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Abstract.In this short note, we aim at a qualitative framework for modeling multivariate
risk. To this extent, we consider completely distributive lattices as underlying universes,
and make use of lattice functions to formalize the notion of risk measure. Several properties
of risk measures are translated into this general setting, and used to provide axiomatic
characterizations. Moreover, a notion of quantile of a lattice-valued random variable is
proposed, which shown to retain several desirable properties of its real-valued counterpart.
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1 Introduction

During the last decades, researchers joined efforts to properly compare, quantify and manage
risk. In this direction, risk measures constitute an important and widely studied tool.
Traditionally, risk measures are thought of as mappings from a set of real-valued random
variables to the real numbers. As a well-known example we have the so-called “value at
risk” (VaR).

There are many different contexts in which the structure of real numbers seems to be
insufficient, since it only provides a quantitative setting of risk which heavily relies on the
linearly order of reals. In particular, many problems in insurance and finance involve the
measurement of multivariate risk. Then modeling and measuring multivariate risks is a
theoretically demanding problem and it is of major importance in practice.

In this short note we aim at a unified qualitative framework for modeling risks in such a
way that qualitative evaluations are not necessarily expressed in a totally ordered universe.
This goal is two-folded.

In the one hand, we take as motivating frameworks those of [4] where risk measures
take values in certain partially ordered cones, and of [8] where risk measures are assumed
to be vector-valued, each of which generalizing the classical real-valued setting proposed by
Artzner et al. [1].

On the other hand, we wish to treat risks from a purely ordinal point of view, and thus
abandon their numerical interpretation. Here the motivating approach is that of Chambers
[5] where quantile-based risk measures are treated from an ordinal point of view and not
bounded by probabilistic interpretations.

In order to unify these settings, we take completely distributive lattices as underlying
universes, and consider an important class of aggregation functionals considered on these
structures, namely, the class of Sugeno integrals. This setting has several appealing aspects,
for it provides sufficiently rich structures well studied in the literature, which allow models
and measures of risk from an ordinal point of view, and which do not depend on the usual
arithmetical structure of the reals. In the next section, we survey the general background
on lattice theory as well as representation and characterization results concerning Sugeno
integrals on completely distributive lattices. In Section 3, we propose notions of risk measure
and of quantile-based risk measure within this ordinal setting, as well as present their
axiomatizations and representations. In Section 4 we briefly discuss possible directions for
future work.

2 Basic notions and preliminary results

In this section we recall concepts and preliminary results relevant to studying risk measures
on, not necessarily linearly ordered, distributive lattices. For further background in lattice
theory we refer the reader to, e.g., Birkhoff [2], Davey and Priestley [6] or Rudeanu [12].
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2.1 Basic background in lattice theory

A lattice is an algebraic structure ⟨L;∧,∨⟩ where L is a nonempty set, called universe, and
where ∧ and ∨ are two binary operations, called meet and join, respectively, which satisfy
the following axioms:

(i) (idempotency) for every a ∈ L, a ∨ a = a ∧ a = a;

(ii) (commutativity) for every a, b ∈ L, a ∨ b = b ∨ a and a ∧ b = b ∧ a;

(iii) (associativity) for every a, b, c ∈ L, a∨ (b∨ c) = (a∨ b)∨ c and a∧ (b∧ c) = (a∧ b)∧ c;

(iv) (absorption): for every a, b ∈ L, a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

With no danger of ambiguity, we will denote lattices by their universes. As it is well-known,
every lattice L constitutes a partially ordered set endowed with the partial order ≤ given
by: for every x, y ∈ L, write x ⩽ y if x ∧ y = x or, equivalently, if x ∨ y = y. If for every
a, b ∈ L, we have a ⩽ b or b ⩽ a, then L is said to be a chain. A lattice L is said to be
bounded if it has a least and a greatest element, denoted by 0 and 1, respectively..

A lattice L is said to be distributive, if for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Clearly, every chain is distributive.
For an arbitrary nonempty set A and a lattice L, the set LA of all functions from A to

L constitutes a lattice under the operations ∧ and ∨ defined pointwise, i.e.,

(f ∧ g)(x) = f(x) ∧ g(x) and (f ∨ g)(x) = f(x) ∨ g(x) for every f, g ∈ LA.

In particular, for any lattice L, the cartesian product Ln also constitutes a lattice by defining
the lattice operations componentwise. Observe that if L is bounded (distributive), then LA

is also bounded (resp. distributive). We denote by 0 and 1 the least and the greatest
elements, respectively, of LA. Likewise, for each c ∈ L, we denote by c the constant c map
in LA.

