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MAXIMUM PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS
ARISING IN OPTIMAL INVESTMENT WITH VINTAGE CAPITAL

SILVIA FAGGIAN1

Abstract. The paper concerns the study of the Pontryagin Maximum Principle for

an infinite dimensional and infinite horizon boundary control problem for linear partial

differential equations. The optimal control model has already been studied both in finite

and infinite horizon with Dynamic Programming methods in a series of papers by the

same author et al. [26, 27, 28, 29, 30]. Necessary and sufficient optimality conditions for

open loop controls are established. Moreover the co-state variable is shown to coincide

with the spatial gradient of the value function evaluated along the trajectory of the

system, creating a parallel between Maximum Principle and Dynamic Programming.

The abstract model applies, as recalled in one of the first sections, to optimal investment

with vintage capital.

AMS (MOS) subject classification: 49J15, 49J20, 35B37.

JEL Classification Numbers: C61, C62, E22.

Keywords: Linear convex control, Boundary control, Hamilton–Jacobi–Bellman equations,
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1. Introduction

The paper concerns the study of the Pontryagin Maximum Principle for a infinite di-

mensional and infinite horizon boundary control problem for linear partial differential

equations. More precisely, we take into account a state equation of type

(1.1)

{

y′(τ) = A0y(τ) + Bu(τ), τ ∈ [t, +∞)

y(t) = x ∈ H,

where H is the state space, y : [t, +∞) → H is the trajectory, U is the control space

and u : [t, +∞) → U is the control, A0 : D(A0) ⊂ H → H is the infinitesimal generator

of a strongly continuous semigroup of linear operators {eτA0}τ≥0 on H, and the control

operator B is linear and unbounded, say B : U → [D(A∗
0)]

′. Besides, we consider a cost

functional given by

(1.2) J∞(t, x, u) =

∫ +∞

t

e−λτ [g0 (y(τ)) + h0 (u(τ))] dτ

where the functions ϕ0 and, for all fixed τ in [0, T ], g0 and h0 are convex functions as

better specified later. The state equation (1.1) is then associated to a costate or dual

1LUM “Jean Monnet”, Casamassima (Bari), I-70010.
1



2 S. Faggian

system, given by

(1.3) π′(τ) = (λ − A∗
0)π(τ) − g′

0(y(τ)), τ ∈ [t, +∞)

where π : [t, +∞) → H (the dual variable, or co-state of the system) is the unknown, and

y = y(·; t, x, u) is the trajectory starting at x at time t and driven by control u, given by

(1.1). A transversality condition

(1.4) lim
T→+∞

π(T ) = 0,

is also assumed.

We recall that the problem of minimizing J∞(t, x, u) with respect to u over the Banach

space

L
p
λ(t, +∞; U) = {u : [t, +∞) → U : τ 7→ u(τ)e−

λ
p

τ ∈ Lp(t, +∞; U)}, p ≥ 2,

was studied in a previous paper by Faggian and Gozzi [30], deriving existence and unique-

ness for the associated Hamilton-Jacobi-Bellman (briefly, HJB) equation

(1.5) −λψ(x) + 〈ψ′(x), A0x〉 − h∗
0(−B∗ψ′(x)) + g(x) = 0,

and a feedback formula for optimal controls in terms of the spatial gradient of the value

function. All such results are recalled in Section 2.

Thus in the present paper some further results are achieved:

• we establish necessary and sufficient optimality conditions for open loop controls,

that is, the Pontryagin Maximum Principle (Theorem 4.7) ;

• we show that the co-state variable coincides with the spatial gradient of the value

function evaluated along the trajectory of the state equation, creating a connection

between Maximum Principle and Dynamic Programming (Theorem 4.8).

Moreover, in Section 3 the reader will find the economic application to optimal investment

with vintage capital.

1.1. Bibliographical notes. It is well known that control problems with unbounded

control operator B arise when we rephrase into abstract terms some boundary control

problem for PDEs (or, more generally, problems with control on a subdomain). Indeed,

we motivate our framework with the application to the economic problem of optimal

investment with vintage capital in the framework by Barucci and Gozzi [12] [13] that we

describe in detail in Section 3. Similar problems with unbounded control operator have

been discussed in a series of papers by this author and others. The unconstrained case

has been studied both in the case of finite and infinite horizon [26, 27, 30] while [29]

contains the finite horizon case with constrained controls. The (finite horizon) case with

both boundary controland state constraints is treated in [28].

