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Abstract. This paper deals with two different issues. On one side, it tries to determine if
the equilibrium order placement strategies analytically derived in Foucault et al. (2005) are
learnable by no-maximizing agents that update their strategies on the only base of their own
past experience (via genetic algorithm). Results state outcome (but not strategic) equiva-
lence. On the other side, it relaxes the assumption in the original model by Foucault for
which cancellation is not allowed and evaluate market performance. Results are mixed; the
introduction of a cancellation option turns out to be beneficial dependently on the key deter-
minants of the market dynamic (i.e., the arrival rate and the percentage of patient traders)
and an additional setup variable: the initial level of order aggressiveness in the market.
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1 Introduction

“The individual is foolish; the multitude, for the moment is foolish,
when they act without deliberation;

but the species is wise, and, when time is given to it,
as a species it always acts right”

Edmund Burke (1782)

Recent literature has devoted increasing attention to the study of the dynamics of a limit
order market. This attention is primarily due to the fact that the most part of the stock
exchange markets are governed using continuous double auction protocol’s rules (e.g., the
Paris Bourse, the Spanish Stock Exchange, the ASX, the NYSE, the Nasdaq and many
others). Results on different issues are mixed and no unique answer is provided to many
questions.

In this work, we deal with two different key issues: the search for an equilibrium trading
strategies result in a dynamic limit order market and the role played by the order cancellation
option. Let us introduce them one at a time.

We cite Edmund Burke: “the individual is foolish [...] but the species is wise”. The
context in which this citation was made is very different from the one that is treated here
but we can adapt this citation and interpret its meaning as follow: an individual agent might
be not able to really strategically act as a maximizer; it is limited in his own computational
abilities and makes mistakes. However, when behave as a species and takes his time (to learn
- the species has to survive) he acts in the right direction. That’s why our first point at issue
is the following. Assume that agents are not able to maximize their expected profits in a
continuous double auction; they are only able to learn from their past experience and from
their own interactions among the other agents. Are they able to behave in the right way?
Do they learn the (same) optimal strategy? We implement a genetic algorithm that drives
the evolution of the species and analyze the relevance and the properties of the achieved
(equilibrium) results.

As a second stage, and maintaining this evolutionary approach, we deal with the cancel-
lation issue. It is a typical issue in which analytical modeling loses in tractability. In fact,
many authors tried, in the last few decades, to introduce it in their mathematical models.
The results is an abuse of assumptions (and too many simplifications helps to perform a
math-exercise but put away from reality) or a simplification of the cancellation rule itself
treated and modelled as an exogenous random variable. The research question that we try
to answer is the following: from the point of view of a market designer, does the introduction
of a cancellation rule in a continuous double auction protocol (i.e., allowing traders to cancel
a submitted order and place a new offer) have any effect on order aggressiveness? Does it
help to increase the performance of the market according to specific criteria such as average
spread, allocative efficiency, volume and individual average profits?

We conduct both these studies using a computational approach and running simulations.
The advantage to use an agent-based model for this analysis is to overcome computational
limitations that make impossible to analytically reach a close form solution for the equilibrium
result in a less simplified model.
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This report is organized as follow. Section 2 summarizes related literature. Section 3
describes the model and the main findings as in [8]. Section 4 introduces the evolutionary
algorithm, illustrates the experimental design and setup and reports main results obtained
using a described learning approach. Equilibrium order placement strategies analytically
derived in [8] and profiles of strategies as outcome of the learning process are compared
in terms of market performance according to different criteria (i.e., distribution of spreads,
order aggressiveness and the role of the arrival rate). Section 5 relaxes the no-cancellation
assumption in the original model, evaluate the performance of the market under the new
institutional structure and compare results from the two different scenarios both at individual
and aggregate level. Section 6 concludes and presents open scenarios.

2 Related Literature

The increasing attention devoted to the study of the continuous double auction in the last
few decades is primarily due to the fact that many of the most important exchange markets
are modeled according to this protocol.

The recent literature analyzes different aspects of the limit order books.
Empirical works have tried to establish a link between order book and order flow and to

identify the main determinants of the book dynamics [2]. Theoretical papers have developed
static and dynamic models of order-driven markets [16, 7, 8]. They analyze the choice between
limit and market orders in different ways; [16] develops a two-tick model in which agents make
their choice taking into account the consequences of their trading behavior on future traders’
order placement strategies, [7] focuses on the no-execution risk and [8] introduces agents’
types that differ by the magnitude of their waiting costs and concentrates the attention on
the key determinants of the market dynamic: the percentage of patient traders and the order
arrival rate. However, all these models make restrictive assumptions in order to achieve
analytical solutions. The attempt to relax these assumptions makes them intractable mostly
because of the size of the state space and/or the large number of variables and parameters
involved. In order to overcome this problem, some authors presents models solved numerically
for equilibrium [9].

The hypothesis for which traders are allowed to revise or cancel their orders is often
ignored by the literature since it increases dramatically the complexity of the problem. Many
theoretical models rule out this possibility, many others simply do not mention how revision
and cancellation are treated. However, given the fact that it is a common feature of real
exchange markets, it cannot be ignored.

In the most part of the few papers in which cancellation is explicitly examined, it is
modeled as a random event. Sometimes it is an exogenous shock that follows a poisson
random process; otherwise, it might be modeled using other more complicated functions that
denote the probability that a given order (or a given share of orders) is cancelled at a certain
point in time [9]. However, experimental evidence show data that “seem too systematic
for such a random event explanation” [4]. Sounds more persuasive the idea to consider
cancellation and revision as part of the agents’ trading strategies, a consequence of their
strategic behavior [20, 17].
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Literature on cancellation concentrates its attention on two different main aspects. On
one side, it tries to identify and explain which are the main determinants of the cancellation
choice; on the other side, it explains the effects and the consequences of cancellation itself.

[5] conducts an experiment with the main goal to capture behavioral regularities in or-
der placement and cancellation. The authors recognized three different factors that have a
significant effect on order cancellation and the cancellation rate: the position of an order
relative to the best price, the imbalance between buying and selling orders and the number
of orders in the order book. A more aggressive order, placed at the best price or better,
denotes impatience and it is expected to be canceled faster than an order placed deep inside
the book that suggests a high willingness to wait for execution. Using an ad hoc indicator
of order imbalance, they show that it is more (less) likely for an order to be cancelled when
it is the dominant (dominated) order type on the book. Finally, plotting the cancellation
probability as a function of the total number of orders in the book, they surprisingly display
that greater is the number of orders in the book, lower is the probability to be canceled. [3]
proposes an empirical analysis of cancellation in the Spanish Stock Exchange. The paper
define two main reasons for cancellation: the attempt to acquire information about the state
of the market (and this leads to fleeting orders that are canceled very fast) and the change in
market conditions. The focus of our paper is on the latter. Their results are consistent with
the main findings in [5] described above. The choice of cancellation is affected by the size of
the spread, wider the spread higher the probability to be canceled, and the position in the
order book. In addition, they observe three supplementary determinants of cancellation: the
level of volatility, the number of traders and the interaction of trading activity and relative
inside spread. In periods characterized by a high level of uncertainty (i.e., high volatility)
traders place less competitive orders waiting for better conditions [7] and the probability of
cancellation decreases. A decrease in the number of traders1 in the market implies a lower
frequency with which agents arrive at the market. Then, the risk of no execution increases
and it might be preferable to cancel an order; see [13]. Viceversa, an increase in the num-
ber of traders (between submission and cancellation) reduces the probability of cancellation.
Finally, when the size of the spread increases together with the number of transactions we
can assume that orders are executed very quickly; this reduces the risk of no execution and,
consequently, the probability to be cancelled overall. [6] conducts an empirical analysis on
the Australian Stock Exchange with the aim to both document the regularity of limit order
revisions and cancellations and to examine their determinants. Cancellation is positively af-
fected by the order size, the price-order priority, the release of bad public news and the risk
associated with limit orders. Conversely, it is negatively related with order aggressiveness
and good public news.