Let L be a bounded lattice and A an arbitrary nonempty set. For each X ⊂ A, we
denote by IX the characteristic function of X in LA, i.e.,

IX(x) =

{
1, if x ∈ X

0, otherwise.

2.2 Completely distributive lattices

A lattice L is said to be complete if for every S ⊆ L, its supremum
⋀

S :=
⋀

x∈S x and
infimum

⋁
S :=

⋁
x∈S x exist. Clearly, every complete lattice is necessarily bounded.

A complete lattice L is said to be completely distributive is the following more stringent
distributive law holds ⋀

i∈I

(⋁

j∈J
xij

)
=

⋁

f∈JI

(⋀

i∈I
xif(i)

)
, (1)
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for every doubly indexed subset {xij : i ∈ I, j ∈ J} of L. Note that every complete chain
(in particular, the extended real line and each product of complete chains) is completely
distributive. Moreover, complete distributivity reduces to distributivity in the case of finite
lattices

Complete distributivity is a self-dual property. This was observed by Raney [11] who
showed that (1) and its dual are equivalent, and thus that either is sufficient to define
complete distributivity. In [15], Tunnicliffe presented a characterization of complete dis-
tributivity which relied on the notion of a “cone”. We shall make use of the following
alternative characterization given in [3].

Theorem 1. A complete lattice L is completely distributive if and only if for every set A
and every family A of nonempty subsets of A, we have

PA(f) :=
⋁

X∈A

⋀

x∈X
f(x) =

⋀

X∈ℬ

⋁

x∈X
f(x) =: Pℬ(f)

for every f ∈ LA where ℬ = {B ⊆ A : B ∩X ∕= ∅ for all X ∈ A}.

2.3 Lattice homomorphisms, continuity and invariance

We now recall the notion of lattice homomorphism. Let L be a lattice. A map ° : L → L is
said to be a (lattice) homomorphism if it preserves ∧ and ∨, i.e.,

°(x ∧ y) = °(x) ∧ °(y) °(x ∨ y) = °(x) ∨ °(y) for every x, y ∈ L.

The following notion extends that of homomorphism. A map ° : L → L, where L is a
complete lattice, is said to be continuous if it preserves arbitrary meets and and arbitrary
joins, i.e., for every S ⊆ L,

°(
⋀

S) =
⋀

°(S) and °(
⋁

S) =
⋁

°(S).

The term continuous is justified by the following fact (see [7]): if ° : L → L is continuous,
then it is continuous with respect to the Lawson topology on L.

We say that a functional F : LA → L on a complete lattice L is invariant if, for every
f ∈ LA and every continuous mapping ° : L → L, we have

F (° ∘ f) = ° ∘ F (f).

In this paper we shall also consider the following weaker property. A functional F : LA → L
is said to be homogeneous if it is invariant under continuous mappings of the form °(x) =
x∧c and °(x) = x∨c, for every c ∈ L. Note that every homogeneous functional F : LA → L
is idempotent, i.e.,

F (c) = c, for every constant map c ∈ LA.
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2.4 Sugeno integrals as lattice polynomial functionals

By a (lattice) functional on L we mean a mapping F : LA → L, where A is a nonempty set.
The range of a functional F : LA → L is defined by ℛF = {F (f) : f ∈ LA}. A functional
F : LA → L is said to be nondecreasing if, for every f, g ∈ LA such that f(i) ⩽ g(i), for every
i ∈ A, we have F (f) ⩽ F (g). Note that if F is nondecreasing, then ℛF = [F (0), F (1)].

An aggregation functional on a bounded lattice L is a nondecreasing functional F : LA →
L such that ℛF = L, that is, F (c) = c for c ∈ {0, 1}. For instance, each projection
Fa : L

A → L, a ∈ A, defined by Fa(f) = f(a), is an aggregation functional, as well as the
mappings PA and PA given in Theorem 1.

As mentioned, in this paper we are particularly interested in certain aggregation func-
tionals, namely, Sugeno integrals. A convenient way to introduce the Sugeno integral is via
the so-called lattice polynomial functionals, that is, lattice functionals which can be obtained
from projections and constants by taking arbitrary meets and joins. A Sugeno integral on
L is simply a polynomial functional F : LA → L which is idempotent.

In the case when L is completely distributive, Sugeno integrals can be equivalently
defined in terms of capacities, i.e., nondecreasing mappings v : P(A) → L, where P(A)
denotes the set of all subsets of A. More precisely, a functional F : LA → L is a Sugeno
integral if and only if there exists a capacity v : P(A) → L such that

F (f) = Fv(f) :=
⋁

X∈P(A)

v(X) ∧
⋀

x∈X
f(x).

