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R. WERON (Wroc�law)

PERFORMANCE OF THE ESTIMATORS OF STABLE LAW PARAMETERS

Abstract: In this paper, we discuss the issue of estimation of the parameters of stable laws.
We present an overview of the known methods and compare them on samples of different sizes
and for different values of the parameters. Performance tables are provided.

1 Introduction

The Central Limit Theorem, which offers the fundamental justification for approximate normal-
ity, points to the importance of α–stable (sometimes called stable) distributions: they are the
only limiting laws of normalized sums of independent, identically distributed random variables.
Gaussian distributions, the best known member of the stable family, have long been well under-
stood and widely used in all sorts of problems. However, they do not allow for large fluctuations
and are thus inadequate for modeling high variability. Non-Gaussian stable models, on the other
hand, do not share such limitations. In general, the upper and lower tails of their distributions
decrease like a power function. In literature, this is often characterized as heavy or long tails.
In the last two or three decades, data which seem to fit the stable model have been collected in
fields as diverse as economics, telecommunications, hydrology and physics.

This paper is divided into sections which, we hope, will guide the reader from theory, through
simulation to estimation of parameters. Section 2 is an introduction to the stable family. We
explain the differences between the most often used, in literature, representations of the skewed
stable characteristic function and the confusion around it. Section 3 is a guide to simulation of
α–stable random variables. The equality in law of a skewed stable variable and a function of two
independent uniform and exponential variables (Theorem 3.1) is discussed. The section is closed
by a discussion of some minor errors in this formula found in different publications. Section 4 is
concerned with the issue of estimation of the parameters of stable laws. We present an overview
of the known methods and compare them on samples of different sizes and for different values
of the parameters. Basing on the results of Section 3 we are able to compare the performance of
four most often used (Fama–Roll’s, McCulloch’s, moments and regression) estimators of stable
law parameters. Throughout the paper, we have tried to make this exciting material easily
accessible to researchers and practitioners. We hope that we have accomplished this.
—————————————–
AMS 1991 subject classifications. Primary 60E07, 62G07.
Key words and phrases. Stable distributions, parameter estimation.
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2 α–Stable Distribution

The notion of stable probability law was introduced by Lévy (1924) during his early investiga-
tions of the behavior of sums of independent random variables. The ambiguous name stable has
been assigned to these distributions because a sum of two independent random variables having
a stable distribution with index α is again stable with the same index α.

The stable distribution can be most conveniently described by its characteristic function
(cf). The following formula is derived from the so–called Lévy representation of the cf of an
infinitely divisible law, given in Lévy (1934) (for details see Hall (1981)).

Definition 2.1 A random variable X is α–stable if and only if its characteristic function is
given by

log φ(t) =



−σα|t|α{1 − iβsign(t) tan πα

2 } + iµt, α �= 1,

−σ|t|{1 + iβsign(t) 2π log |t|} + iµt, α = 1,
(2.1)

where α ∈ (0, 2], β ∈ [−1, 1], σ > 0, µ ∈ R.

Since (2.1) is characterized by four parameters we will denote α–stable distributions by
Sα(σ, β, µ) and write

X ∼ Sα(σ, β, µ) (2.2)

to indicate that X has the stable distribution with the characteristic exponent (index) α, scale
parameter σ, skewness β and location parameter µ. When σ = 1 and µ = 0 the distribution is
called standard stable.

Some authors use a form similar to (2.1), but with the sign on the term involving β reversed
for α �= 1. This ”β” is positive (negative) when the distribution is negatively (positively) skewed,
except when α = 1. This confusing convention was used in many important papers, including
Press (1972a, 1972b), Paulson et al. (1975), Leitch and Paulson (1975) and Koutrouvelis (1980,
1981).

The canonical representation (2.1) has one disagreeable feature. The functions φ(t) are not
continuous functions of the parameters determining them, they have discontinuities at all points
of the form α = 1, β �= 0. However, as Zolotarev (1986) remarks, setting

µ1 =




µ + βσα tan πα
2 , α �= 1,

µ, α = 1,
(2.3)

yields the expression

log φ(t) =



−σα{|t|α − itβ(|t|α−1 − 1) tan πα

2 } + iµ1t, α �= 1,

−σ|t|{1 + iβsign(t) 2π log |t|} + iµ1t, α = 1,
(2.4)

which is a function jointly continuous in α and β. The drawback of this form is that µ1 does
no longer have the natural interpretation as a location parameter. Most authors, therefore, use
the form (2.1) of the cf.

Another form of the cf, whose use can be justified by considerations of an analytic nature
(see Zolotarev (1986)), is the following.
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Definition 2.2 A random variable X is α–stable iff its characteristic function is given by

log φ(t) =



−σα

2 |t|α exp{−iβ2sign(t)π
2K(α)} + iµt, α �= 1,

−σ2|t|{π
2 + iβ2sign(t) log |t|} + iµt, α = 1,

(2.5)

where

K(α) = α− 1 + sign(1 − α) =




α, α < 1,

α− 2, α > 1.
(2.6)

The parameters σ2 and β2 are related to σ and β, from the representation (2.1), as follows. For
α �= 1, β2 is such that

tan
(
β2

πK(α)
2

)
= β tan

πα

2
, (2.7)

and the new scale parameter

σ2 = σ

(
1 + β2 tan2

πα

2

)1/(2α)
. (2.8)

For α = 1, β2 = β and σ2 = 2
πσ.

The probability density functions (pdf) of stable random variables exist and are continuous
but, with a few exceptions, they are not known in closed form. The exceptions are

• the Gaussian distribution: S2(σ, 0, µ) = N(µ, 2σ2),

• the Cauchy distribution: S1(σ, 0, µ),

• the Lévy distributions: S1/2(σ, 1, µ), S1/2(σ,−1, µ).