Looking at the effects of cancellation the attention of the literature is focused on the
consequences of the introduction of the option to cancel on market performance. The main
findings from the experiments in [4] show that cancellation affects volume but not price-
associated variable. The option to allow cancellation increases the number of orders submitted
due to a reduction in the risk of no execution and, consequently, the level of transactions.
However, the magnitude is higher for the former variable. Another potentially interesting

1The authors use the number of transactions as a proxy for the number of traders.
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finding is that the variation in traders’ payoffs increases when investors can cancel orders;
however, this result is not statistically reliable due to the small size of the sample. One goal
of this paper is to deeper investigate in this direction.

3 The Model

With the aim to study the dynamics of a limit order market, we initially base our simulation
on the analytical model proposed in [8]. In this section we describe that model; following [18],
we distinguish three components of their exchange market: the rules that govern exchange
(institutional structure), the agents’ tastes and endowments (market environment) and the
specified trading strategies (agents’ behavior).

Institutional Structure. The model describes a limit order market in which agents can
trade at most one unit at a time. There is a specified range of admissible prices (determined
by the latent information about the security value) and offers and spreads are placed on a
discrete grid governed by the tick size 4 > 02. Traders’ arrivals follow a Poisson process
with parameter λ > 0. (Ass.1) Each trader arrives only once, submits a market or a limit
order and exits. Submitted orders cannot be canceled or modified. (Ass.3) Buyers and sellers
alternate with certainty. The first is a buyer with probability 1/2.

Market Environment. There is an economy of traders equally divided between buyers
and sellers. Valuations and costs lie outside the range of admissible prices3. Both buyers
and sellers are allowed to be of two types (patients-P and impatients-I) that differ by the
magnitude of their waiting costs (0 6 δP 6 δI). Proportions of buyers (sellers) of a certain
type in the population are given by θP and θI (for patient and impatient traders respectively),
where θP = 1− θI .

Agents’ Behavior. Bids and asks are determined as distances (J , expressed by the number
of tick size) from the best outstanding offer on the opposite side of the book (a and b), given
the actual spread (s):

bidi = a− J

askj = b+ J (1)

with J ∈ {0, ..., s − 1} (Ass.2) Limit orders must be price improving, that is, narrow the
spread by at least one tick.4

2Discretization of prices is standard in the literature and many real stock exchanges implement this rule
(e.g., Paris Bourse).

3We assume valuations (costs) to be equal across buyers (sellers), without loss of generality, to simplify the
model and favor computational tractability and comparison.

4The choice to introduce a spread improvement rule in the model may appear too much restrictive; we also
conjecture that it remarkably affect the results. However, empirical evidence supports this assumption even
when that rule is not imposed by the market: “A large fraction of the order placements improves upon the
best bid or ask quote. Such improvements on one side of the quotes tend to occur in succession (undercutting),
which reflects competition in the supply of liquidity” ([2], p.4).
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Profits from trade are given by the following expressions:

πi = v − p− δiT

πj = p− c− δjT (2)

where v(c) is the valuation (cost) of the buyer (seller), p is the transaction price, δi,j is a
measure for the waiting costs and T is the time elapsed between the submission of the offer
and its cancellation from the book because of trade. At the end of the trading session, agents
that do not trade make a negative profits that equals to −δiT .

3.1 Main results of the model in Foucault et al. (2005)

To validate our setup, as a first step we reproduce the model in Foucault et al. (2005) by
agent-based simulation. The use of such a technique implies two important adjustments.
First of all, as stated in Eq. 2, we play with realized (instead of expected) payoffs and time
between arrivals. Secondly, the original model assumes a stream of agents over an infinite
horizon; the use of an agent-based model requires the number of traders to be finite (both
for computational reasons and to allow agents to learn5). This necessitates the introduction
of a halting rule: the trading session ends when all traders had their chance to submit an
order and no more trades are possible.

Details on the validation exercise are available in appendix A. To favor comparison
between results in the analytical model by Foucault et al. (2005) and the learning model
that will be presented in the next section, Table 1 summarizes the main findings in [8].

Equilibrium strategies are defined as follow.

Definition 1. An equilibrium of the trading game is a pair of order placement strategies,
σ∗P (.) and σ∗I (.), such that the orders prescribed by the strategies solve

max
j∈{0,...,s−1}

πi(j) ∼= j4− δiT ∗(j) (3)

when the expected waiting time T ∗(.) is computed assuming that traders follow strategies σ∗P (.)
and σ∗I (.).

[8] claim that the equilibrium order placement strategies analytically derived is unique
by construction (p.1179). We conduct a test to check if the equilibrium result is confirmed
by simulation. It turns out to be sensible to the number of traders in the market and the
number of rounds over which average payoffs are computed, see Appendix B for details.

5This choice has an effect on the ability of the system to reach the suggested equilibrium result. Details in
appendix B.
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Market Resiliency The market appears much more resilient when the percentage of patient

traders in the market is higher than the percentage of impatient traders.

Distribution of Spreads The distribution of spreads becomes skewed toward low (high) spreads when

the percentage of patient (impatient) traders is higher. The average spread

is smaller in markets dominated by patient traders (more resilient) since

small spreads are more frequent in this case.

Spread Improvements Spread improvements increase (decrease) with the size of the spread when

market is dominated by patient (impatient) traders.

Rate of Arrival (λ) (Corollary 2.1) The support of feasible spreads in the fast market is shifted

to the left compared to the support of possible spreads in the slow market.

(Corollary 2.2) The slow market is more resilient than the fast market.

The former effect dominates the latter:

Fast markets exhibit lower spreads with respect to slow markets

(i.e., higher values of λ decrease the average spread).

Equilibrium Strategies In equilibrium, patient traders tend to submit limit orders, whereas impatient

traders submit market orders.

Table 1: Main results of the model in Foucault et al. (2005)

4 Is the (Unique) Equilibrium Learnable?

The recent behavioral literature strongly suggest that agents are not able to behave as a
profit-maximizer due to their own computational limitations. Since we expect that individ-
ual agents participate in the market to exploit as much as possible from transactions, a first
interesting issue we deal is to try to answer the following question: are agents able to learn
the maximizing strategies adjusting their trading behavior on the basis of their
own past histories?. We consider this an important point at issue both for theoretical and
methodological purposes.

The recent literature has provided many learning models and there is no clear (definitive)
reason to choose one of them instead of another. Given the recognized ability of evolutionary
model to lead to maximizing results, we decide to implement a genetic algorithm that will
be described in detail in the next section.

4.1 The Design of the Evolutionary Algorithm (GA)

Following [1], we describe how trading strategies evolve answering five different questions.

