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1 Introduction

One of the main topics in credit risk modeling and management is the problem of assigning
the default probability for every obligor or group of obligors in a portfolio of risks. Moreover,
when considering the point of view of a financial firm facing the risk of a portfolio of obligors,
the principal issue is the occurrence of many joint defaults over a fixed time horizon. Joint
defaults events also are important with respect to the performance of derivative securities
whose payoff is linked to the profit and loss of a portfolio of underlying bonds. From this
kind of considerations it emerges then that to measure the expected loss in a portfolio
of credit risks, dependence between them cannot be ignored and that its specification is
at least as important as the specification of individual default probabilities; moreover the
concept of dependence cannot be interpreted only as linear correlation between the random
variables involved.

To takle this issues, in the recent years various mathematical models have been developed
both in the academic literature and in the financial industry; in this contribution we consider
the case of a portofolio of firms belonging to several different rating classes; and we analyze
two models which are based on a generalization of the Pólya urn scheme. In this way
their dependence structure allows for dependence both in the same rating group and in
different rating groups, introducing then some form of contagion between defaults. For
both of them we derive the expression of the joint default probability for the number of
defaults in the different rating groups; the complexity involved in the statistical estimation
of its parameters lead us to introduce the Expectation-Maximization algorithm for iterative
maximum likelihood estimations.

The Pólya urn scheme can be described as follows. Consider an urn that contains b
black balls and r red ones. Then we make subsequent draws from the urn following this
scheme:

i) draw a ball from the urn

ii) return the ball in the urn together with c > 0 balls of the same colour.

In this way we clearly introduce some dependence structure between the draws. This scheme
can be used to model the number of defaults in a group of n firms each beloging to the same
rating class. For each firm i ∈ {1, . . . , n} we draw a ball from the urn; if the ball is red,
then the firm defaults, if black it does not. Then we return the ball in the urn toghether
with c balls of the same colour. If we denote with Nn the random variable describing the
number of defaults within this group of companies, then using the theory of exchangeable
sequences it can be easily shown that the distribution of Nn is given by a beta-binomial
mixture:

P[Nn = k] =
(
n

k

)
B(α+ k, n− k + β)

B(α, β)
(1)

where α, β are two parameters which have to be estimated from historical data, and
B(x, y) = Γ(x)Γ(y)

Γ(x+y) , with Γ(z) =
∫∞

0 tz−1e−t dt, is the Euler beta function.
If you want to deal with the case of firms belonging to different rating classes, this model

needs to be generalized, and we will discuss two possible extensions, and the problems
related to the estimation of the parameters involved, in the next sections of this paper.
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2 Multidimensional urn scheme for defaults

Suppose we are given k homogeneous groups of ni , 1 ≤ i ≤ k companies, with credit ratings
satisfying r1 � r2 � · · · � rk, where ri � rj means that the rating ri is higher than the
rating rj . To determine the joint probability of the defaults a multicolour urn scheme is
introduced.

Consider an urn which contains balls of k + 1 different colours, with k ≥ 2 and with
bj > 0 balls for every 1 ≤ j ≤ k + 1. Originally then there are b =

∑k+1
j=1 balls in the urn.

The scheme works through these steps:

1. draw a ball at random from the urn

2. note the colour of the ball

3. return the ball in the urn together with other c ≥ 0 balls of the same colour.

The mechanism is then the following: to determine if a company of any rating class
defaults or not we draw randomly a ball from the urn. If its rating is rj , and the ball has a
colour from 1, . . . , j then the firm defaults; otherwise if the colour is from j+ 1, . . . , k+ 1 it
does not default. Then we return the ball in the urn together with other c balls of the same
colour, introducing in this way some dependence between the defaults both in the same and
in different rating groups.

The results about exchangeable sequences of random variables are then used to deter-
mine the default probabilities.

Definition 2.1. We define the random vector Xn = (Xn,1, . . . Xn,k+1) ∈ {0, 1}k+1 indicat-
ing the colour of the ball of the n-th draw in the following way:

Xn,j :=

{
1 if the nth ball drawn has colour j
0 otherwise.

It is easy to see that this sequence of random variable is an exchangeable one; we recall
here the definition:

Definition 2.2. The finite set (X1, X2, . . . , Xn) of random variables is said to be exchange-
able if the joint distribution is invariant under all n-permutations:

(X1, X2, . . . , Xn) d= (Xπ(1), Xπ(2), . . . , Xπ(n)), (2)

for every permutation π of {1, 2, . . . , n}.
An infinite sequence of random variables (Xn)n≥1 is said to be exchangeable if (X1, . . . , Xn)

is exchangeable for each n ≥ 2.

If we denote ej = (δ1,j , . . . , δd,j) with δj,j = 1 and δi,j = 0 if i 6= j, we have then the
following result (see [8]):
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Proposition 2.3. The sequence of random vectors (Xn)n≥1 is exchangeable: in fact for
every n ≥ 1 we have that

P[X1 = ej1 , . . . ,Xn = ejn ] =

∏k+1
j=1

∏ln,j−1
i=0 (bj + ic)

b(b+ c) · · · (b+ (n− 1)c)
(3)

where ln = (ln,1, . . . , ln,k+1) =
∑n

i=1 eji.

The main result about exchangeable sequences of randoms variables is the following
theorem, here stated for the case of an exchangeable sequence of random vectors, whose
proof is shown in the appendix:

Theorem 2.4 (De Finetti’s theorem). Let (Xn)n≥1 be an exchangeable sequence of random
vectors from the probability space (Ω,F ,P) to the measurable space (Rd,B(Rd)), where
B(Rd)) is the Borel σ-algebra. Then there exists a sub σ-field F∞ ⊆ F conditioned on
which the Xn’s are independent and identically distributed.

An immediate corollary of De Finetti’s theorem is the following one:

Theorem 2.5. Let (Xn)n≥1 be an exchangeable sequence of random vectors taking values
in {e1, . . . , ed}. Then there exists a random vector (P1, . . . , Pd) taking values in ∆d =
{(p1, . . . , pd) ∈ [0, 1]d|

∑d
j=1 pj = 1} such that:

1. for all l ∈ Nd
0 with

∑d
j=1 lj = n it holds that

P

[
n∑
i=1

Xi = l
∣∣∣∣P1, . . . , Pd

]
a.s.=

n!
(l1!)(l2!) · · · (ld!)

P l11 P
l2
2 · · ·P

ld
d

2. for 1 ≤ j ≤ d,

Pj
a.s.= lim

n→∞

1
n

n∑
i=1

Xi,j .