3 Computer Generation of α–Stable Random Variables

The complexity of the problem of simulation of sequences of stable random variables results
from the fact that there are no analytic expressions for the inverse F−1 of the df. The only
exceptions are the Gaussian, the Cauchy and the Lévy distributions, for which simple methods
of simulation have been found.

A solution of the problem was found by a path started in the article by Kanter (1975), in
which a direct method was given for simulating Sα(1, 1, 0) random variables, for α < 1. It turned
out that this method was easily adopted to the general case. Chambers et al. (1976) were the
first to give the formulas.

Theorem 3.1 Let

γ0 = −π

2
β2

K(α)
α

,

γ be uniformly distributed on (−π
2 ,

π
2 ) and W be an independent exponential random variable

with mean 1. Then
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• for α �= 1

X =
sinα(γ − γ0)

(cos γ)1/α

(
cos(γ − α(γ − γ0))

W

)(1−α)/α

, (3.1)

is Sα(1, β2, 0) and

• for α = 1

X = (
π

2
+ β2γ) tan γ − β2 log

(
W cos γ
π
2 + β2γ

)
(3.2)

is S1(1, β2, 0)

for the representation (2.5).

Proof: see Weron (1995).
Applying this theorem one can easily construct a method of computer generation of a skewed

random variable X ∼ Sα(1, β, 0), in the representation (2.1). For α ∈ (0, 2] and β ∈ [−1, 1]:

• generate a random variable V uniformly distributed on (−π
2 ,

π
2 ) and an independent expo-

nential random variable W with mean 1;

• for α �= 1 compute

X = Sα,β × sin(α(V + Bα,β))
(cos(V ))1/α

×
(

cos(V − α(V + Bα,β))
W

)(1−α)/α

, (3.3)

where

Bα,β =
arctan(β tan πα

2 )
α

,

Sα,β =
[
1 + β2 tan2

πα

2

]1/(2α)
;

• for α = 1 compute

X =
2
π

[
(
π

2
+ βV ) tan V − β log

(
W cos V
π
2 + βV

)]
. (3.4)

Bα,β accounts for the parameter change from β2 to β and takes place of γ0 in (3.1). Sα,β accounts
for the parameter change from σ2 to σ (see (2.8)).

Formula (3.3) was initially presented by Janicki and Weron (1994). However, they gave an
incorrect form for Cα,β (the denominator is 1 − |1 − α| instead of α, Formula (3.5.2), page 50),
which corresponds to our Bα,β, and a computationally more complicated form for Dα,β (our
Sα,β). They also did not provide the formula for α = 1.

Chambers et al. (1976) give a formula ((2.3) on page 341) for α �= 1 equivalent to (3.3), in
the representation (2.5). Their formula for α = 1 ((2.4) on page 341) has a slightly incorrect
form: under the logarithm is

π
2
W cos V
π
2
+βV whereas it should be W cos V

π
2
+βV . However, this has no impact
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on their numerical algorithm rstab, since it uses a continuous representation, equivalent to
(2.4), instead of (2.5).

We have given formulas for simulation of standard stable random variables. Using the
following property, which follows from the form of the cf, we can simulate a stable random
variable for all admissable values of the parameters α, σ, β and µ:

If X ∼ Sα(1, β, 0) then

Y =




σX + µ, α �= 1,

σX + 2
πβσ log σ + µ, α = 1,

(3.5)

is Sα(σ, β, µ).

4 Estimation of Stable Law Parameters

The problem of estimating the parameters of a stable distribution is in general severely hampered
by the lack of known closed–form density functions for all but a few members of the stable family.
Most of the conventional methods in mathematical statistics, including maximum likelihood
estimation method, cannot be used in this case, since these methods depend on an explicit form
for the density. However, there are numerical methods that have been found useful in practice
and are discussed in this section.

Given a sample x1, ..., xn from Sα(σ, β, µ) we will provide estimates α̂, σ̂, β̂ and µ̂ of α, σ, β
and µ respectively.

4.1 Maximum Likelihood Method

DuMouchel (1971) was the first to obtain approximate ML estimates of α and σ (assuming
µ = 0). A multinomial approximation to the likelihood function is used in his approach. Under
some additional assumptions on α̂ and the likelihood function, DuMouchel (1973) has shown
the obtained estimates to be consistent and asymptotically normal. However, the computational
effort involved seems considerable.

A direct method can be formulated, after Brorsen and Yang (1990), as follows. The standard
symmetric stable pdf is given by (see Zolotarev (1986), Theorem 2.2.3, page 74)

fα(x) =
α

π|1 − α|x
1/(α−1)

π/2∫
0

Uα(γ, 0)e−xα/(α−1)Uα(γ,0)dγ, (4.1)

for α �= 1, x > 0, where Uα is defined by

Uα(γ, γ0) =
(

sinα(γ − γ0)
cos γ

)α/(1−α) cos(γ − α(γ − γ0))
cos γ

, (4.2)

and γ0 is defined in Theorem 3.1. Therefore, the parameters α, σ and µ can be estimated from
the observations x1, ..., xn by maximizing the log likelihood function

n∑
i=1

log fα(zi) = n logα− n log(α− 1)π
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+
n∑

i=1

log zi

α− 1

+
n∑

i=1

log

π/2∫
0

Uα(γ, 0)e−z
α/(α−1)
i Uα(γ,0)dγ, (4.3)

where zi = |xi − µ|/σ.
To avoid the discontinuity and nondifferentiability of the symmetric α–stable density function

at α = 1, α is restricted to be greater than one. Caution must be used when evaluating the
integrals (4.1) and (4.3), since the integrands are singular at γ = 0.

