(t)) for every ¢ > 0, (2.4)

which leads to
o(ct) = chb(t) for everyt > 0 and c > 0,

since (2.4) must agree with respect to marginal distributions as well. Consequently, ¢(t) =
t"$(1),t > 0. The constant ¢(1) is of no importance by Definition 2.2.1, thus we consider ¢(t)
only of the form ¢(t) =t ¢ > 0. Now (2.4) can be phrased as

HHY (p(ct)) £ H My (y(1)),

namely

Y (ih(ct)) 2 Y (0(t)) for every e > 0. (2.5)

This yields that ¢ is monotone on (0, 00). In order to see it, suppose a’contrario that (1) = ¥ (t2)
for some t; # t5. Since

(Y ((ctr)), Y (¥(ct2)) £ (Y ((t1)), Y ((t2))) £ (Y (0),Y(0))

for every ¢ > 0, ¥(cty) — ¥(ctz) is continuous with respect to variable ¢ and Y is stationary, we
infer that Y (¢) = Y (0) a.s. for every ¢ € R. Thus Y is trivial. Therefore ¢ must be monotone
n (0,00). Furthermore, ¢ takes every value in R. One can see this from (2.5) letting ¢ — 0 and
¢ — 00.
Taking

£-(t) = blev (1)), (2.6)
we obtain by Lemma 2.2.1 that for some h € R

V()™ Ht)) =t +h, foreverytc R. (2.7)



Notice that 1 can be either decreasing or increasing. Nevertheless f. defined by (2.6) is always
increasing. Clearly, (2.7) can be rewritten as

P(et) =(t) + h(c), foranyt>0andc >0,

where h(c) is a function depending only on ¢. From this and Definition 2.2.1, one can easily see
that for some a € R
P(t) =alogt, t>0. O

Theorem 2.2.2 Let 0 < H < oo.
(i) If (X(t))¢>0 is an H-ss process and b € R, then
Y(t) = e PHIX (M), t € R,
18 stationary.

(ii) Conversely, if for some continuous functions ¢, n, where 1 is invertible, and for a non-trivial
H -ss process (X (t)),
Y(t) =¢t)X (), teR,
is stationary, then
C(t) = e and y(t) =€ for someb e R.

Proof. (i) We have
Y(t + O') — e—bH(t-I—cr)X(eb(t-I—cr)) é e—bH(t-I—cr)ebHch(ebt) — Y(t)

Thus we conclude that Y is stationary.
(ii) Since Y (t) = ¢(¢t)X (n(t)) is stationary and 7 is invertible, one can easily claim that the

process
1

Cn=(1))
is H-ss. Thus, by Theorem 2.2.1 we obtain

Y1) = X (1)

n~Ht) = alogt for some a € R\{0}.

This is equivalent to
n(t)=¢€", for someb € R.

Using the same arguments for ¢, we have ((alogt) = t~H. This yields ((t) = e7*Ht. O

Remarks.
1. Marginal distributions do not depend on the choice of @ and b, that is,
X(t) =tV (alogt) £ 7y (1)

since Y is stationary, and
V() = e PHiX () 4 X (1)

since X is H-ss.

2. The parameters a and b are meaningful when considering finite-dimensional distributions.
The influence of @ and b will be discussed in the sequel.

10



2.3 Finite-dimensional distributions in the a-stable case

We want to establish the influence of a’s and b’s on distributions of the corresponding processes.
To this end we need the following lemma.

Lemma 2.3.1 IfY = (Y(¢));eRr is a non-trivial stationary stochastic process and if

Y (ct) 4 Y (t), for somec € R\{0}, (2.8)

then either c= —1 or ¢ = 1.

Proof. It is enough to prove that if Y satisfies (2.8) for some ¢ with 0 < |¢| < 1, then Y is trivial.
Since

d T T
V(1) Y () 2 (V () Y ()
for 0 <ty < ... <ty,and n > 1, it follows from the stochastic continuity that

(Y(t1), .., Y (tn) £ (Y(0),...,Y(0)) O

The following theorem is a direct consequence of Lemma 2.3.1.
Theorem 2.3.1 Let 0 < H < 0.

(i) If Y = (Y(t))seR is a non-trivial stationary process and if for some a, o’ € R\{0}

1Y (alogt) £ t7Y (a' logt),

then either a = a' or a = —a'.

(ii) If X = (X (t))s>0 is a non-trivial H-ss process and if for some b, b € R\{0}
e—thX(ebt) 4 e-b’ftItX(ebft)7
then either b=1"0" or b= -V’

Proof. Part (i) follows directly from Lemma 2.3.1. In order to prove (ii) it is enough to apply
Lemma 2.3.1 to Y (t) = e 7t X (). 0

Up to now we have considered processes merely assuming that they are stochastically con-
tinuous. In order to gain insight into the influence of different a’s and b’s on finite-dimensional
distributions of corresponding processes we are to concentrate on a-stable processes. We will study
Gaussian and non-Gaussian examples to take a different view of the foregoing results.

Note that for Gaussian stationary processes Y (¢) L Y (—t). Hence if Y is Gaussian, then the
statement (i) in Theorem 2.3.1 can be replaced by that tY (alogt) L t"Y (a'log t) if and only if
a = +d’, and if X is Gaussian, then (ii) can be replaced by that e !X (") L e~V HEX (M) if
and only if b = +b’. Therefore we have the following.

Example 2.3.1 Let 0 < H < oo and (Y\(t));er be a Gaussian Ornstein—Uhlenbeck process,
namely

t
Yi(t) :/ e M=) B(dz), t € R,
where (B(t)) is a standard Brownian motion. Then
1Y, (alogt) £ t7Y, (' logt), >0

if and only if a = +d'.
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Example 2.3.2 Let (X(t))i>0 be a Gaussian H-ss process and 0 < H < 1. (If, in addition, it
has stationary increments, it is the fractional Brownian motion defined by (1.2) and the stochastic
integral with oo =2 in (2.1)). Then

e PHLX (bt 4 e—butItX(ebft)7 t € R,
if and only if b = £b'.
Remarks.

1. Let us recall that the Gaussian Ornstein—Uhlenbeck process can be obtained by transforming
the Brownian motion by the Lamperti transformation and there exists only one such process
(this was observed by Doob [12] and 1t6 [19]). How does this fact match the above theorems
and examples? Comparing the covariance functions of the transformed Brownian motion
and the Gaussian Ornstein-Uhlenbeck process (characterized by parameter ) leads to the

conclusion
Brownian motion G.0O.U. process
L tr. with
B(t) gen aTrg’ with a Y/\ (at)

(where A = 1).

Y\ (at) and Y)(a't) are different processes when a # +a’ (with respect to finite-dimensional

distributions) but nevertheless they are still in the same class of processes because Y) (at) L

VaYy(t), (see Example 2.3.1).

2. Due to the above generalization of the Lamperti theorem we are able to obtain the complete
class of Ornstein—Uhlenbeck processes from the standard Brownian motion.

3. Using the generalized Lamperti transformation with different a’s, one can generate the entire
class of H-ss Gaussian Markov processes starting from the standard Ornstein—Uhlenbeck
process with A = 1, (see Example 2.3.1). They are given by the covariance function in the
following way:

E[X ()X (s)] = t" s E[Y1(alogt)Yy (alog s)] = 7 s emallogt=logs) — yH—a H+a
where ¢ > 0 and s < t.

We proceed to non-Gaussian stable cases.

Example 2.3.3 Let 0 < H < 0o and (Y\(t)):cRr be a SaS Ornstein—Uhlenbeck process, namely

t
Yi(t) :/ M=) 7 (de), t € R

— 00

where 0 < o < 2. Then
1Y, (alogt) £ t7Yy(a'logt), t >0, (2.9)

if and only if a = a'.
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Proof. We compute the characteristic function of vector (Y)(as), Y\ (at)). Fixing s < ¢ and a > 0,
we have the following equations :

Eexp{u(61Yx(as) + 02Y(at)) }
= Eexp{i([; + 03¢0V, (as) + 6,[V)(at) — e =9V, (as)])}

= Fexp{i(f; + 026_/\a(t_5)) /

— 00

at
e—A(as—x)Za (dx)} - F expqify / e—/\(at—x)Za(d$)}

S

as

as at
€_a/\(a5_x)d$—|— |02|a/ e—oz/\(at—x)dw)}

as

— eXP{—(|91 _|_02€—Aa(t—s)|oz/

1 —AQlT—S x
= exp{——[(1 = =) gy

O

6, 026—/\(1(7,‘—5) ]}

—2Xa(t—s)|o/2
+[1+e | ‘|1_|_6—2/\a(t—5)|1/2 + |1 4 e—2Aalt=s)|1/2

Thus the spectral measure of vector (Yy(as), Y(at)) is given by the formula

I'= 5[(1 = em M) (§(0,1) + 6(0, —1)) 4 (1 + €726 (e, d) + (¢, —d))),

where
1 e—/\a(t—s)

€= (1+ e 2ralt=2))1/2’ d (1+ e 2ralt=2))1/2

and §(p, q) is the delta measure at (p, ¢) € R?. Similarly, when a < 0 the spectral measure of vector
(Ya(as), Yr(at)) is given by

I = ﬁ[(l — el (5(1,0) + 8(—=1,0)) + (1 4 e72 =N 2(5(d, ¢) 4 6(—d, —¢))].

