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Abstract. In this paper we analyze the stochastic model proposed by Galam in [2], for information

spreading in a ‘word-of-mouth’ process among agents, based on a majority rule. Using the com-

munications rules among agents defined in [2], we first perform simulations of the ‘word-of-mouth’

process and compare the results with the theoretical values predicted by Galam’s model. Since some

dissimilarities arise in particular when a small number of agents is considered, we suggest some en-

hancements by introducing a new parameter dependent model. We propose a modified Galam’s

scheme which is asymptotically coincident with the original model in [2]. Furthermore, for rela-

tively small values of the parameter, we provide a numerical experience proving that the modified

model often outperforms the original one, in terms of efficiency.
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1 Introduction

The dynamics of social contagion, in particular of opinion spreading on a population, has been

studied in many contexts, with many different approaches and several applications in social sciences,

experimental psychology and consumers behavior. The significance of word-of-mouth information

and rumors diffusion through social networks has been widely recognized as fundamental in all

these contexts, see e.g. [9, 11, 3, 4, 6, 12].

The leverage effect of word-of-mouth information on consumer behavior, for example, improves

the effectiveness of communications activities of a firm [10]. Word-of-mouth effects cannot be

ignored as a powerful marketing tool, especially in case of new product introductions, when the aim

is to reduce the probability of a post-launch failure [13].

We focus on a diffusion model which investigates opinion dynamics, driven by rumors in a

population, proposed by Galam [2, 1]. He considers a population of agents who can have two

opposite opinions, for example about political elections. Each of them can shift their opinion to the

opposite one, due to repeated discussions within a group of people, following a majority rule which

is biased in favor of one of the two opinions in case of parity. The model provides an explanation

of the spreading of the rumor claiming that “No plane did crash on the Pentagon on September 11”.

Interestingly for this agent based model, Galam provides a closed form formula for the probability

of one of the opinions to prevail, at a certain time instant.

Galam’s model has been extended, for example considering agents having three possible opinions

[8], and applied in several contexts, such as fashion industry [7] or political elections [4]. For a

comprehensive review see [5].

Nevertheless, we observe that, considering a relatively small number of agents, when a simula-

tion of the rumor spreading is run, Galam’s model may possibly return inaccurate results. In order

to cope with the latter drawback, we propose a modified Galam’s scheme which is asymptotically

coincident with the original model in [2]. When few agents are considered the modified model often

turns out to be preferable to the original one.

This paper is organized as follows: Section 2 introduces Galam’s model, detailing its peculiar-

ities and some possible limits. Then, in Section 3 we describe our model, including a motivated

numerical comparison with Galam’s scheme. Finally, Section 4 completes the paper with sugges-

tions for future work.

2 Galam’s model

Galam [2] considers a population whose individuals can change opinion after discussing in groups.

Let N be the overall number of people who meet into groups, in order to exchange their information.

Each people either thinks ‘+’ or ‘−’ and N = N+(t)+N−(t), where N+(t) [N−(t)] is the number of

people who respectively think ‘+’ [‘−’] at time step t.

At time step t the N people gather into k-sized groups, k = 1, . . . ,L, with probability ak (a1 + · · ·+
aL = 1). Then, after a discussion in each group, at time t + 1 people can shift their opinion to the

opposite one, following a majority rule (in each group). The rule of shifting opinion is biased in

favor of the opinion ‘−’, in case of parity.
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Let P+(0) be the probability to find people thinking ‘+’ at time step ‘0’, and let

P+(0) =
N+(0)

N
; P−(0) = 1−P+(0).

Then, Galam’s model is described by the following formula

P+(t +1) =
L

∑
k=1

ak

k

∑
j=⌊ k

2
+1⌋

Ck
j P+(t) j{1−P+(t)}k− j, (1)

where ⌊x⌋ indicates the largest integer which approximates x from below, and Ck
j is the binomial

coefficient. We remark that observing (1), the quantity P+(t +1) does not depend explicitly on the

number N of interacting people. As in [2], the dynamic expression (1) may be drawn in the space

(P+(t),P+(t +1)), and identifies a fixed point addressed as the killing point. The killing point gives

the theoretical threshold P̄+ so that

if P+(0) > P̄+ then lim
t→∞

P+(t) = 1,

if P+(0) = P̄+ then P+(0) = P+(t), for each time step t > 0,

if P+(0) < P̄+ then lim
t→∞

P+(t) = 0.

