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Scaling in currency exchange:
A Conditionally Exponential Decay approach

Szymon Mercik?, Rafal Weron®!

®Institute of Physics,
bInstitute of Mathematics,
Wroclaw University of Technology, 50-370 Wroclaw, Poland

Abstract:

We use the Conditionally Exponential Decay (CED) model to explain the scaling
behavior in currency exchange (FX) rates. This approach enables us not only to
show that FX returns satisfy scaling with an exponent qualitatively different from
that of a random walk, but also to identify the distributions of these returns corre-
sponding to the empirical scaling laws. The study is conducted via three different
estimation methods and using intra-daily FX data which offers the great advantage
of large samples and high significance.

PACS: 02.50.-1; 87.10.+e
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1 Introduction

Typical data sets employed by economists do not exceed a few hundred or thousand
observations per series. However, in the last decade data sets containing tick-by-
tick observations have become available. The studies of these data have turned up
new and interesting facts about the pricing of assets. For example, it has been
recognized recently that financial markets display scaling properties [1, 2, 3, 4, 5]
similar to those of complex systems found in diverse areas of science [6, 7, 8, 9.

In this paper we show that currency exchange (FX) rate returns satisfy scaling
with an exponent significantly different from that of a random walk. But what is
more important, we also show that the Conditionally Exponential Decay (CED)
model [10, 11] can be used to solve a long standing problem in the analysis of intra-
daily data [3, 12], i.e. it can be used to identify the mathematical structure of the
distributions of FX returns corresponding to the empirical scaling laws.

The CED model is based on asymptotic behavior of complex stochastic systems
and current developments of chaos theory. In particular, it is consistent with the
Fractal and the Heterogeneous Market Hypotheses [1, 12, 13] which emphasize the
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impact of information and investment horizons on the behavior of investors. The
basic assumptions of these hypotheses are the following: the market is made up of
many individuals with a large number of different investment horizons and is hetero-
geneous in the geographic location of the participants; information has a different
impact on different investment horizons; prices reflect a combination of short-term
technical trading and long-term fundamental valuation.

The CED model clarifies the ideas of the Fractal and the Heterogeneous Market
Hypotheses and provides a rigorous mathematical framework for further analysis
of financial complex processes. In this model [5, 11] each ith investor is related
to a cluster of agents acting simultaneously on common markets. The influence of
this cluster of agents is of the type of short-range interactions and is reflected by a
random risk-aversion factor A;. Interactions of the long-range type are imposed on
the ith investor by the inter-cluster relationship manifested by random risk factors
B]i- for all 7 # i. They reflect how fast the information flows to the ith investor.
These assumptions lead to the following CED probability density of returns

Ar) @ 1 k()
f(r) =aX(r)* 1|1 —exp _Qn)™ exp ——/ (1 — e’l/s) ds|, (1)
k k Jo
for r > 0, which exhibits the two power-laws property

[ ()t for 0<\r <1,
fr) = { Cy(Ar)~% 1 for M >> 1, (2)

where C7 = aX and Cs is a function of all three CED parameters: « — the shape, A
— the scale, and k£ — a parameter that decides how fast the information flow is spread
out in the market.

Now, that we have a model which can be used to identify the mathematical
structure of the distributions of FX returns corresponding to the empirical scaling
laws, the basic question to ask is: How can we fit the CED model to financial data?
In what follows we present three different estimation methods and use the best one
in a detailed analysis of the FX data.

But before we start we want to emphesize the fact that the CED probability
density is defined only on the positive half line. As a consequence, in all three pre-
sented methods, we have to carry out the same analysis for positive returns (CED™)
and then for absolute value of negative returns (CED™). This results in obtaining
two sets of estimators: {a™, At E*} and {a~, A, @*} To make notation simpler in
the next two sections we describe how to obtain generic estimators {@, A, k} without
specifying if we are using positive or absolute value of negative returns.

