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Abstract. In the first years after the emergence of deregulated power markets
it became apparent that for the valuation of electricity derivatives we cannot simply
rely on models developed for financial or other commodity markets. However,
before adequate models can be put forward the unique characteristics of electricity
(spot) prices have to be thoroughly analyzed. In particular, the extreme volatility
and price spikes which lead to heavy-tailed distributions of returns. In this paper
we first analyze the stylized facts of electricity prices, then present two modeling
approaches: jump-diffusion and regime-switching, which to some extent address
the pertinent issues.

1. Introduction. Since the discovery of the light bulb, electricity has made a
tremendous impact on the development of our society. Today, it represents a crucial
component of modern way of life, and it is hard to imagine a life without it. To provide
every household with a sufficient supply of electric energy, power generator companies
were set up. They used to serve dedicated geographical areas from which consumers had
to buy their electricity. However, since the late 1980’s dramatic changes to the structure
of the electricity business have taken place around the world. The original monopolistic
situation was replaced by deregulated markets, where consumers in principle were free
to choose their provider – the market place for electric power had become competitive.
To facilitate trading in these new free markets, exchanges for electric power have been
organized. Everything from spot contracts to derivatives, like (standardized, but not
marked to market) forward, futures and option contracts, are traded. Bilateral trading
has evolved even more dramatically. Apart from spot and forward contracting, large
numbers of structured and exotic products are used.

With deregulation and introduction of competition a new challenge has emerged for
power market participants. Extreme price volatility, which can be even two orders of
magnitude higher than for other commodities or financial instruments, has forced pro-
ducers and wholesale consumers to hedge not only against volume risk but also against
price movements. Price forecasts have become a fundamental input to an energy com-
pany’s decision-making and strategy development. This in turn has propelled research
in electricity price modeling and forecasting.

Electricity price modeling and forecasting can be classified in terms of the planning
horizon’s duration, as short-term (STPF), medium-term (MTPF) and long-term price
forecasting (LTPF). However, there is no consensus as to what the thresholds should ac-
tually be. The main objective of LTPF is investment profitability analysis and planning,
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such as determining the future sites or fuel sources of power plants. Lead times are typi-
cally measured in years. Medium-term or monthly time horizons are generally preferred
for balance sheet calculations, risk management and derivative pricing. In many cases
not the actual point forecasts but the distributions of future prices over certain time pe-
riods are evaluated. As this type of modeling has a long-dated tradition in finance, inflow
of “finance solutions” is readily observed; for recent reviews see Bunn and Karakatsani
(2003), Eydeland and Wolyniec (2003) and Weron (2005b).

Not only monthly or annual time horizons are interesting for generators, utilities and
power marketers. When bidding for spot electricity in a power exchange or a pool-type
market, actors are requested to express their bids in terms of prices and quantities. Buy
(sell) orders are accepted in order of increasing (decreasing) prices until total demand
(supply) is met. A power plant that is able to forecast spot prices can adjust its own
production schedule accordingly and hence maximize its profits. Since the day-ahead
spot market typically consists of 24 hourly auctions that take place simultaneously one
day in advance, forecasting with lead times from a few hours to a few days is of prime
importance in day-to-day market operations (Bunn, 2000, Misiorek et al., 2006).

In this paper, however, we do not aim at reviewing the whole spectrum of electricity
price modeling and forecasting. Rather we want to concentrate on medium-term modeling
of spot prices with the objective of derivatives valuation. Consequently, we do not require
our models to accurately forecast hourly prices but to recover the main characteristics
of electricity prices at a daily time scale. In particular, the extreme volatility and price
spikes which lead to heavy-tailed distributions of returns.

The paper is structured as follows. In Section 2 we will review the stylized facts of
electricity prices. Naturally, we will place special emphasis on their heavy-tailed nature.
In particular, in Section 3 we will analyze the distributions of electricity prices. These
two sections will give us a feeling of what are the essential properties of power markets in
general (and spot prices in particular) and thus give us sufficient grounds for discussing
modeling approaches in Section 4. Finally, in Section 5 we will conclude and comment
on derivatives pricing.

2. Stylized facts. In this section we will review the so-called stylized facts of se-
lected power markets. We will illustrate our findings mostly on data from Scandinavia,
which is well known for the world’s most mature power exchange Nord Pool. It also
offers vast amounts of reliable and “homogeneous” data, see Fig. 1 where over 12 years
of spot price data – containing 111000 observations in total – is displayed.

Many of the presented characteristics are universal, in the sense that they are shared
by most electricity spot markets in the world. Yet, a few are very specific to Scandinavia.
Moreover, as will be seen below, some of the features are dramatically different from those
found in the financial or other commodity markets.

2.1. Price spikes. One of the most pronounced features of electricity markets are the
abrupt and generally unanticipated extreme changes in the spot prices known as jumps
or spikes. Within a very short period of time, the system price can increase substantially
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Figure 1: Hourly system price for the spot market (Elspot) at the Nordic power exchange
Nord Pool from May 4, 1992 until December 31, 2004 (over 12 years of data and 111000
observations in total). In a matter of hours the price can increase tenfold leading to
a price spike like that of February 5, 2001 when the price reached the all-time-high of
1951.76 NOK/MWh, see the inset.

and then drop back to the previous level, see Fig. 1 where the Nord Pool system (spot)
price is depicted at an hourly time resolution.

These temporary price escalations account for a large part of the total variation of
changes in spot prices and firms that are not prepared to manage the risk arising from
price spikes can see their earnings for the whole year evaporate in a few hours. And
we have to stress that the price of electricity is far more volatile than that of other
commodities normally noted for extreme volatility. Applying the classical notion of
volatility – the standard deviation of returns – we obtain that measured on the daily
scale (i.e. for daily prices):

• treasury bills and notes have a volatility of less than 0.5%,

• stock indices have a moderate volatility of about 1-1.5%,

• commodities like crude oil or natural gas have volatilities of 1.5-4%,

• very volatile stocks have volatilities not exceeding 4%,

• and electricity exhibits extreme volatility – up to 50%!

The spike intensity is also non-homogeneous in time. The spikes are especially notorious
during on-peak hours, i.e. around 9h and 18h on business days, and during high con-
sumption periods: winter in Scandinavia, summer in mid-western U.S., etc. As the time
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horizon increases and the data are aggregated the spikes are less and less apparent. For
weekly or monthly averages, the effects of price spikes are usually neutralized in the data.