In order to test Galam’s model with a relatively small number of agents (N), in Figure 1 we provide

the results of 500 independent simulations, which reveal the killing point. In these simulations,

according to Galam we label each agent as belonging to a group of size k with probability ak. If

N is finite, the expected number of agents with label k is Nk = akN: in general Nk might not be a

multiple of k. We will focus on the latter issue in Section 3. The example in Figure 1 was described

in [2] (parameters of the simulations are detailed in the caption). Repeated simulations (see also

t-step Gal simul |∆| Gal

1 0.8000 0.8000 0.0000

2 0.9392 0.8823 0.0570

3 0.9891 0.9489 0.0402

4 0.9983 0.9817 0.0166

5 0.9997 0.9945 0.0052

6 1.0000 0.9986 0.0014

7 1.0000 0.9997 0.0003

8 1.0000 0.9999 0.0001

9 1.0000 0.9999 0.0001

10 1.0000 1.0000 0.0000

Table 1: Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 20,

ak = 1/20, k = 1, . . . ,L. The column |∆| Gal reveals that the model (1) may be imprecise.

[8]) reveal that the model (1) may be inaccurate when N is relatively small: an example of such a

behavior is given in Table 1. We remark that results reported in the tables of this paper are averaged

over 500 runs. Moreover, we set P+(0) = 80%, following the guidelines in [2]. Finally, our tables

consider the following positions:
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Figure 1: Results from 500 simulations. For P+(0) = 80%,81%, . . . ,90%, two points represent

the number of simulations respectively converging to 1 (continuous regression line) and 0 (dashed

regression line), within 20 time steps. Following the example in [2], we set in the simulations

N = 100, L = 6, a1 = a5 = a6 = 0 with a2 = a3 = a4 = 1/3. The killing point P̄+ is evidently nearby

85%, as suggested in [2].

• numerical results are performed with the precision of 10−16, though they are reported with

just 4 exact digits. In those tables reporting comparisons (Tables 4-12), strictly better results

are bolded;

• ‘Conv-1’ is the number of runs (out of 500) in which the final stationary point is ‘1’, i.e. all

the people think eventually ‘+’;

• ‘Conv-0’ is the number of runs (out of 500) in which the final stationary point is ‘0’, i.e. all

the people think eventually ‘−’;

• ‘t-step’ is the time step (we allowed up to 20 time steps as in [2]);

• ‘Gal’ is P+(t) provided by the Galam model (1), at any time step;

• ‘GalM ’ (Tables 4-12) is P+(t) provided by the modified model (4), at any time step;

• ‘simul’ is the average ratio N+(t)/N obtained from the simulations, at time step t;

• ‘|∆|-Gal’ is given by the quantity |Gal-simul|, and measures the displacement between ‘Gal’

and ‘simul’;

• ‘|∆|-GalM ’ (Tables 4-12) is given by the quantity |GalM -simul|, and measures the displace-

ment between ‘GalM ’ and ‘simul’.

Observe from Table 1 that when N is relatively small, the model (1) possibly provides unsatisfactory

results with respect to the simulation. We will give a possible explanation of the latter fact, after

introducing our improvement of the model. On the other hand, for L small (say in the range

5 ≤ L ≤ 10) and N relatively large, we observed that (1) possibly recovers pretty well the results
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t-step Gal simul |∆| Gal

1 0.8000 0.8000 0.0000

2 0.8195 0.8195 0.0000

3 0.8418 0.8406 0.0013

4 0.8665 0.8626 0.0039

5 0.8921 0.8864 0.0057

6 0.9169 0.9096 0.0073

7 0.9392 0.9308 0.0084

8 0.9576 0.9483 0.0094

9 0.9717 0.9636 0.0082

10 0.9818 0.9742 0.0075

11 0.9885 0.9823 0.0062

12 0.9929 0.9878 0.0051

13 0.9957 0.9921 0.0036

14 0.9974 0.9948 0.0026

15 0.9984 0.9966 0.0018

16 0.9990 0.9978 0.0012

17 0.9994 0.9985 0.0010

18 0.9997 0.9990 0.0007

19 0.9998 0.9993 0.0005

20 0.9999 0.9995 0.0003

Table 2: Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 458, Conv-0= 0, L = 5,

ak = 1/5, k = 1, . . . ,L. The model (1) performs pretty well.

from simulation, as Tables 2-3 show. Numerical results suggest that the following drawbacks may

arise for the model (1):

• as mentioned before, if N is finite (as in most of the applications), the rules to gather people

into groups of size at most L, possibly generate incomplete groups. Thus, the expected num-

ber of people assigned to groups of size k, i.e. Nk = akN (with N1 + · · ·+NL = N), is possibly

not a multiple of k;

• the model (1) relies on the strong law of large numbers, which assumes N → ∞. When N

is finite the latter consideration, along with the previous item, suggests that for N small the

model (1) may yield inaccurate results (see Table 1).