Based on (4.3), Brorsen and Yang (1990) performed Monte Carlo simulations with fairly good
results. An obvious disadvantage of this method is that it is a highly nonlinear optimization
problem and no initialization and convergence analysis is available.

4.2 Sample Quantiles Methods

Let xf be the f–th population quantile, so that Sα(σ, β, µ)(xf ) = f . Let x̂f be the corresponding
sample quantile, i.e. x̂f satisfies Fn(x̂f ) = f . As McCulloch (1986) points out, to avoid spurious
skewness in finite samples, a correction must be made. If the xi’s are arranged in ascending
order, the correction may be performed by identifying xi with x̂q(i), where q(i) = 2i−1

2n , and then
interpolating linearly to f from the two adjacent q(i) values. Then x̂f is a consistent estimator
of xf , the f quantile.

4.2.1 Fama–Roll Method

Fama and Roll (1968, 1971) provided estimates for parameters of symmetric (β = 0, µ = 0)
stable laws with 1 < α ≤ 2. They propose to estimate σ by

σ̂ =
x̂0.72 − x̂0.28

1.654
. (4.4)

McCulloch (1986) notices that Fama and Roll base their estimator of σ on the fortuitous ob-
servation that (x0.72 − x0.28)/σ lies within 0.4% of 1.654 for all 1 < α ≤ 2, when β = 0. This
enables them to estimate σ by (4.4) with less than 0.4% asymptotic bias without first knowing
α. However, when β �= 0, the search for an invariant range such as the one they found becomes
futile.

The characteristic exponent α, on the other hand, can be estimated from the tail behavior
of the distribution. Fama and Roll take α̂ satisfying

Sα̂

(
x̂f − x̂1−f

2σ̂

)
= f. (4.5)

They find that f = 0.95, 0.96, 0.97 works best for estimating α. This method unnecessarily
compounds the small asymptotic bias in the estimator of σ into the estimator of α. Tabulated
values of Sα̂ can be found in Brothers et al. (1983) or in Samorodnitsky and Taqqu (1994).

Fama and Roll also note that since xj ’s follow a stable distribution, for every p,
∑p

i=1 xi ∼
Sα(σ1, 0, 0), where σ1 = p1/ασ. Solving for α and replacing the parameters by their estimators
gives

α̂ =
log p

log σ̂1 − log σ̂
. (4.6)
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The choice of p quite questionable. Our preliminary simulations proved this estimator to be
inferior to all other estimators of α compared in this paper and we have not studied it extensively
in Section 4.4.

For 1 < α ≤ 2, the stable distribution has finite mean. Hence, the sample mean is a consistent
estimate of the location parameter µ. A more robust estimate is the p percent truncated sample
mean – the arithmetic mean of the middle p percent of the ranked observations. Numerous
simulations proved the 50% truncated mean to work well when the range of α is unknown.

4.2.2 McCulloch’s Method

Fama–Roll’s method is simple but suffers from a small asymptotic bias in α̂ and σ̂ and restrictions
on α and β. McCulloch (1986) generalized and improved this method. He provided consistent
estimators of all four parameters, with 0.6 ≤ α ≤ 2, while retaining the computational simplicity
of Fama–Roll’s method.

After McCulloch, define

vα =
x0.95 − x0.05
x0.75 − x0.25

, (4.7)

which is independent of both σ and µ. Let v̂α be the corresponding sample value. It is a
consistent estimator of vα.

Define
vβ =

x0.95 + x0.05 − 2x0.50
x0.95 − x0.05

, (4.8)

and let v̂β be the corresponding sample value. vβ is also independent of both σ and µ. As a
function of α and β it is strictly increasing in β for each α. The statistic v̂β is a consistent
estimator of vβ .

vα and vβ are functions of α and β. This relationship may be inverted and the parameters
α and β may be viewed as functions of vα and vβ

α = ψ1(vα, vβ), β = ψ2(vα, vβ). (4.9)

Substituting vα and vβ by their sample values yields estimators α̂ and β̂.
Table 4.1 shows α as a function of vα and vβ. Note that ψ1(vα,−vβ) = ψ1(vα, vβ). With

finite samples, it is possible that v̂α may be less than its smallest permissible value of 2.439, and
therefore be offscale in this table. In this case, α̂ should be set equal to 2.0 and β̂ may be set to
0.0.

Table 4.2 shows β as a function of vα and vβ. Note that ψ2(vα,−vβ) = −ψ2(vα, vβ). Entries in
this table greater then 1.0 are required in order to permit accurate bivariate linear interpolation.
If the interpolated estimate of β is greater then 1.0, the estimate should be truncated to 1.0.

Table 4.3 shows the behavior of

vσ =
x0.75 − x0.25

σ
, (4.10)

as a function φ3(α, β). Since α̂, β̂, x̂0.75 and x̂0.25 are all consistent estimators of their corre-
sponding population values, a consistent estimator of σ is

σ̂ =
x̂0.75 − x̂0.25

φ3(α̂, β̂)
. (4.11)
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vα vβ

0.0 0.1 0.2 0.3 0.5 0.7 1.0
2.439 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.5 1.916 1.924 1.924 1.924 1.924 1.924 1.924
2.6 1.808 1.813 1.829 1.829 1.829 1.829 1.829
2.7 1.729 1.730 1.737 1.745 1.745 1.745 1.745
2.8 1.664 1.663 1.663 1.668 1.676 1.676 1.676