It is not uncommon that prices from one day to the next or even within just a few hours
can increase tenfold. The “spiky” nature of spot prices is the effect of non-storability
of electricity. Electricity to be delivered at a specific hour cannot be substituted for
electricity available shortly after or before. As currently there is no efficient technology
(at a reasonable price) for storing vast amounts of power, it has to be consumed at the
same time as it is produced. Hence, extreme load fluctuations – caused by severe weather
conditions often in combination with generation outages or transmission failures – can
lead to price spikes.

The spikes are normally quite short-lived, and as soon as the weather phenomenon or
outage is over, prices fall back to a normal level (Kaminski, 1999, Weron et al., 2004). For
instance, on Monday, February 5, 2001, the spot price for delivery of electricity between
6 and 7h was 190.33 NOK/MWh, see the inset in Fig. 1. Three hours later, it reached
the all-time-high of 1951.76 NOK/MWh, an increase of more than a factor of ten. While
at the end of the day electricity was again priced moderately below 200 NOK/MWh. It
should be mentioned, though, that Nord Pool is known for having less pronounced spikes
than many other markets.

Despite their rarity, price spikes are the very motive for designing insurance protection
against electricity price movements. This is one of the most serious reasons for including
discontinuous components in realistic models of electricity price dynamics. Failing to do
so, will greatly underestimate, say, the option premium, and thus increase the risk for
the writer of the option. For instance in the U.S., where the size of the spikes can be
much more severe, there are examples of power companies having to file for bankruptcy
after having underestimated the risks related to price spikes. A textbook example is the
bankruptcy of the Power Company of America (PCA), a well established power-trading
company (Weron, 2005b).

2.2. Seasonality. It is well known that electricity demand exhibits seasonal fluctuations
(Eydeland and Wolyniec, 2003, Kaminski, 1999, Pilipovic, 1998). They mostly arise due
to changing climate conditions, like temperature and the number of daylight hours. In
some countries also the supply side shows seasonal variations in output. Hydro units,
for example, are heavily dependent on precipitation and snow melting, which varies
from season to season. These seasonal fluctuations in demand and supply translate into
seasonal behavior of electricity prices, and spot prices in particular. A typical, for the
Nordic countries, behavior of the price process is presented in Fig. 2. Superimposed on
the daily average system price from the Nord Pool market is a sinusoid with a linear
trend. The sinusoid nearly duplicates the long-term annual fluctuations – high prices
in winter time and low prices during the summers. Pilipovic (1998) and Roncoroni and
Geman (2003) successfully applied the “sinusoidal” approach to a number of electricity
price processes. In some markets, however, no clear annual seasonality is present and the
spot prices behave similarly throughout the year with spikes occurring in all seasons.

Depending on the time resolution studied, modeling of the weekly or even the daily
periodicity may be required. Apart from the annual “sinusoidal” behavior there is a
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Figure 2: Nord Pool market daily average system price since December 30, 1996 until
March 26, 2000 (1170 daily observations, 169 full weeks). Superimposed on the plot is
an approximation of the annual seasonality by a sinusoid with a linear trend.

substantial intra-day variability. Higher than average prices are observed during the
morning and evening peaks, while mid-day and night prices tend to be lower than average.
The intra-week variability, related to the business day-weekend structure, is also non-
negligible. The weekday prices are higher than those during the weekends, when major
businesses are closed.

The modeling of intra-week and intra-day seasonalities may be approached analo-
gously to modeling annual fluctuations, i.e. by simply taking a sine function of a one
week period (Borovkova and Permana, 2004), or better a sum of sine functions with dis-
tinct periods to recover the non-sinusoidal weekly structure (Cartea and Figueroa, 2005).
Alternatively, we may apply the moving average technique, which reduces to calculating
the average weekly price profile (Brockwell and Davis, 1996) or just extract the mean or
median week. Yet another approach was taken by Burger et al. (2004) who incorporated
a SARIMA forecast of the system load into the spot price formula. In this way the
seasonalities present in load data get automatically transferred to the price series. The
technique is justified by the fact that the spot price is heavily dependent on the system
load as a result of the supply stack structure (Weron, 2005b).

2.3. Mean Reversion. Energy spot prices are in general regarded to be mean reverting
or anti-persistent. The speed of mean reversion, however, depends on several factors
including the commodity being analyzed and the delivery provisions associated with the
commodity (Pindyck, 1999). In electricity markets, it is common to observe sudden
price spikes with very fast mean reversion to the previous price levels. In natural gas
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markets, the mean reversion rate is considerably slower, but the volatilities for longer-
dated contracts are usually lower than the volatilities for the shorter-dated ones. In oil
markets, the mean reversion rate is thought to be longer term, and it can take months,
or even years, for prices to revert to their mean.

Among all financial time series spot electricity prices are perhaps the best example
of anti-persistent data. Simonsen (2003) and Weron (2002) used Hurst R/S analysis,
Detrended Fluctuation Analysis (DFA), Average Wavelet Coefficient (AWC) and peri-
odogram regression methods to verify this claim for various power markets. For time
intervals ranging from a day to almost four years the Hurst exponent H was found to be
significantly lower than 0.5, indicating mean reversion. Importantly, these results are not
an artifact of the seasonality nor the spiky character of electricity spot prices. Although,
the Hurst exponent generally slightly increases after removal of seasonality and/or spikes,
it still is significantly lower than 0.5. For time intervals of less than 24 hours, however,
H is above 0.5, suggesting persistence on the intra-daily level.

3. Distributions of electricity prices. It has been long known that financial
asset returns are not normally distributed. Rather, the empirical observations exhibit
excess kurtosis. This heavy-tailed or leptokurtic character of the distribution of price
changes has been repeatedly observed in various financial and commodity markets (Carr
et al., 2002, Rachev and Mittnik, 2000). The pertinent question is whether electricity
prices are also heavy-tailed, and if yes, what probability distributions best describe the
data.

Although the answer to the first part of the question is pretty straightforward, the
second part requires further analysis. In this section we will model electricity prices with
distributions from two popular heavy-tailed families (α-stable and generalized hyperbolic)
and assess their goodness-of-fit.

3.1. Stable distributions. In response to the empirical evidence Mandelbrot (1963)
and Fama (1965) proposed the stable distribution as an alternative model to the Gaus-
sian law. There are at least two good reasons for modeling financial variables using
stable distributions. Firstly, they are supported by the generalized Central Limit Theo-
rem, which states that stable laws are the only possible limit distributions for properly
normalized and centered sums of independent, identically distributed random variables.
Secondly, stable distributions are leptokurtic. Since they can accommodate the fat tails
and asymmetry, they fit empirical distributions much better.