One might criticise the CED model by saying that it is possible to approximate
pretty well any empirical distribution with a six parameter law. However, as we
will show later, we can reduce the number of parameters to a three element set:
{/A\, @*,@*}, because at = @~ = 1 and At = A~ = A both for positive and for
negative FX returns.

2 Direct approach

Probably the most natural method of estimating a, A and £ makes use of the two
power-laws property (2) of the CED density. In this method we have to calculate the
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kernel density estimator f(r) of the empirical returns and then plot it on a double
logarithmic paper (log-log plot), see Fig. 1. If the empirical density of returns is
unimodal then to reduce estimation errors we first have to center the density around
its mode. Otherwise it would be impossible to "glue” the positive and the negative
part of the CED density.
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Figure 1: Double logarithmic plot of the empirical density (kernel estimator) of
the USD/JPY exchange rate 150 minute returns. Bold lines represent the two
power laws. For positive returns the direct approach yielded the following values:
at =1.0044, AT = 412.78 and kT = 0.3130.

If the empirical data follows the CED law than the plot should be linear both

~

for small and for large A\r. Namely, if for 0 < A\r < 1 the best linear fit of f(r) is
given by R
log (f(r)) = a+ blog(r),

than comparing it with the logarithm of (2) we obtain estimators of o and A

1/(b+1)
R ~ exp(a)
=b+1 A= . 3
@ th < b+ 1 ) ( )

Similarly, if for A\r > 1 the best linear fit is given by
log (f(r)) = ¢+ dlog(r),
than comparing it with the logarithm of (2) we obtain
Q

ho__O "
d+1 (4)
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Unfortunately some serious problems arise when we apply this method. Namely,
we need a precise, yet as smooth as possible, estimate of the empirical density. This
can be done — only up to a certain degree — by manipulating the window and the
kernel of the density estimator. For a given sample R = (Ry, Ry, ..., R,), e.g. 30
minute returns of a specified exchange rate, and for any real r the kernel density
estimator [14, 15] provides an approximate value of the density in the form

Fulr) = ! Zi}%[( (T ;fﬁ) :

n
The kernel K (u) is a continuous, nonnegative and symmetric function satisfying

o0
/ K(u)du =1,
—o0

whereas the window {b,}.en is a sequence of positive real numbers such that
lim, ,o b, = 0 and lim,,_.,onb, = oco. In our estimation procedures we used the
Bertlett kernel

K(u) = 50— w11 (u),
with b, = 2.30n~Y°, where ¢ is the standard deviation of the sample, as it seemed
to give the best results.

Another weakness of the presented method is caused by the fact that a small
number of observations in the tails of the distribution (i.e. for 0 < Ar < 1 and for
Ar > 1) may introduce a large bias to the estimators. Ironically, to estimate o, A
and k we only use values from the tails of the distribution! Thus we lose most of the
information carried by the sample. Moreover, there is still a problem of selecting
data points for the linear fit on the log-log plot. We were unable to automate this
procedure and the estimators depended on visual inspection.

3 Maximum likelihood method

To overcome weak points of the direct approach we turned to more classical estima-
tion methods: minimization of distance in the L? norm and the maximum likelihood
method. In our case the former one reduces to finding a minimum of a function of
three variables

[1Fe) = sriaamf ar (5)

~

Unfortunately, it also uses an estimate of the empirical density f(r) and thus is
subject to unnecessary estimation errors.

On the other hand the maximum likelihood method is free of this flaw. In short,
it is a recipe for producing an estimator 0 of the vector of parameters 0 = (a, A\, k),
called the mazimum likelihood estimator (MLE). The MLE is defined as an estimator
such that it is the value of the argument 6 which maximizes the likelihood function

Lo(Ru, ..., Ro) = TT f(Re).
k=1



where R = (Ry, ..., R,) is the sample and f is the probability density, as a function
of 6.

