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Introduction

In many decision situations, we are faced with multiple and conflicting attributes, that
is with the problem of aggregating a collection of numerical readings to obtain a typical
value. So, aggregation functions are used in multicriteria decision making problems to ob-
tain a global score, but also in many different domains. We give some formal definitions
related to the problem of aggregation and in particular we present a new unified approach
to copula-based modeling and characterizations of aggregation functions. The concept of
copula introduced by Sklar in 1959 is now common in the statistical literature, but only
recently its potential for applications has become clear. Copulae permit to represent joint
distribution functions by splitting the marginal behavior, embedded in the marginal distri-
butions, from the dependence captured by the copula itself. So, the natural application of
this function in the problem of modeling interaction between attributes is really an inter-
esting question in the theory of aggregation functions.
The paper is structured as follows. In the next section we introduce briefly the general
background of aggregation functions. After a brief overview about some properties of cop-
ulae, we present the copula approach for studying aggregation problems, considering the
case n = 3. In fact we have already studied the bivariate case, which can be extended to
n dimensions, but for the sake of simplicity in this paper we are considering the trivariate
one. The last section concludes with a discussion of perspectives for future developments.

1 Definitions and properties

The aggregation operators are mathematical objects that have the function of reducing a
set of numbers into a unique representative number.
For example, the arithmetic mean as an aggregation function is defined by

AM(x1, . . . , xn) =
1
n

n∑

i=1

xi. (1)

We introduce some properties which could be desirable for the aggregation of criteria.
If we consider the behavior of the aggregation in the best and in the worst case we expect
that an aggregation satisfies the following boundary conditions :

A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1

These conditions mean that if we observe only completely bad (or satisfactory) criteria the
total aggregation has to bee completely bad (or satisfactory). We consider aggregation
functions that satisfy the boundary conditions.
Increasingness is another property, which is often required for aggregation and commonly
accepted for functions used to aggregate preferences.
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So, we can define an aggregation operator as a function

A :
⋃

n∈N
[0, 1]n → [0, 1]

that satisfies:

• A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1

• A(x1, . . . , xn) ≤ A(y1, . . . , yn) if (x1, . . . , xn) ≤ (y1, . . . , yn)

Associativity is also an interesting property for aggregation functions. The associativity
property concerns the “ clustering ” character of an aggregation function. The properties
that could be required for an aggregation function are generally based on natural consid-
erations corresponding to the idea of an aggregated value. In deciding on the form of the
aggregation operator, another elementary mathematical property can be continuity in the
usual sense. We extend our analysis to the continuous case and in particular we suppose
that A has nth-order derivatives to define ∂n

∂x1∂x2...∂xn
A as a joint aggregation density func-

tion.
When modeling multivariate distributions, one has to take into account the effects of the
marginal distributions as well as the dependence between them. This can be achieved by
using the copula approach, which allows to deal with the margins and the dependence struc-
ture separately. Although almost 50 years old copulae have only recently been applied in a
variety of areas. Now we briefly introduce some definitions and properties that lie within
the scope of this article.

Definition 1.1 A function f : Rn → R is n-increasing if Vf (B) ≥ 0 for all n-box B =
[a1, b1]× [a2, b2]× . . .× [an, bn] ⊆ [0, 1]n with ai ≤ bi, i = 1, 2, . . . , n

If f has nth-order derivatives, n-increasing is equivalent to ∂n

∂X1∂X2...∂Xn
f ≥ 0.

This definition is the multivariate extension of the concept of “increasing” for a univari-
ate function when we interpret “increasing” as “increasing as a distribution function”. A
function f : Rn → R is called absolutely continuous if it has a joint density given by
∂nfn(x1, . . . , xn)/∂x1, ∂x2, . . . , ∂xn.

An n-copula is the restriction to the unit cube [0, 1]n of a multivariate cumulative distribu-
tion function, whose marginals are uniform on [0, 1].
More precisely, an n-copula is a function C : [0, 1]n → [0, 1] that satisfies:

(a) C(x) is increasing in each component xi;

(b) C(x) = 0 if xi = 0 for any i = 1, . . . , n, that is C is grounded ;

(c) C(x) = xi if all coordinates of x are 1 except xi, that is C has uniform one-dimensional
marginals;
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(d) C is n-increasing.

Conditions (b) and (c) are known as boundary conditions whereas condition (d) is known
as monotonicity.
Various properties of copulae have been studied in literature, but most part of the research
concentrates on the bivariate case, since multivariate extensions are generally not easily to
be done. Moreover, for any n-copula:

W (x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ M(x1, . . . , xn).