Some further references on boundary control in infinite dimension follow. We recall that

such problems have been studied in the framework of classical/strong solutions and in that

of viscosity solutions. Regarding Dynamic Programming in the classical/strong frame-

work, the available results mainly regard the case of linear systems and quadratic costs



Maximum Principle for Linear-Convex Boundary Control Problems 3

(where HJB reduces to the operator Riccati equation). The reader is then referred e.g. to

the book by Lasiecka and Triggiani [41], to the book by Bensoussan, Da Prato, Delfour and

Mitter [14], and, for the case of nonautonomous systems, to the papers by Acquistapace,

Flandoli and Terreni [2, 3, 4, 5]. For the case of a linear system and a general convex cost,

we mention the papers by this author [24, 25, 26, 27]. On Pontryagin maximum princi-

ple for boundary control problems we mention again the book by Barbu and Precupanu

(Chapter 4 in [11]).

For viscosity solutions and HJB equations in infinite dimension we mention the series

of papers by Crandall and Lions [18] where also some boundary control problem arises.

Moreover, for boundary control we mention Gozzi, Cannarsa and Soner [17] and the paper

by Cannarsa and Tessitore [19] on existence and uniqueness of viscosity solutions of HJB.

We note also that a verification theorem in the case of viscosity solutions has been proved

in some finite dimensional case in the book by Yong and Zhou [43]. We finally mention

the paper by Fabbri [23] where the author derives an existence and uniqueness result

for the viscosity solution of HJB associated to optimal investment with vintage capital

(with infinite horizon and without constraints), that is the application of Section 3 of the

present paper, obtaining the results by making use of the specific properties of the state

equation, while no result is there provided for the general problem.

We mention also some fundamental papers and books on the case of distributed control

in the classical/strong framework such as the works by Barbu and Da Prato [7, 8, 9] for

some linear convex problems, to Di Blasio [20, 21] for the case of constrained control, to

Cannarsa and Di Blasio [16] for the case of state constraints, to Barbu, Da Prato and

Popa [10] and to Gozzi [35, 36, 37] for semilinear systems.

Regarding applications, on control on a subdomain (boundary or point control) we refer

the reader to the many examples contained in the books by Lasiecka and Triggiani [41],

and by Bensoussan et al [14]. Moreover, for economic models with vintage capital the

reader may see the papers by Barucci and Gozzi [12], [13], the papers by Feichtinger, Hartl,

Kort, Veliov et al. [31, 32, 33, 34], and for population dynamic the book by Iannelli [40],

the paper by Aniţa, Iannelli, Kim and Park [1], and the papers by Almeder, Caulkins,

Feichtinger, Tragler, and Veliov [6] and references therein.

2. Preliminaries

We here recall all the relevant results that are needed in the sequel. According to the

notation in [30], if X and Y are Banach spaces, we denote by | · |X the norm on X, by | · |

the euclidean norm in R, and we set

Lip(X; Y ) = {f : X → Y : [f ]
L

:= sup
x,y∈X, x 6=y

|f(x) − f(y)|Y
|x − y|X

< +∞}

C1
Lip(X) := {f ∈ C1(X) : [f ′]

L
< +∞}

Br(X, Y ) := {f : X → Y : |f |Br
:= sup

x∈X

|f(x)|Y
1 + |x|rX

< +∞}, Br(X) := Br(X, R).
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Moreover we set

Σ0(X) := {w ∈ B2(X) : w is convex, w ∈ C1
Lip(X)}.

All the spatial derivatives above have to be intended as Frechét differentials.

Then we consider two Hilbert spaces V, V ′, being dual spaces, which we do not identify

for reasons which are recalled in Remark 2.2 and we denote the duality pairing by 〈·, ·〉.

We set V ′ as the state space of the problem, and denote with U the control space, being

U another Hilbert space. The state space is V ′ and the control space is U . For any fixed

x in V ′ and t > 0 and τ ≥ t, the solution to the state equation in V ′ is given by variation

of constant formula by

(2.1) y(τ) = e(τ−t)Ax +

∫ τ

t

e(τ−σ)ABu(σ)dσ, τ ∈ [t, +∞[,

while the target functional is of type

(2.2) J∞(t, x, u) :=

∫ +∞

t

e−λτ [g0(y(τ)) + h0(u(τ))]dτ.

We assume the following hypotheses hold:

Assumptions 2.1. 1. A : D(A) ⊂ V ′ → V ′ is the infinitesimal generator of a

strongly continuous semigroup {eτA}τ≥0 on V ′;

2. B ∈ L(U, V ′);

3. there exists ω ≥ 0 such that |eτAx|
V ′

≤ eωτ |x|
V ′

, ∀τ ≥ 0;

4. g0, φ0 ∈ Σ0(V
′)

5. h0 is convex, lower semi–continuous, ∂uh0 is injective.

6. h∗
0(0) = 0, h∗

0 ∈ Σ0(V );

7. ∃a > 0, ∃b ∈ R, ∃p ≥ 2 : h0(u) ≥ a|u|pU + b, ∀u ∈ U ;

Moreover, either

8.a p > 2, λ > 2ω.

or

8.b λ > ω, and g0, φ0 ∈ B1(V
′).