3 A model refinement

Here we propose the model GalM , a refinement of formula (1) which partially complies with the

issues at the end of the previous section.

We highlight that if N is the size of the overall population, and ak is the probability that a person is

assigned to k-sized groups, then the quantity Nk given by

Nk = akN,

represents the expected number of people assigned to k-sized groups. As a consequence, the quantity

tailk defined as

tailk = ⌊Nk⌋−

⌊

akN

k

⌋

k, (2)
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t-step Gal simul |∆| Gal

1 0.8000 0.8000 0.0000

2 0.8856 0.8848 0.0009

3 0.9514 0.9492 0.0022

4 0.9833 0.9818 0.0015

5 0.9947 0.9938 0.0009

6 0.9984 0.9980 0.0004

7 0.9995 0.9994 0.0001

8 0.9999 0.9998 0.0000

9 1.0000 0.9999 0.0000

10 1.0000 1.0000 0.0000

11 1.0000 1.0000 0.0000

12 1.0000 1.0000 0.0000

13 1.0000 1.0000 0.0000

14 1.0000 1.0000 0.0000

15 1.0000 1.0000 0.0000

16 1.0000 1.0000 0.0000

17 1.0000 1.0000 0.0000

18 1.0000 1.0000 0.0000

19 1.0000 1.0000 0.0000

20 1.0000 1.0000 0.0000

Table 3: Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 10,

ak = 1/10, k = 1, . . . ,L. The model (1) performs pretty well.

represents the number (integral) of people (i.e. a tail) assigned to an incomplete k-sized group, i.e.

tailk < k. Observe that for any k there is at most one incomplete k-sized group, which includes

exactly tailk people. Moreover, at any time step the probability Qk that an individual is assigned to

the incomplete k-sized group containing tailk elements, is given by

Qk =
tailk

akN
. (3)

Therefore, we can consider a new model which encompasses both complete k-sized groups, and

incomplete groups with tailk elements. Based on (2)-(3), we propose the following refinement of

Galam’s formula (1)

P+(t +1) =
L

∑
k=1

ak



(1−Qk)
k

∑
j=⌊ k

2
+1⌋

Ck
j P+(t) j{1−P+(t)}k− j +

+ Qk

tailk

∑
i=

⌊

tailk
2

+1
⌋

C
tailk
i P+(t)i{1−P+(t)}tailk−i






. (4)

The first term in square brackets takes into account only the contribution of k-sized groups (as

Galam’s formula). On the other hand, the second term in square brackets only considers the contri-

bution of incomplete groups with tailk elements.

Observing (4) we note that when N →∞ our proposal (4) coincides with Galam’s formula (1), since

Qk → 0. In addition, unlike (1) the model (4) explicitly depends on the number of people N, since

both Qk and tailk depend on N. Thus, if N changes, the probabilities {P+(t)} computed by (4) are
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affected accordingly (see also Tables 4-12).

From (2) and (3), if the quantity akN/k is integral, then tailk = 0 and Qk = 0. Thus, models (1) and

(4) coincide (an example is given in Table 4). This may be disappointing, since tailk = 0 does not

mean that no incomplete k-sized groups are formed. Indeed, simulations reveal (see the last col-

umn of Table 4) that the average number ‘av tail’ of people in the ‘tails’ (i.e., in incomplete k-sized

groups generated by the simulation, with k = 1, . . . ,L), may be significant.

Obviously, this drawback appears only in special cases when akN/k is integral. In order to avoid the

drawback just described, for our model we can simply consider N such that akN/k is not integral.

On this purpose, in order to carry on a comparison with the results of Table 4, we set N = 90 in Ta-

ble 5. As a result, observe that our proposal is evidently preferable (in Table 5 we could not choose

81≤ N ≤ 89, since otherwise 80% of N would have not been integral, and a comparison with Table

4 could be possibly meaningless).