Using the previous results it is now possible to determine the joint distribution of the
random vector N = (N1, N2, . . . , Nk) of the number of defaults within each group. Since
the sequence (Xn)n≥1 is exchangeable, it does not matter in which order we draw the balls
for the companies, hence we can choose a special order to facilitate calculations; that is we
first consider the firms with the best rating, than the next lower, and so on. The number of
defaults in the j-th rating is given by how many times a ball of color from 1 to j has been
drawn within nj subsequent draws. We can then determine the joint default probabilities
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using Theorem 2.5:

P[N1 = l1, . . . , Nk = lk]

= P

 n1∑
i=1

Xi,1 = l1,

n1+n2∑
i=n1+1

(Xi,1 +Xi,2) = l2, . . . ,

n1+···+nk∑
i=n1+···+nk−1+1

(Xi,1 + · · ·+Xi,k) = lk


= E

[
P
[ n1∑
i=1

Xi,1 = l1,

n1+n2∑
i=n1+1

(Xi,1 +Xi,2) = l2,

. . . ,

n1+···+nk∑
i=n1+···+nk−1+1

(Xi,1 + · · ·+Xi,k) = lk

∣∣∣∣P1, . . . , Pk+1

]]

= E
[
P
[ n1∑
i=1

Xi,1 = l1

∣∣∣∣P1, . . . , Pk+1

]
P
[ n1+n2∑
i=n1+1

(Xi,1 +Xi,2) = l2

∣∣∣∣P1, . . . , Pk+1

]

· · ·P
[ n1+···+nk∑
i=n1+···+nk−1+1

(Xi,1 + · · ·+Xi,k) = lk

∣∣∣∣P1, . . . , Pk+1

]]

= E
[(
n1

l1

)
P l11 (1− P1)n1−l1

(
n2

l2

)
(P1 + P2)l2(1− P1 − P2)n2−l2

· · ·
(
nk
lk

)
(P1 + · · ·+ Pk)lk(1− P1 − · · · − Pk)nk−lk

]
(4)

since, being σ(P1, . . . , Pk+1) ⊆ F∞, the Xn’s are, conditioned on (P1, . . . , Pk+1), indepen-
dent and identically distributed.

To obtain an explicit form for the joint default probabilities it is necessary to compute
the distribution of (P1, . . . , Pk+1); using the previous results it is possible to show (see [8])
that it has to be Dirichlet distributed Dk+1(α1, . . . , αk+1) with density

fk+1(p1, . . . , pk+1) =
Γ
(∑k+1

j=1 αj

)
∏k+1
j=1 Γ(αj)

k+1∏
j=1

p
αj−1
j , (5)

with the constraint
∑k+1

j=1 pj = 1 and parameters α1, . . . , αk+1 > 0.
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It is then possible to compute exactly the joint default probabilities in equation (4):

P[N1 = l1, . . . , Nk = lk]

= E
[(
n1

l1

)
P l11 (1− P1)n1−l1

(
n2

l2

)
(P1 + P2)l2(1− P1 − P2)n2−l2 · · ·

· · ·
(
nk
lk

)
(P1 + · · ·+ Pk)lk(1− P1 − · · · − Pk)nk−lk

]
=
(
n1

l1

)
· · ·
(
nk
lk

)∫ 1

0

∫ 1−p1

0
. . .

∫ 1−p1−···−pk−1

0
pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2

× · · · × (p1 + p2 + · · ·+ pk)lk(1− p1 − p2 − · · · − pk)nk−lk

×
Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

pα1−1
1 pα2−1

2 · · · pαk−1
k (1− p1 − p2 − · · · − pk)αk+1−1dpkdpk−1 · · · dp1

=
(
n1

l1

)
· · ·
(
nk
lk

)Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

lk∑
j1=0

(
lk
j1

)
B(αk + j1, αk+1 + nk − lk)

×
lk−1+lk−j1∑

j2=0

(
lk−1 + lk − j1

j2

)
B(αk−1 + j2, αk + αk+1 + nk−1 + nk − lk−1 − lk + j1)

· · · ×

l2+···+lk
−j1−···−jk−2∑

jk−1=0

(
l2 + · · ·+ lk − j1 − · · · − jk−2

jk−1

)
×B(α2 + jk−1, α3 + · · ·+ αk+1 + n2 + · · ·+ nk − l2 − · · · − lk + j1 + · · ·+ jk−2)
×B(α1 + l1 + · · ·+ lk − j1 − · · · − jk−1, α2 + · · ·+ αk+1

+ n1 + · · ·+ nk − l1 − · · · − lk + j1 · · ·+ jk−1), (6)

where j−1 = j0 = 0.
We remark here that even if an analytic expression of the joint default probabilities is

obtained, the number of terms involved in its calculation is very large and this will cause
numerical problems in estimation of the parameters involved. This is the reason that will
address us to the use of the EM algorithm.

3 Iterative urn scheme for defaults

This second model is inspirated by an iterative urn scheme: the number of defaults in the
best rating group is determined with a Pólya urn scheme, hence its random default frequency
is P1 ∼ beta(α1, β1). The number of defaults in the worse ratings are then determined by
the number of firms that would have defaulted in the next better rating plus a certain
part of the group that would have survived in the next better rating, and this additional
part is determined again via Pólya’s urn scheme. This allows again for dependence both
between defaults within the rating groups, given the use of the Pólya’s urn scheme, and for
monotone dependence between the defaults of the different rating groups, given by the way
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in which the default frequencies are built. Formally the model is built as follows: we start
from a random vector P̃ = (P̃1, . . . , P̃k) where P̃1 ∼ beta(α1, β1), . . . , P̃k ∼ beta(αk, βk) are
independent, and we define the random default probabilities in the following way:

P1 = P̃1

P2 = P1 + (1− P1)P̃2

. . .

Pk = Pk−1 + (1− Pk−1)P̃k.

(7)

To calculate the joint distribution of the number of defaults it is useful to see how things
work for the marginal distributions. Starting from the group of n1 firms with the best rating
r1, from the Pólya urn scheme we have:

P[N1 = l1] =
(
n1

l1

)
B(α1 + l1, β1 + n1 − l1)

B(α1, β1)
, 0 ≤ l1 ≤ n1

The joint probability of l1 defaults in the group of firms with credit rating r1 and l2
defaults in the group of firms with credit rating r2 can be calculated using the binomial
expansion for the power of a sum and the fact that 1 − (x + (1 − x)y) = (1 − x)(1 − y).
Hence we have:

P[N1 = l1, N2 = l2] = E[P[N1 = l1, N2 = l2|P1, P2]]

= E
[(
n1

l1

)
P l11 (1− P1)n1−l1

(
n2

l2

)
P l22 (1− P2)n2−l2

]
=
(
n1

l1

)(
n2

l2

)
E
[
P̃ l11 (1− P̃1)n1−l1(P̃1 + (1− P̃1)P̃2)l2(1− (P̃1 + (1− P̃1)P̃2))n2−l2

]
.

(8)

Since

E
[
P̃ l11 (1− P̃1)n1−l1(P̃1 + (1− P̃1)P̃2)l2(1− (P̃1 + (1− P̃1)P̃2))n2−l2

]
= E

P̃ l11 (1− P̃1)n1−l1

 l2∑
j=0

(
l2
j

)
P̃ j1 (1− P̃1)l2−jP̃ l2−j2

 (1− P̃1)n2−l2(1− P̃2)n2−l2


=

l2∑
j=0

(
l2
j

)∫ 1

0
p̃l1+j

1 (1− p̃1)n1+n2−l1−jfP̃1
(p̃1)dp̃1

∫ 1

0
p̃l2−j2 (1− p̃2)n2−l2fP̃2

(p̃2)dp̃2

(9)

we get at the end

P[N1 = l1, N2 = l2] =

=
(
n1

l1

)(
n2

l2

) l2∑
j=0

(
l2
j

)
B(α1 + l1 + j, β1 + n1 + n2 − l1 − j)

B(α1, β1)
B(α2 + l2 − j, β2 + n2 − l2)

B(α2, β2)
.