Remark 2.2. We do not identify V and V ′ for in the applications the problem is naturally

set in a Hilbert space H, such that V ⊂ H ≡ H ′ ⊂ V ′ (with all bounded inclusions).

Indeed, in order to avoid the discontinuities due to the presence of B, as they appear in

(1.1)(1.2), we work in the extended state space V ′ related to H in the following way: V is

the Hilbert space D(A∗
0) endowed with the scalar product (v|w)V := (v|w)H+(A∗

0v|A
∗
0w)H ,

V ′ is the dual space of V endowed with the operator norm. Then assume that B ∈

L(U, V ′), and extend the semigroup {etA0}t≥0 on H to a semigroup {etA}t≥0 on the space

V ′, having infinitesimal generator A, a proper extension of A0. The reader is referred to

[27] for a detailed treatment. The coefficient ω could be any real number, but is assumed

positive in order to avoid double proofs for positive and negative signs. ¤
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Remark 2.3. Note that the functions g and ϕ arising from applications usually appear

to be defined and C1 on H, not on the larger space V ′. Then, we here need to assume

that they can be extended to C1-regular functions on V ′ - which is a non trivial issue.

We refer the reader to [26], [27] and [30] for a thorough discussion on this issue. ¤

The functional J∞(t; x, u) has to be minimized with respect to u over the set of admissible

controls

(2.3) L
p
λ(t, +∞; U) = {u : [t, +∞) → U ; τ 7→ u(τ)e−

λτ
p ∈ Lp(t, +∞; U)},

which is Banach space with the norm

‖u‖L
p

λ
(t,+∞;U) =

∫ +∞

t

|u(τ)|pUe−λτdτ = ‖e−
λ(·)

p u‖Lp(t,+∞;U).

The value function is then defined as

Z∞(t, x) = inf
u∈L

p

λ
(t,+∞;U)

J∞(t, x, u).

As it is easy to check that

Z∞(t, x) = e−λtZ∞(0, x)

one may associate to the problem the following stationary HJB equation

(2.4) −λψ(x) + 〈ψ′(x), Ax〉 − h∗
0(−B∗ψ′(x)) + g(x) = 0,

whose candidate solution is the function Z∞(0, ·).

We will use the following definition of solution for equation (2.4).

Definition 2.4. A function ψ is a classical solution of the stationary HJB equation (2.4)

if it belongs to Σ0(V
′) and satisfies (2.4) for every x ∈ D(A).

Theorem 2.5. Let Assumptions 2.1 hold. Then there exists a unique classical solution

Ψ to (2.4) and it is given by the value function of the optimal control problem, that is

Ψ(x) = Z∞(0, x) = inf
u∈L

p

λ
(0,+∞;U)

J∞(0, x, u).

Once we have established that Ψ is the classical solution to the stationary HJB equation,

and that it is differentiable, we can build optimal feedbacks and prove the following

theorem.

Theorem 2.6. Let Assumptions 2.1 hold. Let t ≥ 0 and x ∈ V ′ be fixed. Then there

exists a unique optimal pair (u∗, y∗). The optimal state y∗ is the unique solution of the

Closed Loop Equation

(2.5) y(τ) = e(τ−t)Ax +

∫ τ

t

e(τ−σ)AB(h∗
0)

′(−B∗Ψ′(y(s)))dσ, τ ∈ [t, +∞[.

while the optimal control u∗ is given by the feedback formula

u∗(s) = (h∗
0)

′(−B∗Ψ′(y∗(s))).
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3. The motivating example

We here describe our motivating example: the infinite horizon problem of optimal invest-

ment with vintage capital, in the setting introduced by Barucci and Gozzi [12][13], and

later reprised and generalized by Feichtinger et al. [31, 32, 33], and by Faggian [26, 27].

The capital accumulation is described by the following system

(3.1)















∂y(τ,s)
∂τ

+ ∂y(τ,s)
∂s

+ µy(τ, s) = u1(τ, s), (τ, s) ∈]t, +∞[×]0, s̄]

y(τ, 0) = u0(τ), τ ∈]t, +∞[

y(t, s) = x(s), s ∈ [0, s̄]

with t > 0 the initial time, s̄ ∈ [0, +∞] the maximal allowed age, and τ ∈ [0, T [ with

horizon T = +∞. The unknown y(τ, s) represents the amount of capital goods of age s

accumulated at time τ , the initial datum is a function x ∈ L2(0, s̄), µ > 0 is a depreciation

factor. Moreover, u0 : [t, +∞[→ R is the investment in new capital goods (u0 is the

boundary control) while u1 : [t, +∞[×[0, s̄] → R is the investment at time τ in capital

goods of age s (hence, the distributed control). Investments are jointly referred to as the

control u = (u0, u1).