Stable laws – also called α-stable, stable Paretian or Lévy stable – were introduced
by Paul Lévy during his investigations of the behavior of sums of independent random
variables in the early 20th century. The α-stable distribution requires four parameters
for complete description: α ∈ (0, 2], β ∈ [−1, 1], σ > 0 and µ ∈ R. The tail exponent
α determines the rate at which the tails of the distribution taper off. When α = 2, the
Gaussian distribution results. When α < 2, the variance is infinite and the tails are
asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law behavior. More
precisely, using a central limit theorem type argument it can be shown that (Janicki and



Rafa�l Weron 7

Weron, 1994, Samorodnitsky and Taqqu, 1994):{
limx→∞ xαP(X > x) = Cα(1 + β)σα,

limx→∞ xαP(X < −x) = Cα(1 + β)σα,
(1)

where Cα is a function of α only. When α > 1, the mean of the distribution exists and
is equal to µ. When the skewness parameter β is positive (negative), the distribution is
skewed to the right (left), i.e. the right (left) tail is thicker. The last two parameters, σ
and µ, are the usual scale and location parameters.

From a practitioner’s point of view the crucial drawback of the stable distribution
is that, with the exception of three special cases (α = 2, 1, 0.5), its probability density
function (PDF) and cumulative distribution function (CDF) do not have closed form
expressions. Hence, the α-stable distribution can be most conveniently described by its
characteristic function φ(t) – the inverse Fourier transform of the PDF. However, there
are multiple parameterizations for α-stable laws and much confusion has been caused by
these different representations. The most popular parameterization of the characteristic
function of X ∼ Sα(σ, β, µ), i.e. an α-stable random variable with parameters α, σ, β
and µ, is given by (Samorodnitsky and Taqqu, 1994, Weron, 1996):

logφ(t) =



−σα|t|α{1 − iβsign(t) tan πα

2
} + iµt, α �= 1,

−σ|t|{1 + iβsign(t) 2
π

log |t|} + iµt, α = 1.

(2)

For numerical purposes, it is often useful to use Nolan’s (1997) parameterization:

log φ0(t) =



−σα|t|α{1 + iβsign(t) tan πα

2
[(σ|t|)1−α − 1]} + iµ0t, α �= 1,

−σ|t|{1 + iβsign(t) 2
π

log(σ|t|)} + iµ0t, α = 1.

(3)

The S0
α(σ, β, µ0) representation is a variant of Zolotarev’s (1986) (M)-parameterization,

with the characteristic function and hence the density and the distribution function
jointly continuous in all four parameters. In particular, percentiles and convergence to
the power-law tail vary in a continuous way as α and β vary. The location parameters of
the two representations are related by µ = µ0−βσ tan πα

2
for α �= 1 and µ = µ0−βσ 2

π
log σ

for α = 1.
The estimation of stable law parameters is in general severely hampered by the lack

of known closed–form density functions for all but a few members of the stable fam-
ily. Numerical approximation or direct numerical integration are nontrivial and burden-
some from a computational point of view. As a consequence, the maximum likelihood
(ML) estimation algorithm based on such approximations is difficult to implement and
time consuming for samples encountered in practice. Yet, the ML estimates (Mittnik
et al., 1999, Nolan, 2001) are almost always the most accurate, closely followed by the
regression-type estimates (Kogon and Williams, 1998, Koutrouvelis, 1980) and McCul-
loch’s (1986) quantile method.
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Simulation of stable variates is relatively easy and involves trigonometric transforma-
tions of two independent uniform variates (Chambers et al., 1976, Weron, 1996). Other
methods that utilize series representations have also been proposed but are not that
universal and, in general, more computationally demanding (see Weron, 2004).

3.2. Hyperbolic distributions. In response to remarkable regularities discovered by
geomorphologists in the 1940s, Barndorff-Nielsen (1977) introduced the hyperbolic law
for modeling the grain size distribution of windblown sand. Excellent fits were also
obtained for the log-size distribution of diamonds from a large mining area in South
West Africa. Almost twenty years later the hyperbolic law was found to provide a very
good model for the distributions of daily stock returns from a number of leading German
enterprises (Eberlein and Keller, 1995, Küchler et al., 1999), giving way to its today’s use
in stock price modeling and market risk measurement. The name of the distribution is
derived from the fact that its log-density forms a hyperbola. Recall that the log-density
of the normal distribution is a parabola. Hence the hyperbolic distribution provides the
possibility of modeling heavier tails.

The hyperbolic distribution is defined as a normal variance-mean mixture where the
mixing distribution is the generalized inverse Gaussian (GIG) law with parameter λ = 1,
i.e. it is conditionally Gaussian. More precisely, a random variable Z has the hyperbolic
distribution if:

(Z|Y ) ∼ N (µ+ βY, Y ) , (4)

where Y is a generalized inverse Gaussian GIG(λ = 1, χ, ψ) random variable and N(m, s2)
denotes the Gaussian distribution with mean m and variance s2. Relation (4) implies
that a hyperbolic random variable Z ∼ H(ψ, β, χ, µ) can be represented in the form:

Z ∼ µ+ βY +
√
YN(0, 1), (5)

with the characteristic function:

φZ(u) = eiuµ
∫ ∞

0

eiβzu−
1
2
zu2

dFY (z). (6)

Here FY (z) denotes the distribution function of a generalized inverse Gaussian random
variable Y with parameter λ = 1. Hence, the hyperbolic PDF is given by:

fH(x) =

√
ψ/χ

2
√
ψ + β2K1(

√
ψχ)

e−
√

{ψ+β2}{χ+(x−µ)2}+β(x−µ), (7)

where the normalizing constant Kλ(t) is the modified Bessel function of the third kind
with index λ (here λ = 1), also known as the MacDonald function.

Sometimes another parameterization of the hyperbolic distribution with δ =
√
χ

and α =
√
ψ + β2 is used. Then the probability density function of the hyperbolic

H(α, β, δ, µ) law can be written as:

fH(x) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

e−α
√
δ2+(x−µ)2+β(x−µ), (8)
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where δ > 0 is the scale parameter, µ ∈ R is the location parameter and 0 ≤ |β| < α.
The latter two parameters – α and β – determine the shape, with α being responsible
for the steepness and β for the skewness. The calculation of the PDF is straightforward,
however, the CDF has to be numerically integrated from eqn. (8).

The hyperbolic law is a member of a more general class of generalized hyperbolic dis-
tributions, which also includes the normal-inverse Gaussian (NIG) and variance-gamma
distributions as special cases. The generalized hyperbolic law can be represented as a
normal variance-mean mixture where the mixing distribution is the generalized inverse
Gaussian (GIG) law with any λ ∈ R. The normal-inverse Gaussian (NIG) distributions
were introduced by Barndorff-Nielsen (1995) as a subclass of the generalized hyperbolic
laws obtained for λ = −1

2
. The density of the normal-inverse Gaussian distribution is

given by:

fNIG(x) =
αδ

π
eδ
√
α2−β2+β(x−µ) K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
. (9)

Like for the hyperbolic distribution the calculation of the PDF is straightforward, but
the CDF has to be numerically integrated from eqn. (9).