(10)

7



It is clear now how, through successive iterations of the procedure seen above, it is
possible to compute the general formula for the joint default probabilities:

P[N1 = l1, . . . , Nk = lk] = E[P[N1 = l1, . . . , Nk = lk|P1, . . . , Pk]]

= E
[(
n1

l1

)
P l11 (1− P1)n1−l1

(
n2

l2

)
P l22 (1− P2)n2−l2 · · ·

(
nk
lk

)
P lkk (1− Pk)nk−lk

]
= E

[(
n1

l1

)
P̃ l11 (1− P̃1)n1−l1

(
n2

l2

)
(P̃1 + (1− P̃1)P̃2)l2(1− P̃1)n2−l2(1− P̃2)n2−l2 · · ·

]
=
(
n1

l1

)
. . .

(
nk
lk

)
1

B(α1, β1) · · ·B(αk, βk)
×

lk∑
j1=0

(
lk
j1

)
B(αk + lk − j1, βk + nk − lk)

· · · ×
lk+1−i+ji−1∑

ji=0

(
lk+1−i + ji−1

ji

)
×B(αk+1−i + lk+1−i + ji−1 − ji, βk+1−i + nk + · · ·+ nk+1−i − lk+1−i − ji−1)

· · · ×
l2+jk−2∑
jk−1=0

(
l2 + jk−2

jk−1

)
×B(α2 + l2 + jk−2 − jk−1, β2 + nk + · · ·+ n2 − l2 − jk−2)
×B(α1 + l1 + jk−1, β1 + nk + · · ·+ n1 − l1 − jk−1)

(11)

We can do here the same remarks as before about computational complexity in the
maximum likelihood estimation of the parameters involved because of the large number of
terms present in this analytic expression.

3.1 The Iterative Urn Scheme and the Generalized Dirichlet Distribution

As we have just seen to calculate the joint default probabilities of the number of defaults
it is not necessary to know the joint distribution of P1, . . . , Pk since we can reduce to work
with the P̃j that are independent. However to exploit the similarities between this model
and the previous one, it has been shown in [8] that introducing the new random variables
Q1 = P1 and Qi = Pi − Pi−1 = (1 − Pi−1)P̃i for i = 2, . . . , k, it is possible to write the
default probabilities as Pi = Q1 + · · ·+Qi so that the default probabilities for the iterative
urn scheme can be written again as:

P[N1 = l1, . . . , Nk = lk]

= E
[(
n1

l1

)
Ql11 (1−Q1)n1−l1

(
n2

l2

)
(Q1 +Q2)l2(1−Q1 −Q2)n2−l2

. . .

(
nk
lk

)
(Q1 + · · ·+Qk)lk(1−Q1 − · · · −Qk)nk−lk

] (12)
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Since

Q1 = P̃1

Qi = P̃i

i−1∏
j=1

(1− P̃j)

 for i = 2, . . . , k

it is then possible to prove (see [1]) that (Q1, . . . , Qk) has a generalized Dirichlet distribution
GDk(α1, . . . , αk, β1, . . . , βk) with density

f(q1, . . . , qk) =
1∏k

i=1B(αi, βi)

(
1−

k∑
i=1

qi

)βk−1 k∏
i=1

[
qαi−1
i

(
1−

i−1∑
j=0

qj

)βi−1−(αi+βi)]

for (q1, . . . , qk) ∈ [0, 1]k with the constraint
∑k

i=1 qk ≤ 1, where q0 = 0 and β0 is arbitrary.
Since for the special choice of the parameters βj−1 = αj+βj for j = k, k−1, . . . , 2 with βk

arbitrarily chosen it holds that (Q1, . . . , Qk) ∼ Dk+1(α1, . . . , αk, βk), this allows to conclude
that the multidimensional urn scheme, described in the previous section is embedded in the
iterative urn scheme model.

4 EM algorithm

The Expectation-Maximization algorithm is a tool for the iterative computation of maximum-
likelihood estimates that is very useful to apply in situations where the estimation of ML
can be simplified by (artificially) considering the observed data as incomplete data, so that
the complete-data likelihood has a nice form and the complexity of the estimation can be
reduced with respect to the one required by the incomplete-data likelihood. In the following
we will briefly describe the theory behind the algorithm and some of its properties; more
details can be found in [3], [10] and [6].

Let Y be the random vector corresponding to the observed (incomplete) data y ∈ Y
and suppose that it has density g(y ; φ), where φ is a vector of unknown parameters to
determine in the parameter space Φ. Let x ∈ X be the vector of the (augmented) complete
data, and let f(x ; φ) be the density of the random vector X corresponding to x. We assume
that there is a mapping π : X 7→ Y that express the fact that we don’t observe directly x,
but, for an observed y, we have a subset X (y) = {x ∈ X | π(x) = y} of possible outcomes
of the complete data. Then the relation between the incomplete-data and the complete
data densities is given by:

g(y ; φ) =
∫
X (y)

f(x ; φ) dx. (13)

The goal of the EM algorithm is to find a value of φ which maximizes L(φ) := g(y ; φ)
using iteratively the complete data log-likelihood function logLc(φ) := log f(x ; φ). Since
logLc(φ) is not determined because we don’t have x, we replace it with its conditional
expectation given the observed data y, and using an initial value for the parameter φ.
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More precisely, suppose that φ(p) denotes the current values of the parameters after p
iterations of the algorithm. Then the p + 1 values are computed using the following two
steps:
Expectation-step: compute

Q(φ,φ(p)) := E[logLc(φ) |y ; φ(p)] = E[log f(X ; φ) |y ; φ(p)] (14)

Maximization-step: choose φ(p+1) such that:

Q(φ(p+1),φ(p)) ≥ Q(φ,φ(p)) ∀φ ∈ Φ. (15)

Proposition 4.1. The sequence {L(φ(k))}k≥0 is monotone increasing.

Proof. The conditional density of X given Y = y is:

k(x |y ; φ) :=
f(x ; φ)
g(y ; φ)

So if we introduce H(φ′,φ) := E[log k(X |y ; φ′) |y ; φ] we have, for all φ,φ′ ∈ Φ:

H(φ′,φ) = E[log f(X ; φ′) |y ; φ]− E[log g(y ; φ′) |y ; φ] = Q(φ′,φ)− logL(φ′)

and so

logL(φ(k+1))− logL(φ(k)) = [Q(φ(k+1),φ(k))−Q(φ(k),φ(k))]︸ ︷︷ ︸
≥0 by M-step

− [H(φ(k+1),φ(k))−H(φ(k),φ(k))].

Now observe that for any φ,φ′ ∈ Φ:

H(φ′,φ)−H(φ,φ)

= E

[
log

k(X |y ; φ′)
k(X |y ; φ)

∣∣∣∣ y ; φ

]

≤ log E

[
k(X |y ; φ′)
k(X |y ; φ)

∣∣∣∣ y ; φ

]

= log
∫
X (y)

k(x |y ; φ′) dx

= 0

and we have completed the proof (using Jensen inequality).

So if {L(φ(k))}k≥0 is bounded, we have that L(φ(k)) ↑ L∗. Which conditions ensure that
{L(φ(k))}k≥0 is bounded, and is L∗ a global or local maximum of L(φ), or only a stationary
point? The main result to this questions is the following theorem (see [10, Theorem 2]):

Theorem 4.2. Suppose the following conditions hold:

10



i) Φ ⊆ Rd;

ii) Φφ0
:= {φ ∈ Φ : L(φ) ≥ L(φ0)} ⊆ int(Φ) and is compact for any L(φ0) > −∞;

iii) L is continuous in Φ and differentiable in int(Φ).