Besides, we consider the firm profits represented by the functional

I(t, x; u0, u1) =

∫ +∞

t

e−λτ [R(Q(τ)) − c(u(τ))]dτ

where, for some given measurable coefficient α, we have that

Q(τ) =

∫ s̄

0

α(s)y(τ, s)ds

is the output rate (linear in y(τ)) R is a concave revenue from Q(τ) (i.e., from y(τ)).

Moreover we have

c(u0(τ), u1(τ)) =

∫ s̄

0

c1(s, u1(τ, s))ds + c0(u0(τ)),

with c1 indicating the investment cost rate for technologies of age s, c0 the investment

cost in new technologies, including adjustment-innovation, c0, c1 convex in the control

variables.

The entrepreneur’s problem is that of maximizing I(t, x; u0, u1) over all state–control pairs

{y, (u0, u1)} which are solutions in a suitable sense of equation (3.1). Such problems are

known as vintage capital problems, for the capital goods depend jointly on time τ and on

age s, which is equivalent to their dependence from time and vintage τ − s.

When rephrased in an infinite dimensional setting, with H := L2(0, s̄) as state space, the

state equation (3.1) can be reformulated as a linear control system with an unbounded

control operator, that is
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(3.2)

{

y′(τ) = A0y(τ) + Bu(τ), τ ∈]t, +∞[;

y(t) = x,

where y : [t, +∞[→ H, x ∈ H, A0 : D(A0) ⊂ H → H is the infinitesimal generator of

a strongly continuous semigroup {eA0t}t≥0 on H with domain D(A0) = {f ∈ H1(0, s̄) :

f(0) = 0} and defined as A0f(s) = −f ′(s) − µf(s), the control space is U = R × H, the

control function is a couple u ≡ (u0, u1) : [t, +∞[→ R × H, and the control operator is

given by Bu ≡ B(u0, u1) = u1 + u0δ0, for all (u0, u1) ∈ R×H, δ0 being the Dirac delta at

the point 0. Note that, although B 6∈ L(U,H), is B ∈ L(U,D(A∗
0)

′). The reader can find

in [12] the (simple) proof of the following theorem, which we will exploit in a short while.

Theorem 3.1. Given any initial datum x ∈ H and control u ∈ L
p
λ(t, +∞; U) the mild

solution of the equation (3.2)

y(s) = e(s−t)Ax +

∫ s

t

e(s−τ)ABu(τ)dτ

belongs to C([t, +∞); H).

Following Remark 2.2, we then set

V = D(A∗
0) = {f ∈ H1(0, s̄) : f(s̄) = 0}

and V ′ = D(A∗
0)

′. Regarding the target functional, we set

J∞(t, x; u) := −I(t, x; u0, u1),

with:

g0 : V ′ → R, g0(x) = −R(〈α, x〉),

h0 : U → R, h0(u) = c0(u0) +
∫ s̄

0
c1(s, u1(s))ds.

Remark 3.2. Here the extension of the datum g0 to V ′ is straightforward, as long as we

assume that α ∈ V and replace scalar product in H with the duality in V, V ′.

Note further that ω = 0, λ > 0 (the type of the semigroup is negative and equal to −µ).

¤

As the problem now fits into our abstract setting, the main results of the previous sections

apply to the economic problem when data R, c0, c1 satisfy Assumption 2.1[8.a] or [8.b].

In particular, such thing happens in the following two interesting cases:

• If we assume, for instance, that R is a concave, C1, sublinear function (for example

one could take R quadratic in a bounded set and then take its linear continuation,

see e.g. [31, 33]), and c0, c1 quadratic functions of the control variable, then

Assumption 2.1[8.b] holds.

• Assumption 2.1[8.a] is instead satisfied when R is, for instance, quadratic - as it

occurs in some other meaningful economic problems - and c0, c1 are equal to +∞

outside some compact interval, and equal to any convex l.s.c. function otherwise.
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Such case corresponds to that of constrained controls (controls that violate the

constrain yield infinite costs).

In these cases, Theorems 2.5, 2.6 hold true. In particular Theorem 2.6 states the existence

of a unique optimal pair (u∗, y∗) for any initial datum x ∈ V ′. Note that in general the

optimal trajectory y∗ lives in V ′. However, since the economic problem makes sense in H,

we would now like to infer that whenever x (the initial age distribution of capital) lies in

H, then the whole optimal trajectory lives in H. Indeed, this is guaranteed by Theorem

3.1.