Because of the uniqueness of the spectral measure I, formula (2.9) (as concerns bivariate distribu-
tions) holds only if @ = a’. This completes the proof. a

Example 2.3.4 Let 0 < a <2, H=1 and (Z,(t))i>0 be a SaS Lévy motion. Then
e—thZa(ebt) 4 e-b/ftftza(ebﬁs)7 teR

if and only if b=1'.

Proof. By Theorem 2.3.1 it is enough to show that

e_HtZa(et) ;2 thZa(e_t),
which is equivalent to
Zo(t) ;ﬁ 7,71,
For that, we show that the process on the right hand side does not have independent increments.
To this end, it suffices to represent the process by a stable integral > fg_l dZ,(u) and to check its

increments. Use the fact that two non-Gaussian stable random variables [ fdZ, and [ g¢dZ, are
independent if and only if f-g =0 a.e. a

Remarks.

1. As in the Gaussian case there is a correspondence between the Sa.S Lévy motion (character-
ized by the parameter o) and the Sa.S Ornstein-Uhlenbeck process (determined by o and \)
through the Lamperti transformation:

13



SaS Lévy motion Sas 0.U. process

Za (t) gen.LaTrg’. with a Y/\ (at)
(where A = 1),

(See Adler et al. [1], Theorem 5.1 for 1 < a < 2 and for general 0 < a < 2 compute
and compare the characteristic functions of processes {e‘“t/aZa(e‘”)} and {Y7/,(at)}, which
can be calculated in a way similar to the above proof of Example 2.3.3.)

2. Contrary to the Gaussian case, Y (at) defines distinct processes for a and for —a (see Example
2.3.3). For example, « = 1 and ¢’ = —1 produce the Sa.S Ornstein—Uhlenbeck and the reverse
SaS Ornstein—-Uhlenbeck process, respectively (which are different when 0 < o < 2), (see

Adler et al. [1]). Since Y) (at) L a'!*Y,\(t), so we can construct only two different Ornstein—
Uhlenbeck processes.

2.4 Mixed linear fractional a-stable motions

In the paper, Surgailis et al. [39], a new class of stationary non-Gaussian SaS processes,
namely stable mixed moving averages, is introduced. This includes the well-studied class of moving
averages. In this section, we discuss the self-similar stable processes whose corresponding stationary
processes (Y (¢)) through the Lamperti transformation are stable mixed moving averages.

Although more general class is introduced in Surgailis et al. [39], we focus here only on the
following type of stable mixed moving averages (which are sums of independent usual moving
averages):

V(1) = i/m fult = 0)ZW(dv), ¢ R, (2.10)
k=177

where the Zék) 's are independent SawS Lévy motions, fi € L¥(—o0,00) and where the f]s are not
“equivalent” in the sense that for k # (, there do not exist ¢ and 7 such that fi(-) = cfo(- —7). We
call the process (2.10) the K-sum stable moving average. It is observed in Surgailis et al. [39] that
K-sum stable moving average with K > 2 is different in law from the ordinary moving average.

We remark here that (2.10) is a special case of stable mixed moving averages introduced in
Surgailis et al. [39], but finite sums of independent Sa.S moving averages as in (2.10) are dense in
the class of stable mixed moving averages.

In the following, we give examples of self-similar processes with stationary increments, whose
corresponding stationary processes are K-sum stable moving averages.

Definition 2.4.1 Let 0 < H < 1,0< o < 2, H # é, and

N [ ot g e 411 4
X0 =% [ {ple- 0l - ol gl - o I 20 ), (200

where ay and a_ stand for max{a,0} and max{—a,0}, respectively. The process (X (t)) is called
mized linear fractional stable motion (cf. Section 3.3.1).

It is easy to check that (X (¢)) is H-self-similar and has stationary increments. When N =1
and p, = 1,¢q, = 1, it is a linear fractional stable motion in (2.1). The distribution of (X (¢)) is
distinct for different collection of {p,,¢,, n =1,---, N} unless p, = p, ¢, = ¢ for all n.

In the following, we restrict ourselves to the stationary process Y, (t) = e" 7' X (e). However,
as we pointed out in Section 2.3, (Y4 ()) is distinct from (Y_(t)), where Y_ () = e X (e™"), since
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we are dealing with non-Gaussian stable case. As to (Y_(¢)), we have a similar argument. We shall
write below Y (t) for Y, (¢) and 3 = H — L for the notational simplicity.

Theorem 2.4.1 The mized linear fractional stable process X (t) given by (2.11) corresponds via
the Lamperti transformation to a K—sum stable moving average for some K < 2N.

Proof. From (2.11), we have

Y(t) = e HiX(e)
N o]
= et [ {pde =l - (-]
taal(e =) = (~w)2]} 200 (du)
N 0

= et [l 0P - (w12 )

n=1 e

4 [ ale = 0 = 0,020 dw)

b [l ) = w120 ()

t
N 0

= S [l = 1A
+/0°O (110 < u < lpale’ = u)® = g

It < wlgnf(u— ')? — uﬁ])zgm(du)}.
Thus, for ¢; € R,

— log Elexp{i Z ;Y (t5)}]

J

-x{L
s

O

du

S e pl(el )~ (~u)’]

S e TOLI[0 < u < e9)[pae’ — u)’ — guu”]
J
du}

a’U
e'dv

+H[e" < ulgal(u— ")’ —u’]}

by the change of variables |u| = e,

N (3]
> { [ e opal(es + ) - e
n=1 -
[T S e o e < lalet - ) = gue™
—oo |

ae”dv}

H[t; < vlgal(e” — e")” — ]
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N oo N
- {/ [>T, (b + 1) - 1) edo
>0/ ],

n=1
[ e T = 0> a5 = 1) — g,]
—eo 1

+1]t; — v < 0]gu[(1 — e7v)7 - 1]}‘aevdv}

N o o
=2 {/ > e Op, e + 1) = 1] dv
P

n=1

‘I’/OO ‘che_H(t]_U){I[t]‘ — v < O]qn[(l _ et]—u)ﬁ _ 1]
—eo

adv}

- ISt i [ [Tt -ofa].

H[tj = v > 0)[pale” ™ = 1)” — qa]}

n=1

where

fa(t) = (e +1)7 - 1]
ga(t) = eI < 0]gal(1 =€) = 1]+ 11t > 0][pale’ = 1)” = qa]}.

Thus we have

N o0
O R AR
n=1 . N
+30 [ anlt =028 @),

where Zén), n=1,2,---,2N are independent stable motions. O

Example 2.4.1 If N =1,p; =0,q1 # 0, then

d o]
YL [ gl - ) Zudv),
and hence K = 1. The linear fractional stable motion corresponds to a stable moving average.

Example 2.4.2 [f N = 1,p; # 0 (whatever ¢, is), then fi(-) = £cgi(-+ 7) is not true. Hence
v [ f-0z0n + [ gl 073 ),
which is 2-sum stable moving average. Thus, the linear fractional stable motion can also correspond

to a stable mized moving average.

Example 2.4.3 Let K > 3 and choose N such that 2N > K. Then by choosing p,, and q,, zero or
non-zero suitably, we can construct K-sum stable moving average from the mized linear fractional
stable motion.
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Next we consider the case of H = é
Example 2.4.4 Let 0 < a <2, H=1 and X(t) = Z,(t). Then

V() = e a'X(ef) = e v Z,(e")

where

F(t) = e =t > 0]

Example 2.4.5 Lletl <a<2,H = é and

t_—“‘ Zo(du).

U

X (1) :/Oo log

— 00

This (X (t)) is called a log-fractional stable motion. (See Kasahara et al. [21].) Then

Y(t) = e ='X(e)

t

0 t_ o0 —
= e_ét/ log i Za(du)—l—e_ét/ log i Zo(du)
— 00 Uu 0
o] € v o) t_ v
2 e‘ét/ log ctre Zél)(—e“dv)—l-e_ét/ log c Z2) (evdv)
— o0 —ev — o0 ev

Lo [ togletr 1] en zD (o) + e [ tog|etr - 1] e 2P (ao)

_ /OO fl(t_v)Zg)(dv)Jr/oo Folt = 0) 72 (do),
where
filt) = e atlog et + 1]

and )
fat) = e~ = log |et — 1]

Thus, the log-fractional stable motion also corresponds to a 2-sum moving average as in the case
of the linear fractional stable motion in Frample 2./.2.
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Chapter 3

Integral representation of stable H-ss
processes

In this section we establish and exploit the connection between theory of self-similar stable processes
and ergodic theory of nonsingular flows. Using this connection and the Lamperti transformation, a
special decomposition of self-similar processes is obtained. In Section 3.2 we show that a minimal
spectral representation of an H-self-similar Sa.S process {X,f}teRJr is of the form

Xi= [ tMaif o djml*dM, 1€ Ry
S

Here {¢:},cr, is a nonsingular multiplicative flow on (S, ), {a;:}cr, is a cocycle for this flow
taking values in {—1,1}, my = d(po¢y)/dp, f € L*(S,p) and M is a SaS random measure.