3.0 1.563 1.560 1.553 1.548 1.547 1.547 1.547
3.2 1.484 1.480 1.471 1.460 1.448 1.438 1.438
3.5 1.391 1.386 1.378 1.364 1.337 1.318 1.318
4.0 1.279 1.273 1.266 1.250 1.210 1.184 1.150
5.0 1.128 1.121 1.114 1.101 1.067 1.027 0.973

6.0 1.029 1.021 1.014 1.004 0.974 0.935 0.874
8.0 0.896 0.892 0.887 0.883 0.855 0.823 0.769
10.0 0.818 0.812 0.806 0.801 0.780 0.756 0.691
15.0 0.698 0.695 0.692 0.689 0.676 0.656 0.595
25.0 0.593 0.590 0.588 0.586 0.579 0.563 0.513

Table 4.1: α = ψ1(vα, vβ) = ψ1(vα,−vβ).

vα vβ

0.0 0.1 0.2 0.3 0.5 0.7 1.0
2.439 0.000 2.160 1.000 1.000 1.000 1.000 1.000
2.5 0.000 1.592 3.390 1.000 1.000 1.000 1.000
2.6 0.000 0.759 1.800 1.000 1.000 1.000 1.000
2.7 0.000 0.482 1.048 1.694 1.000 1.000 1.000
2.8 0.000 0.360 0.760 1.232 2.229 1.000 1.000

3.0 0.000 0.253 0.518 0.823 1.575 1.000 1.000
3.2 0.000 0.203 0.410 0.632 1.244 1.906 1.000
3.5 0.000 0.165 0.332 0.499 0.943 1.560 1.000
4.0 0.000 0.136 0.271 0.404 0.689 1.230 2.195
5.0 0.000 0.109 0.216 0.323 0.539 0.827 1.917

6.0 0.000 0.096 0.190 0.284 0.472 0.693 1.759
8.0 0.000 0.082 0.163 0.243 0.412 0.601 1.596
10.0 0.000 0.074 0.147 0.220 0.377 0.546 1.482
15.0 0.000 0.064 0.128 0.191 0.330 0.478 1.362
25.0 0.000 0.056 0.112 0.167 0.285 0.428 1.274

Table 4.2: β = ψ2(vα, vβ) = −ψ2(vα,−vβ).

McCulloch also gives an estimate of µ. However, due to the discontinuity of the cf at
α = 1, β �= 0 in the representation (2.1), this procedure is much more complicated. We refer
the interested reader to the original paper by McCulloch (1986). To illustrate the use of the
presented method let us consider the following example.

Example 4.1 Analysis of series B from Box and Jenkins (1976). Denote by {zt} the
realized daily IBM stock prices for the period 17th May 1961 – 2nd November 1962 (369 entries).
The analysis of {zt} is often based on xt = 100(log zt − log zt−1), the one day percentage return
under continuous compounding. See Fig. 4.1.

We can easily compute the quantiles of {xt}
x̂0.05 = −3.20168,
x̂0.50 = 0.00000,
x̂0.95 = 2.54767,
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α β
0.0 0.25 0.5 0.75 1.0

2.0 1.908 1.908 1.908 1.908 1.908
1.9 1.914 1.915 1.916 1.918 1.921
1.8 1.921 1.922 1.927 1.936 1.947
1.7 1.927 1.930 1.943 1.961 1.987
1.6 1.933 1.940 1.962 1.997 2.043
1.5 1.939 1.952 1.988 2.045 2.116

1.4 1.946 1.967 2.022 2.106 2.211
1.3 1.955 1.984 2.067 2.188 2.333
1.2 1.965 2.007 2.125 2.294 2.491
1.1 1.980 2.040 2.205 2.435 2.696
1.0 2.000 2.085 2.311 2.624 2.973

0.9 2.040 2.149 2.461 2.886 3.356
0.8 2.098 2.244 2.676 3.265 3.912
0.7 2.189 2.392 3.004 3.844 4.775
0.6 2.337 2.635 3.542 4.808 6.247
0.5 2.588 3.073 4.534 6.636 9.144

Table 4.3: vσ = φ3(α, β) = φ3(α,−β).

x̂0.75 − x̂0.25 = 1.57573.

Then using (4.7) and (4.8) we can calculate v̂α = 3.64870 and v̂β = −0.11375. Linear interpo-
lation to these values on Tables 4.1 and 4.2 yields

α̂ = 1.35133 and β̂ = −0.17803.

In turn, linear interpolation to α̂ and β̂ on Table 4.3 gives v̂σ = 1.96811. Thus, from (4.11),

σ̂ = 0.80063.

4.3 Sample Characteristic Function Methods

Given an i.i.d. random sample x1, ..., xn of size n, define the sample cf by

φ̂(t) =
1
n

n∑
j=1

eitxj . (4.12)

Since, |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite, and for any fixed t, it is the
sample average of i.i.d. random variables exp(itxj). Hence, by the law of large numbers, φ̂(t) is
a consistent estimator of the cf φ(t).

Furthermore, note that in the symmetric case (β = 0, µ = 0) the cf is real and the sample cf
takes the form

φ̂(t) =
1
n

n∑
i=1

cos txi. (4.13)

4.3.1 Method of Moments

Press (1972a, 1972b) proposed a simple estimation method based on transformations of the cf.
From (2.1) we have for all α

|φ(t)| = exp(−σα|t|α). (4.14)
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Figure 4.1: (a) Realization of the process {zt}: plot of the daily value of IBM stocks in $ against
session number (1 - 17.05.61, 369 - 2.11.62); (b) 20 bin histogram of {xt}.