All these results allow to perform the analysis of the behavior of the optimal pairs and

to study phenomena such as the diffusion of new technologies (see e.g. [12, 13]) and the

anticipation effects (see e.g. [31, 33]). With respect to the results in [12, 13], here also the

case of nonlinear R (which is particularly interesting from the economic point of view, as

it takes into account the case of large investors) is considered. With respect to the results

in [31, 33], here the existence of optimal feedbacks yields a tool to study more deeply the

long run behavior of the trajectories, like the presence of long run equilibrium points and

their properties.

4. The Maximum Principle

Let x ∈ V ′ and t ≥ 0 be fixed, and consider the dual system associated to (1.1), that is

(4.1) π′(τ) = (λ − A∗
0)π(τ) − g′

0(y(τ)), τ ∈ [t, +∞)

where π : [t, +∞) → V (the dual variable, or co-state of the system) is the unknown, and

y = y(·; t, x, u) is the trajectory starting at x at time t and driven by control u, given by

(2.1). We assume such equation is also subject to the following transversality condition

(4.2) lim
T→+∞

π(T ) = 0.

We denote any solution of (4.1)(4.2) also by π(·; t, x, u) or by π(·; t, x) to remark its

dependence on the data.

Definition 4.1. Let Assumptions 2.1 [1-7] be satisfied. We define the mild solution of

(4.1)(4.2) as the function π : [t, +∞) → V given by

(4.3) π(τ) =

∫ +∞

τ

e(A∗

0−λ)(σ−τ)g′
0(y(σ))dσ.

In the sequel we show that such definition is natural.

Lemma 4.2. Let Assumption 2.1 [1-7] be satisfied, and assume p ≥ 2 and λ > 2ω. Then

π given by (4.3) is well defined and belongs to C0(t, +∞; V ).

Moreover:

(i) if p > 2 then π ∈ L
q
λ(t, +∞; V );

(ii) if p = 2 then π ∈ L2
λ+ε(t, +∞; V ) ∩ L2(t, T ; V ), ∀ T < +∞, ε > 0.
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Proof. Note that by assumptions on g′
0, the integrand in (4.3) can be estimated as follows

|e(A∗

0−λ)(σ−τ)g′
0(y(σ))|V ≤ |g′

0|B1e
−(λ−ω)(σ−τ)(1 + |y(σ)|

V ′
),

hence to prove the first assertion it is enough to show that σ 7→ e−(λ−ω)σ|y(σ)|
V ′

is in

L1(τ, +∞).

By Lemma 4.5 contained in [30] one has

|y(σ)|
V ′

≤ Ceωσ

(

|x|
V ′

+

∫ σ

t

e−ωr|u(r)|Udr

)

≤ C1e
ωσ(1 + ρ(t, σ)

1
q )

(4.4)

for suitable constants C (depending only on t) and C1 (depending from t, x, and u), where

ρ(t, σ) =

{

|eq(λ
p
−ω)t − e

q(λ
p
−ω)σ| λ 6= ωp

|t − σ| λ = ωp.

Hence

e−(λ−ω)σ|y(σ)|
V ′

≤ C1e
−(λ−2ω)σ(1 + ρ(t, σ)

1
q ),

so that in the case λ 6= ωp one obtains

(4.5) e−(λ−2ω)σρ(t, σ)
1
q ≤ |e−(λ−2ω)σ − e−(λ−qω)σ|

1
q ≤ C2e

− 1
q
[λ−2ω]σ

for a suitable constant C2, whereas in the case λ = ωp one has

(4.6) e−(λ−2ω)σρ(t, σ)
1
q ≤ e−(λ−2ω)σ|t − σ|

1
q .

Similar estimates lead to the proof that π ∈ C0(t, +∞; V ).

Next we prove that if p > 2 then π ∈ L
q
λ(t, +∞; V ). From the estimates above, one has

|π(τ)|V ≤
|g′

0|B1

λ − ω
+

|g′
0|B1Ceωτ

λ − 2ω
+ |g′

0|B1Ce(λ−ω)τ

∫ +∞

τ

e−(λ−2ω)σρ(t, σ)
1
q dσ

≡ γ1(τ) + γ2(τ) + γ3(τ).

(4.7)

The functions γ1 and γ2 are trivially in L
q
λ(t, +∞; R). Regarding γ3, in the case λ = ωp,

let δ > 0 such that λ > max{2ω, q(ω + δ)}, so that there exists some T > τ such that

σ ≥ T ⇒ e−δσ|t − σ|
1
q ≤ 1.

