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Abstract.This paper presents the role of copula functions in the theory of aggregation
operators and an axiomatic characterization of Archimedean aggregation functions. In this
context we are focusing our attention about several properties of aggregation functions, like
supermodularity and Schur-concavity.

Keywords:Aggregation function, supermodularity, Schur- concavity, copula, Archimedean
copulae.

JEL Classification Numbers: C02.

MathSci Classification Numbers: 90B50, 91B82, 60A10, 60E15.

Correspondence to:

Marta Cardin Dept. of Applied Mathematics, University of Venice
Dorsoduro 3825/e
30123 Venezia, Italy

Phone: [++39] (041)-234-6929
Fax: [++39] (041)-522-1756
E-mail: mcardin@unive.it

1



Introduction

Aggregation has for purpose the simultaneous use of different pieces of information provided
by several sources, in order to come to a conclusion or a decision so aggregation functions
transform a finite number of inputs, called arguments, into a single output. They are ap-
plied in many different domains and in particular aggregation functions play important
role in different approaches to decision making, where values to be aggregated are typically
preference or satisfaction degrees. Many functions of different type have been considered
in connection with different situations and various properties of these functionals can be
imposed by the nature of the considered aggregation problem. A class of aggregation func-
tions can also be introduced axiomatically by means of a set of properties.
This note develops a new unified approach to copula-based modelling and characterizations
of aggregation functions. The concept of copula introduced by Sklar in 1959 is now common
in the statistical literature, but only recently its potential for applications has become clear.
Copulae permit to represent joint distribution functions by splitting the marginal behavior,
embedded in the marginal distributions, from the dependence captured by the copula itself.
So the copula approach is particularly useful when we investigate the interaction between
different arguments of aggregation functions. In fact the problem of modelling interaction
between attributes remains a difficult question in the theory of aggregation functions.
A number of families of copulae exists in literature but here we focus on the study of the
class of Archimedean copulae, that has proven useful for modelling dependence in a variety
of settings and that forms a dense subclass of the class of associative copulae.
The paper is structured as follows. In the next section we establish the notations and we
present some mathematical properties of the aggregation functions. In section 2 we define
copulae and discuss some mathematical properties. Section 3 presents the copula approach
to aggregation problem while in section 4 we propose an axiomatic characterization of
Archimedean aggregation functions. Section 5 concludes with a discussion of perspectives
for future developments.

1 Aggregation functions: some basic definitions and
properties

The aggregation operators are mathematical objects that have the function of reducing a
set of numbers into a unique representative number.
For example, the arithmetic mean as an aggregation function is defined by

AM(x1, . . . , xn) =
1
n

n∑

i=1

xi.

We introduce some properties which could be desirable for the aggregation of criteria.
If we consider the behavior of the aggregation in the best and in the worst case we expect
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that an aggregation satisfies the following boundary conditions :

A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1

These conditions mean that if we observe only completely bad (or satisfactory) criteria the
total aggregation has to bee completely bad (or satisfactory). We consider aggregation
functions that satisfy the boundary conditions.
Increasingness is another property, which is often required for aggregation and commonly
accepted for functions used to aggregate preferences.
So, as it has been shown in [6], we can define an aggregation operator as a function

A :
⋃

n∈N
[0, 1]n → [0, 1]

that satisfies:

• A(x) = x

• A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1

• A(x1, . . . , xn) ≤ A(y1, . . . , yn) if (x1, . . . , xn) ≤ (y1, . . . , yn)

Associativity is also an interesting property for aggregation functions. The associativity
property concerns the “ clustering ” character of an aggregation function. For two arguments
the property can be written:

Definition 1.1 A binary aggregation function A is associative if, for all x1, x2, x3,∈ [0, 1],
we have A(A(x1, x2), x3) = A(x1, A(x2, x3))

This property can be extended to n arguments as follows:

Definition 1.2 An aggregation function A is associative if A(x) = x for all x ∈ [0, 1]n and

A(x1, . . . , xk, xk+1, . . . , xn) = A(A(x1, . . . , xk), A(xk+1, . . . , xn))

for all integers 0 ≤ k ≤ n, with n ≥ 1, and all x ∈ [0, 1]n.

