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Abstract. In this paper a set of desirable properties for measures of positive dependence
of ordered n-tuples of continuous random variables (n ≥ 2) is proposed and a class of
multivariate positive dependence measures is introduced. We consider the comonotonicity
dependence structure as the strong dependency structure and so the class consists of mea-
sures that take values in the range [0, 1] and are defined in such a way that they equal 1 in
case the random vector is comonotonic and equal 0 in case it is independent.
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Introduction

The concept of dependency in a bivariate and in a multivariate setting has been largely
studied in recent literature and the development of the theory of copulas has determined
a great impact in the study of measures of dependence. This is of interest in economics,
insurance, in finance and risk management and in many areas of applied probability and
statistics. Several notions of positive dependence were introduced in the literature to model
the fact that large values of a component of a multivariate random vector are “probabili-
stically associated” with large values of the others. As it is well known that the most widely
applied dependence measures, the Pearson’s product moment correlation coefficient which
captures the linear dependence between couples of random variables is a weak measure in
many setups and consider only pairwise dependency. So there are a variety of ways to
consider and to measure dependence between random variables and this fact confirm the
importance and the high interest in the concept. For a review see e.g [1], [4] and[5]. These
concepts have been introduced on the class of bivariate random vectors and many of these
orders can be further extended to comparison of general multivariate distributions that have
the same marginals.
The focus of this paper is on a class of measures of multivariate positive dependence defined
by means of some comparison between a joint distribution function and a distribution
representing independence. Properties of these measures are also investigated in a axiomatic
framework.
The paper is organized as follows. In Section 2, notations will be fixed and various concepts
and results that are essential to the development of the present paper are reviewed. After
a brief overview about some properties of copula, we introduce the copula approach for
studying dependence between random variables and Section 3 presents the main results.

1 Notations and preliminaries

We are going to review some basic definitions and properties about dependence concepts
and dependence orders which we will use later. We will be concerned with random vectors
that take on values in Rn. Elements of Rn will be denoted by x,y or more explicitly, as
x = (x1, . . . , xn) or y = (y1, . . . , yn).
For two n-vectors x and y, the notation x ≤ y will be used for the componentwise order
which is defined by xi ≤ yi for all i = 1, . . . , n.
Throughout this paper, all the random variables considered are defined on a common prob-
ability space (Ω,F , P ). The set Ω consists of all possible results or outcomes and its generic
element is denoted by ω and the σ-field F is a collection of subset of Ω.
The distribution function of a random vector X = (X1, . . . , Xn)) is the function F : Rn →
[0, 1] defined as follows:

F (x) = P [X1 ≤ x1, . . . , Xn ≤ xn]

A distribution function is non-decreasing and right-continuous on Rn while the survival
function is a non-increasing, right-continuous function so defined:
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F̄ (x) = P [X1 > x1, . . . , Xn > xn]

If we want to consider the distribution of Xi, i = 1, . . . , n singularly, we need the marginal
distribution function Fi (xi) = P [X1 ≤ x1] .
Fréchet spaces are important in studying dependence between random vectors, paying at-
tention to probability distributions with fixed univariate marginals and so the elements of a
Fréchet space only differ in their dependence structure and not in the marginals behaviors.
If F1, . . . , Fn are univariate distribution functions the Fréchet space R(F1, . . . , Fn) consists
of all the n-dimensional random vectors with F1, . . . , Fn as marginal distributions.
Some random variables X1, . . . , Xn are mutually independent if and only if

F (x) =
∏n

i=1 Fi (xi) ,

where x ∈ Rn and F is the distribution function of the random vector X = (X1, . . . , Xn).
In particular if X is a random vector we denote by X⊥ the random vector whose marginal
distributions coincide with the marginals of X, but whose components are independent.
Now we introduce the concept of comonotonicity by defining comonotonicity of a set of
vectors in Rn.

Definition 1.1 The set A ⊂ Rn is comonotonic if for any x,y in A, either x ≤ y or y ≤ x
holds.

So a set A ⊆ Rn is comonotonic if for any x,y in A, the inequality xi < yi for some i, implies
that x ≤ y. Next we define a comonotonic random vector X through its support where a
support of a random vector X is the smallest closed set A ⊆ Rn for which P [X ∈ A] = 1.