Hence, − log |φ(t)| = σα|t|α.
Case of α �= 1. Choose two nonzero values of t, t1 �= t2. Then

− log |φ(tk)| = σα|tk|α, (4.15)

for k = 1, 2. Solving these two equations simultaneously for α and σ, and substituting φ̂(t) for
φ(t) gives

α̂ =
log log |φ̂(t1)|

log |φ̂(t2)|
log | t1t2 |

, (4.16)

and

log σ̂ =
log |t1| log(− log |φ̂(t2)|) − log |t2| log(− log |φ̂(t1)|)

log | t1t2 |
. (4.17)

In order to estimate β and µ define u(t) ≡ Im(log φ(t)). Then from (2.1)

u(t) = µt + σα|t|αβsign(t) tan
απ

2
. (4.18)

Choose two nonzero values of t, t3 �= t4. Then

u(tk)
tk

= µ +
[
σα|t|α−1 tan

απ

2

]
β, (4.19)

for k = 3, 4. Since

φ̂(t) =

(
1
n

n∑
i=1

cos(txi)

)
+ i

(
1
n

n∑
i=1

sin(txi)

)
, (4.20)

using elementary operations on complex numbers we get

tan û(t) =

n∑
i=1

cos(txi)

n∑
i=1

sin(txi)
. (4.21)
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Replacing u(t) in (4.19) by the value û(t) from (4.21), and replacing the parameters by their
estimators, and then solving the two linear equations simultaneously for β and µ gives the
estimators

β̂ =
û(t4)

t4
− û(t3)

t3

[|t4|α̂−1 − |t3|α̂−1]σ̂α tan α̂π
2

, (4.22)

and

µ̂ =
|t4|α̂−1 û(t3)

t3
− |t3|α̂−1 û(t4)

t4

|t4|α̂−1 − |t3|α̂−1 . (4.23)

Case of α = 1. Under this condition from (4.15) we get a simpler estimate for σ

σ̂ = − log |φ̂(t1)|
|t1| . (4.24)

Using reasoning similar to the previous case, but for a different form of the cf we get

β̂ =
û(t3)

t3
− û(t4)

t4
2
π σ̂ log | t4t3 |

, (4.25)

and

µ̂ =
log |t4| û(t3)t3

− log |t3| û(t4)t4

log |t4| − log |t3| . (4.26)

The estimators given above are consistent since they are based upon estimators of φ(t),
Imφ(t) and Reφ(t), which are known to be consistent. However, convergence to the population
values depends on the choice of t1, ..., t4. Optimal selection of these values is problematic. We
discuss it in Section 4.4.

4.3.2 Minimum Distance Method

Two distributions are equal if and only if their respective cf agree over the real line. Basing on
this fact, Press (1972a, 1972b) suggested two methods of estimation by means of the cf. In the
Minimum Distance Method define

g(α, σ, β, µ) = sup
t

|φ(t) − φ̂(t)|. (4.27)

Then the minimum distance estimators of (α, σ, β, µ) are the values that minimize (4.27).
A simple and computationally more accurate modification of the above is the Minimum r–th

Mean Distance Method. In analogy to (4.27) define

h(α, σ, β, µ) =
∫ ∞

−∞
|φ(t) − φ̂(t)|rW (t)dt, (4.28)

where W (t) denotes a suitable convergence factor (such that forces convergence of the integral).
Then the minimum r–th mean distance estimators of (α, σ, β, µ) are those values which minimize
(4.28) for a fixed r. According to Press, both these methods yield consistent estimators, although
he makes no claim of efficiency.

Leitch and Paulson (1975) and Paulson et al. (1975) were the first to construct estimators
basing on the latter method. They have chosen r = 2 and W (t) = exp(−t2), because of
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the computational advantage associated with Hermitian quadrature. Define |φ(t) − φ̂(t)|2 =
λ(t). The minimization of (4.28) may be accomplished numerically by a 20–point Hermitian
quadrature, i.e., ∫ ∞

−∞
λ(t) exp(−t2)dt =

20∑
k=1

wkλ(uk), (4.29)

where uk’s are zeros of the Hermite polynomials and wk’s are weights associated with uk’s,
respectively (see Abramowitz and Stegun (1964), page 924). α, σ, β and µ are assigned initial
values and a gradient projection routine iterates to the optimal values of the estimates. For
implementation details see Paulson et al. (1975).

We have not tested this method because of its computational complication. Moreover, a
better, in terms of efficiency (see Koutrouvelis (1980)), and a simpler to implement method is
available. We will discuss it in the next section.

4.3.3 Regression Method

Koutrouvelis (1980, 1981) presented a regression–type method of estimating the four parameters
of a stable distribution. It is based on the following observations concerning the cf φ(t). First,
from (2.1) we can easily derive

log(− log |φ(t)|2) = log(2σα) + α log |t|. (4.30)

The real and imaginary parts of φ(t) are for α �= 1 given by

Reφ(t) = exp(−|σt|α) cos
[
µt + |σt|αβsign(t) tan

πα

2

]
,

and

Imφ(t) = exp(−|σt|α) sin
[
µt + |σt|αβsign(t) tan

πα

2

]
.