In many situations when attributes are equally important a simmetry property is required.

Definition 1.3 An aggregation function A is symmetric if

A(x1, . . . , xk, . . . , xn) = A(xσ(1), . . . , xσ(k) . . . , xσ(n)))

for all permutation σ of {1, . . . , n} and all x ∈ [0, 1]n.
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2 Supermodularity and Schur-concavity

In the next section we are considering also the class of continuous functions and we are
focusing our attention to the supermodular property of aggregation operators. So we need
the concept of supermodular functions. We endowed Rn with the usual product order.
With this order Rn become a lattice and we denote the supremum and the infimum of x
and y by x ∨ y and x ∧ y respectively. As it is well known supermodular functions play a
central role in modelling concordance between random vectors (see [4]).

Definition 2.1 A function f : D ⊆ Rn → R is supermodular if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) (1)

when x,y,x ∨ y,x ∧ y ∈ D.

Supermodularity may also be defined in terms of increasing differences, as it has been shown
in [7].
A function f : R2 → R has increasing differences if, for any t ≥ t′, g(x) = f(x, t)− f(x, t′)
is an increasing function of x. A function f : RS → R has increasing differences if for any
s, t and x, the function f̂ : R2 → R,

f̂(x̂s, x̂t) = f(x−s,t, x̂s, x̂t),

obtained by allowing only xs and xt to vary from x, has increasing differences.
Topkis(1998, Corollary 2.6.1) shows that a mapping f : RS → R is supermodular if and
only if it displays increasing differences and so the following proposition characterizes su-
permodular functions.

Proposition 2.1 Let f be a function D ⊆ Rn → R. f is supermodular if and only if when
x,y ∈ D

f(x + h + k)− f(x + k) ≥ f(x + h)− f(x) (2)

for all h,k with h,k ≥ 0 , h ⊥ k such that x + h,x + k,x + h + k ∈ D.

Increasing difference transfers the supermodularity condition to one involving the linear
structure of Rn.
It is worth noting that supermodularity condition is only an “inter-attribute” relation. Intu-
itively increasing differences say that there must be “complementarity” between attributes.
So a supermodular aggregation function has the interpretation of a “complementarity” con-
dition of the inputs to be aggregated and a tendency of a collection of high scores to reinforce
each other.
We also consider the concept of majorization arising as a measure of diversity of the com-
ponents of an n-dimensional vector. Majorization gives a mean for comparing two vectors
in a elegant way that arises surprisingly often in fields such as computer and economics
science. This notion has been comprehensively treated by [5].
We aim to formalize the idea that the components of a vector x are less “spread out” or
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“more balanced” than the components of y. For a vector x ∈ Rn we denote its elements
ranked in descending order as

x(1) ≥ x(2) ≥ . . . ≥ x(n). (3)

Thus x(1) is the largest of the xi’s, while x(n) is the smallest.

Definition 2.2 The vector y is said to majorize the vector x, which is denoted as x ¹ y,
if

k∑

i=1

x(i) ≤
k∑

i=1

y(i) for k = 1, 2 . . . , n− 1 and
n∑

i=1

xi =
n∑

i=1

yi. (4)

Majorization is a partial ordering among vectors, which applies only to vectors having the
same sum. For example it can be easily shown that all vectors of sum s majorize the uniform
vector u = ( s

n , . . . s
n). Intuitively, the uniform vector is the vector with minimal differences

between elements, so all vectors majorize it. Formally, this follows from the fact that for
any vector x of sum s,

k∑

i=1

x(i) ≥
k

n
s. (5)

Now, we introduce a property for a real multivariate function, because key to the power of
majorization is the companion notion of monotonicity associated with it:

Definition 2.3 Let f be a function D ⊆ Rn → R. f is Schur-convex if f(x) ≤ f(y) when
x ¹ y andx,y ∈ D. f is Schur-concave if −f is Schur-convex.