Then {L(φ(k))}k≥0 is bounded above for any φ0 ∈ Φ.
If in addition Q(φ′,φ) is continuous in both φ′ and φ, then L(φ) ↑ L∗ = L(φ∗) for

some stationary point φ∗.

Convergence to local maxima of L(φ) can be obtained with more restrictive conditions;
see again [10] for details. A special case is the following:

Theorem 4.3. Suppose that L(φ) is unimodal in Φ with φ∗ being the only stationary
point, and that ∂Q(φ′,φ)

∂φ′
is continuous in φ′ and φ. Then {φ(k)}k≥0 converges to the unique

maximizer φ∗ of L(φ).

4.1 The regular exponential family case

In the case that f(x ; φ) has the regular exponential family form

f(x ; φ) = b(x) exp(φTt(x))/a(φ)

where t(x) is a vector of complete-data sufficient statistics, b(x) and a(φ) are scalar func-
tions, and Φ = {φ ∈ Rd :

∫
X b(x) exp(φTt(x)) dx < +∞}, it is possible then to simplify

the Expectation and Maximization steps. In fact observe that:

E[t(X); φ]

=
1

a(φ)

∫
X
b(x) exp(φTt(x))t(x) dx

=
1

a(φ)

∫
X
b(x)

∂

∂φ
exp(φTt(x)) dx

=
1

a(φ)
∂

∂φ
a(φ)

=
∂

∂φ
log a(φ).

(16)

Now assume that φ(p) denotes the current values of the parameters after p iterations
of the algorithm. To compute the p + 1 values we have to maximize w.r.t φ the function
Q(φ,φ(p)) that in this case is given by:

Q(φ,φ(p)) = E
[

log
(
b(X) exp(φTt(X))

a(φ)

) ∣∣∣∣ y; φ(p)

]
= E[log b(X)|y; φ(p)]︸ ︷︷ ︸

independent from φ

+E[φTt(X)|y; φ(p)]− E[log a(φ)|y; φ(p)]

= E[log b(X)|y; φ(p)] + φTE[t(X)|y; φ(p)]− log a(φ).

(17)
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Then we see, by differentiating (17) taking into account (16), that maximization is
equivalent to solve for φ the system of equations

E[t(X)|y; φ(p)] = E[t(X); φ] (18)

The two steps of the algorithm become then:
Expectation-step: estimate t(p) by:

t(p) = E[t(X)|y; φ(p)]. (19)

Maximization-step: determine φ(p+1) solving the equation:

E[t(X)|φ] = t(p). (20)

4.2 Application to multidimensional urn scheme

Following the notation of the the previous section, we consider our observed data given by
y = (y1, . . . ,ym), where yi = (li1, . . . , lik) for i = 1, . . . ,m and m is the total number of ob-
servations. As complete data we take x = (x1, . . . ,xm), where xi = (pi1, . . . , pik, li1, . . . , lik)
with pij the i-th (unknown) realization of the random variable Pj . Since our goal is the
MLE of the parameters α = (α1, . . . , αk+1) of g(y ; α) =

∏m
i=1 gi(yi ; α) where gi is given

by equation (6)1, to fit our situation in the EM algorithm, we consider as sampling density
f(x ; α) =

∏m
i=1 fi(xi ; α) where

fi(xi ; α) =
Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

pα1−1
i1 pα2−1

i2 · · · pαk−1
ik (1− pi1 − pi2 − · · · − pik)αk+1−1

×
(
ni1
li1

)
· · ·
(
nik
lik

)
pli1i1 (1− pi1)ni1−li1 · · · (pi1 + . . . pik)lik(1− pi1 − · · · − pik)nik−lik

(21)

We can so immediately observe that f belongs to the regular exponential family: in fact
we can write:

log(fi(xi ; α) =

log
[Γ(

∑k+1
j=1 αj)∏k+1

j=1 Γ(αj)

]

+ log
[(
ni1
li1

)
· · ·
(
nik
lik

)
pli1i1 (1− pi1)ni1−li1 · · · (pi1 + . . . pik)lik(1− pi1 − · · · − pik)nik−lik

pi1 . . . pik(1− pi1 − · · · − pik)

]
︸ ︷︷ ︸

bi(pi1,··· ,pik,li1,··· ,lik)

+(α1, . . . , αk+1)(log pi1, . . . , log pik, log(1− pi1 − · · · − pik))T

1We are assuming here that our data are realizations of independent identically distributed random
vectors (N1, . . . , Nk).
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So we have that:

f(x ; α) = exp

(
m∑
i=1

log fi(xi ; α)

)

=
(Γ(

∑k+1
j=1 αj)∏k+1

j=1 Γ(αj)

)m
exp

[
m∑
i=1

bi(pi1, . . . , pim, li1, . . . , lim)

]

× exp

[
(α1, . . . , αk+1)

(
m∑
i=1

log pi1, . . . ,
m∑
i=1

log pik,
m∑
i=1

log(1− pi1 − · · · − pik)

)T]
so that the statistics of our interest are given by tj(x) =

∑m
i=1 log pij for j = 1, . . . , k and

tk+1(x) =
∑m

i=1 log(1− pi1 − · · · − pik).
For the E-step of the algorithm we have then to compute the conditional expectations

E[tj(x)|y, (α1, . . . , αk+1)] =
∑m

i=1 E[log pij |y, (α1, . . . , αk+1)] for j = 1, . . . , k and
E[tk+1(x)|y, (α1, . . . , αk+1)] =

∑m
i=1 E[log(1− pi1 − · · · − pik)|y, (α1, . . . , αk+1)]

The conditional density in our case is given by

k(x|y, (α1, . . . , αk+1)) =
f(x|(α1, . . . , αk+1))
g(y|(α1, . . . , αk+1))

=
m∏
i=1

fi(x|(α1, . . . , αk+1)
gi(y|(α1, . . . , αk+1)

=
m∏
i=1

ki(x|(α1, . . . , αk+1))∫ 1
0

∫ 1−pi1

0 · · ·
∫ 1−pi1−···−pi,k−1

0 ki(x|(α1, . . . , αk+1))dpik · · · dpi1
where

ki(x|(α1, . . . , αk+1)) = pα1−1
i1 · · · (1− pi1 − · · · − pik)αk+1−1pli1i1 · · · (1− pi1 − . . . pik)

nik−lik .

Hence we obtain:

E[log pij |y, (α1, . . . , αk+1)] =

=

∫ 1
0

∫ 1−pi1

0 · · ·
∫ 1−pi1−···−pi,k−1

0 log pijki(x|(α1, . . . , αk+1))dpik · · · dpi1∫ 1
0

∫ 1−pi1

0 · · ·
∫ 1−pi1−···−pi,k−1

0 ki(x|(α1, . . . , αk+1))dpik · · · dpi1

(22)

To see how things work in practice, we consider the case k = 3. We use the facts,
analogous to what we used in equation (6), that:∫ 1−a

0
log p pk−1(a+ p)m(1− a− p)n−1dp

=
m∑
j=1

(
m

j

)
(1− a)k+j+n−1am−jB(k + j, n) [log(1− a) +D(k + j, n)]

(23)

and ∫ 1−a

0
log(1− a− p) pk−1(a+ p)m(1− a− p)n−1dp

=
m∑
j=1

(
m

j

)
(1− a)k+j+n−1am−jB(k + j, n) [log(1− a) +D(n, k + j)]

(24)
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where D(α, β) :=
Γ′(α)
Γ(α)

− Γ′(α+ β)
Γ(α+ β)