At the “expense” of four parameters, the NIG distribution is able to model symmetric
and asymmetric distributions with possibly long tails in both directions. Its tail behavior
is often classified as “semi-heavy”, i.e. the tails are lighter than those of non-Gaussian
stable laws, but much heavier than Gaussian. Interestingly, if we let α tend to zero the
NIG distribution converges to the Cauchy distribution (with location parameter µ and
scale parameter δ), which exhibits extremely heavy tails. The tail behavior of the NIG
density is characterized by the following asymptotic relation:

fNIG(x) ≈ |x|−3/2e(∓α+β)x for x→ ±∞. (10)

In fact, this is a special case of a more general relation with the exponent of |x| being equal
to λ− 1 (instead of −3/2), which is valid for all generalized hyperbolic laws (Barndorff-
Nielsen and Blaesild, 1981). Obviously, the NIG distribution may not be adequate to deal
with cases of extremely heavy tails such as those of Pareto or non-Gaussian stable laws.
However, empirical experience suggests an excellent fit of the NIG law to financial data
(Weron, 2004). Moreover, the class of normal-inverse Gaussian distributions possesses
an appealing feature that the class of hyperbolic laws does not have. Namely, it is closed
under convolution, i.e. a sum of two independent NIG random variables is again NIG
(Barndorff-Nielsen, 1995).

The parameter estimation of generalized hyperbolic distributions can be performed
by the maximum likelihood method, since there exist closed-form formulas (although,
involving special functions) for the densities of these laws. The computational burden is
not as heavy as for α-stable laws, but it still is considerable. The main factor for the
speed of the estimation is the number of modified Bessel functions to compute. For a
data set with n independent observations we need to evaluate n and n+1 Bessel functions
for NIG and generalized hyperbolic distributions, respectively, whereas only one for the
hyperbolic. This leads to a considerable reduction in the time necessary to calculate the
likelihood function in the hyperbolic case. We also have to say that the optimization is
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challenging. Some of the parameters are hard to separate since a flat-tailed generalized
hyperbolic distribution with a large scale parameter is hard to distinguish from a fat-
tailed distribution with a small scale parameter, see Barndorff-Nielsen and Blaesild (1981)
who observed such a behavior already for the hyperbolic law. The likelihood function
with respect to these parameters then becomes very flat, and may have local mimima.

The most natural way of simulating generalized hyperbolic variables stems from the
fact that they can be represented as normal variance-mean mixtures. The algorithm,
based on relation (5), is fast and efficient if we have a handy way of simulating generalized
inverse Gaussian variates. This is true for λ = −1

2
. Other members of the generalized

hyperbolic family are computationally more demanding (for a review see Weron, 2004).

3.3. Case Study: Distribution of EEX electricity prices. Let us look at mean
daily spot (base-load) prices from the German power exchange EEX since January 1,
2001 until December 31, 2003. The prices, their first differences and the returns (i.e. first
differences of the log-prices) are depicted in Fig. 3. Neither the Gaussian, nor the heavy-
tailed alternatives yield a reasonable fit. The reason for this is the spurious skewness due
to weekly seasonality.

If the data is filtered (deseasonalized with respect to the weekly period; the annual
seasonality is not that apparent in German electricity prices) then the distribution of
first differences or returns is more prone to modeling. In this sample the periodicity
was removed by applying the moving average technique, which reduces to calculating the
weekly profile and subtracting it from the spot prices (Brockwell and Davis, 1996, Weron,
2005b). The deseasonalized price series and their first differences are plotted in Fig. 4.
The heavy-tailed nature of the phenomenon is apparent. The fits of Gaussian, hyperbolic,
NIG and α-stable distributions to price changes are presented in the bottom panels of
Fig. 4. The parameter estimates and goodness-of-fit statistics are summarized in Table 1.
The Anderson-Darling test statistics may be treated as a weighted Kolmogorov statistics
which puts more weight to the differences in the tails of the distributions. Although no
asymptotic results are known for α-stable or generalized hyperbolic laws, approximate
critical values for these goodness-of-fit tests can be obtained via the bootstrap technique
(Čižek et al., 2005). In this paper, though, we do not perform hypothesis testing and just
compare the test values. Naturally, the lower the values the better the fit. Apparently, the
stable distribution yields the best fit, not only visually (where it recovers the power-law
tail) but also in terms of the goodness-of-fit statistics. Both the Gaussian and hyperbolic
laws largely underestimate the tails of the distribution.

Very often in practical applications not the electricity prices themselves but rather
their logarithms are modeled. To discover the price distributions of log-prices we repeat
the analysis for the first differences of log-prices, i.e. for price returns. This time after
removing seasonality we apply the log transformation before taking the differences. The
deseasonalized log-price series and their first differences are plotted in Fig. 5. The fits
of Gaussian, hyperbolic, NIG and α-stable distributions to price returns are presented in
the bottom panels of Fig. 5, while the parameter estimates and goodness-of-fit statistics
are summarized in Table 2. Again, the stable distribution yields the best fit in terms
of the goodness-of-fit statistics. But visually the supremacy is not that apparent. In
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Figure 3: Mean daily EEX spot electricity prices from the period January 1, 2001 –
December 31, 2003 (top left panel), their first differences (top right panel) and their
returns (bottom left panel). Bottom right panel: The empirical and fitted CDFs to
the price differences: Gaussian (red dotted), hyperbolic (green long-dashed), NIG (blue
dashed) and α-stable (cyan solid). None of the distributions gives a reasonable fit. The
reason for this is the spurious skewness due to weekly seasonality.
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Figure 4: Deseasonalized (with respect to the weekly period) mean daily EEX spot
electricity prices from the period January 1, 2001 – December 31, 2003 (top left panel)
and their first differences (top right panel). Bottom left panel: The empirical and fitted
CDFs to the price differences: Gaussian (red dotted), hyperbolic (green long-dashed),
NIG (blue dashed), and α-stable (cyan solid). Bottom right panel: The heavy-tailed
nature of the phenomenon is apparent from the double logarithmic plot of the left tail of
the price distribution.
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Table 1: Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG
and α-stable distributions fitted to the first differences of the deseasonalized (with respect
to the weekly period) mean daily EEX spot electricity prices from the period January 1,
2001 – December 31, 2003. The symbol “+INF” denotes a very large number (infinity
in computer arithmetic).