Definition 1.2 The random vector X is comonotonic if it has a comonotonic support.

The following result provides some equivalent conditions of comonotonicity.

Proposition 1.1 If X = (X1, . . . , Xn) is a n-dimensional random vector the following
statements are equivalent:

i) The random vector X is comonotonic;

ii) For any i, j with 1 ≤ i, j ≤ n the inequality

[Xi(ω1)−Xi(ω2)][Xj(ω1)−Xj(ω2)] ≥ 0

holds almost surely for ω1 and ω2 in Ω;

iii) If F is the distribution function of the random vector X for all x = (x1, . . . , xn) we
have F (x) = min {F1 (x1) , . . . , Fn (xn)};

iv) There exists a random variable Z and n increasing functions ti, we obtain X =d

(t1 (Z) , . . . , tn (Z)).
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The symbol “=d”in the above result means “is equally distributed as”.
So in order to find the probability of all the outcomes of n comonotonic vectors being less
than xi, one simply takes the probability of the least likely of these n events. Comonotonicity
is indeed a very strong positive dependency structure. A possibility to introduce some
weakest form of positive dependence dependence concept is to consider the set of all random
vectors which are larger than X⊥ with respect to some dependence order. We consider in
particular the positive quadrant dependence orders.

Definition 1.3 Let X,Y are two n-dimensional random vectors with distribution functions
F and G and survival functions F̄ and Ḡ respectively. We say that X is smaller then Y in
the positive lower orthant dependence order and we denote

X¹puodY ⇔ F (t) ≤ G(t), for all t ∈ Rn

and we say that X is smaller then Y in the positive upper orthant dependence order and
we denote

X¹plodY ⇔ F̄ (t) ≤ Ḡ(t), for all t ∈ Rn

The positive orthant orders measure the amount of positive dependence of the underlying
random vectors. Now we consider some notions of positive dependence for multivariate
random vectors.

Definition 1.4 If X a n-dimensional random vector we say that X is a positive lower
orthant dependent(PLOD) if X≥plodX⊥ and is a positive upper orthant dependent (PUOD)
if X≥puodX⊥.

In this paper we use the term “positive dependence ” for a random vector which is positive
lower orthant dependent. Then if X is a n-dimensional random vector in R(F1, . . . , Fn)
with distribution function F , X is positive dependent if and only if

F (x) ≥
n∏

i=1

Fi (xi)

We denote by F I the distribution function of the random vector in R(F1, . . . , Fn) with
independent components,

F I (x) =
n∏

i=1

Fi (xi) (1)

and FC the distribution function of the random vector in R(F1, . . . , Fn) with comonotonic
components.

FC (x) = min {FX1 (x1) , . . . , FXn (xn)} (2)

Then for PLOD random vectors it is possible to prove the following result:

Theorem 1.1 If X be a PLOD n-dimensional random vector in R(F1, . . . , Fn) with distri-
bution functions F then for all x ∈ Rn

F I (x) ≤ F (x) ≤ FC (x) .
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The concept of copula introduced by Sklar in 1959 is now common in the statistical lit-
erature, but only recently its potential for applications has become clear. Copulas permit
to represent joint distribution functions by splitting the marginal behavior, embedded in
the marginal distributions, from the dependence captured by the copula itself. A copula
can also be seen as a joint probability distribution with uniform marginals. Elimination of
marginals through copulas helps to model and understand dependence structure between
variables more effectively, as the dependence has nothing to do with the marginal behav-
ior. First of all we are focusing our attention to the n-increasing property for multivariate
functions.
If f is a function Rn → R, a B is the n-box B = [a1, b1]× . . .× [an, bn] ⊆ Rn with ai < bi,
i = 1, . . . , n, then the f -volume of B is

Vf (B) =
2∑

i1=1

. . .
2∑

in=1

(−1)i1+...+inf(x1i1 , . . . , xnin)

where xi1 = ai, xi2 = bi.
If there exists i ∈ 1, . . . , n such that ai = bi then Vf (B) = 0.
Equivalently the f -volume of B is the n-order difference of f on B is :

Vf (B) = ∆(a1...,an),(b1...,bn)f(x1, . . . , xn) = ∆a1,b1 . . .∆an,bnf(x1, . . . , xn)

where we define the n first order differences of f as

∆ak,bk
f(x1, . . . , xn) = f(x1 . . . xk−1, bk, xk+1, . . . , xn)− f(x1 . . . xk−1, ak, xk+1, . . . , xn).