. Since we have already computed the denominator of

(22) when we have computed the joint default probability in (6) we can proceed in the same
way to compute the numerator; we do it explicitly for j = 3 (and suppress index i for ease
of notation):∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
log p3 p

α1−1
1 pα2−1

2 pα3−1
3 (1− p1 − p2 − p3)α4−1

×pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2(p1 + p2 + p3)l3(1− p1 − p2 − p3)n3−l3dp3dp2dp1

=
∫ 1

0

∫ 1−p1

0
pα1−1

1 pα2−1
2 pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2

×
l3∑

j1=0

(
l3
j1

)
(p1 + p2)l3−j1(1− p1 − p2)α3+α4+n3−l3+j1−1

×B(α3 + j1, α4 + n3 − l3)D(α3 + j1, α4 + n3 − l3)dp1dp2

+
∫ 1

0

∫ 1−p1

0
pα1−1

1 pα2−1
2 pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2

×
l3∑

j1=0

(
l3
j1

)
(p1 + p2)l3−j1(1− p1 − p2)α3+α4+n3−l3+j1−1

×B(α3 + j1, α4 + n3 − l3) log(1− p1 − p2)dp1dp2

(25)

We see that the first summand leads to the same result as in (6) with the additional term
D(α3 + j1, α4 + n3 − l3), while for the second in evaluating the integral with respect to p2

we get that it splits again in a sum of two terms, and at the end we get:∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
log p3 p

α1−1
1 pα2−1

2 pα3−1
3 (1− p1 − p2 − p3)α4−1

×pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2(p1 + p2 + p3)l3(1− p1 − p2 − p3)n3−l3dp3dp2dp1

=A1 +A2 +A3

(26)

where

A1 =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)D(α3 + j1, α4 + n3 − l3)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)
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A2 =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×D(α3 + α4 + n2 + n3 − l2 − l3 + j1, α2 + j2)
×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)

A3 =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)
×D(α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2, α1 + l1 + l2 + l3 − j1 − j2)

Analogously for the other statistics of our interests we get:∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
log p2 p

α1−1
1 pα2−1

2 pα3−1
3 (1− p1 − p2 − p3)α4−1

×pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2(p1 + p2 + p3)l3(1− p1 − p2 − p3)n3−l3dp3dp2dp1

=B1 +B2

(27)

where

B1 =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×D(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)
×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)

and B2 = C3;∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
log p1 p

α1−1
1 pα2−1

2 pα3−1
3 (1− p1 − p2 − p3)α4−1

×pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2(p1 + p2 + p3)l3(1− p1 − p2 − p3)n3−l3dp3dp2dp1

=C
(28)
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where

C =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)
×D(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2);

and the last:∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
log(1− p1 − p2 − p3) pα1−1

1 pα2−1
2 pα3−1

3 (1− p1 − p2 − p3)α4−1

×pl11 (1− p1)n1−l1(p1 + p2)l2(1− p1 − p2)n2−l2(p1 + p2 + p3)l3(1− p1 − p2 − p3)n3−l3dp3dp2dp1

= E1 + E2 + E3

(29)

where

E1 =
l3∑

j1=0

(
l3
j1

)
B(α3 + j1, α4 + n3 − l3)

×D(α4 + n3 − l3, α3 + j1)

×
l2+l3−j1∑
j2=0

(
l2 + l3 − j1

j2

)
B(α2 + j2, α3 + α4 + n2 + n3 − l2 − l3 + j1)

×B(α1 + l1 + l2 + l3 − j1 − j2, α2 + α3 + α4 + n1 − l1 + n2 − l2 + n3 − l3 + j1 + j2)

and E2 = A2, E3 = A3.
We see that when we compute the conditional expectation of the j-th statistic, with

j = 1, . . . , k, we obtain a sum of j terms, the first containing the D function in the k+ 1− j
entry of the nested sums, with the same arguments of the B function, and the other terms
containing the D function respectively in the k + 2 − j, . . . , k entries of the nested sums,
with arguments exchanged w.r.t. the B function. For the conditional expectation of the
k + 1 statistic we obtain a sum of k terms, each containing the D function in the 1, . . . , k
entries of the nested sums, with arguments exchanged w.r.t. the B function.

Now for the M-step of the algorithm we have to compute the unconditional expectations
E[tj(x)|(α1, . . . , αk+1)] for j = 1, . . . , k and E[tk+1(x)|(α1, . . . , αk+1)] =

∑m
i=1 E[log(1−pi1−

· · ·− pik)|y, (α1, . . . , αk+1)]. Since the statistics don’t depend on the variables (l11, . . . , lmk)
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we have that:

E[tj(x)|(α1, . . . , αk+1)] =
m∑
i=1

E[log pij |(α1, . . . , αk+1)]

=
m∑
i=1

∫ pi1

0
· · ·
∫ 1−pi1−···−pi,k−1

0
log pij

×
Γ
(∑k+1

j=1 αj

)
∏k+1
i=1 Γ(αj)

pα1−1
i1 · · · pαk−1

ik (1− pi1 − · · · − pik)αk+1dpik · · · dpi1

= mD(αj , α1 + · · ·+ αk+1)

(30)

Analogously we have that E[tk+1(x)|(α1, . . . , αk+1)] = mD(αk+1, α1 + · · ·+ αk+1).
So, the algorithm in our case works in this way: suppose that (α(0)

1 , . . . , α
(0)
k+1) are our

starting values of the parameters, for example given by moment estimation; then the new
values of the parameters (α(1)

1 , . . . , α
(1)
k+1) are given by the solutions of the following system:

mD(α(1)
1 , α

(1)
2 + α

(1)
3 + · · ·+ α

(1)
k+1) = f1(α(0)

1 , . . . , α
(0)
k+1)

mD(α(1)
2 , α

(1)
1 + α

(1)
3 + · · ·+ α

(1)
k+1) = f2(α(0)

1 , . . . , α
(0)
k+1)

. . . . . .

mD(α(1)
k+1, α

(1)
1 + α

(1)
2 + · · ·+ α

(1)
k ) = fk+1(α(0)

1 , . . . , α
(0)
k+1)

(31)

where fj(α
(0)
1 , . . . , α

(0)
k+1) are the values of the conditional expectations f the statistics with

respect to the starting values of the parameters, that can be computed using formulas
analogous to the ones seen for the 3-dimensional case in equations (26), (27), (28) and (29).

4.3 Application to iterative urn scheme

Here we don’t give all the details of the application of the EM algorithm to the iterative urn
scheme, since the steps are quite similar to the ones in the previous section. We limitate to
the case k = 3 to show how the procedure works, the generalization for k > 3 is obvious.

As complete data in this case we consider xi = (p̃i1, . . . , p̃i3, li1, . . . , li3) with p̃ij the i-th
(unknown) realization of the random variable P̃j . The sampling density is then given as
before by the product of m terms fi(xi|(α1, β1, . . . , α3, β3)) defined by:

fi(xi|(α1, β1, . . . , α3, β3)) =
1

B(α1, β1)
p̃α1−1
i1 (1− p̃i1)β1−1 1

B(α2, β2)
p̃α2−1
i2 (1− p̃i2)β2−1 1

B(α3, β3)
p̃α3−1
i3 (1− p̃i3)β3−1

×
(
ni1
li1

)(
ni2
li2

)(
ni3
li3

) li3∑
j1=0

(
li3
j1

) li2+j1∑
j2=0

(
li2 + j1
j2

)
p̃li1+j2
i1 (1− p̃i1)ni1+ni2+ni3−li1−j2

×p̃li2+j1−j2
i2 (1− p̃i2)ni3+ni2−li2−j1 p̃li3−j1i3 (1− p̃i3)ni3−li3

(32)

17



It is easy to show that fi(xi|(α1, β1, . . . , α3, β3)) still belongs to the regular exponential
family, and that the sufficient statistics are given by t2j+1(x) =

∑m
i=1 log p̃ij for j = 0, 1, 2,

corresponding to the parameters α1, α2, α3, and t2j(x) =
∑m

i=1 log(1 − p̃ij) for j = 1, 2, 3
corresponding to the parameters β1, β2, β3.