Parameters α σ, δ β µ

Gaussian fit 11.4548 0.0083
Hyperbolic fit 0.2099 0.0851 −0.0001 0.0136
NIG fit 0.0469 3.2181 −0.0031 0.0083
α-stable fit 1.5104 2.9005 −0.2616 −0.4898

Test values Anderson-Darling Kolmogorov

Gaussian fit +INF 6.9894
Hyperbolic fit +INF 1.8669
NIG fit 1.7890 0.9138
α-stable fit 0.5419 0.6831

Table 2: Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG
and α-stable distributions fitted to the returns of the deseasonalized (with respect to the
weekly period) mean daily EEX spot electricity prices from the period January 1, 2001
– December 31, 2003. The symbol “+INF” denotes a very large number (infinity in
computer arithmetic).

Parameters α σ, δ β µ

Gaussian fit 24.4395 0.0445
Hyperbolic fit 0.0664 0.3653 0.0001 0.0047
NIG fit 0.0233 12.6781 −0.0014 0.0445
α-stable fit 1.4837 9.9668 −0.1915 −1.3267

Test values Anderson-Darling Kolmogorov

Gaussian fit +INF 4.0124
Hyperbolic fit 2.6215 1.1440
NIG fit 0.7570 0.7752
α-stable fit 0.5237 0.6603
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Figure 5: Logarithm of the deseasonalized (with respect to the weekly period) mean
daily EEX spot electricity prices from the period January 1, 2001 – December 31, 2003
(top left panel) and their first differences, i.e. price returns (top right panel). Bottom
left panel: The empirical and fitted CDFs to the price returns: Gaussian (red dotted),
hyperbolic (green long-dashed), NIG (blue dashed), and α-stable (cyan solid). Bottom
right panel: The heavy-tailed nature of the phenomenon is apparent, but the tails are
lighter than Paretian (power-law).
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fact the second in line NIG distribution also gives relatively low goodness-of-fit statistics.
Like before, the Gaussian and hyperbolic laws largely underestimate the tails of the
distribution.

3.4. Case Study: Distribution of Nord Pool electricity prices. Let us now cali-
brate these four distributions to Nord Pool market daily average system prices (denoted
by Pt) from December 30, 1996 until March 26, 2000. In contrast to German spot prices,
the Scandinavian data exhibits a well pronounced annual cycle, see Fig. 2. It can be
quite well approximated by a sinusoid of the form:

St = A sin

(
2π

365
(t+B)

)
+ Ct. (11)

Following Weron (2005a) we propose to estimate the parameters through a two step pro-
cedure. First, a least squares fit is used to obtain initial estimates of all three parameters
(A, B and C). Then the time shift parameter B is chosen such as to maximize the
p-value of the Bera-Jarque test for normality applied to the deseasonalized and spikeless
log-prices (for spike definition and identification procedure see Case Study 4.2) yielding:
Â = 45.19, B̂ = 94.8 and Ĉ = −0.0295.

Like in case of EEX data, we deal with the intra-week variations by preprocessing the
data using the moving average technique, which reduces to calculating the weekly profile
st and subtracting it from the spot prices. In this Case Study we fit the distributions to
the logarithm of the deseasonalized prices (with respect to the weekly and annual cycles;
in short: deseasonalized log-prices):

dt = log(Pt − st − St). (12)

The time series dt is plotted in the top panel of Fig. 6.
The fits of Gaussian, hyperbolic, NIG and α-stable distributions to price returns are

presented in the bottom panels of Fig. 6, while the parameter estimates and goodness-
of-fit statistics are summarized in Table 3. The stable distribution yields the best fit,
both visually and in terms of the goodness-of-fit statistics. Note the extremely low value
of the Anderson-Darling statistics implying a very good fit of the tails of the empirical
distribution. Like for EEX data, the Gaussian and hyperbolic laws largely underestimate
the tails of the distribution.

4. Modeling and forecasting electricity prices. Price process models
lie at the heart of derivatives pricing and risk management systems. If the price process
chosen is inappropriate to capture the main characteristics of electricity prices, the results
from the model are likely to be unreliable. On the other hand, if the model is too
complex the computational burden will prevent its on-line use in trading departments.
Econometric models offer the best of the two worlds; they are a trade-off between model
parsimony and adequacy to capture the unique characteristics of power prices.

The very good fit of the α-stable distribution to electricity price returns (documented
in Case Studies 3.3-3.4; see also Mugele et al., 2005, Rachev et al., 2004), could be
the motive for applying α-stable Lévy motion to modeling electricity prices. We have
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Figure 6: Top panel: Logarithm of the deseasonalized, with respect to the annual and
weekly cycles, Nord Pool market daily average system price since December 30, 1996
until March 26, 2000 (1170 daily observations, 169 full weeks). Circles denote spikes; for
spike definition see Case Study 4.2. Bottom left panel: The empirical and fitted CDFs
to the returns of the mean daily deseasonalized (with respect to the weekly and annual
periods) Nord Pool spot electricity prices from the period December 30, 1996 – March
26, 2000 (see Fig. 2): Gaussian (red dotted), hyperbolic (green long-dashed), NIG (blue
dashed), and α-stable (cyan solid). Bottom right panel: The power-law type left tail is
clearly visible in the double logarithmic plot.
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Table 3: Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG
and α-stable distributions fitted to the returns of the mean daily deseasonalized (with
respect to the weekly and annual periods) Nord Pool spot electricity prices from the
period December 30, 1996 – March 26, 2000. The symbol “+INF” denotes a very large
number (infinity in computer arithmetic).

Parameters α σ, δ β µ

Gaussian fit 7.0514 −0.0280
Hyperbolic fit 0.2587 0.8437 0.0029 −0.1179
NIG fit 0.1033 3.6808 −0.0009 −0.0280
α-stable fit 1.6078 2.8062 −0.0115 −0.0431

Test values Anderson-Darling Kolmogorov

Gaussian fit +INF 4.3882
Hyperbolic fit +INF 0.9933
NIG fit 0.9621 0.7333
α-stable fit 0.2025 0.4861

to remember, though, that extreme price changes or returns are generally coupled in
“up-jump”–“down-jump” pairs constituting the price spikes (at least at the daily time
scale). Consequently, although (α-stable) Lévy motion can recover the distributional
properties of returns very well it is not a good candidate for the model of electricity
prices. Besides missing the “up-jump”–“down-jump” correlation it does not allow for
control of the intensity of the jumps, a property that might be crucial in some power
markets. In this section we discuss two alternative approaches that not only recover the
distributional properties of electricity prices but also the spiky behavior.