Then
∫ +∞

τ

e−(λ−2ω)σ|t − σ|
1
q dσ ≤

∫ T

τ

e−(λ−2ω)σ|T − t|
1
q dσ +

∫ +∞

T

e−(λ−2ω−δ)σdσ

≤
e−(λ−2ω)τ

λ − 2ω
|T − t|

1
q +

e−(λ−2ω−δ)τ

λ − 2ω − δ

≡ γ4(τ) + γ5(τ)

Now for a suitable constant C3 one has

(4.8) e−λτeq(λ−σ)τ [γ4(τ)q ∨ γ5(τ)q] ≤ C3e
−[λ−(ω+δ)q]τ
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which is integrable functions in [t, +∞). In the case λ 6= ωp, by means of (4.5) one has

e−λτγ3(τ)q ≤

[

|g′
0|B1CC1q

λ − 2ω

]q

e−λτeq(λ−ω)τe−[λ−2ω]τ

≤ C4e
−(2−q)(λ−ω)τ

(4.9)

for a suitable constant C4, which implies γ3 ∈ L
q
λ(t, +∞; R) also in this case.

Finally, note that if p = 2, then π ∈ L2
λ+ε(t, +∞; V ), ∀ε > 0 follows promptly from (4.8)

(4.9). ¤

Theorem 4.3. If π ∈ W 1,1(t, +∞; V ) satisfies (4.1) almost everywhere in [t, +∞) and

(4.2) then π is given by (4.3), that is π is the mild solution of (4.1)(4.2).

Proof. By variation of constants formula, any π satisfying (4.1) a.e. is given by

(4.10) π(τ) = e(A∗

0−λ)(T−τ)π(T ) +

∫ T

τ

e(A∗

0−λ)(σ−τ)g′
0(y(σ))dσ, ∀T > t, ∀τ ∈ [t, T ].

Note that (4.2) implies

lim
T→+∞

|e(A∗

0−λ)(T−τ)π(T )|V ≤ lim
T→+∞

e(ω−λ)(T−τ)|π(T )|V = 0.

hence by passing to limits as T → +∞ in (4.10) one derives

π(τ) = lim
T→+∞

∫ T

τ

e(A∗

0−λ)(σ−τ)g′
0(y(σ))dσ =

∫ +∞

τ

e(A∗

0−λ)(σ−τ)g′
0(y(σ))dσ

where the last equality follows from estimates (4.5)(4.6). ¤

Remark 4.4. Assume p ≥ 2, λ > 2ω. By means of the same estimates contained in the

proof of Lemma 4.2, one may show that

• λ ≤ ωp implies y ∈ Lr(t, +∞; V ′) for all r < λ
p
, and y ∈ L

λ
p (t, T ; V ′) for all

T < +∞;

• λ > ωp implies y ∈ Lr(t, +∞; V ′) for all r < p, and y ∈ Lp(t, T ; V ′) for all

T < +∞.

Definition 4.5. Let Assumption 2.1 [1-7] be satisfied, and assume p ≥ 2 and λ > 2ω.

Let also T > t be either finite or +∞. We say that a given pair (u, y) ∈ L
p
λ(t, T ; U) ×

L1
loc(t, T ; V ′) is extremal if and only if there exists a function π ∈ L

q
λ(t, T ; V ) satisfying

in mild sense, along with u and y, the following set of equations

y′(τ) = Ay(τ) + Bu(τ), τ ∈ [t, T ); y(t) = x

π′(τ) = (λ − A∗
0)π(τ) − g′

0(y(τ)), τ ∈ [t, T );

lim
s→+∞

π(s) = 0, when T = +∞; π(T ) = 0, when T < +∞

(4.11) −B∗π(τ) ∈ ∂h0(u(τ)), for a.a. τ ∈ [t, T ).
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Remark 4.6. Note that, by conjugation formula, we have

−B∗π(τ) ∈ ∂h0(u(τ)) ⇐⇒ u(τ) = (h∗
0)

′(−B∗π(τ)).

We refer to such condition as to maximum principle condition.

The next goal is to characterize optimal couples as extremal couples for the system.

Then the following theorem holds true.

Theorem 4.7. (Maximum Principle). Let Assumptions 2.1 [1-7] be satisfied, λ > 2ω.

Then, for all p ≥ 2 and T < +∞, the couple (u∗, y∗) is optimal at (t, x) - for the problem

of minimizing (1.1)(2.2) - if and only if it is extremal.

Proof. Let K : L
p
λ(t, T ; U) → R∪ {+∞}, and G : L

p
λ(t, T ; U) → R∪ {+∞} be defined by

K(u) ≡

∫ T

t

e−λτh0(u(τ))dτ, G(u) ≡

∫ T

t

e−λτg0(y(τ ; t, x, u))dτ

so that ∀u ∈ dom(K) ∩ dom(G) we have

J(u) = K(u) + G(u), and ∂J(u) = ∂K(u) + ∂G(u).