Moreover by convention if k = n we set

∆(a1...,an),(b1...,bn)f(x1, . . . , xn) = f(x1, . . . , xn).

Definition 1.5 A function f : Rn → R is n-increasing if for all n-box B = [a1, b1]× . . .×
[an, bn] ⊆ [0, 1]n where ai ≤ bi, i = 1, . . . , n, Vf (B) ≥ 0.

If f has nth-order derivatives, n-increasing is equivalent to ∂n

∂x1...∂xn
f ≥ 0.

Definition 1.6 A n-copula is a function C : [0, 1]n → [0, 1] that satisfies:

(a) C(x1, . . . , xn) = 0 if xi = 0 for any i = 1, . . . , n.

(b) C(1, . . . , 1, xi, 1, . . . , 1) = xi for each i = 1, . . . , n and all xi ∈ [0, 1].

(c) C is n-increasing.

Conditions (a) and (b) are known as boundary conditions whereas condition (c) is known as
monotonicity. In fact the definition of n- increasing function is the multivariate extension
of the concept of “increasing” for a univariate function when we interpret “increasing” as
“increasing as a distribution function”.
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Various properties of copulas have been studied in literature, but most part of the research
concentrates on the bivariate case, since multivariate extensions are generally not easily to
be done.
The following theorem (Sklar 1959), which partially explains the importance of copulas in
statistical modeling, justifies the role of copulas as dependence functions

Theorem 1.2 (Sklar’s Theorem) Let F be an n-dimensional distribution function with
marginal distribution F1, . . . , Fn. Then there exists an n-dimensional copula C(u1, . . . , un)
such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for all x = (x1, . . . , xn) ∈ Rn.
If the functions F1, . . . , Fn are all continuous then C is unique. Conversely if C is a n-
dimensional copula and F1, . . . , Fn are distribution functions, then the function F defined
above is a n-dimensional distribution function with marginal distribution F1, . . . , Fn.

A rigorous mathematical description of copulas and their features is available in [8].
If we consider the independent copula

Ci(u1, . . . , un) = u1u2, . . . , un

and the comonotonic copula

Cc(u1, . . . , un) = min{u1, u2, . . . , un}

and we call a n-copula C a PLOD copula if

C(u1, . . . , un) ≥ Ci(u1, . . . , un)

for all (u1, . . . , un) ∈ Rn it is easy to prove that if C is a n-dimensional copula

Ci(u1, . . . , un) ≤ C(u1, . . . , un) ≤ Cc(u1, . . . , un)

for all (u1, . . . , un) ∈ Rn.
If θ is the permutation (1, . . . , n) 7→ (i1, . . . , in) and C is a n-dimensional copula we denote
by Cθ the copula defined by C(u1, . . . , un) = C(ui1 , . . . , uin).

2 Main Results

The purpose of this paper is to investigate the notion of dependence between multidi-
mensional distributions with the same marginal distributions by proposing some complete
dependence orderings. In particular Joe defined a set of axioms that a dependence ordering
of distributions should have in order that higher in the ordering means more positive de-
pendence. These properties may be generalized to cover the case of n-variate distribution
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functions. We suggest a list of desirable properties that any multivariate positive depen-
dence notion should fulfill.

By a measures of positive dependence we means a function that attaches to every n-tuple of
continuous and PQD random variable X = (X1, . . . , Xn) where n ≥ 2, a real number m(X)
satisfying the following:

P1. (Normalization) m(X)=0 if and only if and X has independent component and
m(X)=1 if and only the random vector X is comonotonic;

P2. (Monotonicity) If X¹plod Y then m(X) ≤ m(Y);

P3 (Permutation Invariance) m(Xi1 , Xi2 , . . . , Xin) = m(X1, X2, . . . , Xn)
for all permutations i1, . . . , in of {1, . . . , n}.

P4 (Functional Invariance) m((X1, X2, . . . , Xn)) = m((a(X1), X2, . . . , Xn)) for all in-
creasing continuous function a;

P5 (Continuity) If Xn → X in distribution then m(Xn) → m(X).