What data structure will you use (gene)? The population of N traders is initially
divided into two subgroups accordingly with the parameter θP ; namely, NP (patients traders)
and NI (impatient traders). Each of these groups represents a population that evolves au-
tonomously. In fact, we are dealing with a kind of learning that is known in the literature
as type-learning : “agents of several distinct types interact with each other, but they only
learn from successful agents of their own type” [19]. Each trader is endowed with a string
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that describes a strategy to be implemented: for each possible spread faced (s) it indicates
which strategy the trader has to play (J). Not feasible strategies are ruled out. Only pure
strategies are considered.

What fitness function will you use? Learning is driven by the average profit of a
profile of trading strategies. It is computed over an evaluation window defined by a fixed
number of trading sessions (R); strategies are updated using a genetic algorithm every R
consecutive days.

What crossover and mutation operators (i.e., variation operators) will you
use? Children are expected to preserve some part of the parents’ structure; mimicking
sexual reproduction, the crossover operator maps parents’ genes onto children’s genes. We
choose a uniform crossover in order to avoid representational bias6: “this crossover operator
flips a coin for each locus in the gene to decide which parent contributes its genetic value to
which child” (computational expensive). The mutation operator makes small changes in a
gene with the aim to (a) be sure that all the possible profiles of strategies have a chance to be
exploited and (b) “good” profiles that perform bad by chance and are randomly substituted
have a chance to re-enter the game. Inspired by [14] we apply mutation as follow: with
probability decreasing in time (as measured by the cumulative number of revision, i.e. with
probability 1/n) we substitute one of the siblings’ actions with a pure action selected with
uniform probability among all the feasible strategies.

How will you select parents from the population and how will you insert chil-
dren into the population (i.e., Model of Evolution)? Parents are selected using the
double tournament selection method; a subgroup of size m is picked and the single most fit
one is taken as a parent. The procedure is repeated in order to choose the second parent; a
new different subgroup of m traders is randomly drawn from the same initial pool of N with
replacement, i.e. the same parent can be picked twice. Children are placed in the popula-
tion using the absolute fitness replacement method: “we replace the least fit members of the
population with the children”.

What termination condition will end your algorithm? The simulation ends after
a fixed number of trials (= R× number of revisions by GA).

4.2 Experimental Design and Setup

There is an economy of N = 1000 traders; types (patient or impatient) are assigned accord-
ing to the parameter θP splitting the population into two subgroups, namely NP and NI.
Traders in each subgroups are equally divided into buyers and sellers; sellers (buyers) are
endowed with one (zero) unit of a good. Agents play a continuous double auction and are

6Ashlock (2004, p.39) highlights a problem with single point crossover: “loci near one another in the
representation used in the evolutionary algorithm are kept together with a much higher probability than those
that are farther apart.”
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allowed to trade at most one unit in each trading session. The trading session ends when all
traders have made their offer and no more trade are possible. Each trading session represents
one round; the genetic algorithm applies over an evaluation window of R = 100 rounds look-
ing at the average profits earned by each agent. We allow traders to revise their strategies
2000 times; i.e., R× number of revisions by GA = 100 × 2000 = 200000 trading sessions
are played in total. Books are cleared at the end of each round; hence, trading sessions are
independent.

Initial conditions turn out to be very relevant in determining results7. We initially run
four different simulations using the parameters in Table 2, accordingly to the numerical ex-
ample in [8]. Strategies are chosen as stated by Eq.1; the aggressiveness of the limit or market
order is determined by the choice of a strategy randomly drawn using a uniform distribution
over the set of feasible J .

θP λ δP δI 4 [B,A]

(a) market dominated by patient traders 0.55 1 0.05 0.125 0.0625 [20, 21.25]
(b) market dominated by impatient traders 0.45 1 0.05 0.125 0.0625 [20, 21.25]

Table 2: Parameters of the simulations

At the end of the simulations, strings that describe behavior of traders are stored. Then,
we run an additional simulation for each scenario consisting in 200 consecutive independent
trading sessions in which agents place offers according to the profiles of strategies obtained
by the genetic algorithm implementation. Average values of different variables are computed
in order to analyze the performance of the market with respect to results in [8].

We test Foucault’s predictions using one of the “equilibrium” profiles we end up with;
even if the learning process leads to different profiles of strategies we argue that they all
replicate the same features of the model. At the same time, we assume that θP = 0.55 (0.45)
is representative of a market dominated by patient (impatient) traders.

4.3 Results

Distribution of spreads. Figure 1 (left) is constructed plotting the average frequencies
for each spread over the 200 rounds taken into account8; Figs.1 (center and right) report on
average frequencies over a sample round. As it can be easily seen by direct visual inspection,
distribution of spreads is skewed towards the left in both examples and intermediate and

7In my PhD Thesis I have analyzed what happens when we initialize the simulation allowing a certain
percentage of traders (namely 30% and/or 70%) to place offers accordingly tot he equilibrium strategies in
[8]; a sufficiently high number of maximizing agents assure that equilibrium strategies are adopted by almost
all the traders in the market. At the same time, different level of order aggressiveness in the initial setup lead
to different results; more on that in Sect. ??

8Using the average values, the sum of the frequencies does not sum exactly to one.
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high spreads9 are faced with probabilities zero (or close to zero). An explanation for higher
frequencies attached to low spreads is due to the fact that J-limit orders are chosen using
a uniform distribution over the support [0, s − 1] and low values of J (that determines low
created spreads) lie more often in such an interval.
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Figure 1: Spread Distribution.

However, even if this conclusion seems to be in contrast with findings in [8], we observe
that when θP < θI (i.e., the market is dominated by impatient traders, red bars in Fig. 1) the
spread distribution moves toward the right. Table 3 give details of values of frequencies in
Figs.1 (center and right); where no values are reported, frequencies are lower than 0.001. Re-
sults reflect two different effects. On one side, as stated in [8], a market dominated by patient
traders turns out to be more resilient (i.e., the spread goes back faster to the competitive
spread) since patient traders play more aggressively (see Fig.2) to speed up execution. This
finding is confirmed by simulation. On the other side, differently from [8]10, we simulate the
continuous double auction protocol with traders that arrive randomly to place their offers11.
Hence, the sequence differs in each round and for each scenario and it reflects the composition
of the market as described by the parameter θP . Given a lower number of impatient traders,
that are in general more aggressive of patient traders, liquidity is consumed less rapidly and
the inside spread has more time to narrow between market order arrivals.

As to be noticed that traders learn better how to behave in states of the world that are
more likely to be experienced. Then, we can point out another important consequence of the
shape of the spread distribution; equilibrium order placement strategies cannot be learned
and agents behave more aggressively than in equilibrium trying to minimize their waiting

9By construction, given the range of admissible prices and the tick size, and according to the numerical
examples in [8], a spread of 20 is faced when best offers are placed at the extremes and/or each time in which
both books are empty. Hence, probability to be faced for the maximum feasible spread is always positive.

10Authors in [8] deal with this issue in a footnote. They claim that “if realizations for traders’ types were
not held constant, an additional force would make small spreads more frequent when the market is dominated
by patient traders. In this case, the liquidity offered by the book is consumed less rapidly, since the likelihood
of a market is smaller than in markets dominated by impatient traders. Thus, the inside spreads has more
time to narrow between market orders arrivals” ([8], p.1190).