Schur-convex functions thus preserve majorization. In other words, Schur-convexity (resp.
Schur-concavity) corresponds to monotone increasingness (resp. decreasingness) for ma-
jorization (viewed as a pre-order on subsets of Rn).

Let {σi, i = 1, . . . , n!} be a given enumeration of all n! permutations of {i = 1, . . . , n}. A
subset A of Rn is said to be symmetric if for any x in A, the element σi(x) also belongs
to A for each i = 1, . . . , n!. Moreover, for any subset A of Rn, a mapping φ : A → R is
said to be symmetric if A is symmetric and for any x in A, we have φ(σi(x)) = φ(x) for
each i = 1, . . . , n!. If the mapping φ : A → R is Schur-convex (resp. Schur-concave) with
symmetric A, then φ is necessarily symmetric since σi(x) ¹ x ¹ σi(x) implies φ(σi(x)) =
φ(x) for each i = 1, . . . , n!.
We note that a Schur-convex or Schur-concave function must be a symmetric function.
Moreover a symmetric convex function is Schur-convex [5].
It is important to note that a Schur-concave aggregation function considers the attribute
as symmetric and prefers attributes that are less “spread out”.
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3 Copula theory

Now we recall the copula definition and briefly introduce some properties that lie within
the scope of this article. For more details we refer to [8] or [4].
For simplicity purposes we consider only the bivariate case.

Definition 3.1 A 2-dimensional copula function (or briefly a copula) is a function C,
whose domain is [0, 1]2 and whose range is [0, 1] with the following properties:

i) C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for all x ∈ [0, 1]

ii) C is supermodular function

Hence any bivariate distribution function whose margins are standard uniform distributions
is a copula.
It is easy to see that function Π(u, v) = uv satisfies conditions (i) and (ii) and hence is a
copula. The copula Π, called the product copula, has an important statistical interpretation.
The following Sklar’s Theorem (Sklar 1959), which partially explains the importance of
copulae in statistical modeling, justifies the role of copulae as dependence functions.

Theorem 3.1 (Sklar’s theorem) . Let H be a 2-dimensional distribution function with
margins F and G. Then there exists a 2-copula C such that for all x in R2,

H(x1, x2) = C(F (x1), G(x2)). (6)

If F and G are continuous, then C is unique. Conversely, if C is a 2-copula and F and G
are distribution functions, then the function H defined by (6) is a 2-dimensional distribution
function with margins F and G.

As a consequence of Sklar’s Theorem, if X and Y are random variables with a joint distri-
bution function H and margins F and G, respectively, then for all x, y in R,

max(F (x) + G(y)− 1, 0) ≤ H(x, y) ≤ min(F (x), G(y)) (7)

or (since H(x, y) = C(F (x), G(y)))

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v). (8)

Since M and W are copulae, the above bounds are joint distribution functions, and are
called the Fréchet-Hoeffding bounds for joint distribution functions H with margins F and
G.
The copulae M , W and Π have important statistical interpretations. Let X and Y be
continuous random variables, then:

(i) the copula of X and Y is M(u, v) if and only if each of X and Y is almost surely an
increasing function of the other;
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(ii) the copula of X and Y is W (u, v) if and only if each of X and Y is almost surely a
decreasing function of the other;

(iii) the copula of X and Y is Π(u, v) = uv if and only if X and Y are independent.

The concept of copula can be easily extended to n dimensions with n ≥ 2.
An n-dimensional copula is an n-dimensional cumulative distribution function (CFD), de-
noted by Cn(u1, . . . , un), whose support is the n-dimensional hypercube [0, 1]n and whose
univariate marginal distributions are uniform on [0, 1].
Implicit in this definition are the properties that Cn(u1, . . . , un) = 0 if uj = 0 for any j ≤ n
and that the marginal distributions are given by Cn(1, . . . , 1, uj , 1, . . . , 1) = uj for each
j ≤ n and all uj ∈ [0, 1]. Cn is also n-increasing, the standard multivariate extension of the
concept of “increasing” for a univariate function.