(Sugeno integrals were introduced by Sugeno [13, 14] on linearly ordered domains. In
the finitary case, Marichal [9] observed that this concept can be extended to the setting
of bounded distributive lattices by defining Sugeno integrals as idempotent polynomial
functions.) Note that the polynomial functionals obtained solely from projections by taking
arbitrary meets and joins, coincide exactly with those Sugeno integrals associated with
{0, 1}-valued capacities, i.e., nondecreasing mappings v : P(A) → {0, 1} such that v(A) ∈
{0, 1}.

Sugeno integrals over completely distributive lattices were axiomatized in [3] in terms
of nondecreasing monotonicity and homogeneity.

Theorem 2. Let L be a completely distributive lattice, A an arbitrary nonempty set, and let
F : LA → L be a functional. Then F is a Sugeno integral if and only if it is nondecreasing
and homogeneous.

In order to axiomatize the subclass of those Sugeno integrals associated with {0, 1}-
valued capacities, we need to strengthen the conditions of Theorem 2. As it turned out,
invariance rather than homogeneity suffices.

Theorem 3. ([3]) Let L be a completely distributive lattice, A an arbitrary nonempty set,
and let F : LA → L be a functional such that, for every X ⊆ A, F (IX) ∈ {0, 1}. Then F
is a Sugeno integral associated with a {0, 1}-capacity if and only if it is nondecreasing and
invariant.
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In the case when L is a complete chain with at least 3 elements, Theorem 3 can be
strengthened since nondecreasing monotonicity becomes redundant.

Theorem 4. ([3]) Let L ∕= {0, 1} be a complete chain, A an arbitrary nonempty set, and
let F : LA → L be a functional such that, for every X ⊆ A, F (IX) ∈ {0, 1}. Then F is a
Sugeno integral associated with a {0, 1}-capacity if and only if it is invariant.

3 Applications to risk measurement: risk measures on com-
pletely distributive lattices

The notion of risk measure arose from the problem of quantifying risk. In the simplest
setting, a risk situation is modeled as a bounded real-valued random variable. The concept
of risk measure together with its axiomatic characterization was proposed in [1] for finite
probability spaces and further extended to more general probabilistic settings. In particular,
in [8] it is considered a more realistic situation of ℝn-valued random variables while in [4]
risk measures take values in abstract cones.

In this section we aim at bringing the notions of random variable and risk measure
into the more general setting of completely distributive lattices. As we will see, many
of the desirable properties of risk measures can be naturally translated into the realm of
completely distributive lattices, and used to provide axiomatic characterizations of risk
measures similar to those found in the literature. We also propose a notion of quantile of
a lattice-valued random variable, and provide an axiomatic characterization based on the
results of the previous section.

3.1 Risk measures on completely distributive lattices

We suppose that a risk at a given position (e.g. time) is described by a function f : Ω → L
where L is a completely distributive lattice and Ω is a set of possible states. The goal is to
determine a value F (f) that meaningfully represents risk f . In the current ordinal setting,
the natural approach is to consider risk measures as mappings F : LΩ → L.

Several desirable properties of risk measures have been proposed in the literature (see e.g.
[1, 8, 4]). Given the ordered structure of our underlying universe L, we retain the following:
nondecreasing monotonicity, idempotence and homogeneity (we shall also consider the more
stringent condition of invariance in Subsection 3.2). Immediately from Theorem 2, we get
the following description of nondecreasing and homogeneous risk measures.

Corallary 5. Let F : LΩ → L be a risk measure. Then F is nondecreasing and homogeneous
if and only if there is a capacity v : P(Ω) → L such that F = Fv.

3.2 Quantiles on completely distributive lattices

Quantiles of real-valued random variables have been proved to be an important tool in
statistics and to have a valuable role in application fields such as economics. We consider
quantile-based risk measures in a qualitative framework and we propose a notion of quantile
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of a lattice-valued random variable. We establish that these quantiles have several desirable
features and we derive an axiomatic representation of quantiles.

Given a real-valued random variable f and a confidence level ® ∈ (0, 1), the ®% worst
realizations of f , situated at the left tail of its distribution are described by the ® quantile
defined by

q® = inf {x ∈ ℝ : P (f ≥ x) < ®} (® ∈ (0, 1)).

Integral representations of quantiles were obtained in [10, 5].