11Except by the fact that buyers and sellers alternate with certainty by assumption.
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Spreads
Composition
of the market 1 2 3 4 5 6 7 8 9 10 11 [...] 19 20

θP = 0.55 0.401 0.132 0.005 0.009 0.452
θP = 0.45 0.280 0.232 0.039 0.061 0.043 0.013 0.003 0.013 0.011 0.305

Table 3: Frequencies of spreads over a single round.

time and speed up execution. This trading behavior is close to the strategy that maximize
the welfare. We will come back on that in the next sections. Even if it seems counterintuitive
at a first glance, the generated framework in which high (and intermediate) spreads are faced
with zero probability makes the average spread higher when market is dominated by patient
traders due to the fact that we have a continuous alternance between the maximum and the
lowest feasible spreads, see Table 412.

Order placement strategies. Figure 2 represents the expected J-limit orders13 placed
by patient and impatient traders in the two cases of market dominated by patient traders
(left) and market dominated by impatient traders (right). Only J chosen given spreads faced
with positive probability are shown.
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Figure 2: Order placement strategies. Markets dominated by patient (impatient) traders on the left (right).

Impatient traders always play more aggressively than patient traders; this difference is a
direct consequence of their lower willingness to wait given the higher discount rate attached
to time elapsed between submission and execution of an order.

12We can report an average spread of 0.58 (0.51) when θP > (<) θI .
13Expected Js are computed looking at the share of population who choose a specific J , conditional on the

spread. For example, given a current spread of two ticks, by the improvement rule the only feasible choices
for an agent who have to submit an offer are to place (1) a J-limit order with J=1 or (2) a market order (i.e.,
choose J=0). If the 80% of the population make the first choice and the rest adopt the residual strategy, then
the expected J will be 0× 0.2 + 1× 0.8 = 0.8.
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Two additional important considerations concerning impatient and patient traders (re-
spectively) have to be done. Firstly, impatient traders tend to go market when θP > θI (i.e.,
expected J is almost always less than one). By contrary, when the market composition is
reverted, their aggressiveness decreases; they still place market orders when low spreads are
faced but they submit limit orders for intermediate spreads and their offers when the spread
is maximum is more aggressive than in the opposite scenario(i.e., when market is domi-
nated by patient traders). This seems to be directly connected with the higher percentage
of impatient traders; the evolutionary algorithm where fitness is measured by average profits
recompenses impatient traders that place a less aggressive offer by chance. In fact, due to the
average aggressiveness of impatient traders, they have the chance to conclude a transaction
almost immediately at a more favorable price. Secondly, patient traders are more aggres-
sive (to speed up execution) when they prevail in the market. In addition, with the opposite
composition of the market the reasoning above also applies to the minority of patient traders.

Simulation results show that in both examples spread improvements increase with the
size of the spread. In [8] this is true only for markets dominated by patient traders; however,
we can assume that it depends on the fact that in our setup impatient traders do not always
submit market orders.

Rate of arrival . In the previous paragraphs, we have analyzed how the percentage of
patient traders in the population can affect the order placement strategies and, consequently,
the spread distribution. [8] states an additional key determinant of the dynamic of the book:
the order arrival rate (represented by the parameter λ).

We conduct a second set of experiments that replicates scenarios in Table 2, replacing
parameter λ1 = 1 with λ2 = 0.2. It leads to a slower market in which the average time
between arrivals is given by λ2 = 1/0.2 = 5 > 1 = 1/1 = 1/λ1.

We can summarize main results as follow.
On one hand, in slower markets we expect that time between submission and transaction
increases and wait for execution becomes more costly; as a consequence, agents are incline
to place more aggressive orders. This intuition is confirmed by the lower levels of expected
J obtained by simulation. Figure 3 report expected J-limit orders for fast (black) and slow
(red) markets for patient (top) and impatient (bottom) traders in the two different scenarios,
i.e. θP > θI (left) and θP < θI (right).

θP = 0.55 θP = 0.45

Fast Market
(λ = 1) 0.583 0.508

Slow Market
(λ = 0.2) 0.624 0.588

Table 4: Average Spreads.

On the other hand, coherently with our previous analysis, in slow markets the number of
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Figure 3: Market dominated by patient (left) and impatient (right) traders.

spread faced increases and the support of feasible spreads shifts to the right. Both these effects
are stated in [8]. As pointed out by the authors14 they lead to different conclusions on which
market displays the lower average spread; the former (latter) tends to reduce (increase) the
average spread. Given the set of parameters in Table 2, we confirm by agent-based simulation
results in [8] for which the latter effect dominates the former and, in most cases, there is a
negative correlation between arrival rate (λ) and the average spread, see Table 4.

To sum up, we can conclude that, even if agents are not able to learn equilibrium order
placement strategies due to the uniform random initial setup15 and, then, we cannot state
strategic equivalence between equilibrium strategies and learned trading behavior, the two

14See Appendix A for details.
15An additional motivation that helps to understand why equilibrium results are not reached concerns the

fragility of the equilibrium under consideration discussed in appendix B.
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different profiles of strategies we end up with can be considered as outcome equivalent with
some minor exceptions. A quality control for the strategy outcome of the learning process is
offered in Appendix C.

5 Introduce Cancellation

The second contribution of this paper is to study what happens when the restrictive as-
sumptions for which orders might not be cancelled is relaxed. Cancellation is a key
issue in the recent literature and it turns out to be very difficult to be analytically analyzed.
In fact, the introduction of some cancellation rules causes a significative increment in the
level of sophistication of the model and makes much more difficult to figure out a closed form
solution for the equilibrium strategies.

We allow traders to cancel their orders under the condition that the “cancellation option”
might be exercised only once in each trading session (i.e., if you decide to retract an order,
then you cancel your outstanding offer and immediately place a market order, if possible).
This seems to be (still) a restrictive assumption but it is the one that keeps the model sim-
ple, since you only need to decide your willingness to wait (measured by t), and it may be
justified by the fact that in a context in which (a) there are no many traders and (b) the
spread-improvement rule applies, if you place an order and it does not pass after a “reason-
able” amount of time, it might be convenient to cancel it and there is no room, both in terms
of time and profitability, for placing another limit order.
Cancellation costs are not considered.

Let us describe the main changes in the model:

• Strategies. Differently from before, each agent choses a pair (J, t|s) where J is the
distance from the best offer on the opposite side of the book that determines his/her
own bid/ask and t is the interval of time after which, if the order is not executed,
the trader decides to cancel the previous offer and place a (new) market order. t is
computed from the point in time in which the offer is placed and is chosen on a discrete
grid. Taking into account the value of the grid (4 = 0.0625), the size of range of
admissible prices (K4 = 1.25) and the number of traders in the market (N = 1000),
we define the set of admissible t ∈ {2, 4, 8, 16, 32}.

timeline u
submit an order

canctime (t) u
if the order is not executed

cancel and go market

13



• Halting rule. A session closes when (a) all traders have placed their offers, (b) no more
trades are possible, and (c) no more cancellations are queued waiting to be activated.

Both from a point of view of market evaluation and market design, it is interesting to under-
stand what happens when cancellation is introduced. We apply the same genetic algorithm
with the only difference that now two genes for each trader evolve simultaneously: the first
one indicates which J the agent will choose, given the current spread s (exactly as before); the
second associates a specific t in the feasible set for each admissible J . The process of learning,
than, is not more complicated (apart from the increasing computational effort) but it takes
more time to converge towards a clear pattern. In Sect. 5.1 main results are summarized.
This exercise has (partially) a different meaning from the one performed above. In fact, in
the previous section we wanted to see if there was (or not) convergence to the unique and
known equilibrium. Here, changing the market structure due to the introduction of an option
to cancel an offer, the equilibrium strategies change; given the difficulties in computing them
analytically, we conduct a computational analysis to compare situations with the same initial
setup and to be able to isolate the effect of learning combined with the cancellation issue.