As a consequence we prove in Section 3.3 that every stable self-similar process admits a unique
decomposition into three independent parts

Xo=xW 4+ xP 4 x® teRry,

such that {Xt(l)}teR+ corresponds to a superposition of moving averages in the theory of stationary

processes, the second class {Xt(z)}teR+ is harmonizable and {Xt(?))}teRJ, is called evanescent. This
result shows how rich the class of stable self-similar processes actually is.
3.1 Preliminaries and definitions

Definition 3.1.1 A map t — f;, where {fi}ier C L¥(S,B,pn), (S,B,u) is a standard Lebesgue
space, is said to be a spectral representation of a SaS process { Xi}ier if

her 2 [ fispras)} (3.1)

teT

where M is an independently scattered random measure on B such that
Eexp{iuM(A)} = exp{—|ul*u(4)}, ue R,

for every A € B with u(A) < co. The family of functions { fi}ier is called the kernel of a spectral
representation.
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It is well-known that every separable in probability Sa.5 process admits a spectral represen-
tation such that S is a unit interval or a countable discrete set or the union of the latter two
and p is the direct sum of Lebesgue measure acting on the unit interval and a counting measure
acting on the discrete part of S (cf. Hardin [16]). On the other hand, many interesting classes
of stable processes are defined by explicitly given families of functions f; and control measure p
given on various spaces. Because a spectral representation is a natural characterization of a stable
process, the question of its uniqueness is important. Spectral representation is not unique, even
when .S and p are fixed. We study the problem of uniqueness in the context of so-called minimal
representations. Minimal representations are unique and other representations of the same process
are transformations of the minimal ones (see, e.g. Rosifski [35]).

Definition 3.1.2 A spectral representation t — f; is said to be minimal if o{fi/fy, :t,u € T} =B
modulo p.

Every separable in probability SaS process has a minimal representation (see Hardin [16], and
Janicki and Weron [20]).

We will also consider complex stable processes. However, in the complex case we restrict our
attention to those processes {X };e7 for which all linear combinations Y @; Xy, a; € C, t; € T
have rotationally invariant stable distributions. In that case, a family of complex a-integrable
functions {f;}ier defined on a standard Lebesgue space (S, B, i) is called the kernel of a spectral
representation of the process { X };e7 if (3.1) holds with a complex independently scattered random
measure M such that

Fexp{iR(uM (a)} = exp{—|u|"u(A)}, uweC.

3.2 Minimal spectral representation of stable self-similar pro-
cesses

From now on we will consider processes indexed by 7' = R4 = (0,00). In this section we will
characterize the kernel of a spectral representation of an H-self-similar Sa.S stochastic process.
Without loss of generality we may and do assume that underlying measure space (S, B, i) for the
kernel is Borel. A collection {¢;};~0 of measurable maps from S onto S such that

¢t1t2 (S) = ¢t1 (¢t2 (S)) (3'2)

and ¢1(s) = s for all s € S and t1,t; > 0 is called a multiplicative flow. Such flow is said to be
measurable if the map Ry X .S 3 (1,5) = ¢¢(s) € S is measurable. Given a o-finite measure p on
(S, B), {&:}1>0 is said to be nonsingular if j1(¢;*(A)) = 0 if and only if u(A) = 0 for every t > 0
and A € B.

Let A be a locally compact second countable group. A measurable map R4 XS 3 (¢,5) — a¢(s) € A
is said to be a cocycle for a measurable flow {¢;}ss if for every ty,t5 > 0

At 1y (8) = g, (8)ae, (1, (s)) forall s € S. (3.3)

Theorem 3.2.1 Let {fi}i>0 C LY(S, 1) be the kernel of a measurable minimal spectral representa-
tion of a measurable H-ss SaS process {X;}iso. Then there exist a unique modulo p nonsingular
flow{ i }is0 on (S, 1) and a cocycle {a; }i~o taking values in{—1,1} ({|z| = 1} in the complex case)
such that for eacht >0
dp o ¢
dp

fi = tHa

}”%ﬁo@)u—ma (3.4)
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Proof. Since t — f; is minimal, then, for each ¢ > 0 {1/c¢" f.;}ss0 and {fi}+>0 are kernels of
minimal representations of the the same H-ss Sa.S process. Applying Theorem 2.2 in Rosiiiski [34]
there exist a one-to-one and onto function ¢, : S — S and a function h.: S — R — {0} such that,
for each t > 0,

f = () (h)(fro @) pi— ace., (3.5)
and ; o
7('11; o) = |h|", p—ae. (3.6)
Since, for every ¢, ¢y, cg > 0, it is true that, p — a.e
fCl cat = (CIZLI) (hc2)(f0175 © (I)C2) = (CIZLIC{I) (hc2)(h01 © (I)C2)(f7f © (I)Cl © (I)C2) (3'7)
and

f010275 = (C{ICIZLI) (h0102)(f75 © (I)Clc2)7

we infer from Theorem 2.2 in Rosifski [34] that, for every ¢1,¢2 > 0,

h0102 = (h02)(h01 © (I)Cz)v H—a.c., (3-8)

and
S0, =P, 0P, u—a.e. (3.9)

In order to conclude the proof it is enough to rewrite the arguments of the proof of Theorem 3.1
in Rosifski [34] replacing the additive group R with the multiplicative R,. Therefore, ¢; = &, is
the map and putting a; = hy/|h| ends the proof. 0

Remark. It is possible to present an alternative proof of the theorem using the Lamperti transfor-
mation. That is, first we need to see that the Lamperti transformation leading from self-similar to
stationary processes preserves the minimality of a spectral representation. To this end it is enough
to verify condition (iii) of Theorem 3.8 in Rosifiski [35] with F' = {e ™ f.i},cg. It is trivially
satisfied as the condition is fulfilled for F' = {fi};cr . Now, taking ¥; = et X_. we obtain a sta-
tionary process which minimal representation is defined by Theorem 3.1 in Rosinski [34] in terms
of a unique flow and a corresponding cocycle on the additive group R. In order to conclude the
proof we apply the reciprocal transformation X; = tHYlogt which leads to the minimal spectral
representation of the process X as stated in Theorem 3.2.1. a

Corollary 3.2.1 Since there is a correspondence between self-similar and stationary processes
through Lamperti transformation every minimal representation t — f; (3.4) given in terms of a
flow ¢; and a cocycle a; defines the kernel of a minimal spectral representation {fl},cr of the
corresponding stationary process as follows

dus o bl 1/
e {5 i o o

such that
0}(s) = dur(s), al(s) = au(s), fals) = fils) foralls€Sandt€R.
Conversely if (3.10) is the kernel of a minimal spectral representation of a stationary process then

(3.4) defines the kernel of a minimal representation of an H -ss process in terms of a pair {a;, ¢¢}i>o0
such that

Pi(s) = ¢1logt(5)7 ai(s) = allogt(s), fi(s) = f(}(s) forall s € Sandt > 0.
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Remark. Combining results of Theorem 3.1 in Rosinski [34] and Theorem 3.2.1 we may try to prove
Theorems 2.2.1 and 2.2.2 describing classes of transformations leading from self-similar to stationary
processes and conversely. Let us concentrate on the (ii) part of Theorem 2.2.1. We will support
the thesis that = ¢/ and 1 = alogt using Theorem 3.1 in Rosifiski [34] and Theorem 3.2.1 which
concern minimal spectral representations of stationary and self-similar processes, respectively. First
we notice that any transformation of the form X; = 0(t)Y¢(t) for a non-trivial stationary process
Y and functions 6, ¢ : (0,00) — R such that 1 is onto preserves minimality of the spectral
representation. It is obvious since I’ = {O(t)fl/lj(t)}bo satisfies condition (iii) of Theorem 3.8 in
Rosiiiski [35] as {f} },cr (the spectral representation of process Y) is rigid in L*(S, ). Thus X is
H-ss with the spectral representation as follows

dppo by

Y oo dli) -
dlu 0 11/(75) H a.e.

Now we use the fact that the process X has a spectral representation defined by (3.4) and compare
them. We immediately obtain that 6(¢t) = tH. Furthermore, it is easy to see that the spectral
representations are equivalent if

gb'}/}(tth) = gb}p(tl)_l_d}(h) and ¢(1) = 0.