For the computation of the conditional expectations of the statistics it is easy to see
that, analogously to what we have done in the multidimensional case, for example for t5(x)
we have to compute, for the term corresponding to the numerator in (22) (we suppress
index i for ease of notation):

l3∑
j1=0

(
l3
j1

) l2+j1∑
j2=0

(
l2 + j1
j2

)∫ 1

0

∫ 1

0

∫ 1

0
p̃l1+j2

1 (1− p̃1)n1+n2+n3−l1−j2

×p̃l2+j1−j2
2 (1− p̃2)n3+n2−l2−j1 p̃l3−j13 (1− p̃3)n3−l3 log p̃3dp̃1dp̃2dp̃3

=
l3∑

j1=0

(
l3
j1

)
B(α3 + l3 − j1, β3 + n3 − l3)D(α3 + l3 − j1, β3 + n3 − l3)

×
l2+j1∑
j2=0

(
j2

l2 + j1

)
B(α2 + l2 + j1 − j2, β2 + n3 + n2 − l2 − j1)

×B(α1 + l1 + j2, β1 + n1 + n2 + n3 − l1 − j2)

(33)

This is much easier than in the multidimensional urn scheme, and analogously for t6(x)
we get:

l3∑
j1=0

(
l3
j1

) l2+j1∑
j2=0

(
l2 + j1
j2

)∫ 1

0

∫ 1

0

∫ 1

0
p̃l1+j2

1 (1− p̃1)n1+n2+n3−l1−j2

×p̃l2+j1−j2
2 (1− p̃2)n3+n2−l2−j1 p̃l3−j13 (1− p̃3)n3−l3 log(1− p̃3)dp̃1dp̃2dp̃3

=
l3∑

j1=0

(
l3
j1

)
B(α3 + l3 − j1, β3 + n3 − l3)D(β3 + n3 − l3, α3 + l3 − j1)

×
l2+j1∑
j2=0

(
j2

l2 + j1

)
B(α2 + l2 + j1 − j2, β2 + n3 + n2 − l2 − j1)

×B(α1 + l1 + j2, β1 + n1 + n2 + n3 − l1 − j2)

(34)

We see then that computing conditional expectations of the statistics requires only to
multiply one term of the nested sums, the one with parameters “pointed” by the statistics,
by the D function with the same arguments of the B function if the statistic corresponds
to an αj parameter, or by the D function with arguments exchanged w.r.t. the B function
if the statistic corresponds to a βj parameter.

For the unconditional expectations of the statistics again, as for the multidimensional
urn scheme, since they don’t depend on the variables (l11, l12, . . . , lm2, lm3), we get that

E[t2j+1(x)|(α1, . . . , β3)] = mD(α2j+1, β2j+1)
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for j = 0, . . . , k − 1 and

E[t2j(x)|(α1, . . . , β3)] = mD(β2j , α2j)

for j = 1, . . . , k.
So, the algorithm in our case works in this way: suppose that (α(0)

1 , . . . , β
(0)
3 ) are our

starting values of the parameters, for example given by moment estimation; then the new
values of the parameters (α(1)

1 , . . . , β
(1)
3 ) are given by the solutions of the following system:

mD(α(1)
1 , β

(1)
1 ) = f1(α(0)

1 , . . . , β
(0)
3 )

mD(β(1)
1 , α

(1)
1 ) = f2(α(0)

1 , . . . , β
(0)
3 )

. . . . . .

mD(α(1)
3 , β

(1)
3 ) = f5(α(0)

1 , . . . , β
(0)
3 )

mD(β(1)
3 , α

(1)
3 ) = f6(α(0)

1 , . . . , β
(0)
3 )

(35)

where fj(α
(0)
1 , . . . , β

(0)
3 ) are the values of the conditional expectations of the statistics with

respect to the starting values of the parameters, that can be computed using the formulas
just seen. We see then that this system is much simpler than the one seen for the multi-
dimensional urn scheme, since instead of solving a system of 2k equations in 2k unknowns
we have only to solve k independent systems of two equations in two unknowns.

5 Calibration of the models and conclusions

In this section we discuss the calibration of the two models presented in the previous sections,
using the data from Standard & Poor’s report [9]. For every rating we are given the number
of firms and defaults for the years 1981-2002, see table 1. Since the AAA-rating showed
no default in the data, we considered only the six rating class from AA to CCC in our
estimations. Our main purpose has been to try to do a maximum likelihood estimation of
the parameters of the models through the use of the EM algorithm shown in the previous
chapter.

5.1 Multidimensional Urn Scheme

Since the speed of the convergence of the EM algorithm is very sensible with respect to the
starting values, it is very important to choose them carefully. For the multidimensional urn
scheme we observe that since

P1 + · · ·+ Pj = lim
n→∞

1
n

n∑
i=1

(Xi,1 · · ·+Xi,j) .

we can take, for nj large, lj/nj as realization of P1 + · · ·+ Pj , 1 ≤ j ≤ k. Hence(
l1
n1
,
l2
n2
− l1
n1
, . . . ,

lk
nk
− lk−1

nk−1

)
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1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
AAA firms 93 94 116 138 103 125 145 159 171 171 183

defaults 0 0 0 0 0 0 0 0 0 0 0
AA firms 204 225 247 299 341 371 377 384 388 412 423

defaults 0 0 0 0 0 0 0 0 0 0 0
A firms 485 477 458 462 505 560 518 515 570 592 609

defaults 0 1 0 0 0 1 0 0 0 0 0
BBB firms 273 290 303 300 278 302 321 331 343 359 389

defaults 0 1 1 2 0 1 0 0 2 2 3
BB firms 222 167 171 172 198 224 264 285 276 283 237

defaults 0 7 2 2 3 3 1 3 2 10 6
B firms 90 161 156 180 207 293 358 415 416 367 289

defaults 2 5 7 6 12 24 12 16 14 31 39
CCC firms 11 13 15 19 18 17 63 58 55 46 60

defaults 0 3 0 3 2 3 6 12 16 14 19
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

AAA firms 202 208 206 210 205 199 203 193 188 181 184
defaults 0 0 0 0 0 0 0 0 0 0 0

AA firms 480 514 530 550 561 586 612 632 643 604 600
defaults 0 0 0 0 0 0 0 1 0 0 0

A firms 688 768 847 1025 1089 1161 1198 1227 1223 1234 1260
defaults 0 0 1 0 0 0 0 1 1 3 1

BBB firms 409 475 544 650 732 846 1010 1089 1160 1282 1383
defaults 0 0 0 2 0 3 4 2 4 5 16

BB firms 244 291 379 433 477 557 663 793 884 920 902
defaults 0 1 1 4 3 1 5 9 10 26 26

B firms 226 237 344 406 442 479 701 903 960 933 838
defaults 16 6 9 17 12 16 32 62 74 100 71

CCC firms 50 49 26 29 29 28 33 74 87 116 184
defaults 12 6 4 7 1 3 11 23 26 50 80

Table 1: Data from Standard & Poor’s Special Report [9]
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are realizations of (P1, . . . , Pk) ∼ Dk+1(α1, . . . , αk+1).
We can so try to get our starting values by statistical calibration of the underlying Dirichlet
distribution.