In this work, we focus on the class of Archimedean copulae because their properties fit the
needs of the aggregation problem.
The family of Archimedean copulae is particularly interesting because they can be defined
by means of a single function. Let φ be a continuous, strictly decreasing function from
[0, 1] to [0,∞] such that φ(1) = 0. The pseudo-inverse of φ is the function φ[−1] with Dom
φ[−1] = [0,∞] and Ran φ[−1] = [0, 1] given by

φ[−1](t) =
{

φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

Note that φ[−1] is continuous and non-increasing on [0,∞], and strictly decreasing on
[0, φ(0)]. The function C defined by

C(u, v) = φ[−1](φ(u) + φ(v)) u, v ∈ [0, 1]2

is a copula if and only if φ is convex.
Copulae of the form described above are called Archimedean copulae and the function φ is
called a generator of the copula.
Because of their simple forms, the ease with which they can be constructed and their many
nice properties, Archimedean copulae frequently appear in discussions of multivariate distri-
butions.

4 The copula approach

The subject of assessing probabilistic dependence between one-dimensional distribution
functions to construct a joint distribution function is an important task in probability
theory and statistics. The copula function captures the dependence relationships among
the individual random variables as any multivariate distribution can be represented in terms
of its marginals through a given copula structure.
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The aim of this section is to present the copula approach for studying aggregation problems.
We consider a class of aggregation functions that can be expressed in terms of marginal
functions using the method of copulae. The following proposition introduces an analogy
between probability distributions and this class of aggregation functions.
We define the following marginal functions of a binary aggregation function A:

A1(x) = A(x, 0) A2(y) = A(0, y) and A1(x) = A(x, 1) A2(y) = A(1, y)

Proposition 4.1 If A is a supermodular continuous binary aggregation function then there
exists a copula C, such that

A(x, y) = A1(x) + A2(y) + C(A1(x), A2(y))

Proof.

If A is a supermodular continuous and increasing function, then, as it has been shown in
[9], there exist functions f1, f2, g such that

A(x, y) = f1(x) + f2(y) +
∫ y

0

∫ x

0
g(s, t)dsdt,

where the function H(x, y) =
∫ y
0

∫ x
0 g(s, t)dsdt is a supermodular function.

Since
A1(x) = f1(x) + f2(0) and A2(y) = f1(0) + f2(y)

we obtain that f1(x)+ f2(y) = A1(x)+A2(y)− (f1(0)+ f2(0)) = A1(x)+A2(y). By lemma
2.1.5 of [8]

|A(x, y)−A(x′, y′)| ≤ |A1(x)−A1(x′)|+ |A2(y)−A2(y′)|
for all x, x′, y, y′ ∈ [0, 1]. Then, H(x, y) = H(A1(x), A2(y)) and by lemmas 2.3.4 and 2.3.5
of [9] there exists a copula C such that H(x, y) = C(A1(x), A2(y)).

If A1(x) = A2(y) = 0, then A(x, y) = C(A1(x), A2(y)) and so A(x, y) is a conjunctive
aggregation function.
In fact, we remember that aggregation functions can be roughly divided into three classes,
each possessing very distinct behavior: conjunctive functions, disjunctive and compensative
functions.

Definition 4.1 A : En → R is

conjunctive if A(x) ≤ min xi for all x ∈ En,

disjunctive if max xi ≤ A(x) for all x ∈ En,

compensative if min xi ≤ A(x) ≤ max xi for all x ∈ En, that is averaging operations.

In our case, from Sklar’s Theorem it follows that copulae generalize the notion of conjuncti-
veness. Moreover, basic conjunctions are the minimum operation, the product and the
linear operation max(a + b− 1).
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5 Archimedean aggregation functions

We introduce the class of Archimedean aggregation functions.