Table 6 completes the results reported in Table 1 (they are obtained by setting the same param-

eters). Results show that our model often yields smaller errors (bolded results). Again, the column

‘av tail’ in Table 6 indicates that there are large tails, which explain our efficiency.

t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8358 0.8358 0.8400 0.0042 0.0042 3.1

3 0.8797 0.8797 0.8788 0.0010 0.0010 3.0

4 0.9238 0.9238 0.9076 0.0162 0.0162 3.1

5 0.9578 0.9578 0.9312 0.0266 0.0266 3.1

6 0.9783 0.9783 0.9467 0.0316 0.0316 3.2

7 0.9891 0.9891 0.9496 0.0395 0.0395 3.0

8 0.9946 0.9946 0.9501 0.0445 0.0445 2.9

9 0.9973 0.9973 0.9476 0.0497 0.0497 3.1

10 0.9986 0.9986 0.9473 0.0513 0.0513 3.0

11 0.9993 0.9993 0.9467 0.0526 0.0526 3.1

12 0.9997 0.9997 0.9471 0.0525 0.0525 2.9

13 0.9998 0.9998 0.9476 0.0522 0.0522 2.9

14 0.9999 0.9999 0.9474 0.0526 0.0526 2.9

15 1.0000 1.0000 0.9476 0.0524 0.0524 2.9

16 1.0000 1.0000 0.9478 0.0522 0.0522 3.1

17 1.0000 1.0000 0.9480 0.0520 0.0520 3.0

18 1.0000 1.0000 0.9480 0.0520 0.0520 3.0

19 1.0000 1.0000 0.9480 0.0520 0.0520 3.1

20 1.0000 1.0000 0.9480 0.0520 0.0520 3.1

Table 4: Average results with N = 80, P+(0) = 80%, 500 runs, Conv-1= 473, Conv-0= 26, L = 6,

a1 = a3 = a4 = a5 = 0, a2 = 1/4, a6 = 3/4. The performance of models (1) and (4) coincide.

More generally, on a wide range of numerical tests, the model (4) is quite often more accurate than

(1), in particular when tailk, 1 ≤ k ≤ L, is relatively large. The latter result confirms the theory

described. Observe that by simply setting

N = 40,60,80,100,300,500; L = 6; ak = 1/L, k = 1, . . . ,L,

we obtained relatively large values of the tails in our simulations (see Tables 7-12).
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t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8358 0.8347 0.8406 0.0048 0.0059 2.9

3 0.8797 0.8773 0.8812 0.0015 0.0039 3.1

4 0.9238 0.9206 0.9147 0.0091 0.0059 2.9

5 0.9578 0.9548 0.9382 0.0196 0.0167 3.0

6 0.9783 0.9762 0.9524 0.0259 0.0238 3.0

7 0.9891 0.9878 0.9576 0.0315 0.0301 2.9

8 0.9946 0.9938 0.9594 0.0352 0.0344 3.0

9 0.9973 0.9968 0.9604 0.0368 0.0364 3.1

10 0.9986 0.9984 0.9609 0.0377 0.0374 3.1

11 0.9993 0.9992 0.9615 0.0378 0.0377 3.0

12 0.9997 0.9996 0.9615 0.0381 0.0380 3.0

13 0.9998 0.9998 0.9616 0.0382 0.0381 3.0

14 0.9999 0.9999 0.9615 0.0384 0.0384 2.9

15 1.0000 0.9999 0.9615 0.0384 0.0384 3.0

16 1.0000 1.0000 0.9616 0.0384 0.0384 2.9

17 1.0000 1.0000 0.9618 0.0382 0.0382 3.0

18 1.0000 1.0000 0.9619 0.0381 0.0381 3.0

19 1.0000 1.0000 0.9619 0.0381 0.0381 3.0

20 1.0000 1.0000 0.9620 0.0380 0.0380 3.1

Table 5: Average results with N = 90, P+(0) = 80%, 500 runs, Conv-1= 480, Conv-0= 19, L = 6,

a1 = a3 = a4 = a5 = 0, a2 = 1/4, a6 = 3/4. The model (1) is almost outperformed by the model

(4).

4 Conclusions

From the results described in the present paper, some issues arise and deserve to be analyzed in

future works.

Suppose the number N of people is assigned. How should we choose the integer L and the vector

a ∈ IRL such that the stationary point is reached as soon as possible? We conjecture that both L and

a may play a key role.

Moreover, we experienced that in the runs converging to ‘0’, the average number of time steps

performed is relatively smaller than in the cases of convergence to ‘1’. In this regard we already

know that the rule of shifting opinion is slightly biased in favor of the opinion ‘−’ (i.e. towards the

stationary point 0), in case of parity. However, we cannot exclude that other specific reasons may

yield the latter result.