The last two equations lead, apart from considerations of principal values, to

arctan
(
Imφ(t)
Reφ(t)

)
= µt + βσα tan

πα

2
sign(t)|t|α. (4.31)

Equation (4.30) depends only on α and σ and suggests that we estimate these parameters
by regressing y = log(− log |φn(t)|2) on w = log |t| in the model

yk = m + αwk + εk, k = 1, 2, ...,K, (4.32)

where (tk) is an appropriate set of real numbers, m = log(2σα), and εk denotes an error term.
Koutrouvelis (1980) proposes to use tk = πk

25 , k = 1, 2, ...,K; K ranging between 9 and 134 for
different estimates of the parameter α and sample sizes. Without significant loss of efficiency,
we have simplified his method of choosing K. See Table 4.4.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these values, estimates
of β and µ can be obtained by using (4.31). Let gn(u) = Arctan(Im(φn(u))/Re(φn(u))), where
Arctan denotes the principal value of the arctan function. Then we can estimate β and µ by
regressing z = gn(u) + πkn(u) on u and sign(u)|u|α in the model

zl = µul + βσα tan
πα

2
sign(ul)|ul|α + ηl, l = 1, 2, ..., L, (4.33)
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index α number K

1.5–2.0 10
0.6–1.5 20
0.4–0.6 60

less then 0.4 120

Table 4.4: Number K of points (tk = πk
25 ; k = 1, ...,K) for the model (4.32)

where (ul) is an appropriate set of real numbers and ηl denotes an error term. The integer kn(u)
is introduced to account for possible nonprincipal branches of the arctan function. Koutrouvelis
(1980) proposes to use ul = πl

50 , l = 1, 2, ..., L, L ranging between 9 and 70 for different estimates
of the parameter α and sample sizes.

However, this regression model requires numerical inversion of matrices of size n×n, where n
is the size of the sample. On computers based on the 80x86 processor (all IBM PC compatibles),
reasonably accurate algorithms for matrix inversion exist only for n ≤ 256. Unfortunately, they
are time consuming as well. These are the reasons for which we studied only the regression
estimators of α and σ.

Now, we present a little modified regression method in easy to follow steps. In our simula-
tions, the number of iterations was reduced to 1, but we give the algorithm in a recursive form.
A limited simulation study indicated that the recursive scheme does not improve significantly
the estimators after the first run. In addition, the simulations showed that it does not always
converge.

Recursive algorithm for the regression–type estimation of a symmetric (β = 0, µ = 0)
stable distribution is as follows:

1. set the admissible error 0 < ε < 1 (accuracy of ε = 0.01 will be usually reached in the first
run) and the maximum number of iterations max;

2. find the initial estimates α̂0 and σ̂0 using Fama–Roll’s method ((4.5) and (4.4)), or using
McCulloch’s method (assuming β = 0);

3. set α̂ = α̂0 and σ̂ = σ̂0;

4. set new K depending on α̂, see Table 4.4;

5. scale the sample: xi = xi
σ̂ ;

6. find the next estimate â of α

â =

K∑
k=1

(wk − w̄)(yk − ȳ)

K∑
k=1

(wk − w̄)2
; (4.34)

7. find the next estimate ŝ of σ from (4.30);

8. set α̂ = â and σ̂ = σ̂ŝ;
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9. if |ŝ− 1| ≥ ε and the number of iterations < max then repeat steps 4 to 9 with new α̂ and
σ̂.

Finally, we obtain α̂ and σ̂ which are regression–type estimates of α and σ, respectively.

4.4 Performance of the Estimators

The estimation procedures described in the previous sections: Fama–Roll’s (FR), McCulloch’s
(CULL), moments (MOM) and regression (REG) were examined with the help of a simulation
study. The random samples were generated using formula (3.3), combined with a linear trans-
formation (3.5). For each desired set of parameter values, r samples of size n of stable random
variables were generated. The uniform pseudo–random variables used in finding the stable ones
were generated by Turbo Pascal’s function random.

A series of simulation experiments were run first, with β = 0 and µ = 0, and with a set of
selected values for α and σ. The choice of these values was influenced by our desire to present as
complete a picture of the estimation procedure as possible within our limited computer resources.
Table 4.5 presents the results for four values of α and three values of σ, with r = 25 replications
and sample size n = 500. The mean, minimum, maximum and Mean Squarred Error, i.e.

MSEθ =
1
n

r∑
i=1

(θ̂i − θ)2, (4.35)

of the sampling distribution of α and σ are given.
The three estimation methods compared in Table 4.5 perform alike in the parameter space

α ∈ [0.6, 2.0], σ ∈ [0.1, 10]:

• REG is a little better then both quantile methods when α is close to 2.0. This can be
explained by the small size of the tails when the population distribution approaches the
Gaussian;

• Quantile methods, especially CULL, are slightly better for 0.6 ≤ α ≤ 1.0. However, CULL
cannot be used to estimate α below 0.6 and FR should not be used to estimate α ≤ 1.
When α decreases below this level, FR becomes more and more inaccurate while REG
retains its computational effectiveness;

• The CPU time needed to perform the REG estimation significantly increases as α de-
creases. This is caused by the larger value of K.

These simulations suggest to use REG as the most reliable estimator when the range of α and
σ is unknown.

MOM is not included in Table 4.5, because of the enormous deviation from the true values
when σ is not close to unity. The convergence to the population values depends on the choice
of t1, ..., t4. Optimal selection of these values is problematic. Koutrouvelis (1980) uses t1 =
.2, t2 = .8, t3 = .1, t4 = .4 in his comparison of the three sample cf methods. However, our
studies proved only t1 = .2 and t2 = .8 to work satisfactorily and only in the symmetric case
(β = 0, µ = 0) with σ close to 1. We have tried using variable values depending on a prior
estimate of σ for ti’s, but were not able to find satisfactory formulas. Moreover, this approach
complicated the method and made it not so attractive from the computational point of view.
Thus, in all simulations MOM uses t1 = .2 and t2 = .8.
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Method α αmin αmax MSEα σ σmin σmax MSEσ

α = 2.0, σ = 10
FR 1.926 1.717 2.000 0.01412 10.006 8.921 11.225 0.35238
CULL 1.937 1.689 2.000 0.01186 10.039 9.155 10.798 0.18676
REG 1.988 1.913 2.000 0.00053 10.077 9.240 10.772 0.11830