This yields either
¢(t1t2) = ¢(t1) + ¢(t2) fOT‘ all thtz >0 (311)

or

Y(taty) = Y (t1) + ¥(t2) + ¢ for some ty,tz > 0 and ¢ # 0.

Since 1) is continuous the latter implies that Y is trivial. The equivalence (3.11) leads to the
statement 1 (t) = alogt for some real constant a.

3.3 Decomposition of stable self-similar processes

Every measurable stable self-similar process is generated by a nonsingular flow. First we will show
that certain standard decompositions of flows in ergodic theory induce natural decompositions
of stable self-similar processes. To this end let us recall basic definitions and facts concerning
nonsingular maps and flows.

A nonsingular map V : 5 — S is said to be conservative if there is no wandering set of positive
1 measure (a set is called wandering if the sets V™*B are disjoint). Given a nonsingular map V,
there exist a decomposition of 5 into two disjoint measurable sets C' and D — the conservative and
the dissipative parts — such that

(i) C'and D are V-invariant,
(ii) the restriction of V to C'is conservative and
(ili) D =2 ___V*B for some wandering set B.

The decomposition of S into C' and D is unique (modulo ) and is called the Hopf decomposition.
Given a nonsingular flow {¢;};e7, for each ¢ € T — {0} one has the Hopf decomposition of 5,
S = CyU Dy, generated by the map ¢;. Since all Cy (Dy, resp.) are equal to each other modulo p
(see Krengel [22]), one can choose a set C' that is invariant under {¢;};er and such that C' = Cy,
and D = 5 — C = D; modulo p for every t € T'— {0}. This is the Hopf decomposition of S
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corresponding to the flow {&;}+cr. A flow is called dissipative if S = D and conservative if S = C'
modulo p.

Similarly as in the case of stationary Sa.S processes, Theorem 3.2.1 allows one to use ergodic
theory ideas in the study of Sa.S self-similar processes. In particular, the Hopf decomposition of
the underlying space S of the spectral representation (3.4) into invariant parts C' and D), such
that the flow ¢; is conservative on C' and dissipative on D, generates a decomposition of {X;}¢so
into two independent Sa.S H-ss processes { X }i~0 and {XP}is0. We will characterize the latter
process.

3.3.1 Mixed fractional motions

The simplest H-ss S« process is obtained from a kernel of the form

ft(S) = tH_%f (;) ’ t,s >0, (312)

considered with Lebesgue control measure on (0,00), f € L¥((0,00), Leb). A SaS process with
such representation will be called a fractional motion (FM). A superposition of independent FM
processes of type (3.12) is called a mized fractional motion (MEFM).

Definition 3.3.1 An H-ss SaS process { X;}iso is said to be a MFM if it admits a spectral rep-
resentation with a kernel {gi}so defined on (W x (0,00), Bw @ B(g ooy, v @ Leb), for some Borel
measure space (W, Bw,v), such that

gi(w,u) =175y (w 3) 7 (3.13)

0,00

(w,u) € W x (0,00), t>0.

Theorem 3.3.1 {X”},5¢ is a MFM and one can choose a minimal representation of {XPY,;so of
the form (3.13). Furthermore, {XP}iso is a FM if and only if {¢:}+>0 restricted to D is ergodic.

Proof. Using Corollary 3.2.1 we infer that the process {X};sq corresponds, by Lamperti trans-
formation, to a stationary SaS process {Y:},cr generated by a dissipative flow. From Theorem
4.4 in Rosifiski [34] we get that {Y;},cR is a mixed moving average, implying that {X},50 is a
MFM.

We will now prove the second part of the theorem. Since a moving average representation
kernel is minimal (see, e.g, Rosiniski [35]), (3.12) is minimal as well. Since f; in (3.4) is minimal,
then also f; restricted to D is minimal. By Theorem 3.6 in Rosiiski [34] we infer that the (mul-
tiplicative) flow ¢; is equivalent to the flow t(s) = t~1s, t,s > 0. Since {¢y} is ergodic, so is
{¢+}. Now suppose that {¢;} is ergodic. By the first part of this theorem, {X;} admits a minimal
representation of the form (3.13) whose flow is given by ¥ (w, u) = (w, ¢ 'u). Since the latter flow
is equivalent to {¢:} by the foregoing theorem, it must be ergodic which is only possible when v is
a point-mass measure. Thus (3.13) reduces to (3.12). o

We will give a few examples of FM and MFM processes. We begin with the simplest one.
Example 3.3.1 Let0 < o <2, H= é and {X }>o be a Lévy motion. Then

Xo= [t = [ ),

0
where

f(s)=10< s < 1]
and M is SaS on (0,00) with Lebesque control measure (see Figure 3.1).
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Example 3.3.2 Let f € L*(R?, Leb). Let
ft(s):tH_%f (;)7 SGRdv t>07

and let M be a SaS random measure on R? with Lebesque control measure. It is easy to check that
a SaS process { X }eso with such spectral representation is H-ss. We will show that {X;}is0 is a
MFM. Indeed, let W = Sy be the unit sphere in R® equipped with the uniform probability measure
v and let

g(w, ) = (cqu™)Y fluw), (w,u) € Sqx (0,00),

where ¢q = 27Td/2/F(d/2) is the surface area of Sy. Using polar coordinates, we get for every

a1,...,0, €R, t1,...,1, >0,
[ it (o))" ds
&0 H-2 [ uw d—1

= oo fl—° duv(d
o[ [ 10 f(tj)lu uv{du)

o0 H_L1 U
= a;t; glw,— || durv(dw),
L 15 g( tj)| (dw)

Comparing the kernel from the above example with the general form (3.4) we get that S =
RA\ {0}, ¢4(s) = t7's, fi(s) = f(s), and d‘zl—jfst = t~%. The following well-known H-ss processes
are special cases of Example 3.3.2.

which proves the claim.

Example 3.3.3 Let 1 < o < 2 and H = é Then a log-fractional motion (cf. Kasahara et al.
[21]) {Xi}is0 is defined by

0 t —
Xt:/ log

—\ Mds) = [ pisfnpas),

where
f(s) = log[1/s — 1]
and M is SaS on R with Lebesgue control measure (see Figure 3.2).

Example 3.34 Let 0 < H <1, 0< a< 2, H # é Put p = H — é Then a linear fractional
stable motion (cf. Cambanis et al. [8]) {Xi}iso is defined by

Xo= [ =97 = () M)+

— 00

AmUm<s<ﬂ@@—@ﬁ—wﬁ+lﬁ<ﬂﬂ@—oﬁ—ﬁDAﬂ@)

= [ P rsmmas),

where
F(s) = 11s < 0p[(1 = 9)7 = (=9)"]+
10 < s < Yp(1 = 8)7 — ¢s"]+ I[s > 1]q[(s — 1)7 = 5],
and M is SaS on R with Lebesgue control measure (see Figure 3.3).

23



Next Theorem shows that the kernel of a spectral representation of any MFM can be defined
on R? in a canonical way.

Theorem 3.3.2 (Canonical representation of a MFM) . Let 0 be a o-finite measure on the
unit circle Sy of R? and let i be a measure on R? \ {0} whose representation in polar coordinates
is

p(dr,dd) = r*=Ydro(df),  r>0, 8 €S, (3.14)
Let f : R*\ {0} = R (or C) be such that

Jro gy )17 () < o0

Then the family of functions { fi}rs0 C L*(R?*\ {0}, i) given by

fi(z) = f(t_lz) (3.15)

s the kernel of a spectral representation of a SaS process, which is H-ss and MFM. Conversely,
every MFM admits a (canonical) representation (3.14)-(3.15).

Proof. We are to show only the converse part. Consider a MFM with a representation (3.13).
Since S is a Borel space, S is measurably isomorphic to a Borel subset S;. Let ® : S — .55 denote
this isomorphism and let o = v o ®~!. Define a function f on R?\ {0} as follows

fz) = { g (@71 () =) 121V, i e o(s)

0, otherwise.

Let 1 be a measure on R?\ {0} given by (3.14). Then

/W\{o}'zajftj(z)'aH( /R2\{0}|Z /U5 i)
_ /S /Oo S a4 £ 0) [ 2T dr o (d8)
= [ IS as o) et dr(ds)
_// 1S ajet Ve ( (s, ¢717)|* dru(ds),

for every t1,...,t, > 0 and aq,...,a, € R(C). This ends the proof. a

Remark. The Lamperti transformation maps FMs onto moving average processes and MFMs onto
mixed moving averages (see Surgailis et al. [39]). Considering above examples it seems that MFMs
appear more naturally than FMs. This is quite opposite to the relation between mixed and the
usual moving averages.

It is clear that a stable process may have many spectral representations with different kernels
defined on various measure spaces. However, we can identify one property, common to all such
representations, which characterizes MFMs.