Claim 1:

∂K(u) = S, where

S ≡ {ϕ ∈ L
q
λ(t, T ; U) : ϕ(τ) ∈ ∂h0(u(τ)), a.a. τ ∈ [t, T )}

(4.12)

Indeed

∂K(u) =

{

ϕ ∈ L
q
λ(t, T ; U) :

∫ T

t

[

h0(w(τ)) − h0(u(τ)) − (ϕ(τ)|w(τ) − u(τ))U

]

dτ ≥ 0, ∀w ∈ L
p
λ(t, T ; U)

}

,

(4.13)

so that S ⊂ ∂K(u) is straightforward. To show the reverse inclusion, we let v be any

fixed element of ∂k(u), E any measurable subset of [t, T ), and we set

(4.14) w̃(τ) =

{

u(τ), τ 6∈ E

w(τ), τ ∈ E

We then derive
∫

E

[

h0(w(τ)) − h0(u(τ)) − (ϕ(τ)|w(τ) − u(τ))U

]

dτ ≥ 0, ∀w ∈ L
p
λ(t, T ; U),

which implies, since E and w where arbitrarily chosen,

h0(w(τ)) − h0(u(τ)) − (ϕ(τ)|w(τ) − u(τ))U ≥ 0, a.a. τ ∈ [0, +∞)

that is, ϕ(τ) ∈ ∂h0(τ) for almost all τ . On the other hand:

Claim 2: Assume that (u, y) is extremal. Then (u, y) is optimal.



12 S. Faggian

Let p be the co-state associated to the extremal couple (u, y), and let v be any control in

dom(G). Then

G(v) − G(u) =

∫ T

t

[g0(y(τ ; v)) − g0(y(τ ; u))] e−λτdτ

≥

∫ T

t

〈g′
0(y(τ ; u)),

∫ τ

t

e(τ−σ)AB(v(σ) − u(σ))dσ〉V,V ′e−λτdτ

=

∫ T

t

(

∫ T

σ

B∗e(τ−σ)A∗

0g′
0(y(τ ; u))|v(σ) − u(σ)

)

U
e−λτdτdσ

=

∫ T

t

(

∫ T

σ

B∗e(τ−σ)(A∗

0−λ)g′
0(y(τ ; u))|v(σ) − u(σ

)

U
e−λσdσ

= 〈B∗π, v〉Lq

λ
,L

p

λ

where we could exchange the order of integration due to the fact that π associated to an

extremal couple is in L
q
λ(t, +∞; V ) by definition. Then we proved that

B∗π ∈ ∂G(u).

Since by assumption we also know that −B∗π(σ) ∈ ∂h0(u(σ)) almost everywhere in

[t, +∞[, we have also −B∗π ∈ ∂K(u) and hence ∂J(u) ∋ 0, that is u is optimal.

Claim 3: Assume that (u∗, y∗) is optimal, and let π∗ be the associated costate. Then G is

Gâteaux differentiable in u∗ with G′(u∗) = B∗π∗.

Indeed, for any fixed v in L
p
λ(t, +∞; U), and any ǫ > 0, there exists 0 < ǫ0 ≤ ǫ such that

∣

∣

∣

∣

G(u∗ + ǫv) − G(u∗)

ǫ
− 〈B∗π∗, v〉Lq

λ
,L

p

λ

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫ T

t

g0(y(τ ; u∗ + ǫv)) − g0(y
∗(τ))

ǫ
e−λτdτ − 〈B∗π∗, v〉Lq

λ
,L

p

λ

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫ T

t

〈g′
0(y(τ ; u∗ + ǫ0v)) − g′

0(y
∗(τ)),

∫ τ

t

e(τ−σ)ABv(σ)dσ〉V,V ′e−λτdτ

∣

∣

∣

∣

≤ [g′
0]ǫ0

∫ T

t

∣

∣

∣

∣

∫ τ

t

e(τ−σ)ABv(σ)dσ

∣

∣

∣

∣

2

V ′

e−λτdτ =: I

We estimate now the right hand side in the case λ 6= ωp. By Hölder inequality one has

∣

∣

∣

∣

∫ τ

t

e(τ−σ)ABv(σ)dσ

∣

∣

∣

∣

V ′

≤ eωτ

[
∫ τ

t

e(
λ
p
−ω)qσ

dσ

]
1
q

‖B‖L(U,V ′)‖v‖L
p

λ
(t,τ ;U)

= eωτ

∣

∣

∣

∣

∣

∣

e(
λ
p
−ω)qτ − e(

λ
p
−ω)qt

q
(

λ
p
− ω

)

∣

∣

∣

∣

∣

∣

1
q

‖B‖L(U,V ′)‖v‖L
p

λ
(t,+∞;U)
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Then, for a suitable constant C3 we have