Notice that Ly(R) obtains a maximum exactly for the same values of 6 as the so
called log-likelihood function

lOg L@(Rla R Rn) = Z lOg f(Rk)
k=1

As it happens in our case, this observation usually leads to much easier maximization

algorithms. Namely, from formula (1) we can calculate the log-likelihood function
of the CED model

log Lg(Ri, ..., Ry) = kil{logomﬂ&—1>10g<Rk>+10g [“exp (‘%)”

k(ARy)®

—zn: % / (1—6’1/5)ds
k=1

0

Then using the Nelder-Mead simplex minimization procedure (MATLAB implemen-
tation) applied to the function

—log Lo(Ry, ..., Ry)

we obtain estimates of o, A and k. Note that this method uses information carried
by all returns and not only those in the tails of the distribution. This is illustrated in
Fig. 2 where we plot the empirical and the approximating CED densities (using both
direct and maximum likelihood estimation) for 150 minute returns of the USD/JPY
exchange rate. For positive returns the maximum likelihood estimation yielded the
following values: o™ = 1.0413, At = 500.75 and k™ = 0.1564. Clearly, MLEs are
much better than those obtained using the direct approach, see Fig. 1, or even those
obtained by minimizing the distance in the L norm, see eq. (5). This superiority
of the maximum likelihood estimation is indeed true in general, i.e. for almost all
FX rates and sampling intervals (At’s).

4 Empirical analysis

The empirical studies were conducted on a data set released by Olsen & Associates
for the Second International Conference on High Frequency Data in Finance, Zurich,
April 1-3, 1998. The data set included exchange rates of all major currencies from
January 1, 1996 to December 31, 1996. The data came in files where GMT time and
FX rates were reported sequentially in 30 minute intervals, thus the number of data
was 17520 for each exchange rate. Asin [3], data are quotations of foreign currencies
available from international vendors like Reuters, Knight-Ridder and Telerate, and
do not correspond to real prices in the global FX market. The actual deals are
usually made over the telephone and the transaction prices may differ from the
offers or even no transactions may take place at the offered prices.

One of the main features of the FX spot market is the fact that it is a 24 hours
global market, which is mostly inactive during weekends and national holidays. The
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Figure 2: Plot of the empirical density for returns of the USD/JPY exchange rate
and the approximating CED density (MLE) for At = 150 minutes (top). Log-log
plot of the above densities and the approximating CED density (obtained using the
direct approach) for positive returns only (bottom).

first observation of the week arrives at 22:30 Greenwich Mean Time (GMT) on
Sunday with the opening of the Asian markets and the last observation comes from
the West Coast of the USA at about 22:30 GMT on Friday [12], see Fig. 3. In
contrast to traditional high frequency analysis [1], we exclude inactive periods from
the calculations, because they introduce a large bias to the estimators and make
comparison of scaling laws for different instruments much more difficult. In the
second column of Table 1 we give the percent of zero returns in the data, which
corresponds to the inactivity of a given market. The inactivity ranges from 20%
for the most actively traded in 1996 exchange rate — USD/DEM, to 48% for the
DEM/FIM exchange rate.

Analysis of high frequency (intra-daily) data relies on definitions of the variables
under study — in our case — the price and the volatility. Although these definitions are
probably well known, we give them for the sake of completeness. The (logarithmic)
price at time ¢; is defined as [11, 12]

1
x(t;) = x(t;, At) = §(logpbl-d(ti) + logpask(ti)),

where {t;} is the sequence of the regular spaced in time data, At is the time interval
(At = 30 min., At = 1 hour, etc.) and ppa(t;) (pask(ti)) is the arithmetic average
of the bid (ask) quotes just prior to and just after time t;. The definition takes
the average of the bid and ask price rather than either the bid or the ask series as
a better approximation of the transaction price. The volatility v(¢;) at time ¢; is
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Figure 3: Half hour returns of the DEM /FRF exchange rate during the second week
of 1996, i.e. January 8th till January 14th. Note that one day consists of 48 returns.

Table 1: Empirical and CED drift exponents for the twelve analyzed FX rates.