The following result show that the copula accounts for all the dependence between random
variables.

Theorem 2.1 Let X = (X1, . . . , Xn) be an n-dimensional random vector with copula C and
a1, . . . , an be increasing and continuous functions. Then the random vector (a1(X1), . . . , an(Xn))
has the copula C.

Invariance properties of copulas suggests that they facilitate the study of scale-free mea-
sures of dependence and so we reformulate the axioms that characterize measures of positive
dependence in terms of copulas.
If n ≥ 2, we indicate by C+(n) the set of PLOD n-dimensional copulas .

By a measures of positive dependence we means a function m : C+(n) 7→ R satisfying the
following:

A1. m(C)=0 if and only if C = Ci and m(C)=1 if and only C = Cc;

A2. If C1 ≤ C2 pointwise then m(C1) ≤ m(C2);

A3 m(Cθ) = m(C) for all permutations θ of {1, . . . , n};
A4 If Cn → C pointwise then m(Cn) → m(C).

If θ is the permutation (1, . . . , n) 7→ (i1, . . . , in) we denote by fθ the function defined by
fθ(x1, . . . , xn) = f(xi1 , . . . , xin).

Definition 2.1 A Borel measure µ is permutation invariant if for any Borel set B and any
permutation θ, µ(fθ(B)) = µ(B).
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In this contribution the strength of dependence between n variables is compared using the
notion of comonotonicity and we consider measures of positive dependence that quantify
the degree of comonotonicity in a random vector.

Theorem 2.2 If µ is a permutation invariant finite Borel measure on [0, 1]n such that
0 <

∫
(Cc − Ci)dµ < ∞ then

m(C) =
∫

(C − Ci)dµ∫
(Cc − Ci)dµ

is a measure of positive dependence defined on C+(n).
Proof

Thanks to the previous observations, m(C)=0 if and only if C = Ci and m(C)=1 if and
only C = Cc. The monotonicity property follows easily from the definition of the measure
m. Moreover we note that

∫
(Cθ − Ci)dµ =

∫
(C − Ci)d(µ ◦ fθ) =

∫
(C − Ci)dµ and then

m(Cθ) = m(C) and the measure is permutation invariant. Since every sequence of copulas
converging to a copula pointwise, does so uniformly (see [6]) then the continuity property
follows.

Finally we characterize measures of multivariate dependence that preserve convex sums of
copulas (see [3] for the case of bivariate measure of concordance).

Theorem 2.3 A measure of positive dependence m defined on C+(n) is such that

m(tA + (1− t)B) = tm(A) + (1− t)m(B) for t ∈ (0, 1) and A,B ∈ C+(n)

if and only if there exists a permutation invariant finite Borel measure µ on [0, 1]n such that
0 <

∫
(Cc − Ci)dµ < ∞ and

m(C) =
∫

(C − Ci)dµ∫
(Cc − Ci)dµ

.

Proof

It is easy to prove that a function defined on C+(n) by

m(C) =
∫

(C − Ci)dµ∫
(Cc − Ci)dµ

where µ is a permutation invariant finite Borel measure on [0, 1]n such that 0 <
∫

(Cc −
Ci)dµ < ∞ is a multivariate measure of positive dependence that preserves the convex sum
of copulas.
Now we suppose that m is a measure of positive dependence defined on C+(n) such that

m(tA + (1− t)B) = tm(A) + (1− t)m(B) for t ∈ (0, 1) and A,B ∈ C+(n)
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and m(Cc) = 1. Letting C = {C − Ci : C ∈ C+(n)} and Γ the functional defined by
Γ(C −Ci) = m(C). The functional Γ is bounded and linear and defined on a compact and
convex subset of the space C([0, 1]n) of continuous functions on [0, 1]n with respect to ‖ ·‖∞
and then it can be extended to a bounded linear functional on C([0, 1]n). By the Riesz
Representation Theorem, there exists a Borel measure µ on [0, 1]n such that

Γ(A) =
∫

Adµ

for every A ∈ C([0, 1]n). Then m(C) =
∫

(C − Ci)dµ for any C ∈ C+(n).
Moreover as in the proof of Theorem 3.3 we can prove that µ is permutation invariant.
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