Definition 5.1 If φ is a continuous, strictly decreasing and convex function from [0, 1] to
[0,∞] such that φ(1) = 0, the aggregation fuction is defined by

A(x1, x2) = φ[−1](φ(x1) + φ(x2)) x1, x2 ∈ [0, 1]2

We present in this section several propositions concerning some properties of Archimedean
aggregation functions.

Proposition 5.1 A bivariate Archimedean aggregation function A is symmetric, associa-
tive, Schur-convex and satisfies the following conditions:

i) A(x, 0) = A(0, x) = 0 and A(x, 1) = A(1, x) = x for all x ∈ [0, 1]

ii) A(x, x) < x

Proposition 5.2 A bivariate associative aggregation function which satisfies conditions i)
and ii) of Proposition 5.1 is Archimedean.
Proof.

To be Archimedean, A(x1, x2) must be symmetric and Schur-convex. Really, we must see
that it is Schur-convex, because a Schur-convex function must be a symmetric function. So,
we wonder whether (x1, x2) ¹ (y1, y2) implies A(x1, x2) ≤ A(y1, y2). This is true, because
non decreasing is a property of aggregation functions.
Another main result can be formulated as follows:

Proposition 5.3 The set Aa of all associative aggregation functions is the closure of both
the set As of all strict aggregation functions and the set Ans of all non-strict Archimedean
aggregation functions.

This means in particular that each associative aggregation function can be approximated
with arbitrary precision by some strict as well as by some non-strict Archimedean aggre-
gation function. Notice that As and Ans are disjoint sets whose union, i.e., the set of
Archimedean aggregation functions, is a proper subset of Aa.

6 Some examples

Now we show that associative binary aggregation functions like A(x, y) = f−1(f(x)f(y))
and nilpotent ones like A(x, y) = f−1((f(x) + f(y) − 1) ∨ 0) on the unit interval [0, 1] are
Archimedean. In fact, if the following conditions hold:
(1) A(1, x) = x, (2) A(0, x) = 0 and (3) A(x, x) < x for all x ∈ (0, 1),
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then the proposition 5.2 holds.

For example, we consider A(x, y) = e−((− ln x)r+(− ln y)r)
1
r , or A(x, y) = ((xa + ya − 1)∨ 0)

1
a .

Similarly, if we define A(x, y) = f−1((f(0)2/f(x)f(y)), where the aggregation function on
[0, 1] is Archimedean if the conditions, like in the previous case, hold.

7 Concluding remarks

An interesting generalization of copulae is the notion of semicopula, namely a binary oper-
ation on [0, 1] that satisfies the boundary condition ∀x ∈ [0, 1] C(x, 1) = C(1, x) = x and
the property of increasingness in each place, that is C(x, y) ≤ C(x′, y′) for all x ≤ x′ and
y ≤ y′. But, as it has been shown in [3], the first generalization of copulae has been the
concept of quasi-copula. In detail, a quasi-copula Q : [0, 1]2 → [0, 1] satisfies the conditions
of semicopula and it is also 1-Lipschitz : |C(x, y) − C(x′, y′)| ≤ |x − x′| + |y − y′| for all
x, x′, y, y′ ∈ [0, 1].
The study of quasi-copula as an aggregation operator is an open problem.
The concept of copula can be extended to n dimensions. Moreover, for any n-copula:

TL(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ TM(x1, . . . , xn).

The upper function TM is an n-copula for any n ∈ N, the lower function TL is not an
n-copula for any n > 2. It could be an aggregation function.
In fact, the copula approach to aggregation functions can be generalized to n dimensions. It
is interesting to note that the property of associativity serves two purposes. First it allows
us to semplify the aggregation in the following way:

if A(x1, . . . , xn) = a, then A(x1, . . . , xn, xn+1) = A(a, xn+1).

Second, it helps us to simplify the definition of a function by permitting the use of binary
definition of this operator to define the function for multiarguments.
However, this generalization remains an open problem in such context, above all for Archime-
dean aggregation functions.
Moreover, there is a close link between supermodularity and Schur-concavity, but this is
another open problem.
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