24



Theorem 3.3.3 Let {X}i50 be a SaS H-ss process with an arbitrary representation (3.1). Then
X is MFM if and only if

/ == f(5)|%dt < o0 — ace. (3.16)
0
Proof. The condition (3.16) is equivalent to

/ e fi(s)|7dt < 00 p— ae.

By Theorem 2.1 in Rosifiski [36] and the Lamperti transformation this concludes the proof. O

3.3.2 Harmonizable processes

The class generated by conservative flows consists of harmonizable processes and processes of
a third kind (evanescent).

Definition 3.3.2 An H-ss SaS process { Xi}iso is said to be harmonizable if it admits the repre-
sentation

{Xt}>o0 = {/R tHHSN(dS)} ) (3.17)

t>0

where N is a complex-valued rotationally invariant SaS measure with the finite control measure v

on S.

Notice that the representation (3.17) is minimal and it is generated by an identity flow acting on
S with a;(s) = t** as the corresponding multiplicative cocycle. It is easy to prove the converse:

Proposition 3.3.1 Let {X;}is0 be a measurable complex-valued H-ss SaS process generated by
an identity flow. Then {X;}iso is harmonizable.

Proof. Let
So =151 a4+,(s) = as, (s)a,(s) for Leb® Leb a.a. (t1,t2)}.

Now it is enough to show that for each s € Sy there exist a unique k(s) € R such that
as(s) = t1F),

To this end we follow the proof of Proposition 5.1 in Rosiniski [34] and next define a finite measure
to(ds) = | f(s)|*u(ds) on S. Therefore, (3.17) holds with v = pgo k™!. o

Theorem 3.3.4 Let {fi}i>0 be the kernel of a minimal spectral representation of the form (3.4)
for a complex-valued SaS harmonizable process {Xi}iso. Then {di}iso is the identity flow and
(3.4) reduces to

fi(s) = tH‘HSf(s) (3.18)

Proof. Since (3.18) follows from the proof of the previous proposition, we only need to show that
{®1}+>0 is the identity flow. However, the representation (3.17) is minimal and is induced by the
identity flow i (s) = s, for all ¢, s, so that by Theorem 3.6 in Rosifiski [34], ¢; being equivalent to
the identity flow must be identity. a
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Example 3.3.5 Let

(X }so L {/Oo tH““’e.—_llsl‘(H‘l“/“)M(ds)} :

_ 18
e t>0

where M is a complex-valued rotationally invariant SaS measure. The process X corresponds via
the Lamperti transformation to the complex harmonizable fractional stable noise (cf. Samorodnitsky

and Taqqu [38]).

Remark. There can not be any non-zero real-valued stationary harmonizable process. Using
Lamperti transformation, the same statement is valid about real-valued harmonizable self-similar
processes. However, the class of real-valued self-similar processes whose spectral representation is
generated by the identity flow is slightly larger. Any process of this class must be of the form
X, = t" X, (cf. Proposition 5.2 in Rosiniski [34]).

As it was in the case of a MFM (see Theorem 3.3.3) we can verify whether an H-ss SaS
process is harmonizable given its arbitrary spectral representation.

Theorem 3.3.5 Let {X}i50 be a SaS H-ss process with an arbitrary representation (3.1). Then
X is harmonizable if and only if

iyt (8) f1(8) = fi, (s) fi, (s) for (Leb® Leb @ p) a.a. (t1,t3,5) € Ry x Ry x 5.

Proof. It is a direct consequence of Theorem 2.4 in Rosinski [36] and the Lamperti transformation.
a

3.3.3 Evanescent processes

Definition 3.3.3 A stochastic process whose minimal representation (3.4) contains a conservative
flow without fized points will be called evanescent.

This class is not well understood at present. The next theorem is useful to verify whether or not a
process is evanescent.

Theorem 3.3.6 Let {X;}i50 be a SaS H-ss process with an arbitrary representation (3.1). Then
{Xt}s0 is evanescent if and only if

ifses: /Oot_aH_1|ft(s)|adt < oo} =0
0
and
p{s € St fi1,(8) fi(s) = fi,(5) fr,(s) for a.a. t1,t > 0} =0

Proof. Theorems 3.3.3 and 3.3.5 combined with the results of Section 6 in Rosiiiski [34] yield the
thesis. O

We will give two examples of evanescent processes.
Example 3.3.6 Let
1
{Xt}t>oé{/ tHCOSTF[logt—I—S]M(dS)} ,
0 >0
where [z] denotes the largest integer not exceeding x (see Figure 3.4). Then X does not have a

corresponding harmonizable nor mized moving average component, so provides an example of an
evanescent componendt.
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Example 3.3.7 Let {X;}is0 be the real part of a harmonizable process, i.e.

{ X} >0 4 {/ tH cos (s 4+ wlogt) Z(ds, dw)} ,
[0,2m)xR >0

where Z is a real-valued SaS random measure with control measure Leb @ v and v is a finite
measure on R (see Rosiriski [35], Fxample 4.9). Here ¢ (s, w) = (s +2- wlogt, w), where ” +4. 7
denotes addition modulo 2x.

Now we conclude this section with the following theorem.

Theorem 3.3.7 Fvery SasS self-similar process { X }tso admits a unique decomposition into three
independent parts

(X0 XD o0 + {X P s0 + {X P 1s,

where the first process on the right-hand side is a MFM, the second is harmonizable, and the third
one is an H-ss evanescent process.

Proof. Since the set D of Hopf decomposition and the set of fixed points for a flow are invariant,
we obtain a decomposition of self-similar processes analogous to the decomposition of stationary
processes (see Theorem 6.1 in Rosifski [34]). o
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Figure 3.1: (a) The kernel of the spectral representation of Lévy motion, (b) the kernel of the cor-
responding stationary process through the Lamperti transformation for H = 1/1.8 (i.e. Ornstein—
Uhlenbeck process).

Figure 3.2: (a) The kernel of the spectral representation of log-fractional motion, (b) the kernel of
the corresponding stationary process for H = 1/1.8.
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Figure 3.3: (a) The kernel of the spectral representation of linear fractional stable motion for
H —1/a=0.1, (b) the kernel of the corresponding stationary process for H = 0.1+ 1/1.8.

R IR N T o, R ELLTLLZA
L LA R

S5222
SRR
SRRETRREEE
LRI
RRLARLLRILLRL, S
R R RL IR ERLLRE
S s s s
S S S e
L2

Figure 3.4: (a) The kernel of the spectral representation of the evanescent process, (b) the kernel
of the corresponding stationary process for H = 1/1.8.
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Chapter 4

Weak convergence of the risk process
to H-ss si processes

The traditional approach in the collective risk theory is to consider a model of the risk business
of an insurance company, and to study the probability of ruin, i.e. the probability that the risk
business ever will be below some specific (negative) value. The classical risk process R is defined

by

N(t)
R(t)y=u+ct— ZYk7 (4.1)
k=1
where u > 0 denotes the initial capital, ¢ is a positive real constant, N = (N (t));>0 is a point process
independent of (Y3) and (Y%)72, forms a stationary sequence of independent random variables,
having the common distribution function F’, with F'(0) = 0, mean value u, and variance o*. N (t)
is to be interpreted as the number of claims on the company during the interval (0,¢]. At each
point of NV the company has to pay out a stochastic amount of money, and the company receives
(deterministically) ¢ units of money per unit time. The constant ¢ is called the premium income
rate.

However, in reality claims are mostly modelled by heavy-tailed distributions like e.g. Pareto.
Moreover, the independence of Y}’s seems unrealistic since a correlation between claims is be-
ing observed. Therefore, in our approach we do not restrict ourselves to independent Y;’s with
FEY}? < 0o. We merely assume that g = F|Y| < oo.

Already in 1940 Hadwiger compared a discrete-time risk process with diffusion. This can
be viewed, though theoretically not comparable with modern approach, as the first treatment of
diffusion approximations in the risk theory. A more modern version, based on weak convergence,
is due to Iglehart [18]. The idea is to let the number of claims grow in a unit time interval and
to make the claim sizes smaller in such way that the risk process converges weakly to a diffusion.
We shall consider weak approximations where the idea is to approximate the risk process with a
self-similar si process with drift. While the classical theory of diffusion approximation requires
either short-tailed or independent claims, these assumptions can be dropped in our approach.

4.1 Preliminaries and definitions

Let us specify in detail the assumptions in our model. We assume that the claims occur at jumps
of a point process (N(t));>0. While most work in the collective risk theory has assumed that
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N(t) is a Poisson process, this restrictive assumption plays no role in our analysis. The succes-
sive claims Y} are supposed to form a stationary sequence, strongly dependent in general, with
EY, = p > 0. Furthermore, we assume that the initial risk reserve of the company is u > 0 and
that the policyholders pay a gross risk premium of ¢ > 0 per unit time. Thus the risk process is of
the form (4.1).