Proposition 6. Let (Ω, 2Ω, P ) is a probability space and A = {A ⊆ Ω : P (A) ≥ ®}. Then
for every bounded real-valued random variable f defined on Ω

q®(f) =
⋁

A∈A

⋀

s∈A
f(s).

Proof. Let f be a bounded random variable defined on Ω, and let A★ be the set of subsets
A ∈ A which satisfy the following condition: if s ∈ A and t ∈ Ω is such that f(t) ≥ f(s),
then t ∈ A. Thus ⋁

A∈A

⋀

s∈A
f(s) =

⋁

A∈A★

⋀

s∈A
f(s).

Since f is bounded, for every A ∈ A★, we have

f(A) := {f(s) : s ∈ A} = {f(s) : s ∈ Ω and f(s) ≥
⋀

s∈A
f(s)}.

Let x =
⋀

s∈A f(s), and define Ax = {s ∈ Ω : f(s) ≥ x}. Hence,
⋁

A∈A

⋀

s∈A
f(s) =

⋁

A∈A★

⋀

s∈A
f(s) =

⋁

Ax∈A

⋀

s∈Ax

f(s).

Now, if q®(f) > x, then P (Ax) ≥ ® and, hence, Ax ∈ A. Also, if Ax ∈ A, then
P (Ax) ≥ ® and q®(f) ≥ x. Hence, by the density of ℝ, we have q®(f) =

⋁
Ax∈A x.

Moreover, for each Ax ∈ A we have
⋀

s∈Ax
f(s) = x, and thus

q®(f) =
⋁

Ax∈A

⋀

s∈Ax

f(s) =
⋁

A∈A

⋀

s∈A
f(s),

which completes the proof. □

In view of Proposition 6, we propose the following definition of quantile of a lattice-
valued random variable.

Let L be a completely distributive lattice and take ® ∈ L. For a capacity v : P(Ω) → L,
set

A®
v := {X ∈ P(Ω) : v(X) ≥ ®}.

We say that a functional F : LΩ → L is an ®-quantile if there is a capacity v : P(Ω) → L
such that

F (f) :=
⋁

X∈A®
v

⋀

x∈X
f(x).
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Note that v can be chosen to be a {0, 1}-capacity.
In [5] quantiles are described as nondecreasing functionals which satisfy an invariance-

like condition referred to as “ordinal covariance”. The following corollary of Theorem
3 indicates that these desirable properties are retained by the current reformulation of
quantiles of lattice-valued random variables.

Corallary 7. Let L be a completely distributive lattice, and let F : LΩ → L be a functional
such that, for every X ⊆ Ω, F (IX) ∈ {0, 1}. If F is nondecreasing and invariant then and
only then F is an ®-quantile, for some ® ∈ L.

As in the case of Theorem 4, Corollary 7 can be refined when L is a complete chain.

Corallary 8. Let L ∕= {0, 1} be a complete chain, and let F : LΩ → L be a functional
such that, for every X ⊆ Ω, F (IX) ∈ {0, 1}. If F is invariant then and only then F is an
®-quantile, for some ® ∈ L.

Remark Even though our underlying universe L is implicitly assumed to be bounded, this
condition is not really necessary as discussed in [3]. This boundness condition is not required
in the literature, however the functionals considered are defined on spaces of measurable
functions which are bounded. Thus such a requirement is also not necessary in the latter
settings.

Another difference to the existing literature (e.g., the ordinal framework proposed in
[5]), is that we do not assume L to be linearly ordered, and thus allowing incomparability
on the values of a given domain function. Motivations to such a framework can be found
in [8, 4] which consider multivariate random variables.

4 Conclusion

In this paper we have introduced a unified qualitative framework for studying risk mea-
sures, which can account for classical univariate as well as multivariate random variables.
Moreover, we have illustrated how certain notions and axioms in the traditional theory of
risk measures may be brought into this qualitative setting.

Looking at natural extensions to this framework, we are inevitably drawn to consider
the utilitarian and multi-sorted settings. More precisely, we have considered risk measures
as mappings F : LΩ → L. However, it could be of interest to consider models G : LΩ → L′

where risks are valued in L but their assessment is made in a possibly different lattice L′,
i.e., G would be decomposable into a composition G = F ∘ ' where ' : L → L′ and F is a
risk measure on L′. Moreover, we could further generalize and consider multivariate random
variables of different sorts. Here, risks would be seen as mappings f : Ω → ∏

i∈ILi, and
their assessment attained by mappings factorizable in terms of risk measures on L composed
with utility functions 'i : Li → L.
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