Finally, suppose N is given: how can we modify our model in (4), in order to possibly drive

the solution towards either the stationary point ‘1’ or ‘0’ ? This question turns to be relevant, for

example, in marketing, where the successful spreading of a product is a crucial issue.
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t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.9392 0.9077 0.8823 0.0570 0.0255 73.5

3 0.9891 0.9750 0.9489 0.0402 0.0261 73.4

4 0.9983 0.9950 0.9817 0.0166 0.0133 73.7

5 0.9997 0.9990 0.9945 0.0052 0.0045 73.6

6 1.0000 0.9998 0.9986 0.0014 0.0012 74.1

7 1.0000 1.0000 0.9997 0.0003 0.0003 73.7

8 1.0000 1.0000 0.9999 0.0001 0.0001 73.8

9 1.0000 1.0000 0.9999 0.0001 0.0001 73.4

10 1.0000 1.0000 1.0000 0.0000 0.0000 74.3

Table 6: Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 20,

ak = 1/20, k = 1, . . . ,L. The modified model (4) is preferable to (1) in the early time steps.
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9 0.9948 0.9773 0.9328 0.0620 0.0445 7.7

10 0.9974 0.9860 0.9339 0.0634 0.0521 7.7

11 0.9987 0.9915 0.9335 0.0652 0.0580 7.5

12 0.9993 0.9950 0.9347 0.0646 0.0603 7.6

13 0.9997 0.9970 0.9342 0.0655 0.0628 7.6

14 0.9998 0.9983 0.9349 0.0649 0.0634 7.5

15 0.9999 0.9990 0.9337 0.0662 0.0653 7.4

16 1.0000 0.9994 0.9335 0.0665 0.0659 7.4

17 1.0000 0.9997 0.9331 0.0668 0.0665 7.4

18 1.0000 0.9998 0.9330 0.0670 0.0668 7.3

19 1.0000 0.9999 0.9333 0.0667 0.0665 7.4

20 1.0000 0.9999 0.9335 0.0665 0.0664 7.5

Table 8: Average results with N = 60, P+(0) = 80%, 500 runs, Conv-1= 461, Conv-0= 33, L = 6,

ak = 1/6, k = 1, . . . ,L. The model (1) is almost outperformed by the model (4).

t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8331 0.8306 0.8304 0.0027 0.0002 7.7

3 0.8704 0.8652 0.8607 0.0097 0.0045 7.5

4 0.9080 0.9005 0.8910 0.0170 0.0095 7.6

5 0.9407 0.9325 0.9153 0.0254 0.0171 7.7

6 0.9651 0.9577 0.9334 0.0317 0.0243 7.5

7 0.9808 0.9752 0.9477 0.0331 0.0276 7.5

8 0.9899 0.9861 0.9552 0.0347 0.0309 7.6

9 0.9948 0.9924 0.9607 0.0342 0.0318 7.4

10 0.9974 0.9960 0.9628 0.0346 0.0332 7.7

11 0.9987 0.9979 0.9644 0.0343 0.0335 7.6

12 0.9993 0.9989 0.9639 0.0354 0.0350 7.5

13 0.9997 0.9994 0.9635 0.0362 0.0359 7.5

14 0.9998 0.9997 0.9630 0.0369 0.0367 7.5

15 0.9999 0.9998 0.9624 0.0375 0.0374 7.6

16 1.0000 0.9999 0.9615 0.0385 0.0384 7.6

17 1.0000 1.0000 0.9608 0.0392 0.0392 7.5

18 1.0000 1.0000 0.9600 0.0399 0.0399 7.4

19 1.0000 1.0000 0.9600 0.0400 0.0400 7.6

20 1.0000 1.0000 0.9599 0.0401 0.0401 7.7

Table 9: Average results with N = 80, P+(0) = 80%, 500 runs, Conv-1= 478, Conv-0= 18, L = 6,

ak = 1/6, k = 1, . . . ,L. The model (1) is outperformed by its modified version (4).
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t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8331 0.8274 0.8293 0.0038 0.0019 7.6