One of the key problems of the collective risk theory concerns calculating the ruin probability,
i.e. the probability that the risk process becomes negative.

Definition 4.1.1 The ruin probability ®(u, T') in finite time (or within finite horizon) of a company
facing the risk process (4.1) is given by

O(u, T)=P(R(t) <0 forsomet <T), 0<T <00, u>D0.
Consequently, the ruin probability ®(t) in infinite time can be defined as
O (u) = O(u, 00).
We also assume that the net profit condition

lim ER(Y)

t—00

>0
holds.

4.1.1 Weak convergence of stochastic processes

Let D = DJ[0,00) be the space of cadlag functions, i.e. all real-valued functions that are right-
continuous and have left-hand limits, on [0,00). Endowed with the Skorokhod .J; topology, D
is a Polish space, i.e. separable and metrizable with a complete metric. A stochastic process
X = (X(t))¢>0 is said to be in D if all its realizations are in D.

Definition 4.1.2 A sequence (X(n))nEN of stochastic processes is said to converge weakly in the
Skorokhod topology to a stochastic process X if for every bounded continuous functional f on D it
follows that

lim Ef(X™) = Ef(X).

In this case one writes X (") = X,

Weak convergence implies, for example, convergence of the finite-dimensional distributions
provided that the limit process X is continuous in probability.

Hereafter through this chapter we shall only consider processes in D and continuous in prob-
ability.

4.2 General results

The main aim of this section is to show the following.

Statement 4.2.1 The only processes that emerge in a “natural way” as weak approrimations of
the risk reserve process are H -self-similar processes with stationary increments with 0 < H < 1.
Conversely, every H-self-similar si process X with EX(t) =0, in D and % < H <1 can serve as
the weak approximation of some risk process.
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In order to justify this statement first we need Proposition 1.1.6. Combining that with Propo-
sition 1.1.1 and the fact that weak convergence in the Skorokhod topology implies convergence with
respect to finite-dimensional distributions we may assert the following.

Corollary 4.2.1 Let (Yy)reN be stationary sequence with common distribution function F and
mean 0 such that

[n?]
1
— > Y= X(t) asn — o0
o i
for some reals (¢(n))n>0, ¢(n) > 0, lim,0p(n) = oo and X is a non-degenerate stochastic

process, then for some 0 < H < 1 X is H-ss, si and ¢ is of the form ¢(n) = nf L(n) for L being a
slowly varying function. Conversely, every H-ss si process X in D, of the mean FX (t) =0 can be
obtained this way.

Proof. The last part of the thesis follows from the fact that the convergence in the converse part
of Proposition 1.1.6 is in fact weak provided that X isin D. a

Now we can state the theorem that yields our statement.

Theorem 4.2.1 Let (Yy),eN be a stationary sequence with common distribution function F and
mean > 0 and let (N(n))nEN be a sequence of point processes such that

NO(t) — Ant

4.2
o) 1)
in probability in the Skorokhod topology for some positive constant X. Assume also that
lim (c(”) - /\nL) =c 4.3
and
lim v = .
n— 0o
If
1
— > Y —p)=> X(t) as n— o0 (4.4)
o0

for some non-degenerate process X, then

(i) there exists an 0 < H < 1, that X is H-ss, si, ¢ is of the form ¢(n) = n' L(n) for L being a
slowly varying function, and
(ii)
QU (#) = ul® 4y - L
é(n)

in the Skorokhod topology as n — oco.

Y V= Q) =utct—ATX(1) (4.5)

N(n) (t)
k=1

Conversely, every H-ss si process X in D, with FX(t) = 0 and % < H <1 can be obtained via

(4:5)-
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Proof. The (i) part of the thesis is obvious by Corollary 4.2.1. In order to prove the (ii) part let
us recall the following Whitt theorem on random time change. Let (Z,),cN, Z be processes in
D[0, 00) and suppose that Z,, = Z. Let (NV,),eN be a sequence of processes with nondecreasing
sample paths starting from 0 such that N, = AI, A > 0. For each n € N, Z,, and N,, are assumed
to be defined on the same probability space. Then

Zn(Ny) = Z(M). (4.6)
Now let us rewrite the process Q" (t) in the following form
N ()

QU (1) = ul 4 ) Z - (4.7)

N ()

NN S N A N(”)@)—W)_ ! _
wo (e s ) “( o) o 2 Ym0 (48)

From assumptions (4.2), (4.4) and the Whitt theorem (4.6) we obtain that

1 N (1)
— Z (Vi —p) = NIX (1)
o(n) (o
as n — 00. Since

¢(n) ¢(n)
converges to u+ct in probability in the Skorokhod topology, the proofis of the (ii) part is complete.
By Corollary 4.2.1 setting Y, = X (k) — X(k—1) 4+, k= 1,2,..., where g > 0 in order
to conclude the converse part we merely have to construct a sequence (N(n))nEN that fulfills the
condition (4.2). To this end we consider the case where the occurrence of the claims is described
by a renewal process V:

(m) (1) —
W) g (C<n> _ ML) o (w)

N(t) = max{n : Zn:Tk < t}.
k=1

The inter-occurrence times (1) ,eN are assumed to be independent, positive random variables with
mean % and variance 0. We define

N (1) = N(nt).

Then for 1 < H <1 and ¢(n) = n” the condition (4.2) is fulfilled (see Furrer et al. [15]). This
completes the proof. a

Remarks.

1. We could omit the point (4.8) and use just the previous relation (4.7) with slightly modified
assumptions to state a more general result on the weak convergence to a self-similar si process.
That is, it is enough to assume that instead of (4.3) we have lim,_ o, ™ = ¢ and change
(4.2) to the condition w = At. Then, if we do not restrict Y}’s to variables with the
finite mean, the resulting H-self similar si process X may be quite general with infinite
mean. Nevertheless, this as a consequence would lead us to an artificial collective risk model
interpretation of the final process @ (cf. Section 4.3). Thus we do not intend to generalize

this theorem.

2. H =1 corresponds to the case when X is trivial, see Proposition 1.1.2.
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4.3 Approximation of ruin probability

Collective risk theory has paid considerable attention to the ruin functional in infinite and finite
time. The weak convergence of Q™ to Q implies, for example

. (n) d .
. sl?sfto Q™) = sl?sfto Q1)

for any tp < 0o, and thus

lim P{ inf QM (t) < } = P{Osi?sftoQ(t) < 0}. (4.9)

n—00 0<t<t0

Therefore we may approximate the finite-time ruin probability of a risk process by the ruin prob-
ability in finite time of the corresponding weak approximation.

Theorem 4.3.1 Consider a risk process R(t) = u + ¢t — Zi\;(i) Yi. Denote the corresponding
finite-time ruin probability by V(u,T). If the assumptions from Theorem 4.2.1 are satisfied for
Yi’s, the sequence N (t) = N(nt), ¢(n) = o' and 0 < H < 1, and the relative safety loading
0:%—1>0, then

: _\H
U (u, T) n%ooP{OsuslgT(u—l—O/\,us A XH(S))<0}.

Proof. For each n € N, we have

N(s)
V(u, T) = P 0<1151£T(u—|—cs—ZYk)<0}

{ isl 1 N
- P{O<S<T ( ot ) Y’“) : 0}
cns 1 Nins)
{«iﬂfwn ( e e & Y’“) - 0}

_ . u cn  Aun\  (N(ns)=dns\ 1 N(ns) B
_P{OsgslfT/n(qb(n)H(Mn) ¢(n)) “( é(n) ) o(n) ];(Yk u))<0}-

Now assume that Ty = T'/n, 6y = “(“7; and ug = u/¢(n) are constants, i.e. we increase 7" and

= P

u with n, and decrease at the same time the safety loading § with n (as H < 1). This means that
a small safety loading is compensated by a large initial capital. Then we obtain

B ) N(ns) — Ant 1 &)
\II(%T)_P{OSI?;TO (uo—l—Oos—,u( o) )_¢(n) kZ::l (Yk—,u)) <0}.

Applying Theorem 4.2.1 and (4.9) we obtain that

\Il(u,T)—>P{<1nf (up + Bos — N X (s ))<0}.

By self-similarity this concludes the proof. a
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4.4 Ruin probabilities for general self-similar processes

In the previous sections we showed that the process ) defined in (4.5) can be looked as an approxi-
mation of a risk process. Our aim in this section is to investigate the probability that the process )
reaches the level 0 before time ¢t. In the Brownian case the probability can be calculated explicitly
(see for instance Asmussen [2]):

— —I_ ct _ 2uc —U —I_ ct
P{ sup (\YV2B(s) — ¢es) > u :(I><u—)—|—e k@<7),
{ogsgt( (s) ) } VAL VAL

where ® is the standard normal distribution and ® = 1 — ®. The following theorems from Furrer
et al. [15] and Michna [27] provide upper bounds where Xy (t) is a standard symmetric a-stable
Lévy motion Z, or a standard fractional Brownian motion By, respectively.