5.1 Results

As previously done, we summarize the main findings with respect to the two key determinants
of the book dynamics stated in [8]: the percentage of patient traders (θP ) and the rate of
arrival (λ).

In this section the aim is twofold. One one side, we want to analyze results due to the
introduction of a cancellation option per sè; on the other side, we compare outcomes from
the two different scenarios, with and without cancellation, in order to figure out if and when
the cancellation option might be beneficial (see Sect. 5.2).
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Figure 4: Spread Distribution.
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Distribution of spreads. Figure 4 reports the average spread frequencies over 200
rounds in markets dominated by patient (black) or impatient (red) traders simulated using
parameters in Table 2. As it can be easily seen, the introduction of the cancellation option
enlarges the set of spreads faced with positive probability. This is partially due to the less
aggressive behavior of traders with respect to the case of no-cancellation. In fact, the cancel-
lation option might be considered as a sort of insurance/protection from the non execution
risk that allow traders to hazard a less aggressive behavior in order to exploit the most from
transaction.

Order placement strategies. Figure 5 displays the expected J-limit order placed by
patient (green) or impatient (blue) traders in the market dominated by patient (left) and
impatient (right) traders. Comparing aggressiveness for spreads that are faced in both cases
(i.e., with and without cancellation), the hypothesis for which aggressiveness decreases is
confirmed. On average, patient traders seem to place higher J than impatient traders even if
the level of aggressiveness reduces compared to the previous scenario without cancellation16.
In market dominated by impatient traders difference in aggressiveness between patient and
impatient traders for low and intermediate spreads are larger; impatient traders reduce ag-
gressiveness more than patients.
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Figure 5: Order Placement Strategies.

As a direct consequence of the positive frequency attached to all the spreads in the support
and the less aggressive behavior of traders (that is positively correlated with θI , the percent-
age of impatient traders in the market) the average spread (a) increases with respect to the
no-cancellation case and (b) is higher in markets dominated by impatient traders, see Table 5.

16In some isolated cases, say high spreads that are visited with very low probability and that represents
states of the world in which is difficult to learn the optimizing behavior, impatient traders turn out to be even
less aggressive than patient traders.
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θP = 0.55 θP = 0.45

Fast Market
(λ = 1) 0.710 0.730

Slow Market
(λ = 0.2) 0.663 0.661

Table 5: Average Spreads.

Rate of arrival. We analyze what happens when the rate of arrival is reduced (from
λ = 1 to λ = 0.2 as in the previous scenario to favor direct comparison).

Contrarily to what we have observed in the no-cancellation scenario, in slow markets
intermediate spreads are less likely to be faced; since time is costly, traders who placed a no
aggressive order use more often their chance to cancel the offer and complete a transaction
to speed up execution and reduce losses. As a consequence, the average spread reduces and,
because of the high likelihood of market orders, it is not substantially different with respect
to the percentage of patient traders in the market. This behavior will be crucial in increasing
the welfare (i.e., the allocative efficiency level reached by the market).

Finally, we propose some considerations concerning order aggressiveness. Since traders use
more often their option to cancel in fast markets than in slow markets, the latter appear quite
aggressive; however, also the pre-cancellation limit orders placed are usually less aggressive
than the expected J chosen in slow markets, both for patient and impatient traders.

5.2 Does Cancellation matter?

In the previous section we have analyzed the effects of the introduction of the cancellation
option on market outcome, according to the performance measures used in Sect.4.3. In thi
section we concentrate on the evaluation of the market both at individual and aggregate level
on the basis of three different additional criteria: the number of transactions completed per
trading session (i.e., volume), the individual average profits achieved by agents in the market
and the level of efficiency reached by the market itself. Then, comparison between the two
scenarios (with and without cancellation) is conducted with the aim to provide some market
design implications.

5.2.1 Volume

Volume is defined as the number of transactions per trading session. Since in our simulation
we have N = 1000 agents equally divided between buyers and sellers, the maximum number
of trades in the artificial market is 500.

Table 6 reports the average number of transactions for each case under consideration. As
it can be easily seen, the average number of trades is never lower than 494 (477) without
(with) cancellation: at most 5% of trades are missing! The reason for that is quite trivial.
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θP = 0.55 θP = 0.45

Fast Markets 499.415 498.630
λ = 1 477.68 477.93

Slow Markets 494.74 499.41
λ = 0.2 495.50 497.05

Table 6: Number of transactions without (black) and with (red) cancellation.

Independently from everything else, one assumption of our model is the spread improvement
rule: every trader needs to reduce the actual spread of at least one tick. This assumption not
only force the spread to be narrowed but also avoid the possibility to choose a limit order
when no more reduction is possible.

With only one (not statistically significant) exception, we assume that volumes are higher
when the cancellation option is not available. Slow markets display higher volumes in markets
dominated by impatient traders and this effect is amplified in the scenario with cancellation
(where the percentage of patient traders in the market does not count) since more traders use
their option to cancel their offers and place market orders. Additionally, looking at the total
number of patient and impatient traders involved in a trade, in fast market with cancellation
more agents (and in particular -not surprisingly- patient traders) fail to trade.

5.2.2 Individual Average Profits

Individual average profits are computed overall and per type over 200 independent rounds.

θP = 0.55 θP = 0.45

Fast Markets 1.321 1.294
λ = 1 1.177 1.184

(-0.144, P↑, I ↓↓) (-0.11, P↓↓, I ↓)

Slow Markets 1.066 1.078
λ = 0.2 1.149 1.135

(+0.083, P ↑↑, I↑) (+0.057, P↓, I↑↑)

Table 7: Individual Average Profits without (black) and with (red) cancellation.

Table 7 reports the individual average profits without (black) and with (red) cancellation.
In general, we can assume that cancellation is beneficial in slow market; i.e., if the arrival rate
(λ) decreases, the cancellation option helps to increase the realized share of the competitive
outcomes.

This overall effect comes from a different impact on patient and impatient traders. Patient
traders take advantage from cancellation when they dominate the market but their profits are
lowered in a market dominated by impatient traders; however, the former advantage (latter
disadvantage) increases (decreases) in absolute values when the arrival rate decreases.

From what concern impatient traders, they take advantages from the cancellation op-
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tion (more when they dominate the market) in slow markets but not in fast markets; this
advantage (disadvantage) is higher (lower) when they dominate the market.

Note that in slow (fast) markets dominated by patient (impatient) traders, gains (losses)
go in the same direction for both types and players.

More in general, in slow markets average individual profits are lower independently by
time and the introduction of a cancellation option; however, the latter reduces this difference
in magnitude.

5.2.3 Allocative Efficiency

One of the most common criteria used to evaluate the performance of a market is given by
the notion of allocative efficiency. In [8], the authors devote an entire paragraph to make
some observations concerning efficiency, defined as the sum of the expected payoffs17. Their
first claim is that efficiency cannot be fully reached due to waiting costs that constitute a
dead-weight loss; then, the aim become to minimize such a cost.