I ≤
[g′

0]ǫ0‖B‖2
L(U,V ′)‖v‖

2
L

p

λ
(t,+∞;U)

|λ
p
− ω|

2
q q

2
q

∫ τ

t

∣

∣

∣
e(

λ
p
−ω)qτ − e(

λ
p
−ω)qt

∣

∣

∣

2
q

e(ω−λ)τdτ

≤ C3ǫ0

∫ τ

t

(

e(
λ
p
−ω)qτ ∨ 1

)
2
q

e(ω−λ)τdτ

= C3ǫ0

∫ τ

t

e[λ(
2
p
−1)−ω]τ ∨ e(ω−λ)τdτ,

(4.15)

and since p ≥ 2 ⇒ λ
(

2
p
− 1

)

− ω < 0, then one may let ǫ → 0 and obtains that the right

hand side in (4.15) goes to 0. If instead λ = ωp by Hölder inequality one has
∣

∣

∣

∣

∫ τ

t

e(τ−σ)ABv(σ)dσ

∣

∣

∣

∣

V ′

≤ eωτ

∫ τ

t

e
−λ

p
σ|v(σ)|Udσ‖B‖L(U,V ′)‖v‖L

p

λ
(t,τ ;U)

≤ eωτ |τ − t|
1
q ‖B‖L(U,V ′)‖v‖L

p

λ
(t,T ;U)

Then

I ≤ [g′
0]ǫ0‖B‖2

L(U,V ′)‖v‖
2
L

p

λ
(t,T ;U)

∫ T

t

|τ − t|
2
q e−(λ−2ω)τdτ

and by letting ǫ → 0 the right hand side goes to 0.

The proof of necessity is then straightforward: from optimality of u∗ we have J(u∗) ∋ 0,

then from Claim 1 and Claim 3 we derive condition (4.11). ¤

Theorem 4.8. Let (u∗, y∗) be optimal at (0, x) and let π∗(·; 0, x) be the associated co-state.

Then

Ψ′(x) = π∗(0; 0, x).

Consequently,

Ψ′(y∗(τ)) = π∗(τ ; τ, y∗(τ)).

Proof. To derive the first assertion it is sufficient to prove that p∗(0; 0, x) is in ∂Ψ(x). We

recall that in Theorem 4.7 we showed that −B∗π∗(τ) ∈ ∂h0(u
∗(τ)) almost everywhere in

[0, +∞). Then, for all x̄ ∈ V ′, and their associated controls ū optimal at (0, x̄), we have

Ψ(x̄) − Ψ(x) = J∞(0, x̄, ū) − J(0, x, u∗)

≥

∫ +∞

0

[

〈g′
0(y

∗(τ)), ȳ(τ) − y∗(τ)〉V,V ′ − (B∗π∗(τ ; 0, x))|ū(τ) − u∗(τ))U

]

e−λτdτ.

Note that

〈g′
0(y

∗(τ)), ȳ(τ) − y∗(τ)〉V,V ′ =

= 〈g′
0(y

∗(τ)), eAτ (x̄ − x) +

∫ τ

0

eA(τ−σ)B(ū(σ) − u∗(σ))dσ〉V,V ′

= 〈B∗eA∗

0(τ−σ)g′
0(y

∗(τ)), x̄ − x〉V,V ′ + (B∗π∗(τ ; 0, x))|ū(τ) − u∗(τ))U
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hence

Ψ(x̄) − Ψ(x) ≥ 〈

∫ +∞

0

B∗e(A∗

0−λ)τg′
0(y

∗(τ))e−λτdτ, x̄ − x〉V,V ′

= 〈π∗(0; 0, x), x̄ − x〉V,V ′ .

The proof of the second statement is standard and we write it here for the sake of com-

pleteness. Note that π(0; 0, y∗(τ)) is the costate associated to any couple, optimal at

(0, y∗(τ)), say u0,y∗(τ) and y(·; 0, y∗(τ), u0,y∗(τ)). Observe also that the control defined by

u0,y∗(τ)(σ) ≡ u∗(σ + τ)

is optimal at (0, y∗(τ)), and consequently the associated trajectory satisfies

y(σ; 0, y∗(τ), u0,y∗(τ)) = y(σ + τ ; τ, y∗(τ), u∗) = y∗(σ + τ).

Then

Ψ′(y∗(τ)) = p(0; 0, y∗(τ))

=

∫ +∞

0

e(A∗

0−λ)σg′
0(y(r; 0, y∗(τ), u0,y∗(τ)))dσ

=

∫ +∞

0

e(A∗

0−λ)σg′
0(y

∗(σ + τ))dσ

=

∫ +∞

τ

e(A∗

0−λ)(r−τ)g′
0(y(r)dr

= π(τ ; τ, y∗(τ))

¤
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