Proposition 4.4.1 (Furrer et al. [15]) Let Z, be a standard SaS Lévy motion. For positive
numbers u, ¢ and A\ we have

su Yoz (s)—es U g hl
A

where G =1 — G and G denotes the cumulative distribution function of a standard SaS variable.

Proposition 4.4.2 (Michna [27]) Let By be a standard fractional Brownian motion with
% < H < 1. Then

P {Ossli};t(/\HBH(s) —cs) > u} <o (%ﬁ) + exp ((/\3%) ) (%ﬁ) .

Now let us state a theorem which yields a lower bound for the ruin probability of the process
@ for an arbitrary self-similar process Xy with H > 0.

Theorem 4.4.1 Let (X (t))i>0 be an arbitrary self-similar process with the exponent H > 0.
If0 < H < 1 and t is sufficiently large, namely Ct(’tfi]—;lf‘l) <1,

then
" - u 1-H , . \H
— > — .
P{Ossli};t(A Xp(s) —es) > u} > G (1 — H) (AH) ] , (4.10)
otherwise
_ + ct
P A X p(s) —es) >uy > G (“—) : 411
{Oggt( H(s) —cs) U} G\ o (4.11)

where G =1 — G and G denotes the distribution function of Xg(1).

Proof. Since the process Xy is H-self-similar we have

P{ sup (A Xp(s) — es) > u} = P{ sup (N X (s) — cts) > u}
0<s<t 0<s<1

Furthermore, it is obvious that

P{ sup (MTHH Xp(s) — ets) > u} > P{/\HtHXH(T) —ctt > u},
0<s<1

35



for all 7 € (0,1].
Eventually, applying one more time the definition of self-similarity we obtain

= u—+ ctt
P{Ossuszt(/\ Xp(s) —es) > U} > P{XH(l) > /\HtHTH}
u—+ ctt
:1_G<@nﬁ)’ 12

for all 7 € (0,1], where G stands for the distribution function of Xz (1).

In order to find the best possible lower bound for the ruin probability in finite time we are
to find minimum of the function f(r) = % on the interval (0, 1]. To this end we calculate the
derivative of the expression: (ur~H + ct71=H) and find out that it is equal to 0 for

uwH .
T=1Tp= { ct(1—H) }fH< L,
00 it H> 1.

Hence, if 79 < 1, then the minimum of the function f on (0, 1] is

o= () (5)

otherwise

This proves the theorem. a

Remark. The condition 0 < H < 1 corresponds to the case when Xp(¢) is non-trivial, has
stationary increments and finite first moment for each ¢.

Since the lower bound (4.10) does not depend explicitly on ¢, it can serve as well as a bound
for the ruin probability for @ in infinite time. Furthermore, the bound defined in (4.11) tends to
G(c/A) when H =1 and to G(0) when H > 1 as t — co. Therefore, we may claim the following,.

Corollary 4.4.1 Let (Xg(t))i>0 be an arbitrary self-similar process with the exponent H > 0.
Then we have

_ 1-H
P{i‘iE“HXH“) e8> } = Gg) 7 ] iH=1, (4.13)
- G(0) if H> 1,

where G =1 — G and G denotes the distribution function of Xg(1).

Remarks.

1. The lower bound (4.13) was already obtained by Norros [28] for a special case when X is a
FBM (H < 1), in the storage model setting.

2. Duffield and O’Connell [13] using the result from Norros [28] showed the bound is in fact
accurate in the logarithmic sense (the case when X is a FBM).
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Considering specific cases when X is a standard Gaussian or a standard Sa.S process, and
letting the initial risk reserve u become large we obtain the following results.

Corollary 4.4.2 If Xy is Gaussian with Xy (1) being a standard normal variable and 0 < H < 1,

then
2-2H 2H
P{i;lg(/\HXH(S)_CS) >u} Zexp{—% (1_UH) (é) }

Proof. Recall the elementary relation

1—®(x) ~ if(ac) ~ exp(—2?/2), forz — o0,

where ¢, f stand for a distribution and density function of the standard normal distribution,
respectively. a

Corollary 4.4.3 If Xy is standard SaSand 0 < H < 1, then

P{sup(/\HXH(s) —cs) > u} > (1 — H)Q(I_H) (A_H) aH‘

>0 U C

Proof. This stems from the fact that the tail probabilities of a standard Sa.S distribution behave
like C'pz~, where (', is constant.

The construction of the lower bound (4.10) in the proof of Theorem 4.4.1 suggests that the
bound should be quite a good estimate. For instance, the bound in Corollary 4.4.2 for H = % gives
in fact exact result for the Brownian motion. Michna [27] shows the lower bound (4.11) yields
a good approximation of the ruin probability for the fractional Brownian motion, when u is large.
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Chapter 5

H-ss processes in financial modelling

A “self-similar” structure is one that looks the same on a small or a large scale. For example,
share prices of stock when plotted against time have very much the same shape on a yearly,
monthly, weekly and even on a daily basis. Brownian motion (%—ss process) as a limit process
is an unavoidable tool in finance. In his famous paper, Bachelier [3] proposed Brownian motion
as an appropriate model for pricing. More recently, in the traditional approach to contingent
pricing, in the Black—Scholes model, the log-Brownian model for the movement of share prices was
used. However it has been empirically demonstrated to be incorrect in a number of ways. Certain
attempts have been made to replace Brownian motion by another self-similar process — a-stable
Lévy motion; see Rachev and Samorodnitsky [32] and Janicki and Weron [20]. It is believed that,
to some extent, such model would explain the large jumps which evidently occur in prices and
which are caused by dramatic political or economic events (see Embrechts et al. [14]). Moreover,
various alternatives have been suggested to account for empirically observed defiances, among them
the fractional Brownian motion which displays dependence between returns on different days, in
stark contrast to Brownian motion (cf. Peters [30] and Bouchaud and Sornette [5]). However, FBM
is not a semimartingale (except in the Brownian case), and therefore there can be no equivalent
martingale measure. Hence, by general results (cf. Rogers [33]) this leads to a conclusion that there
must be arbitrage. This practically disqualifies the FBM model. Nonetheless, FBM has recently
attracted some attention in mathematical finance (see, e.g. Cutland et al. [10] and Dai and Heyde
[11]).

In Section 5.1 we present a test on a DJIA index data which justifies using self-similar models
as asset price processes. In Section 5.2 a modification of the Black—Scholes model is presented.
The idea is to change, in the stochastic differential equation describing discounted stock prices
process Z; with respect to the reference measure @, the differential dB; to dM;, where M, is a
martingale generating the same filtration as Bf and is well defined for % < H < 1. As a result
of the investigation we obtain an option pricing formula which appears to be distinct from the
Black—Scholes one. The differences are illustrated graphically.

5.1 Variance—time plots

We are going to apply a method from Willinger et al. [42], which was called variance—time plots,
for the DJIA index process. The method can be summarized as follows. Let (Xt)tZO be an H-self-

similar process with stationary increments. It is well known that if FX? < oo and H € (%7 1)

then the increment process (Y = (Xgp41 —Xi) 1 £ =0,1,...) exhibits long-range dependence. This
means the time series Y, has the autocovariance function of the form
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r(k) = Cov(Yo, Yk) ~k—oeo Ll(k)kQH—Q, H e (%, 1) , (5.1)

where L1 (k) is a slowly varying function as k& — oco. Property (5.1) implies that the correlations
are not summable and the spectral density has a pole at zero. More specifically, under suitable
conditions on Lq(-), the spectral density has the property

SEN S —ik L 1-2H 5.2
= = 2 (R exp(—ika) ~ispoo La(@)le] (52)

k=—c0

f(#)

for some Ly(-) that is slowly varying at the origin. The best known models with (5.1) and (5.2) are
the fractional Gaussian noise model and the fractional autoregressive integrated moving-average
model (FARIMA). The parameter H describes the long-memory behaviour of the series. Now,
for each m = 1,2,..., let (Y(m) = (Yk(m)) k=1,2,.. ) denote a new time series obtained by
averaging the original series Y over nonoverlapping blocks of size m; that is, for each m = 1,2,.. .,
Y (™) is given by

VI = 1m(Vimmit + -+ Yim), k=1,2,...