As we will see, it happens when two conditions are fullfilled: (1) waiting time is minimized
(no more than one period) and (2) all limit orders generate the competitive spreads (=1 in
our examples). Note that [8] assumes that all impatient traders place market orders; then,
EC = δP /λ. In our framework this is not necessarily true and computations about the
maximum level of allocative efficiency achievable will be updated.

The benchmark paper states that (in general) efficiency is not achieved in equilibrium
due to the fact that the model do not uncover two source of inefficiency: (a) impatient
traders sometimes submit limit orders and (b) patient traders post spreads larger than the
competitive spreads. Both of these sources of inefficiency will be taken into account in what
follows.

The maximum level of efficiency achievable by the market as a whole is usually measured
as the competitive outcome (thereon, CO) defined as the difference between values and costs
for intramarginal traders18:

CO =

q∗∑
i=1

(vi − ci) (4)

where vi (ci) are the ith highest (lowest) value (cost) and q∗ is the competitive quantity.
Hence, the allocative efficiency measure is defined as follow19:

Definition 2. The allocative efficiency can be defined as the total profit actually earned by
all traders divided by the maximum total profit that could have been earned by all traders:

AE =

∑
(vi − p) + (p− cj)

CO

17As usual, we deal with ABM then measure of efficiency is based on realized payoffs.
18Intramarginal traders are buyers (sellers) with their values (costs) higher (lower) than the equilibrium

price. In this implementation we have assumed simmetric reservation values with respect to the range of
admissible prices; hence, the equilibrium price coincides with the medium point of this interval.

19See [21] for definitions of competitive outcome and allocative efficiency; for the latter, refer also to [18]
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where vi (cj) is the value (cost) of a buyer i (a seller j) involved in a trade and p is the
transaction price for that specific exchange20.
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Figure 6: Allocative Efficiency

However, in our model there is something more to be taken into account: the waiting
time has a cost that depends on agent’s type and this cost has the effect to decrease the
maximum payoff achievable.

Definition 3. The maximum level of allocative efficiency attainable in a market with waiting
costs in which buyers (sellers) have the same value, v (costs, c) and alternate with certainty
(namely, the first player is a buyer with probability 1/2) can be defined by the following
equation:

AEmax = v − c− 1

λ
[θP δP + (1− θP )δI ]

20Given our set of parameters, according to the Foucault’ s numerical examples, we have vi = 22,∀i and cj
= 19.25, ∀j. Hence, AEmax = N(22− 19.25)
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where θP is the share of patients in the population, δP (δI) is the waiting cost for patient
(impatient) traders and λ is the parameter of the Poisson arrival process.

Proof. Let us assume the case in which the first player is a buyer (wp 1/2). If the following
seller will place a market order, then the profit of the buyer will be πb = v − p− [θP (δPT ) +
(1− θP )(δIT )], where p is the transaction price. Since, on average, the interarrival time of a
Poisson process is 1/λ, then we can substitute T = 1/λ. The seller profit can be written as
πs = p−c. Then, the total gain from transaction will be π = v−c−[θP (δPT )+(1−θP )(δIT )].
By symmetry, the same happens if the first player is a seller (with complementary probability
1/2) from which the result follows.

With the aim to compare the level of efficiency for the two markets under consideration
(namely, with and without cancellation), we can use as a reference point (technically, the
de- nominator in the AE definition equation) alternatively the CO (dotted line at 1) or the
AEmax (red line) as described above. This choice does not affect the direction of our results.

Note that the maximum level of efficiency that can be attained ruling out cancellation is
higher by construction. That’s why we use it as a benchmark.

Figure 6 describes the allocative efficiency attained by traders in the market over 200
rounds. In the first (second) line results from fast (slow) markets are reported; the two
columns represent markets dominated by patient (left) and impatient (right) traders.

As it can be easily seen by direct visual inspection, coherently with previous results on
individual average profits, cancellation turns out to be beneficial in slow markets.

with cancellation without cancellation

Fast markets higher lower
Slow markets lower higher

Table 8: Comparison of level of allocative efficiency achieved in markets dominated by im-
patient traders, when θI > θP (with respect to the opposite case: θI < θP ).

In slow markets, allocative efficiency is higher (lower) than in fast markets with (without)
cancellation. However, the difference in the level of efficiency achieved reduces when the mar-
ket is dominated by impatient traders. In fact, under this scenario (i.e., θI > θP ) allocative
efficiency is higher (lower) with (without) cancellation in fast markets and viceversa in slow
markets.

Finally, note that in the cases in which only extremes spreads are faced the level of
efficiency reached by the market is close to the maximum value achievable; this is due to the
fact that the two conditions for which welfare is maximized are fulfilled (it is confirmed by
simulation plotting the book dynamic, see [15] and Sect.4.3).
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6 Concluding Remarks

In this paper we deal with two different research questions.
Initially, we try to understand if the unique order placement strategies analytically derived

in [8] are learnable by no-maximizing agents that place their offers (only) on the basis of their
own past experience. We model learning via genetic algorithm. As a result, we have shown in
Sect. 4 that the outcome of the learning process is different from the predicted (maximizing)
one. There are several reasons for which equilibrium strategies are not acquired; we focus
our attention on two main determinants of the result: the fragility of the equilibrium in
[8] (discussed in Appendix B) and the initialization choice. In fact, we assume that agents
initially submit a J-order randomly drawn from a uniform distribution over the feasible set
(given spread); hence, the likelihood to place low J is higher than the probability to submit
high J and, as a consequence, the initial overall aggressiveness of traders in the market is
quite high. This implies that equilibrium strategies for intermediate and high spreads are
very difficult to be learned. However, the two profiles of strategies we end up with can be
considered as outcome equivalent with some minor exception.

In the second part of the paper we relax the assumption for which cancellation is not
allowed in order to evaluate market performance under the new institutional structure. It
cannot be stated that cancellation is (or is not) beneficial per sè. In fact, its consequences in
the market outcome, according to the performance criteria considered in the paper, depend
on the joint effects of different parameters of the model. In particular, we claim that the
main determinants of the cancellation results are the same key parameters that determine
the book dynamics: the percentage of patient traders in the market (θP ) and the time
arrival rate (λ). At first glance, cancellation turns out to be beneficial (overall) when θP or λ
decreases (i.e., in market dominated by impatient traders or slow markets). However, effects
are different for patient and impatient traders since they have different order placement
strategies (driven by waiting costs) and different chances to exploit and take advantages
from the cancellation option. In addition, an important role is played by the initial level of
order aggressiveness in the market. We have conducted some supplementary simulations
changing the distribution from whcih J is randomly drawn; as a preliminary result, the main
findings of this paper still hold for markets that have an initial very low or very high level of
order aggressiveness but not for markets in which intermediate J are initially more likely to
be played.

Finally, it has to be pointd out that there are at least three additional rules and/or
parameters that seem to have an effect on the consequences of the introduction of the cancel-
lation option on market outcome: (a) the spread improvement rule (that rules out strategic
behavior -favored by cancellation- to place offers that do not reduce the spread), (b) the tick
size 4 (that contributes to determine the depth of the book and, for low values, plays a role
similar to the spread improvement rule) and (c) the set of feasible t. Deeper investigation is
left for future research.
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A Foucault et al. (2005) as an Agent-Based Model - Validation

Determinant of the book dynamic #1:
The percentage of patients traders

Book Dynamics and Resiliency. Figure 7 shows the book dynamics in two markets
characterized by different bidding behaviors. It reports (left) two numerical example con-
tained in the original paper and replicates them (right) by running simulations. The two
scenarios differ only in the percentage of patient traders in the market (55% in the first line,
45% in the second line). Figures are rescaled to favor direct comparison. The competitive
spread is reached quite fast in a market with a majority of patient traders; in a market char-
acterized by the opposite composition the quoted spread remains quite large during all the
trading sessions.