FXrate | &¢ | D Dy | 252 | ¢y | Depp | Perp=P
USD/DEM | 20% | 0.4614 [ 0.5117 | 10.9% | 0.4777 | 0.4595 | -0.4%
GBP/USD | 22% | 0.4226 | 0.4783 | 13.2% | 0.4172 | 0.4209 | -0.4%
USD/JPY | 22% | 0.4308 | 0.4859 | 12.8% | 0.4197 | 0.4300 | -0.2%
USD/CHF | 23% | 0.4621 | 0.5200 | 12.5% | 0.4788 | 0.4564 | -1.2%
AUD/USD | 25% | 0.4182 | 0.4835 | 15.6% | 0.4159 | 0.4171 | -0.3%
DEM/JPY | 26% | 0.4454 | 0.5138 | 15.4% | 0.4475 | 0.4419 | -0.8%
GBP/DEM | 27% | 0.4835 | 0.5485 | 13.4% | 0.4534 | 0.4682 | -3.2%
USD/FRF | 27% | 0.4232 | 0.4921 | 16.3% | 0.4281 | 0.4172 | -1.4%
CAD/USD | 28% | 0.4046 | 0.4720 | 16.7% | 0.4115 | 0.3934 | -2.8%
DEM/FRF | 29% | 0.3249 | 0.4022 | 23.8% | 0.3477 | 0.3109 | -4.3%
DEM/ITL | 29% | 0.4334 | 0.5024 | 15.9% | 0.4519 | 0.4309 | -0.6%
DEM/FIM | 48% | 0.3426 | 0.4817 | 40.6% | 0.3527 | 0.3388 | -1.1%




defined as the average of unsigned changes of the logarithmic price (return)

o(t;) = vl(t;, At,T) = 1 zn: ‘x(ti_k) —z(ti_p — At)

k=1

, (6)

S

where T is the sample period on which the volatility is computed (e.g. one day, one
year) and n is a positive integer with 7" = nAt.

A statistical study of financial data from the fractal point of view is based on
the analysis of time intervals At of different sizes. A reasonable question to ask is:
What is the relation between volatility and the size of time intervals? The answer to
this question is the scaling law for volatility [1, 11]

u(t;) = (AP, (7)

where ¢ is an empirical constant and D is the empirical drift exponent. In spite of
its elementary nature, a scaling law study is immediately able to reject the Gaus-
sian hypothesis and reveal an important property of financial time series. For the
Gaussian case the above formula is true with a drift exponent of 0.5. In the third
and fourth column of Table 1 we give the empirical drift exponent for data with-
out inactive periods (D) and for data with inactive periods (i.e. with zero returns,
Dy), whereas the difference (in percent) between these two exponents is given in the
fiftth column. We can clearly see that for all FX rates exponent D is significantly
smaller than 0.5. Moreover, the difference between D and Dy increases with the
number of zero returns, thus showing that the inclusion of inactive periods causes
overestimation of the drift exponent.

Intensive studies of all twelve FX rates and all 48 sampling intervals (At =
30, 60, ..., 1440 minutes) lead us to the following conclusions:

e The shape parameter « is equal to one for positive and for absolute value of
negative returns. This is illustrated in Fig. 4 for the DEM/FRF exchange
rate. Moreover, in Table 2 the mean values of o™ and o~ for all FX rates are
given.

e The scale parameter ) is the same for positive and for absolute value of negative
returns. Moreover, it is related to the time interval by a power law

A(AL) = A(AE)™,

This is illustrated in Fig. 5 for the USD/CHF exchange rate, separately for
positive (AT) and for absolute value of negative returns (A~). The straight
line represents the best linear fit (linear regression) jointly for all returns. The
slope is given by —cy, = —0.4788 £+ 0.0102 and the coefficient of determination
R? = 0.9587. Drift exponents cy+ and cy- of the scale parameters A\* and
A7, respectively, are given in Table 2. The values of these exponents are
almost equal and their mean value ¢, closely approximates the empirical drift
exponent D, see Table 1.

e As a consequence of the two above observations the CED density has finite
and non-zero limits at point zero. Moreover, the left-hand limit is equal to the



Table 2: Mean values of the shape parameters at and o~ and drift exponents of
the scale parameters At and A~ for the twelve analyzed FX rates.