From a statistical point of view, the most salient feature of the process Y} is that the variance of
the arithmetic mean decreases more slowly than the reciprocal of the sample size; that is it behaves
like n?H=2 for some H € (%, 1) instead of like n~! for the processes whose aggregated series
converge to a second-order pure noise. Cox [9] showed that a specification of the autocovariance
function satisfying (5.1) (or equivalently of the spectral density function satisfying (5.2)) is the
same as a specification of the sequence (Var(Y(m) :m > 1) with the property

Var(Y™) ~p o am*172,

where @ is a finite positive constant independent of m, and H € (%, 1). On the other hand, for

covariance stationary processes whose aggregate series Y (™) tend to second-order pure noise it is
easy to see that the sequence (Var(Y (™) :m > 1) satisfies

Var(Y™) ~p o bm™,

where b is a finite positive constant independent of m. Thus, for self-similar processes with station-
ary increments the variances of the aggregated processes Y™ m=1,2,..., decrease lineary (for
large m) in log-log plots against m with slopes arbitrary flatter than —1. The so-called variance—
time plots are obtained by plotting log(Var(Y (™)) against log(m) ("time”) and by fitting a line
through the resulting points in the plane, ignoring the small values for m. Values of the estimate
H of the asymptotic slope between —1 and 0 suggest self-similarity.

Example 5.1.1 Let us consider the DJIA index analysed from January 2, 1901 to May 17, 1996.
We define Yy ’s as log-returns of the index. We normalize the data in order to set the variance of
the process Yy to 10. Figure 5.1 shows an asymptotic slope that is clearly different from —1 and is
estimated to be about —0.92, resulting in an estimate of the parameter H of about 0.54.

5.2 Alternative approach to contingent pricing

First let us recall assumptions in the Black—Scholes model.
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Figure 5.1: Variance—time plot of the sequence of log-returns of DJIA index from January 2, 1901
to May 17, 1996.

5.2.1 Black—Scholes model for arbitrary contingent pricing

Let By be, as usually, a standard (zero drift and unit variance) Brownian motion on some probability
space (2, I, P). Let r, p and o be real constants with o > 0. A market in the classical Black—Scholes
model is defined as a pair (A4, S;), where

Ay = eXp(T‘t) )

St = Soexp(o By + put). (5.3)

Interpret A; as the price at time ¢ of a riskless bond and S; as the price, in dollars per share, of a
stock which pays no dividents. Furthermore r is called a fixed (riskless) interest rate, o the volatility
of the stock price process S; and p is his drift. Moreover, in the model, we assume a frictionless
market with continuous trading, namely we demand that the two fundamental securities are traded
continuously with no transaction costs with publically announced prices. Now we consider a ticket
which entitles its bearer to buy one share of stock at the terminal date 7', if he wishes, for a specified
price of K dollars. This is a Furopean call option on the stock, with ezercise price K and expiration
date T'. It is easy to see that the call option is equivalent to a ticket which entitles a bearer to a
payment of X = (Sy — K)7T dollars at time 7. Black and Scholes [4] asserted that there exist a
unique rational value V for the option, namely

log %0 + (r + %UQ)T —Ke T log %0 +(r - %UZ)T
U\/T U\/T ‘

Originally Black and Scholes obtained the valuation formula by solving a differential equation.

V:S()q)(

Our approach to option pricing is based on a martingale method presented by Harrison and Pliska
[17], which generalizes the ideas to arbitrary contingent pricing. The Black—Scholes formula in
this approach is proved by considering so called completeness of the market, finding the reference
measure () via Girsanov theorem, asserting the measure is unique, due to the representation theorem
for martingales, and computing

V = exp(—rT)EQ(X)7
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where X = (S — K)*.
The latter valuation formula is true for an arbitrary contingent claim X.
Now we are going to modify the assumptions of this model.

5.2.2 Martingale approach through the fractional Brownian motion

A modification of the Black—Scholes model which is going to be consider throughout this section is
defined as follows. In (5.3) model stock price fluctuations are modelled by a stochastic differential
equation with respect to the white noise dB;, i.e.

dSt = St (O'dBt + (,u + %0'2) dt) .
If we introduce discounted stock price process

Zt = A;15t7

then applying [t6 formula and Girsanov theorem for the Brownian motion we may claim the
existance of a measure (J, such that

dZ, = o Z;dB, under Q, (5.4)

where B, is a standard BM with respect to that measure.
Now the idea is to substitute the process By in the stochastic differential equation (5.4) for
a process M;, namely

t
M, = / cls%_H(t — s)%_HdBSH7
0

o= [H(QH_ 1)B (; —HH - %)]_17

where B stands for the Beta function and % < H < 1.
First let us take a closer look at the properties of such defined process M;. It turns out (see
Norros et al. [29]) that M, is

e a martingale which generates the same filtration as B},

e Gaussian with FM; = 0 and the second moment EM? = c3t?~2H  where
1 -1
02:(H(QH—l)(Q—QH)B(H—5,2—2H)) ,

e (1— H)-ss,
e a process of independent but not stationary increments,

e a process of continuous paths.
Thus we obtain

dZt = O'thMt.

Since M, is a martingale, the equation has a unique solution given by a stochastic exponential (cf.
Protter [31])
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1
Zy = Ly exp {O‘Mt - 50%0%2_2}[} ,

which is a martingale with continuous paths.
Now let us define

E, = E(AF'X|F).

It is a martingale with respect to F; (the filtration generated by M;, so B). Nonetheless, since
the martingale Z; does not satisfy the representation theorem for martingales we can not guarantee
the existence of a unique predictable process H; such that

t
= Eo—l-/ H,dZ,
0

for an arbitrary contingent claim X (the model is not complete). Thereby we can not construct
an appropriate self-financing strategy. Nevertheless we may compute a non-arbitrage price E(A%IX)
for a specific contingent claim X. Let us take as an example X = (S — K)™.

Example 5.2.1 (M price) An Furopean call option value in the model, driven by the martingale
of FBM M;, is given by

S —2H S _oH
VM Z 5 log 3¢ + rT + $c302T272 ke T log 3¢ + 1T — c302T?272 ‘
cyoT1-H cooT1—H

Proof. We are to compute
VM — =T p(Sr — K)7T.
Since we have
Zt = 6_”5757
the process S; can be expressed as
Lo 2,000
Sy = SoexpoM;+rt — 5020 t .
Hence, it is enough to calculate

VM = =T B (Sqexp(Z +rT) — K)T,

where 7 ~ N(—%C%UQT2_2H7 C%O_QTQ_QH)‘
This concludes the proof. O

The formula we obtained is different from the Black—Scholes one. It is not surprising as
we are aware that the model we use in modelling stock prices has changed, i.e we incorporated
an additional parameter H — index of self-similarity.

We will compare the two formulas using the data from Example 5.1.1 in order to compute
DJIA index options. We take into consideration values of the DJIA index from February 2, 1901 to
May 17, 1996. Analysing the data we obtain that the estimated standard deviation 6 = 0.010644.
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Figure 5.2: M minus BS price for the DJIA index option.

We assume that Sg = 8000 and the striking price K = 7500...8500. We consider index options
on the interval [0,20 days] and set the interest rate r to 0.05/365. Furthermore, Example 5.1.1
justifies the parameter H equal to 0.54. Figure 5.2 depicts the difference between M (obtained by
the martingale M;) and BS price.

To summarize, we have just presented a martingale model based on a fractional Brownian
motion, the model which stems from the classical Black—Scholes one. We may claim that despite of
its disadvantages (further we can add an inevitable Gaussianity of the model) it possesses interesting
features and the new parameter H provides additional information allowing to improve adjustment
to the real-world phenomena.
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Chapter 6

Conclusions

Self-similar processes form exactly the class of possible “asymptotes” which can be obtained by
taking some fixed random process and expanding indefinitely the units in which space and time are
measured. This is the basic reason why such processes play a very large role in many aspects of
probability theory and its applications. The limit theorems (see Propositions 1.1.5 and 1.1.6) gener-
alize the role played by stable laws and processes within the limiting theory of sums of independent
random variables. Due to that fact self-similar processes were originally called “semi-stable” (see
Lamperti [23]).

Self-similar processes are closely related to stationary processes through the Lamperti trans-
formation. In Chapter 2 we describe the classes of transformations leading from self-similar to
stationary processes, and conversely. The relationship is used in Chapter 3 to characterize stable
symmetric self-similar processes via their minimal integral representation. This leads to a unique
decomposition of a symmetric stable self-similar process into three independent parts which are
then characterized. The class of such processes appears to be quite broad and can stand as a basis
of different risk models.

In Chapters 4 and 5 we give examples of applications of self-similar processes in risk modelling.
We come to the conclusion that they appear naturally as weak limits of risk reserve processes in
insurance (Chapter 4). There is much to be done in investigating different self-similar models as the
weak approximations. We already know that quite a vast class of self-similar processes can serve as
the examples. Applying the approximations we can try to cope with the most important functionals
of the risk process, namely the ruin probability in finite and infinite time. In Chapter 5 we intend
to justify that self-similar processes can be used as risk models in finance. We demonstrate this
on a DJIA index data. As the classical Black—Scholes model is the log-Brownian model we try to
look for an alternative model incorporating some of the features of the fractional Brownian motion.
This as a result provides an option pricing formula distinct from the Black—Scholes one.

Summarizing, self-similar models, as we gain inside the structure of self-similar processes, can
be widely used in the risk theory.
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