Result 1. The market appears much more resilient when the percentage of patient traders
in the market is higher than the percentage of impatient traders.

This result is imputed by the authors to the bidding behavior: the equilibrium strategy
suggested (and analytically derived) for markets in which patient traders prevail force them
to submit more aggressive orders to speed up execution. The authors use the same sequence
of traders types in each example to be able to disentangle this effect; in fact, they claim that
when realizations of traders types differ, a market dominated by impatient traders shows
small spreads less frequently due to an additional reason: the likelihood of a market order is
higher. Clearly, in a framework based on a finite horizon (and hence, on a finite number of
traders N) the use of the same sequence of traders types does not reflect differences in the
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Figure 7: Source: Foucault et al. (2005), Fig. 3 p.1190 (left), Replication by ABM (right).

composition of the market.

The use of two different (randomly chosen) sequences respecting the percentage of patient
and impatient traders does not significantly affect the result. Figure 8 reports the book dy-
namics for markets populated by N = 10000 traders, distributed accordingly to the different
percentage of patient traders in the two examples. The average spreads in the top-left market
is 0.529, while the average spread in the top-right market is 1.005. Results are confirmed.
The first line shows the book dynamics of the first five-thousand submissions. The second line
shows the book dynamics of the first forty submissions (to favour direct visual inspection).
Even if the sequence of traders differs from the one used in Fig. 7, the book dynamics appear
very similar and consistent with the finding in the paper.

Distribution of spreads. Figure 9 presents the stationary distribution of spreads in the
two markets described above. As usual, we report and compare original and simulated results.

Result 2. The distribution of spreads becomes skewed toward low (high) spreads when the
percentage of patient (impatient) traders is higher. The average spread is smaller in markets
dominated by patient traders (more resilient) since small spreads are more frequent in this
case.

State of the book and order aggressiveness. Spread improvements are a measure
of order aggressiveness. They describe the amount (in number of ticks) by which the agent
reduce the spread placing his offer. For example, given a spread of twenty ticks an optimal
strategy for a patient agent is to place a limit order with J∗ = 18; since J∗ represents the
new spread created by the offer itself, this means that the original spread is reduced by two
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Figure 8: Book Dynamics (random sequence).

Figure 9: Source: Foucault et al. (2005), Fig. 4 p.1192 (left), Replication by ABM (right).

ticks (namely, 20-18=2). Figure 10 reports the (optimal) spread improvements: as in the
previous picture, results from a market dominated by patient (impatient) traders are shown
in black (red).

Result 3. Spreads improvements increase (decrease) with the size of the spread when the
market is dominated by patient (impatient) traders.

Determinant of the book dynamic #2:
Measures of trading activities

The market composition determines resiliency; then, it is indirectly related to some mea-
sures of trading activities, namely (a) the order arrival rate and (b) the time between trades.
We are interested in the former, since it is a key determinant of the book dynamics. [8]
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Figure 10: Spread Improvements by ABM.

analyzes this relationship leading to the conclusions described below.

The order arrival rate. The authors identify two different effects with opposite impact
on the average spread. On one hand, the average spread tends to be inversely related to the
order arrival rate (Corollary 2.1, p.1193) The support of possible spreads in the fast market
is shifted to the left compared to the support of possible spreads in the slow market. Figure 11
shows the spread distributions for fast (black, λ = 1) and slow (red, λ = 0.2) markets
dominated by patient (left) and impatient (right) traders. Agents maximize following optimal
strategies in [8]21.

As stated in [8], higher spreads appear with higher probability in a slow market. On
the other hand, market resiliency is inversely related to the order arrival rate (Corollary 2.2,
p.1193) The slow market is more resilient than the fast market.

Figure 11: Spreads Distributions by ABM model: Fast market vs Slow market.

Figure 12 shows the spread improvements. Traders are more aggressive in a slow market
(red), i.e., the spread is reduced more than in the fast market (black). This holds for both
markets dominated by patient traders (left) and dominated by impatient traders (right), and

21Computations for equilibrium order placement strategies in slow markets with λ = 0.2 are reported in
appendix A.1.
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Figure 12: Spreads Improvements by ABM model: Fast market vs Slow market.

leads to more resilient books. Given two different values of λ (that characterize slow and
fast markets), which market exhibits the smaller spread on average depends on which effect
prevails. [8] concludes by computation that, for a large set of parameters values, the former
effect (Corollary 2.1) dominates the latter; hence, in most cases there is a negative correlation
between the order arrival rate (λ) and the average spread.

Result 4. Fast market exhibits lower spreads with respect to slow markets (i.e., higher
values of λ decrease the average spread).

Figure 13 shows the book dynamics for the first forty traders in fast (black) and slow
(red) markets characterized by different percentage of patient traders (θP = 0.55 in the
first line, θP = 0.45 in the second line). Table 9 reports average spreads in fast and slow
markets populated by N = 10.000 traders. Results 4 in [8] is confirmed by simulation for
markets dominated by patient traders but not always for markets that exhibit the opposite
composition of traders types. This conclusion is not surprisingly due to the (previously
mentioned) fact that the likelihood of a market order is higher in the latter markets and this
implies that small spreads are shown less frequently. This effect tends to be amplified by a
higher order arrival rate (i.e., in a fast market).

θP = 0.55 θP = 0.45

Fast Markets (λ = 1) 0.5305 1.0000
Slow Markets (λ = 0.2) 0.8583 0.9537

Table 9: Average Spreads in Fast/Slow Markets populated by different percentage of patient
traders (N=10000).
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Figure 13: Market Resiliency by ABM model: Fast market vs Slow market.

A.1 Equilibrium Order Placement Strategies in Slow Markets
(numerical example, λ = 0.2)

Since the condition sc = K (i.e., the cutoff spread for which impatient traders submit market
orders is equal to the maximum spread) holds given both the parameter sets in Tables 10,
11, impatient traders optimal placement strategy is always to place a (market) order with
J∗ = 0.

Equilibrium strategies for patient traders derive from proposition 5, p.1183.

Proposition 1. The set of equilibrium spreads is given by:
n1 = j∗P , nq = K

nh = n1 +
∑h

k=2 Ψk, h = 2, ..., q − 1

where ΨK = CF (2ρk−1
δP
λ4

)

and q is the smallest integer such that j∗P +
∑q

k=2 ΨK > K

Note: CF is the ceiling function; it returns the smaller integer greater than or equal to the object.

Case (1)

θP δP δI 4 λ

0.55 0.05 0.125 0.0625 0.2

Table 10: Parameter set - market dominated by patient traders.
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j∗P = CF (
δP
λ4

)⇒ j∗P = 4

ρ =
θP
θI

= 1.22

Ψ2 = CF (9.76) = 10
Ψ3 = CF (11.9072) = 12

n1 = j∗P = 4
n2 = n1 + Ψ2 = 4 + 10 = 14
n3 = n1 + Ψ2 + Ψ3 = 4 + 10 + 12 = 26 > 20 = K ⇒ q = 3.