4.1. Jump-diffusion models. As it is very natural to approach a problem by adapting
already known solutions, it was only a question of time before standard stochastic models
of modern finance found their way to the power market. However, the most prominent
of all models – geometric Brownian motion (GBM) – could not be applied directly to
electricity prices. It does not allow for price spikes and mean-reversion.

Early modeling approaches involved modifications of GBM that would allow for
exactly these two electricity price characteristics. Kaminski (1997) utilized the jump-
diffusion model of Merton (1976), which is essentially constructed by adding a Poisson
(or jump) component to standard GBM. Its main drawback is that it ignores another fun-
damental feature of electricity prices: the mean-reversion to the “normal” price regime.
If a price spike occurred GBM would “accept” the new price level as a normal event and
would proceed randomly from there with no consideration of prior price levels, and a
small chance of returning to the pre-spike level.



18 Heavy tails and electricity prices

In a comparative study Johnson and Barz (1999) evaluated the effectiveness of vari-
ous diffusion-type models in describing the evolution of spot electricity prices in several
different markets. Apart from arithmetic and geometric Brownian motion, they tested
mean-reverting diffusion (also known as the arithmetic Ornstein-Uhlenbeck process; orig-
inally proposed by Vasicek (1977) for modeling interest rate dynamics) and geometric
mean-reverting diffusion with and without jumps in the form of a compound Poisson
process. The authors concluded that the geometric mean-reverting jump-diffusion model
gave the best performance and that all models without jumps were inappropriate for
modeling electricity prices.

A general specification of jump-diffusion models involves a stochastic differential equa-
tion (SDE) that governs the dynamics of the price process:

dpt = µ(pt, t)dt+ σ(pt, t)dWt + dq(pt, t). (13)

The Wiener process Wt is responsible for small fluctuations (around the long-term mean
for mean-reverting processes) and the pure jump process q(pt, t) produces infrequent, but
large upward jumps. The latter is a compound Poisson process with given intensity and
severity of jumps (see Chapter 14 in Čižek et al., 2005), typically independent of Wt. As
in the models investigated by Johnson and Barz (1999), the drift term µ(pt, t) usually
forces mean-reversion to a stochastic or deterministic long-term mean at a constant rate,
for instance, it could be of the form µ(pt, t) = α − βpt = β(α

β
− pt). For simplicity, the

volatility term σ(pt, t) is often set to a constant. However, empirical evidence suggests
that electricity prices exhibit heteroscedasticity (Karakatsani and Bunn, 2004, Misiorek
et al., 2006) and alternative specifications have been postulated (Deng, 1999, Escribano
et al., 2002).

A serious flaw of both the arithmetic and geometric mean-reverting jump-diffusion
models is the slow speed of mean-reversion after a jump. When electricity prices spike,
they tend to return to their mean reversion levels much faster than when they suffer
smaller shocks. However, a high rate of mean-reversion β, required to force the price back
to its normal level after a jump, would lead to a highly overestimated β for prices outside
the “spike regime”. To circumvent this, Escribano et al. (2002) allowed signed jumps. But
if these randomly follow each other, the spike shape has obviously a very low probability
to be generated. Roncoroni and Geman (2003) suggested using mean-reversion coupled
with upward and downward jumps, with the direction of a jump being dependent on
the current price level. Weron et al. (2004) postulated that a positive jump be always
followed by a negative jump of (approximately) the same size to capture the rapid decline
of electricity prices after a spike. On the daily level, i.e. when analyzing average daily
prices, this approach seems to be a good approximation since spikes typically do not last
more than a day. Borovkova and Permana (2004) proposed the drift to be given by a
potential function, which forces the price to return to its seasonal level after an upward
jump. Interestingly, it allows the rate of mean-reversion to be a continuous function of
the distance from this level. Other modifications have been also proposed including time-
varying parameters, regime-switching and stochastic volatility (Deng, 1999, Escribano et
al., 2002).
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Another limitation of the mean-reverting jump-diffusion model is that it assumes the
(mean-reverting) diffusion process to be independent of the Poisson component. This is
not the case in electricity. In particular, prices are highly unlikely to spike overnight when
demand and prices are very low. To cope with this observation Eydeland and Geman
(1999) proposed a model where the jump size is proportional to the current spot price.
As a result the spikes tend to be more severe during high price periods.

Furthermore, empirical data suggests that the homogeneous Poisson process may not
be the best choice for the jump component. Price spikes are seasonal; they typically
show up in high price seasons, like winter in Scandinavia and summer in central U.S.
For this reason Weron (2005a) considered using a non-homogeneous Poisson process
(NHPP) with a (deterministic) periodic intensity function, instead of a HPP with a
constant jump intensity rate.1 However, the scarcity of jumps identified by the filtering
procedure (only nine in over three years of Nord Pool data; see Case Study 4.2) made
identification of any adequate periodic function problematic. This paucity of spikes did
not refrain Roncoroni and Geman (2003) from fitting NHPPs to spike occurrences in
three major U.S. power markets (COB, PJM and ECAR), despite using even shorter
time series consisting of only 750 daily2 average prices from the period 1997-1999. A
highly convex, two parameter periodic intensity function was chosen to ensure that the
price jump occurrence clusters around the peak dates and rapidly fades away; this effect
indeed can be observed for PJM and ECAR prices, but not for COB. The parameters were
identified using 6, 16 and 27 (for COB, PJM and ECAR, respectively) spike occurrences,
which makes the calibration results highly questionable, especially for the COB market.
Hopefully, when larger homogeneous datasets become available (or perhaps when hourly
data are considered) the application of NHPPs will be statistically justified.

4.2. Case Study: A mean-reverting jump diffusion model for Nord Pool spot
prices. Let us now calibrate a jump diffusion model to Nord Pool market daily average
system prices (denoted by Pt) from December 30, 1996 until March 26, 2000. The weekly
(st) and annual (St) seasonalities are first removed from the original prices (for details
see Case Study 3.4), then a log transformation is applied. The resulting time series
dt = log(Pt − st − St) is plotted in Fig. 6.

Reflecting the fact that on the daily scale spikes typically do not last more than
one time point (i.e. one day), like in Weron et al. (2004), we let a positive jump be
always followed by a negative jump of about the same magnitude. This is achieved by
letting dt be the sum of a mean reverting stochastic part Xt and an independent jump
component. The jump component is modeled by a compound Poisson process of the
form Jtdqt, where Jt is a random variable responsible for the spike severity and qt is a
(homogeneous) Poisson process with intensity κ.