α = 1.5, σ = 10
FR 1.502 1.298 1.745 0.01128 10.230 8.989 11.291 0.35687
CULL 1.502 1.288 1.771 0.01491 10.100 9.073 11.095 0.33746
REG 1.486 1.245 1.628 0.00972 10.067 8.999 10.937 0.28761

α = 1.0, σ = 10
FR 1.010 0.902 1.150 0.00245 10.049 8.632 11.090 0.46313
CULL 1.013 0.872 1.219 0.00547 9.825 8.640 11.052 0.48814
REG 1.022 0.899 1.245 0.00551 10.069 8.729 10.946 0.46320

α = 0.6, σ = 10
FR 0.602 0.481 0.730 0.00213 10.603 8.213 12.766 2.15618
CULL 0.610 0.579 0.696 0.00127 9.371 7.968 12.425 1.86623
REG 0.621 0.507 0.745 0.00461 10.224 7.650 12.544 1.56676

α = 0.3, σ = 10
FR 0.330 0.299 0.381 0.00159 15.345 10.317 22.794 41.92433
REG 0.305 0.255 0.388 0.00091 10.835 7.591 15.358 6.34828

α = 2.0, σ = 1
FR 1.958 1.803 2.000 0.00493 0.988 0.913 1.094 0.00241
CULL 1.960 1.704 2.000 0.00607 0.990 0.895 1.095 0.00222
REG 1.993 1.947 2.000 0.00025 0.992 0.952 1.070 0.00108

α = 1.5, σ = 1
FR 1.518 1.351 1.677 0.00558 1.020 0.908 1.205 0.00447
CULL 1.518 1.415 1.692 0.00553 1.017 0.903 1.183 0.00394
REG 1.515 1.332 1.643 0.00729 1.011 0.914 1.148 0.00271

α = 1.0, σ = 1
FR 1.004 0.871 1.082 0.00254 1.015 0.864 1.190 0.00719
CULL 1.013 0.887 1.104 0.00259 1.007 0.840 1.156 0.00810
REG 0.999 0.854 1.079 0.00275 1.018 0.884 1.183 0.00661

α = 0.6, σ = 1
FR 0.606 0.552 0.760 0.00202 1.054 0.818 1.349 0.01839
CULL 0.603 0.566 0.744 0.00132 0.913 0.575 1.318 0.02782
REG 0.607 0.451 0.764 0.00430 0.989 0.767 1.202 0.00970

α = 0.3, σ = 1
FR 0.336 0.295 0.382 0.00215 1.457 0.866 2.478 0.32075
REG 0.305 0.262 0.350 0.00060 1.040 0.731 1.724 0.04911

α = 2.0, σ = 0.1
FR 1.950 1.754 2.000 0.00922 0.101 0.092 0.118 0.00004
CULL 1.955 1.722 2.000 0.00933 0.101 0.092 0.116 0.00003
REG 1.993 1.959 2.000 0.00020 0.100 0.092 0.107 0.00001

α = 1.5, σ = 0.1
FR 1.512 1.374 1.643 0.00595 0.099 0.088 0.110 0.00003
CULL 1.498 1.370 1.603 0.00437 0.098 0.087 0.108 0.00003
REG 1.495 1.361 1.620 0.00549 0.098 0.086 0.108 0.00004

α = 1.0, σ = 0.1
FR 1.003 0.857 1.114 0.00297 0.100 0.084 0.123 0.00008
CULL 0.993 0.793 1.091 0.00395 0.098 0.080 0.120 0.00009
REG 0.991 0.908 1.111 0.00309 0.100 0.084 0.116 0.00007

α = 0.6, σ = 0.1
FR 0.610 0.560 0.664 0.00095 0.105 0.080 0.124 0.00019
CULL 0.610 0.580 0.664 0.00071 0.094 0.074 0.119 0.00015
REG 0.609 0.525 0.712 0.00187 0.100 0.081 0.121 0.00011

α = 0.3, σ = 0.1
FR 0.327 0.298 0.387 0.00146 0.153 0.082 0.248 0.00416
REG 0.304 0.243 0.355 0.00064 0.106 0.068 0.142 0.00041

Table 4.5: Performance table for Fama–Roll’s (FR), McCulloch’s (CULL) and regression (REG)
estimators of α and σ for r = 25 and n = 500.
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Method α αmin αmax MSEα σ σmin σmax MSEσ

r = 25, n = 2000, α = 1.8
FR 1.812 1.726 1.950 0.00306 0.993 0.952 1.031 0.00055
CULL 1.817 1.714 2.000 0.00475 0.994 0.938 1.032 0.00054
MOM 1.800 1.745 1.856 0.00092 0.992 0.940 1.029 0.00038
REG 1.801 1.735 1.848 0.00101 0.992 0.948 1.023 0.00033

r = 25, n = 2000, α = 1.5
FR 1.496 1.410 1.588 0.00260 1.003 0.946 1.047 0.00073
CULL 1.498 1.367 1.595 0.00288 1.001 0.931 1.051 0.00104
MOM 1.487 1.409 1.561 0.00208 0.999 0.953 1.048 0.00061
REG 1.492 1.371 1.630 0.00351 1.002 0.948 1.053 0.00082

r = 25, n = 2000, α = 1.2
FR 1.207 1.159 1.264 0.00099 0.994 0.935 1.060 0.00082
CULL 1.211 1.135 1.275 0.00143 0.985 0.945 1.038 0.00096
MOM 1.204 1.111 1.276 0.00148 0.993 0.909 1.044 0.00095
REG 1.201 1.132 1.272 0.00122 0.992 0.927 1.071 0.00099