We did it in two ways:
1) First we estimated α1, . . . , αk+1 by the method of moments. For j = 1, . . . , k we

denote the first order sample moments from the observations as

M1
j =

1
m

m∑
i=1

(
li,j
ni,j
− li,j−1

ni,j−1

)
and the second order sample moments as

M2
j =

1
m

m∑
i=1

(
li,j
ni,j
− li,j−1

ni,j−1

)2

,

where li,0/ni,0 = 0 by definition.
We can then equate the theoretical moments given by E[Pj ] = αj/α and E[P 2

j ] =
αj(αj + 1)/(α(α+ 1)) to the sample moments to get the moment estimates.

2) Then we estimated α1, . . . , αk+1 by the maximum likelihood method. Since the
density of the Dirichlet distribution is given by equation 5, then the log-likelihood function
is:

l(α1, . . . , αk+1) =
m∑
i=1

log

 Γ(α)∏k+1
j=1 Γ(αj)

k+1∏
j=1

(
li,j
ni,j
− li,j−1

ni,j−1

)αj−1
 ,

where li,0/ni,0 = 0 and li,k+1/ni,k+1 = 1.
We checked that the better estimates as starting values were the ones obtained by the

method of moments; the values obtained are shown in table 2. Note that since we have to
estimate k + 1 parameters and we have to our disposal 2k equations, we have chosen to do
k different estimation of the parameters using in each of them the k equations for the first
order moments and one equation for the r-th second order moment.

2nd Mo α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

6th 0.00078 0.00414 0.02840 0.10888 0.45526 1.68344 8.6315
5th 0.00443 0.02333 0.16018 0.61408 2.56768 9.49468 48.6821
4th 0.00706 0.03720 0.25547 0.97936 4.09506 15.1426 77.6405
3th 0.02057 0.10842 0.74452 2.85421 11.9344 44.1307 226.271
2nd 0.04595 0.24212 1.66265 6.37398 26.6518 98.552 505.306
1st 0.04754 0.25053 1.72046 6.59561 27.5785 101.979 522.876

Table 2: Comparison of the moment estimates for the multidimensional urn scheme with
different second order sample moments.

We then applied the EM algorithm to maximize the log-likelihood function deduced by
equation (6) using the procedure described in section 4.2. First we tried with groups of
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three ratings, using the amalgamation property of the Dirichlet distribution, so that for
example (PAA, PA, PBBB) ∼ D4(α1, α2, α3, α4 + · · ·+ α7).

We noticed that there is a kind of monotonicity relation between the group of rating
classes and the second order moment used for the parameters estimation; that is the es-
timates obtained using the first component second order sample moment were better for
the maximum likelihood estimation of AA-A-BBB group, and the ones obtained using the
sixth component second order sample moment were better for BB-B-CCC group. For the
numerical computation, we first tried to use Mathematica 5.0r, but we soon saw that this
was not feasible due to the time required for the computation of right end side of system
(31). So we implemented the algorithm in a C++ program. For the computation of values
of Gamma and related functions and for the solution of the system (31) we used some rou-
tines provided by the GNU Scientific Library(see [5]); in particular for the solution of the
system we used an implementation of M. J. D. Powell hybrid method for nonlinear equa-
tions (see [7]). As stopping criteria for the algorithm, we checked at every step both the
difference between the values of the log-likelihood and the Euclidean distance between the
vectors of expectation and covariances of underlying Dirichlet distribution. For the simple
case of groups of three rating classes we could so get very fast results, and they are shown
in table 3.

α̂1 α̂2 α̂3 α̂4 Loglike
AA-A-BBB 0.145251 0.527336 3.26885 1197.91 -59.1917
A-BBB-BB 0.292419 1.00181 3.12502 352.522 -112.106
BBB-BB-B 0.664552 1.41154 6.67936 146.846 -171.191
BB-B-CCC 1.07227 3.08588 12.9567 53.7531 -200.273

Table 3: Maximum likelihood estimates for the multidimensional urn scheme via the EM
algorithm for groups of three different ratings.

We tried then to do the same for the groups BBB-BB-B-CCC and A-BBB-BB-B-
CCC rating class, that have the biggest number of defaults, which is the parameter that
mostly influence the time of the computations, and we have been successful in a “reasonable”
time in these cases too; the results are shown in table 4. The times required for the
computation has been three hours for the BBB-BB-B-CCC group and one day and a half
for the A-BBB-BB-B-CCC group.

5.2 Iterative Urn Scheme

As for the multidimensional urn scheme, we first estimated the parameters α1, β1, . . . , αk, βk
trough the underlying generalized Dirichlet distribution. In analogy to what we have done
in section 5.1 we can take (

l1
n1
,
l2
n2
− l1
n1
, . . . ,

lk
nk
− lk−1

nk−1

)
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A-BBB-BB- BBB-BB-B-
B-CCC CCC

α̂1 0.175989 0.49368

α̂2 0.444428 0.940949

α̂3 1.13056 4.06962

α̂4 5.01342 17.6662

α̂5 21.6164 71.4711

α̂6 88.4868

Table 4: MLE estimates for the multidimensional urn scheme via the EM algorithm for the
groups of A-BBB-BB-B-CCC and BBB-BB-B-CCC ratings.

as realizations of (Q1, . . . , Qk).
Inspirated by the results seen in previous section we did only the method of moments

estimation. For j = 1, . . . , k, the sample mean and variance are given by

Ej =
1
m

m∑
i=1

(
li,j
ni,j
− lj−1

nj−1

)

Vj =
1

m− 1

m∑
i=1

[(
li,j
ni,j
− li,j−1

ni,j−1

)
− Ej

]2

,

where li,0/ni,0 = 0
By equating the sample moments with the theoretical ones of the Generalized Dirichlet

distribution and solving for αj and βj we get:

αj = Ej
E2
j − EjMj−1 + Vj

E2
j (Mj−1 −Kj−1)−Kj−1Vj

(36)

βj = (Kj−1 − Ej)
E2
j − EjMj−1 + Vj

E2
j (Mj−1 −Kj−1)−Kj−1Vj

,

where Kj =
∏j
m=1 βm/(αm + βm), K0 = 1 and Mj =

∏j
m=1[(βm + 1)/(αm + βm + 1)],

M0 = 1. Since every equation for αj and βj depends only on α1, . . . , αj−i and β1, . . . , βj−1,
we can iteratively solve them beginning with j = 1.

We did the estimation for four groups of consecutive rating class (AA-A-BBB-BB-
B-CCC, A-BBB-BB-B-CCC, BBB-BB-B-CCC and BB-B-CCC) since, by the way in
which the parameters are calculated through equations (36), this allows to obtain also
moment estimates for the other groups of three rating classes that we later maximized
trough the EM algorithm. The results are shown in table 5.