The choice of Jt and κ depends on the definition of the spike. We adopt the following:
a spike is an increase in the log-price (formally: an increase in dt) exceeding H = 2.5
standard deviations of all price changes (i.e. dt − dt−1) followed by a decrease in the
price. The threshold level is set arbitrarily. The usual threshold H = 3 results in only

1For a review of Poisson processes see e.g. Chapter 14 in Čižek et al. (2005).
2Apparently the datasets comprised only business day prices.
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Figure 7: The normal probability plot of the stochastic part Xt of the deseasonalized log-
price dt in eqn. (14). The crosses form a straight line indicating a Gaussian distribution.
The tail of the spike size distribution is depicted in the inset. Clearly, the normal and log-
normal laws underestimate the severity of extreme spikes; spikes rather follow a power-law
of order x−1.4.

six spikes in the whole series, while H = 2.5 yields nine spikes and captures all “obvious”
peaks seen in the plot of dt, see Fig. 6. The extraction of the spikes from the original
series is performed iteratively – the algorithm filters the series and removes all price
changes greater than H standard deviations of all price changes at that specific iteration.
The algorithm is repeated until no further spikes can be filtered. After the spikes are
extracted, the price dt at these time points is replaced by the arithmetic average of the
two neighboring prices yielding the deseasonalized and “spikeless” log-prices Xt.

The extracted nine spikes do not allow for a sound statistical analysis of the spike
severity nor intensity. Nevertheless, we fitted Gaussian, log-normal and Pareto loss distri-
butions to spike sizes. The spike severities constitute a power-law of order x−1.4 (see the
inset in Fig. 7), hence, the Pareto law should yield a good fit. Unfortunately both mo-
ment and maximum likelihood estimates return unreasonable values for the parameters,
either out of range or a few orders of magnitude higher than the slope of the power-law
fit. The log-normal distribution log Jt ∼ N(µ, ρ2) with µ̂ = −1.2774 and ρ̂ = 0.65124 is
the next best. Since Jt represents the size of the logarithm of the spike magnitude it is
truncated at the maximum price attainable in the market (10000 NOK) to ensure a finite
mean of the price process Pt. Moreover, we let qt be a HPP with intensity κ = 0.0076207.
Again the sample suggests that this may not be the best choice – six spikes were observed
in winter and only one in each of the other seasons. However, rigorous estimation of a
periodic intensity function (of a NHPP) using only nine time points is not possible.
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Putting all the facts together, the jump diffusion model has the following form:

dt = Jtdqt +Xt or Pt = st + St + eJtdqt+Xt , (14)

where Xt is the stochastic component. The exponent in the last term of eqn. (14)
reflects the fact that the marginal distribution of Xt is approximately Gaussian, whereas
the deseasonalized, with respect to the weekly and annual cycles, and “spikeless” spot
prices can be very well described by a log-normal distribution, i.e. their logarithms are
approximately Gaussian. The fit is surprisingly good, the Bera-Jarque test for normality
yields a p-value of 0.97, see also Fig. 7. For comparison, the p-value for the “spiky”
deseasonalized log-prices dt is less than 0.0001, allowing us to reject normality at any
reasonable level. This jump diffusion model was successfully used by Weron (2005a) for
pricing Asian electricity options.

4.3. Regime-switching models. The “spiky” character of spot electricity prices sug-
gests that there exists a non-linear mechanism switching between normal and high-price
states or regimes. This observation gave Robinson (2000) the grounds to fit a logis-
tic smooth transition autoregressive (LSTAR) model to prices in the English and Welsh
wholesale electricity Pool. He showed that the LSTAR model performed superior to a
linear autoregressive alternative. However, we believe that the regime-switching mech-
anism is governed by an unobservable process rather than the price process itself. The
spot electricity price is the outcome a vast number of variables including fundamentals
(like loads and network constraints) but also the unquantifiable psycho- and sociological
factors that can cause an unexpected and irrational buyout of certain commodities or
contracts leading to pronounced price spikes (Misiorek et al., 2006).

In this context the regime-switching or Markov-switching models seem to be an ad-
equate non-linear alternative. In particular, they allow for spikes that last for more
than just one time period (an hour, a day), without the disadvantage of slow mean-
reversion after a jump. Their usefulness has been already recognized and a number of
models for spot electricity prices have been proposed (Bierbrauer et al., 2004, Ethier
and Mount, 1998, Huisman and de Jong, 2003, Huisman and Mahieu, 2003, Weron et
al., 2004).

The underlying idea behind the regime-switching scheme is to model the observed
stochastic behavior of a specific time series by two (or more) separate phases or regimes
with different underlying processes. In other words the parameters of the underlying
process may change for a certain period of time and then fall back to their original
structure. Thus, regime-switching models divide the time series into different phases that
are called regimes. For each regime one can define separate and independent different
underlying price processes. The switching mechanism between the states is assumed to be
governed by an unobserved random variable (Franses and van Dijk, 2000). For example,
the spot price can be assumed to display either low or very high volatility at each point
in time, depending on the regime Rt = 1 or Rt = 2. Consequently, we have a probability
law that governs the transition from one state to another. The price processes pRt,t being
linked to each of the two regimes are supposed to be independent from each other. The
transition matrix Q contains the probabilities qij of switching from regime i at time t to
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regime j at time t+ 1, for i, j = {1, 2}:

Q = (qij) =

(
q11 q12
q21 q22

)
=

(
q11 1 − q11

1 − q22 q22

)
. (15)

Because of the Markov property the current state Rt at time t of a Markov chain depends
on the past only through the most recent value Rt−1:

P{pt = j|pt−1 = i, pt−2 = k, . . .} = P{pt = j|pt−1 = i} = pij. (16)

Consequently the probability of being in state j at time t + m starting from state i at
time t is given by

(P(Rt+m = j | Rt = i))i,j=1,2 = (Q′)m · ei, (17)

where Q′ denotes the transpose of Q and ei denotes the ith column of the 2× 2 identity
matrix.

The variety of regime-switching models is due to the possibility of choosing both
the number of regimes (2, 3, etc.) and the different stochastic process for the price in
each regime. Especially for the spike regime it may be interesting to choose alternative
distributions. Since spikes happen very rarely but usually are of great magnitude the
use of heavy-tailed distributions (like Pareto, Burr, etc.) could be considered. Also the
process that switches between the states could be chosen in accordance with the typical
behavior of spot electricity prices.