3 0.8704 0.8591 0.8608 0.0095 0.0017 7.8

4 0.9080 0.8928 0.8923 0.0156 0.0004 7.5

5 0.9407 0.9248 0.9167 0.0241 0.0081 7.4

6 0.9651 0.9515 0.9375 0.0276 0.0140 7.5

7 0.9808 0.9709 0.9523 0.0285 0.0186 7.5

8 0.9899 0.9835 0.9628 0.0270 0.0207 7.7

9 0.9948 0.9910 0.9690 0.0258 0.0220 7.4

10 0.9974 0.9952 0.9732 0.0242 0.0220 7.5

11 0.9987 0.9975 0.9763 0.0224 0.0212 7.5

12 0.9993 0.9987 0.9776 0.0217 0.0210 7.7

13 0.9997 0.9993 0.9791 0.0205 0.0202 7.7

14 0.9998 0.9996 0.9793 0.0205 0.0203 7.6

15 0.9999 0.9998 0.9796 0.0203 0.0202 7.5

16 1.0000 0.9999 0.9802 0.0198 0.0197 7.5

17 1.0000 0.9999 0.9801 0.0199 0.0198 7.5

18 1.0000 1.0000 0.9799 0.0200 0.0200 7.4

19 1.0000 1.0000 0.9797 0.0203 0.0203 7.4

20 1.0000 1.0000 0.9797 0.0203 0.0203 7.4

Table 10: Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1= 486, Conv-0= 10, L = 6,

ak = 1/6, k = 1, . . . ,L. The model (1) is outperformed by the model (4).

t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8331 0.8284 0.8320 0.0011 0.0036 7.5

3 0.8704 0.8610 0.8681 0.0022 0.0072 7.6

4 0.9080 0.8950 0.9026 0.0053 0.0076 7.5

5 0.9407 0.9268 0.9335 0.0073 0.0067 7.5

6 0.9651 0.9527 0.9572 0.0079 0.0045 7.2

7 0.9808 0.9714 0.9734 0.0074 0.0021 7.5

8 0.9899 0.9834 0.9843 0.0055 0.0009 7.1

9 0.9948 0.9907 0.9905 0.0043 0.0001 7.6

10 0.9974 0.9949 0.9944 0.0029 0.0004 7.5

11 0.9987 0.9972 0.9963 0.0024 0.0009 7.5

12 0.9993 0.9985 0.9974 0.0020 0.0011 7.7

13 0.9997 0.9992 0.9978 0.0019 0.0014 7.4

14 0.9998 0.9996 0.9980 0.0018 0.0016 7.5

15 0.9999 0.9998 0.9980 0.0019 0.0018 7.4

16 1.0000 0.9999 0.9980 0.0020 0.0019 7.6

17 1.0000 0.9999 0.9980 0.0020 0.0019 7.5

18 1.0000 1.0000 0.9980 0.0020 0.0020 7.4

19 1.0000 1.0000 0.9980 0.0020 0.0020 7.7

20 1.0000 1.0000 0.9980 0.0020 0.0020 7.6

Table 11: Average results with N = 300, P+(0) = 80%, 500 runs, Conv-1= 499, Conv-0= 1, L = 6,

ak = 1/6, k = 1, . . . ,L. The model (1) is almost outperformed by the model (4).
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t-step Gal GalM simul |∆| Gal |∆| GalM av tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0

2 0.8331 0.8330 0.8321 0.0010 0.0009 7.6

3 0.8704 0.8700 0.8694 0.0010 0.0006 7.5

4 0.9080 0.9072 0.9042 0.0037 0.0030 7.4

5 0.9407 0.9398 0.9354 0.0054 0.0044 7.5

6 0.9651 0.9642 0.9597 0.0054 0.0044 7.7

7 0.9808 0.9800 0.9765 0.0042 0.0035 7.6

8 0.9899 0.9894 0.9869 0.0030 0.0025 7.3

9 0.9948 0.9945 0.9928 0.0020 0.0017 7.5

10 0.9974 0.9972 0.9961 0.0012 0.0010 7.6

11 0.9987 0.9985 0.9980 0.0007 0.0006 7.6

12 0.9993 0.9993 0.9989 0.0005 0.0004 7.4

13 0.9997 0.9996 0.9994 0.0003 0.0002 7.7

14 0.9998 0.9998 0.9997 0.0002 0.0002 7.6

15 0.9999 0.9999 0.9998 0.0001 0.0001 7.5

16 1.0000 1.0000 0.9999 0.0000 0.0000 7.5

17 1.0000 1.0000 1.0000 0.0000 0.0000 7.5

18 1.0000 1.0000 1.0000 0.0000 0.0000 7.4

19 1.0000 1.0000 1.0000 0.0000 0.0000 7.6

20 1.0000 1.0000 1.0000 0.0000 0.0000 7.8

Table 12: Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 6,

ak = 1/6, k = 1, . . . ,L. The model (1) is almost outperformed by its modified version (4).
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