The upper function M is an n-copula for any n ∈ N, the lower function W is not an n-
copula for any n > 2.
Now we recall also Sklar’s theorem:

Theorem 1.1 (Sklar 72) If X1, . . . , Xn are random variables defined on a common prob-
ability space, with the one-dimensional cdf ’s FXk

(xk) = P (Xk ≤ xk) and the joint cdf
FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn), then there exists an n-dimensional cop-
ula CX1,...,Xn(u1, . . . , un) such that
FX1,...,Xn(x1, . . . , xn) = CX1,...,Xn(FX1(x1), . . . , FXn(xn)) for all xk ∈ R,
k = 1, . . . , n.

A rigorous mathematical description of copulae and their features is available in [10].

2 Dependence modeling with copulae

The subject of assessing probabilistic dependence between one-dimensional distribution
functions to construct a joint distribution function is an important task in probability the-
ory and statistics. The copula function captures the dependence relationships among the
individual random variables as each multivariate distribution can be represented in terms
of its marginals through a given copula structure.
The aim of this section is to present the copula approach for studying aggregation prob-
lems. It can be extended to n dimensions, but for the sake of simplicity in this paper we
are considering the case n = 3. We are studying a class of aggregation functions that can
be expressed in terms of marginal functions using the method of copulae. Elimination of
marginals through copulae helps to model and understand dependence structure between
variables more effectively, as the dependence has nothing to do with the marginal behavior.
The next proposition introduces an analogy between probability distributions and this class
of aggregation functions, but first of all we define the following one-dimensional marginal
functions:
F1(x1) = A(x1, 1, 1), F2(x2) = A(1, x2, 1), F3(x3) = A(1, 1, x3)
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Proposition 2.1 (Particular case) If A is a 3-increasing continuous trivariate aggrega-
tion function such that

A(x1, 0, 0) = A(0, x2, 0) = A(0, 0, x3) = 0 (2)
A(x1, x2, 0) = A(x1, 0, x3) = A(0, x2, x3) = 0 (3)

there exists a copula C, such that

A(x1, x2, x3) = C(u1, u2, u3)

Proof.

Thanks to the previous observations, we can define the following element for three dimen-
sions:

a(x1, x2, x3) , ∂3A(x1, x2, x3)
∂x1, ∂x2, ∂x3

So, from the properties of derivatives, the integral of a joint aggregation density function is
the following:

H(x1, x2, x3) ,
∫ x3

0

∫ x2

0

∫ x1

0 a(u1, u2, u3)du1du2du3 =
∫ x3

0

∫ x2

0 [
∂2A(x1, u2, u3)

∂u2, ∂u3
− ∂2A(0, u2, u3)

∂u2, ∂u3
]du2du3 =

∫ x3

0 [
∂A(x1, x2, u3)

∂u3
− ∂A(x1, 0, u3)

∂u3
]du3 −

∫ x3

0 [
∂A(0, x2, u3)

∂u3
− ∂A(0, 0, u3)

∂u3
]du3 =

A(x1, x2, x3)−A(x1, x2, 0)−A(x1, 0, x3) + A(x1, 0, 0) +
−A(0, x2, x3) + A(0, x2, 0) + A(0, 0, x3)−A(0, 0, 0) =

A(x1, x2, x3)−A(x1, x2, 0)−A(x1, 0, x3)−A(0, x2, x3) + A(x1, 0, 0) + A(0, x2, 0) + A(0, 0, x3)

because A(0, 0, 0) = 0 for the property of aggregation function.
So, for our hypotesis A(x1, x2, x3) = H(x1, x2, x3) and it remains to prove that H(x1, x2, x3)
is a copula. Surely H is 3-increasing, because this is our hypotesis for A. So, we must prove
that H is grounded and it has uniform one-dimensional marginals. We can observe thanks
to the lemma 2.10.4 in [10] that

|A(x1, x2, x3)−A(y1, y2, y3)| ≤
≤ |F1(x1)− F1(y1)|+ |F2(x2)− F2(y2)|+ |F3(x3)− F3(y3)|

for all x,y ∈ [0, 1]. Then, if F1(x1) = F1(y1), F2(x2) = F2(y2) and F3(x3) = F3(y3) it
follows that A(x) = A(y). So, it is well-defined a function C whose domain is [0, 1]3 with
range [0, 1], such that C(u1, u2, u3) = A(x1, x2, x3), where u1 = F1(x1), u2 = F2(x2) and
u3 = F3(x3). Therefore we can prove that A(x) = C(F1(x1), F2(x2), F3(x3)) has uniform
one-dimensional marginals. In fact we have

C(1, 1, u3) = C(1, 1, F3(x3)) = A(1, 1, x3) = u3.