Parameter estimation of the processes in the regime-switching models is not straight-
forward since the regime is only latent and hence not directly observable. Hamilton (1990)
introduced an application of the Expectation-Maximization (EM) algorithm of Dempster
et al. (1977) where the whole set of parameters θ is estimated by an iterative two-step
procedure. Based on starting values θ̂(0) for the parameter vector θ of the underlying
stochastic processes in the first step the conditional probabilities P(Rt = j|p1, ..., pT ; θ) for
the process being in regime j at time t are calculated. The probabilities are referred to as
smoothed inferences. Then in the second step new and more exact maximum likelihood
estimates θ̂ for all model parameters are calculated by using the smoothed inferences
from step 1. With each new vector θ̂(n) the next cycle of the algorithm is started in order
to reevaluate the smoothed inferences and so on.

Every iteration of the EM algorithm generates new estimates θ̂(n+1) as well as new
estimates for the smoothed inferences. Hamilton (1990) shows that each iteration cycle of
the sample increases the log-likelihood function and the limit of this sequence of estimates
reaches a (local) maximum of the log-likelihood function.

4.4. Case Study: Regime-switching models for Nord Pool spot prices. In this
Case Study we fit three regime-switching models to the logarithm of the deseasonalized
average daily spot prices from the Nord Pool power exchange since January 1, 1997 until
April 25, 2000. For details on obtaining dt from raw data see Case Studies 3.4 and 4.2.
The deseasonalized data exhibits several extreme events that can be considered as spikes,
see Fig. 6. While most spikes only last for one day there are periods where the prices
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Figure 8: The deseasonalized spot Nord Pool log-price dt since October 27, 1997 until
December 16, 1997 (top panel). The probability of being in the spike regime for the
two-regime model with log-normal spikes (bottom panel).

exhibit three or more extreme events in a row, a behavior that could be considered as
consecutive spikes, see the top panel in Fig. 8. This is the motivation for fitting the
two-regime models with the base regime dynamics given by

dYt,1 = (c1 − βYt,1)dt+ σ1dWt, (18)

and the dynamics in the spike regime following three different distributions:

• Gaussian
Yt,2 ∼ N(c2, σ

2
2),

• log-normal
log(Yt,2) ∼ N(c2, σ

2
2),

• Pareto

Yt,2 ∼ FPareto(c2, σ
2
2) = 1 −

(c2
x

)σ2
2

.

The estimation results are summarized in Table 4. As expected, in all models the
probability of remaining in the base regime is very high: q11 ≈ 0.98 for the Gaussian
and log-normal and q11 = 0.9842 for the Pareto specification. However, the probability
of remaining in the spike regime is also relatively high: q22 = 0.6337 for the Gaussian,
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Table 4: Estimation results for the two-regime models fitted to the deseasonalized log-
price dt for the period January 1, 1997 – April 25, 2000. E(Yt,i) is the level of mean
reversion for the base regime (i = 1) and the expected value of the spike regime (i = 2),
qii is the probability of remaining in the same regime in the next time step and P(R = i)
is the unconditional probability of being in regime i.

Regime Parameter Estimates Statistics

β ci σ2
i E(Yt,i) Var(Yt,i) pii P(R = i)

Two-regime model with Gaussian spikes

Base 0.0427 0.2086 0.0018 4.8801 0.0216 0.9802 0.9489
Spike — 4.9704 0.0610 4.9704 0.0610 0.6337 0.0511

Two-regime model with lognormal spikes

Base 0.0426 0.2078 0.0018 4.8807 0.0217 0.9800 0.9485
Spike — 1.6018 0.0024 4.9678 0.0600 0.6325 0.0515

Two-regime model with Pareto spikes

Base 0.0427 0.2087 0.0020 4.8837 0.0231 0.9842 0.9664
Spike — 6.6848 4.2382 4.9837 0.7931 0.5464 0.0336

q22 = 0.6325 for the log-normal and q22 = 0.5464 for the Pareto model. The data points
with a high probability of being in the jump regime, P(Rt = 2) > 0.5, tend to be grouped
in blocks, see Fig. 8.

Considering the unconditional probabilities we find that there is a 5.11%, 5.15% and
3.36% probability of being in the spike regime for the Gaussian, log-normal and Pareto
two-regime models, respectively. Surprisingly, the Gaussian and log-normal distributions
produce almost identical results. A closer inspection of the parameter estimates uncovers
the mystery – with such a choice of parameter values the log-normal distribution very
much resembles the Gaussian law. However, using a heavy-tailed distribution, like the
Pareto law, gives lower probabilities for being and remaining in the spike regime and a
clearly higher variance.

Simulated price trajectories were used to check for similarity with real prices and
stability of results. Reestimating the models with simulated data led to only slightly
biased estimates for the parameters. We also checked the simulation results considering
spikes as the most distinguished feature of electricity spot prices, see Table 5. Defining
a spike as a change in the log-prices that is greater than 30% – either in positive or
negative direction – we find that the regime-switching models produce significantly more
spikes than there could be observed in real data. While the number of extreme events
are overestimated in all models (see the values of the upper quantiles v0.99 and v0.995

in Table 5), the magnitude of the largest spike in either direction is underestimated in
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Table 5: Performance of the estimated regime-switching models is assessed by comparing
the number of spikes, the return distributions’ upper quantiles (v0.99 and v0.995) and the
extreme events.

# spikes v0.99 v0.995 max min

Data (dt) 9.00 0.1628 0.2235 1.1167 −0.7469
2-regime (normal) 17.26 0.3310 0.4523 0.7580 −0.8038
2-regime (log-normal) 18.05 0.3353 0.4648 0.7937 −0.7875
2-regime (Pareto) 33.32 0.5410 0.7851 2.1688 −2.2602

the Gaussian and log-normal models and overestimated by the Pareto distribution. This
is somewhat surprising when we recall the results of Case Study 4.2. There the spike
severities were very well approximated by a power-law of order x−1.4. Here the exponent
is well above 4, i.e. it has lighter tails. Yet the spike severities are overestimated. Perhaps
the estimation procedure yields a relatively too large scaling parameter.

5. Conclusions. After reviewing the stylized facts of electricity prices and ana-
lyzing return distributions we have elaborated on two distinct electricity price models:
jump-diffusion and regime-switching. Since both models have been calibrated using “real
world” data (i.e. spot prices) we need to include the risk premium before we can use them
for pricing options or other derivatives. One way of finding the market price of risk λ is
to imply it from option prices (or other derivatives). This technique resembles recovery
of the implied volatility in the Black-Scholes model. The procedure consists of finding
λ∗ such that it minimizes the mean squared error between the market and model option
prices. This technique has been used, for instance, by Cartea and Figueroa (2005), Lucia
and Schwartz (2002) and Weron (2005a) who calibrated either a constant or a linear λ
and applied the method for pricing electricity derivatives.
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