r = 25, n = 500, α = 1.8
FR 1.794 1.597 1.989 0.00978 1.007 0.912 1.124 0.00316
CULL 1.806 1.597 2.000 0.01605 1.011 0.891 1.131 0.00378
MOM 1.776 1.560 1.909 0.00630 1.003 0.897 1.110 0.00243
REG 1.774 1.628 1.887 0.00528 1.003 0.895 1.108 0.00250

r = 25, n = 500, α = 1.5
FR 1.497 1.329 1.733 0.00833 0.992 0.900 1.109 0.00285
CULL 1.487 1.274 1.690 0.01077 0.983 0.883 1.091 0.00320
MOM 1.501 1.277 1.698 0.00677 0.996 0.847 1.110 0.00389
REG 1.504 1.338 1.663 0.00664 0.991 0.894 1.147 0.00361

r = 25, n = 500, α = 1.2
FR 1.174 1.063 1.353 0.00379 0.995 0.867 1.100 0.00442
CULL 1.169 1.041 1.329 0.00470 0.982 0.883 1.078 0.00420
MOM 1.155 1.017 1.299 0.00692 0.970 0.857 1.115 0.00459
REG 1.195 1.059 1.347 0.00614 1.000 0.870 1.143 0.00486

r = 50, n = 100, α = 1.8
FR 1.779 1.217 2.000 0.03902 0.987 0.803 1.233 0.01037
CULL 1.788 1.284 2.000 0.04584 0.988 0.742 1.168 0.00957
MOM 1.828 1.427 2.000 0.02498 1.001 0.840 1.185 0.00756
REG 1.812 1.448 2.000 0.02528 0.995 0.824 1.182 0.00852

r = 50, n = 100, α = 1.5
FR 1.497 1.140 2.000 0.04066 1.004 0.679 1.374 0.02051
CULL 1.504 1.113 2.000 0.04872 0.992 0.676 1.378 0.01980
MOM 1.527 1.116 1.958 0.04003 1.016 0.646 1.320 0.01970
REG 1.495 0.955 1.909 0.04424 0.998 0.654 1.313 0.01939

r = 50, n = 100, α = 1.2
FR 1.165 0.887 1.453 0.02202 0.995 0.800 1.264 0.01196
CULL 1.150 0.870 1.460 0.02429 0.949 0.693 1.161 0.01371
MOM 1.198 0.848 1.564 0.02624 0.992 0.721 1.273 0.01654
REG 1.208 0.865 1.543 0.01851 1.004 0.754 1.289 0.01255

Table 4.6: Performance table for Fama–Roll’s (FR), McCulloch’s (CULL), moments (MOM)
and regression (REG) estimators of α = 1.8, 1.5, 1.2 and σ = 1 for different sample sizes n and
a different number of replications r.
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Table 4.6 presents the performance of all four estimation methods for different sample sizes.
When α ∈ [1.2, 1.8] and σ = 1 there are no significant differences between these methods:

• REG performs slightly better for all sample sizes - its Mean Squarred Errors of α and σ
are in general the lowest. For n = 2000 and r = 25, the error between the population
values and REG estimates is less then 0.01;

• Estimation of parameters in samples of small size, e.g. n = 100, is possible only for a
moderate number of replications. r = 50 is enough, at least for REG. Single estimators of
α may yield errors as large as 0.4.

These simulations suggest to use REG as the most reliable estimator for different sample sizes.
However, when we believe that σ is close to unity and α > 1, so that we can use quantile methods,
all four algorithms give relatively good estimators and we can base our choice on the CPU time
needed. MOM is the fastest, but we recommend to use CULL as it is fast and performs well for
α ≥ 0.6 and all admissible values of σ. Moreover, as the only method compared in this paper, it
gives estimators of β. In Table 4.7 we present the behavior of β̂. It performs best in the middle
of the range of α. When α is close to 2.0 it underestimates large values of β (|β| > 0.7). On the
other hand, when α is close to 0.6 it overestimates large values of β.

β α αmin αmax MSEα β βmin βmax MSEβ

α = 1.8
0.00 1.771 1.639 2.000 0.01036 0.074 -0.987 1.000 0.17234
0.25 1.858 1.629 2.000 0.01709 0.253 -0.442 1.000 0.14051
0.50 1.825 1.564 2.000 0.01622 0.457 -0.174 1.000 0.15024
0.75 1.822 1.618 2.000 0.01324 0.563 -0.276 1.000 0.19610
1.00 1.810 1.524 2.000 0.02024 0.817 0.000 1.000 0.09915

α = 1.3
0.00 1.324 1.202 1.535 0.00640 -0.016 -0.316 0.391 0.02706
0.25 1.295 1.104 1.412 0.00708 0.280 0.019 0.508 0.01409
0.50 1.338 1.136 1.692 0.01506 0.582 0.116 1.000 0.03247
0.75 1.297 1.134 1.529 0.01285 0.838 0.547 1.000 0.02500
1.00 1.302 1.071 1.557 0.01292 0.976 0.864 1.000 0.00214

α = 0.8
0.00 0.793 0.718 0.868 0.00162 -0.020 -0.266 0.245 0.01449
0.25 0.795 0.722 0.937 0.00264 0.241 0.052 0.507 0.01369
0.50 0.814 0.654 0.955 0.00676 0.591 0.364 0.982 0.03989
0.75 0.821 0.674 1.055 0.00567 0.985 0.796 1.000 0.05734
1.00 0.811 0.685 1.036 0.00745 1.000 1.000 1.000 0.00000

Table 4.7: Performance table for McCulloch’s estimator of α = 1.8, 1.3, 0.8 and β =
0.0, 0.25, 0.5, 0.75, 1.0 for sample size n = 500 and r = 25 replications.
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