Case (2)

θP δP δI 4 λ

0.45 0.05 0.125 0.0625 0.2

Table 11: Parameter set - market dominated by impatient traders.



j∗P = CF (
δP
λ4

)⇒ j∗P = 4

ρ =
θP
θI

= 0.81

Ψ2 = CF (6.48) = 7
Ψ3 = CF (5.2488) = 6
Ψ4 = CF (4.25) = 5

n1 = j∗P = 4
n2 = n1 + Ψ2 = 4 + 7 = 11
n3 = n1 + Ψ2 + Ψ3 = 4 + 7 + 6 = 17
n4 = n1 + Ψ2 + Ψ3 + Ψ4 = 4 + 7 + 6 + 5 > 20 = K ⇒ q = 4.
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Equilibrium strategies (J∗)
- patient traders -

spread faced Caso (1) Caso (2)

1 0 0
2 0 0
3 0 0
4 0 0
5 4 4
6 4 4
7 4 4
8 4 4
9 4 4
10 4 4
11 4 4
12 4 11
13 4 11
14 4 11
15 14 11
16 14 11
17 14 11
18 14 17
19 14 17
20 14 17

Table 12: Equilibrium order placement strategies for patient traders. In redstrategies on equilibrium path.

B Fragility of the Equilibrium Order Placement Strategies

We use a test to check if the equilibrium result is confirmed by simulation. The baseline
setup replicates the parameters (of the model) used in the numerical example in Foucault et
al. (2005) for both market dominated by patient traders and market dominated by impatient
traders. The suggested strategy-profile to be tested (according to Eq. 3) are the following:

spread
composition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 of the market

0 1 1 3 3 3 6 6 6 9 9 9 9 13 13 13 13 13 18 18 θP = 0.55
0 1 1 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 θP = 0.45

Table 13: Equilibrium order placement strategies for patient traders (impatients place market orders),
Table 2, p. 1187 (Foucault et al., 2005). Parameter values: λ = 1, 4 = 0.0625, δP = 0.05, δI = 0.125.

A randomly selected agent play a certain number of independent rounds (R); at each
round he can submit his offer only once, choosing a random strategy in the feasible set given
the actual spread. All the other agents play accordingly to the strategy reported in Table 13.
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Average payoffs are computed for strategies on and off the equilibrium path (i.e., for every
possible deviation), conditional on spread. Then, the maximizing strategy is identified and
correspondence with the equilibrium strategy in [8] is checked.

We run two simulations for each market, one for each type of players (patient or impa-
tient). By symmetry, the difference in role (i.e., buyers or sellers) need not to be considered.

We consider three different scenarios. The benchmark is a market populated by N = 1000
traders that play for 1.000.000 consecutive and independent trading sessions; in the other
two cases, the number of agents in the market and the number of rounds over which average
payoffs are computed are (alternatively) reduced to test their role in reaching the expected
equilibrium. Table 14 reports results for patient traders in a market dominated by patient
traders. Results are qualitatively equivalent for impatient traders.

Equilibrium Spreads
1 3 6 9 13 18 20

(a) N=1000, R=1.000.000 0 1 3 6 9 13 18
(b) N=200, R=1.000.000 0 1 1 6 9 13 18
(c) N=1000, R=100.000 0 1 1 6 12 6 18

Foucault 0 1 3 6 9 13 18

Table 14: Test on equilibrium, θP = 0.55, maximizing strategies for patient traders.

As it can be easily seen, the equilibrium result is confirmed: given a sufficiently large
number of traders and rounds over which average payoffs are computed, the strategy suggested
in Foucault et al. (2005) maximizes the payoffs of patient (who place limit orders) and
impatient (who place market orders) traders in both markets. The choice of a high N is
crucial. In fact, as mentioned in the paper, [8] construct a model over an infinite horizon,
considering a stream of traders who continuously submit an order. If we redo this exercise
with a lower N the same equilibrium result is no longer obtained.

At the same time, the choice of R (i.e., number of rounds over which average payoffs are
computed) is even more decisive. In fact, the size of the range of admissible prices is not
particularly large compared with the number of traders in the market, valuations and costs
do not differ across buyers and sellers and are chosen outside the interval in which agents can
submit their offers. As a joint effect of these facts, differences in payoffs are minimal and a
large number of observations is needed to figure out which strategy is really the optimizing
one.

C Quality Control

The genetic algorithm implemented leads to an “equilibrium” profile as it can be learned by
agents. This equilibrium differs from the one discussed in Foucault et al. (2005) for many
reasons. Firstly, an agent-based simulation, consistently with what happens in real markets,
considers a finite number of traders for each trading session; as a consequence, the equilibrium
suggested by the authors cannot be reached unless we use a quite high number of traders and
reviews of strategies are based on average profits over a large evaluation window. Secondly,
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the reached result in terms of strategies chosen by the agent is not unique; learning takes
time and is strictly related to both the initial conditions (i.e., random initialization of the
agents strings that describe the strategy), the kind of mutation implemented, the parameters
of the model and the path of learning itself. So, the learning process may leads to different
profile of strategies.

We have to deal with an important point at issue; we need to test if we actually obtain an
equilibrium strategy profile. To do that, we provide a quality control for the GA strategies.

Definition 4. Given ε > 0, a (possibly randomized) strategy profile σ is an ε-equilibrium if

ui(σi, σ−i) > ui(si, σ−i − ε), ∀i, si ∈ Si

When ε = 0, we go back to the standard definition of a Nash Equilibrium.

We can consider ε as a measure of “how much” the strategy profile that we are going
to test approximates an equilibrium; the lower the ε, the lower is the temptation for an
agent to deviate (deviation is weakly profitable), and the closer we are to an equilibrium.
Two computational problems arise given our setup: (a) our genetic algorithm (as behavior
of learning processes in general) does not lead to the same equilibrium strategy profile and
(b) agents of the same type (namely, patients and impatients) do not converge to a unique
strategy in each GA-implementation. To deal with these issues, we set up a quality control
as described below. We consider 10 different profile of strategies, obtained by specific GA
simulations. For each of them, we randomly pick up a specific number of agents (namely,
N/10 - where N is the total number of agents in the market). Then, a simulation is run
for all traders under examination (separately); taking as fixed the strategies of all the other
players, deviations from the original strategy to each feasible alternative pure strategy are
experimented. We list average profits gained by the tested agent over the number of rounds
played for each possible alternative strategy.

Finally, we compare the original strategy to be tested with the one that comes out choosing
for each actually faced spread the pure strategy that leads to the maximum (average) profit
(ceteris paribus). Since spreads might be faced with different frequencies, expected profits
are weighted according to these frequencies. The difference between the maximum expected
profits and the expected profits given the original strategies are computed; they represents
our ε(s). We also compute the median and the mean value of ε for each scenario (when
scenarios differ by the number of traders in the market). This gives an intuition of how ε
might be distributed.

N number of number of εmax (type) εmedian εmean
picked up agents simulations

1000 100 1000 0.05 (P) 0.0312 0.0289

Table 15: ε-equilibrium test.

Table 15 summarizes the results. Results do not seem to be too far from an equilib-
rium: ε is sufficiently small. εmedian and εmean do not differ significantly; this suggests that

32



εmax cannot be considered an exceptional result but it represents quite well a worst-case
benchmark22.

22We also checked markets with different size. As expected, the number of traders in the market seems to
be a key-determinant the value of ε; it is quite intuitive: higher N , finer is the learning process and, as a
consequence, the better is the equilibriums approximation.
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