Verifications of the other conditions are similar.
Now we give the more general proposition:
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Proposition 2.2 (General case) If A is a 3-increasing continuous trivariate aggrega-
tion function, there exist three increasing and continuous functions H1, H2, H3, three
2-increasing and continuous functions H1,2, H2,3, H1,3 and one copula C, such that

A(x1, x2, x3) = H1,2(x1, x2) + H1,3(x1, x3) + H2,3(x2, x3)+

−H1(x1)−H2(x2)−H3(x3) + C(u1, u2, u3)

Proof.

Thanks to the previous observations, it is enough to define:

H1(x1) := A(x1, 0, 0), H2(x2) := A(0, x2, 0), H3(x3) := A(0, 0, x3) (4)
H1,2(x1, x2) := A(x1, x2, 0), H1,3(x1, x3) := A(x1, 0, x3), H2,3(x2, x3) := A(0, x2, x3)(5)

and to prove that (4) and (5) are increasing and 2-increasing, respectively.
We have already said that increasingness is a property required to aggregation preferences.
It remains to prove 2-increasingness. By using lemma 2.1 in [9] H1,2(x1, x2) − H1(x1) is
2-increasing, that is ∂2A(x1,x2)

∂x1,∂x2
− ∂A(x1)

∂x1
≥ 0, but ∂A(x1)

∂x1
≥ 0 and so ∂2A(x1,x2)

∂x1,∂x2
is 2-increasing.

At last, we must prove that C(u1, u2, u3) = H(x1, x2, x3) is a copula. In fact H satisfies
the hypotesis of proposition (2.1) for its construction. So, there exists a copula C and
three one-dimensional marginals G1 = u1, G2 = u2 and G3 = u3, such that H(x1, x2, x3) =
C(G1(x1), G2(x2), G3(x3)).
As a consequence, we have the following result.

Corollary 2.1 If A is a 3-increasing continuous trivariate aggregation function, there exist
three functions A1, A2, A3, three constants α, β, γ and four copulae C1,2, C2,3, C1,3 and
C, such that

A(x1, x2, x3) = A1(x1) + A2(x2) + A3(x3)+

+αC1,2(x1, x2) + βC1,3(x1, x3) + γC2,3(x2, x3) + C(x1, x2, x3)

Proof.

We use the bivariate case, that is we have studied that

A(x1, x2, 0) = H1,2(x1, x2) = Fα(x1) + Gα(x2) + kαCα(F (x1), G(x2))

where Cα is a copula, kα is a constant, while F and G are two increasing and continuous
functions. Similarly,

H1,3(x1, x3) = Fβ(x1) + Gβ(x3) + kβCβ(F (x1), G(x3))

and
H2,3(x2, x3) = Fγ(x2) + Gγ(x3) + kγCγ(F (x2), G(x3))

So,
A(x1, x2, x3) = H1,2(x1, x2) + H1,3(x1, x3) + H2,3(x2, x3)+
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−H1(x1)−H2(x2)−H3(x3) + C(u1, u2, u3) =

Fα(x1) + Gα(x2) + kαCα(F (x1), G(x2))−H1(x1)+

Fβ(x1) + Gβ(x3) + kβCβ(F (x1), G(x3))−H2(x2)+

Fγ(x2) + Gγ(x3) + kγCγ(F (x2), G(x3))−H3(x3) + C(u1, u2, u3)

By assuming A1(x1) = Fα(x1) + Fβ(x1)−H1(x1), A2(x2) = Gα(x2) + Fγ(x2)−H2(x2) and
A3(x3) = Gβ(x3) + Gγ(x3)−H3(x3), we have our thesis.

3 Concluding remarks

In this work we have analized the copula approach to aggregation functions for n = 3, con-
tinuing the study of our previous work [2]. The decomposition of a multivariate distribution
function between its marginal distribution functions and its dependence structure facilitates
its analysis and understanding. In this paper, a new method to construct multivariate ag-
gregation functions is introduced. In fact our method can be used in the other sense and it
is trivial to prove that the sum of several bivariate copulae and a trivariate one in a linear
combination is an aggregation function. This approach can be generalized to n dimensions,
studying n-increasing functions and in particular those ones which are n-copulae. However,
this generalization remains an open problem, as well as the application to discrete copulae
and quasi-copulae.
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