FX rate (at) | (a7) Car Cr—
USD/DEM | 1.0442 | 1.0030 | 0.4743 | 0.4811
GBP/USD | 0.9999 | 1.0084 | 0.4368 | 0.3998
USD/JPY | 1.0185 | 0.9991 | 0.4470 | 0.4018
USD/CHF | 1.0093 | 0.9946 | 0.4939 | 0.4637
AUD/USD | 1.0374 | 1.0568 | 0.4374 | 0.3958
DEM/JPY | 1.0686 | 1.0273 | 0.4651 | 0.4313
GBP/DEM | 1.0095 | 0.9884 | 0.4964 | 0.4234
USD/FRF | 1.0554 | 1.0343 | 0.4248 | 0.4323
CAD/USD | 0.9802 | 1.0190 | 0.4083 | 0.4146
DEM/FRF | 0.9923 | 0.9734 | 0.3446 | 0.3508
DEM/ITL | 0.9980 | 1.0062 | 0.4367 | 0.4678
DEM/FIM | 0.9589 | 0.9936 | 0.3375 | 0.3679

right-hand limit and we can make the CED density continuous on the whole
real line by setting f(0) = A. This is visualized in Fig. 5, where values of the
kernel density estimator at point zero are almost equal to the A’s. Note that
in general kernel estimators flatten approximated functions and as a result for

~

small At’s we can see that f(0) < .

e The third parameter k, which decides how fast the information flow is spread
out in the market, is qualitatively different for positive and for absolute value
of negative returns. This difference is responsible for the assymetry of the
density of returns. Since k defines the tails of the distribution its estimator is
very fragile. This causes a large dispersion of estimates and prevents us from
identifying k as a function of At, see Fig. 6.

We can see from Table 1 that the drift exponent ¢, closely approximates the
empirical drift exponent D. Yet we can do much better. Recall that if a random
variable R has density f(r) then its mean value is given by

(B) = [rf(yar.

A

where A is the support of f(r). Unfortunately in our case it not clear how to
integrate [;° 7 f(r)dr, because the CED probability density function itself is a quite
complicated function. However, the mean value of R can also be obtained [16] by
taking the limit

d

(R)=——

o(t),

t=0

where ((t) is the moment generating function ¢(t) = E{e"*®}. This leads us to the
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Figure 4: Shape parameter « for the DEM/FRF exchange rate and for all At’s.
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Figure 5: Scale parameter A for the USD /CHF exchange rate and for all At’s. Values
of the kernel density estimator at point zero are added for comparison.
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Figure 6: Parameter k for the AUD/USD exchange rate and for all At’s.

following
d 00 . 1 00 1 kre 71
(R) = — 7 /f(?")e dr = 3 /eXp —— / [1 —exp(—s )} ds p dr (8)
t=0 0 0

Introducing the function

U(a, k) = 7exp {—% ]7a[1 - exp(—s_l)} ds} dr,

0 0

we can rewrite (8) as (R) = +¥(w, k) and the mean of the absolute value of return
is given by
(RT) + (=R")
(apy = LR

Analytic analysis of ¥(a, k) is quite difficult. However, from our earlier empirical
studies we know that o = 1. This simplifies things and in Fig. 7 we can see U as
a function of 1/k. Clearly for small k£ (large 1/k) W(k) is very close to one. This
justifies our earlier use of ¢, as an approximation of the empirical drift exponent D.
But if we include W(k) in our calculations then the approximation is even better,
see Table 1 where the CED estimate Dogp and the difference in percent between
Dcgp and D is given in the last two columns. This is also illustrated in Fig. 8§,
where almost a perfect match is obtained for the USD/FRF exchange rate.
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