Then we applied the EM algorithm to maximize the log-likelihood function deduced
from equation (11) using the procedure described in section 4.3. Again we wrote a C++
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AA-A-BBB- A-BBB-BB- BBB-BB-B- BB-B-CCC
BB-B-CCC B-CCC CCC

α̂1 0.0453794 0.344364 0.974863 1.21783

β̂1 630.909 763.35 318.281 92.2378

α̂2 0.289133 0.764108 0.96496 2.68283

β̂2 698.256 286.875 94.94 60.6776

α̂3 0.764108 0.964959 2.68282 1.82676

β̂3 286.763 94.9366 60.6742 9.633317

α̂4 0.964933 2.68282 1.82673

β̂4 94.7508 60.718 9.63242

α̂5 2.68237 1.8267

β̂5 60.1925 9.63165

α̂6 1.80991

β̂6 9.12122

Table 5: Moment estimates for the iterative urn scheme via the generalized Dirichlet dis-
tribution for the groups of AA-A-BBB-BB-B-CCC, A-BBB-BB-B-CCC and BBB-BB-
B-CCC ratings.

24



program to implement the procedure, and we first tried with groups of three rating classes.
The results are shown in table 6.

AA-A-BBB A-BBB-BB BBB-BB-B BB-B-CCC

α̂1 1.06397 2.37793 1.67204 1.77055

β̂1 10424.6 4635.29 493.504 134.237

α̂2 1.92413 1.27116 1.18086 4.11124

β̂2 4735.66 443.612 123.711 90.1223

α̂3 1.71035 1.31964 4.42703 2.82681

β̂3 613.042 139.403 96.2997 12.7833

Table 6: Maximum likelihood estimates for the iterative urn scheme via the EM algorithm
for the groups of AA-A-BBB, A-BBB-BB, BB-B-CCC and BB-B-CCC ratings.

Then we tried to do the same for the groups BBB-BB-B-C and A-BBB-BB-B-C,
using as starting values the maximum likelihood estimates of the corresponding parameters
in view of the similarity seen in table 5. The results are shown in table 7. The use of
the EM algorithm has produced a great improvement in terms of the time needed for the
computation: in fact, in comparison with [8], where it was needed one day for the group
BBB-BB-B-C and one week and a half for the group A-BBB-BB-B-C, in our case it took
respectively only two hours and two days. On one hand we have to say that probably the
computer used in this case was faster than the one used in [8]; on the other hand we remark
that the data that we used for the calibration of the model showed a greater number of
defaults in almost every year and every rating class, due to the yearly update of the internal
Standard & Poors database, and and the models are very sensible to this parameter in terms
of the complexity of the log-likelihood function and consequently of the functions involved
in the EM algorithm procedure.
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A-BBB-BB- BBB-BB-B-
B-CCC CCC

α̂1 1.43955 1.66868

β̂1 2821.65 492.468

α̂2 1.25883 1.18321

β̂2 441.523 123.992

α̂3 1.18784 4.10329

β̂3 124.159 89.5257

α̂4 4.10343 2.82995

β̂4 89.5244 12.7955

α̂5 2.82984

β̂5 12.7951

Table 7: MLE estimates for the iterative urn scheme via the EM algorithm for the groups
of A-BBB-BB-B-CCC and BBB-BB-B-CCC ratings.

Appendix. Proof of De Finetti theorem

Theorem 5.1 (De Finetti’s theorem). Let (Xn)n≥1 be an exchangeable sequence of random
vectors from the probability space (Ω,F ,P) to the measurable space (Rd,B(Rd)), where
B(Rd)) is the Borel σ-algebra. Then there exists a sub σ-field F∞ ⊆ F conditioned on
which the Xn’s are independent and identically distributed.

Proof. Since (Xn)n≥1 is exchangeable it follows directly that (Xn)n≥1 is identically dis-
tributed. Conditional independence is shown in two steps:

Step 1. Let f : Rd → R be a Borel-measurable function with E [ |f(X1)| ] < ∞. Since
(Xn)n≥1 is exchangeable and hence identically distributed, it holds for every n ≥ 1 that

E [f(Xj)IA] = E [f(X1)IA] 1 6 j 6 n, ∀A ∈ Fn,

and hence

E

 1
n

n∑
j=1

f(Xj)IA

 = E [f(X1)IA] ∀A ∈ Fn.

Since 1
n

∑n
j=1 f(Xj) is n-symmetric and hence Fn-measurable, we get, by the definition of

conditional expected value,

1
n

n∑
j=1

f(Xj) = E [f(X1) | Fn] a.s.
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Note that (E [f(X1) | Fn] ,Fn)n≥1 is a reverse martingale2. Now, applying the martingale
convergence theorem, we get:

lim
n→∞

1
n

n∑
j=1

f(Xj) = E [f(X1) | F∞] a.s. (37)

where F∞ =
⋂
n≥1Fn.

If f(t1, . . . , td) is chosen as the indicator function I(−∞,x]:=I(−∞,x1]×···×(−∞,xd](t1, . . . , td),
where x = (x1, . . . , xd) then previous equation gives

lim
n→∞

1
n

n∑
j=1

I{Xj,16x1}∩···∩{Xj,d6xd}
a.s.= P [X1 6 x | F∞] . (38)

Step 2. The same argument as in step 1 can be applied for f : (Rd)k → R defined as f =∏k
i=1 I(−∞,xi]; then f(X1, . . . ,Xk) =

∏k
i=1 I{Xi6xi} due to exchangeability is n-symmetric

for k ≤ n, and so for every (j1, . . . , jk) ∈ S∗n = {(j1, . . . , jk) ∈ Nk : 1 ≤ ji ≤ n, ji 6= ji′}
and for every A ∈ Fn we have:

E[I{Xj1
6x1} · · · I{Xjk

6xk}IA] = E[I{X16x1} · · · I{Xk6xk}IA].

Since |S∗n| = n(n− 1) · · · (n− k + 1), we have then:

1
n(n− 1) . . . (n− k + 1)

∑
(j1,...,jk)∈S∗n

k∏
i=1

I{Xji
6xi} = E

[
k∏
i=1

I{Xi6xi}

∣∣∣∣ Fn
]
. (39)

Again from the martingale convergence theorem it follows that

P

[
k⋂
i=1

{Xi 6 xi}
∣∣∣∣ F∞

]
= E

[
k∏
i=1

I{Xi6xi}

∣∣∣∣ F∞
]

(39)
= lim

n→∞

1
n(n− 1) . . . (n− k + 1)

∑
(j1,...,jk)∈S∗n

k∏
i=1

I{Xji
6xi}.

Now observe that

0 ≤
k∏
i=1

n∑
l=1

I{Xl6xi} −
∑

(j1,...,jk)∈S∗n

k∏
i=1

I{Xji
6xi} ≤ n

k − n(n− 1) · · · (n− k + 1) ∼ nk−1

2(Xn,Fn)n≥1 with Fn+1 ⊆ Fn ⊆ F is called a reverse martingale if for all 1 ≤ m ≤ n it holds that Xn

is Fn-measurable, E[|Xn|] <∞ and E[Xm|Fn] = Xn.
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so that

lim
n→∞

1
n(n− 1) . . . (n− k + 1)

∑
(j1,...,jk)∈S∗n

k∏
i=1

I{Xji
6xi}

= lim
n→∞

1
n(n− 1) . . . (n− k + 1)

k∏
i=1

n∑
l=1

I{Xl6xi}

= lim
n→∞

k∏
i=1

1
n

n∑
l=1

I{Xl6xi}
(38)
=

k∏
i=1

P [X1 6 xi | F∞]

that gives the independence of (Xn)n≥1 conditional on F∞.
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