
Department of Applied Mathematics,  University of Venice  
 

 
 

WORKING PAPER SERIES 
 
 

 

 
 
 
 
 
 
 

Giuseppe De Nadai , Paolo Pianca 
 
 

 
Cumulative prospect theory and second 
order stochastic dominance criteria: an 

application to mutual funds performance 
 
 
 
 
 
 

 
 
 

Working Paper n. 157/2007 
October 2007 

 
ISSN: 1828-6887 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6387602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
This Working Paper is published under the auspices of the Department of Applied 
Mathematics of the Ca’ Foscari University of Venice. Opinions expressed herein are 
those of the authors and not those of the Department. The Working Paper series is 
designed to divulge preliminary or incomplete work, circulated to favour discussion 
and comments. Citation of this paper should consider its provisional nature. 



Cumulative prospect theory and second order stochastic
dominance criteria: an application to mutual funds

performance

Giuseppe De Nadai Paolo Pianca
Department of Applied Mathematics

University Ca’ Foscari Venice

Abstract. In this note using the rules of stochastic dominance of the second order and
the recent cumulative prospect theory for classified, according to their performance, a set
of common funds. The criteria used are closely linked to the preferences of decision maker
and refer to either hypothesis of aversion and of seeking to risk both hypothesis on the
sign of derived second of the function which characterizes the losses and gains.

Keywords: Stochastic dominance rules, preferences, cumulative prospect theory, mutual
funds performance, total and partial ranking.

JEL Classification Numbers: G11, C44, C63.

MathSci Classification Numbers: 60E15.

Correspondence to:

Paolo PIANCA
Dept. of Applied Mathematics, University of Venice
Dorsoduro 3825/e
30123 Venezia, Italy
Phone: [+39] (041)-234-6915
Fax: [+39] (041)-522-1756
e-mail: pianca@unive.it



1 Introduction
The maximum return criterion is employed when there is no risk at all. According to this
rule, the investor simply chooses the alternative with the highest rate of return. In order
to compare the risk and return of alternative investments decision criteria are needed.

The expected utility paradigm analyze risk and return jointly and has been the founda-
tion for most of modern theories. Since the expected utility rules do not accurately predict
empirically observed performances one can try to extend the stochastic dominance results.
Knowing certain qualitative features of the utility function of the decision maker, one can
use the corresponding stochastic dominance conditions to eliminate dominate alternative
(mutual funds), which can be useful for management practitioners.

This study is in such a direction and uses the Cumulative Prospect Theory and two
recently developed investment criteria proposed in [6] and called Prospect Stochastic Dom-
inance (PSD) and Markowitz Stochastic Dominance (MSD), respectively.

The original and cumulative prospect theories (see [4] and [9] respectively for a presen-
tation of these methodologies) suggest that decision maker encodes outcomes in term of
gains and losses. Furthermore, the prospect theory replaces the traditional utility function
by a value function defined over changes of wealth with respect to some reference point and
includes a probability weight function that reflects the subjective probability distortions
shown by most investors.

There is significative evidence to support the cumulative prospect theory (CPT) al-
though clearly no one would claim that it is a definitive theory. Nevertheless, it does
predict many of key features of risky decision-making behavior. Recently, prospect theory
gained much popularity and there is stream of papers that build economic and financial
model based on this theory. There have been many empirical and experimental attempts
to test prospect theory, most of which support the theory (for a comprehensive survey see
[2]).

The prospect stochastic dominance criterion (PSD) is a rule, based on CPT, that
determines the dominance of one investment alternative over another for all prospect theory
S-shaped value functions. The Markowitz stochastic dominance rule (MSD) is a rule that
determines the dominance of one investment alternative over another for all reverse S-
shaped value functions, as suggested by Markowitz in [7]. Both the PSD and MSD belong
to second order stochastic dominance criteria. As well known a stochastic dominance
rule gives a partial ordering of a set of alternative investments. On the other hand, the
cumulative prospect theory allows to obtain a complete ranking of risk alternatives.

The structure of this note is as follows. In section 2 we briefly describe the main
properties of original and cumulative prospect theory. In section 3 we discuss the main
classes of preferences proposed in literature. Section 4 presents the second order stochastic
dominance criteria used in empirical analysis. In section 5 we briefly analyze some intuitive
explanations, graphical representation, necessary and sufficient conditions of stochastic
dominance criteria. Section 6 presents both some tricks that can help to reduce the number
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of comparison and the algorithms that permit to easily implement the stochastic dominance
rules. Section 7 present the empirical analysis carried out on the Italian mutual funds
market. Finally, some concluding remarks are presented in Section 8.

2 Review of Cumulative Prospect Theory (CPT)
Expected utility theory has been the foundation for most of modern theories on uncer-
tainty and risk. However, it has been challenged by more and more empirical results
pointing at violation of it. For example, it has been found that people tend to think of
possible outcome usually relative to a certain reference point (often the status quo) rather
than the final status. Moreover, they have different risk attitudes towards gains (i.e. out-
comes above the referencee point) and losses (i.e. outcomes below the reference point)
and they care generally more about potential losses than potential gains (loss aversion).
These observations call for alternative theories that are psychologically more appealing.
The original and cumulative prospect theory standout as one of the most well-accepted
alternative to the expected utility paradigm. The main characteristics of prospect theory
can be summarized as follows:

i) Investors make decision based on change of wealth rather on total wealth, in contrast
to what advocated by expected utility theory.

ii) Investors maximize the expectation of a value function, v(x), where x is the change in
wealth rather than total wealth. v(x) is S-shaped: v′(x) > 0 ∀x 6= 0, v′′(x) > 0 for
x < 0, and v′′ < 0 for x > 0. The parameters of the function may change with the
wealth, but the S-shaped property of function v(x) is a common run for all initial
wealth levels.

iii) Investors subjectively distort probabilities. They make decisions based on the subjec-
tive distribution function F ∗, which is given by F ∗ = T (F ), where F is the objective
distribution and T is a monotonically increasing transformation with T (0) = 0 and
T (1) = 1 (this is the main modification of cumulative prospect theory in comparison
to original prospect theory).

The main formal features of cumulative prospect theory introduced by Tversky and
Kahneman in [9] are now summarized. This theory assumes a shape of value function
which reflects the psychological phenomenon of diminishing sensitivity as one moves away
from the “references point”. This point divides gains from losses and is taken to be zero in
this contribution.

Consider a prospect (mutual fund) X with outcomes

x1 ≤ . . . xk ≤ 0 ≤ xk+1, . . . ≤ xn
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having probability
p1, . . . , pk, pk+1, . . . , pn.

Cumulative prospect theory predicts that people will choose prospects according to the
value given by

V (X) =
k∑

i=1

πiλv(xi) +
n∑

j=k+1

πjv(xj) (1)

where λ > 0 is a loss-aversion parameter and the π’s are decision weights that are calculated
based on the “cumulative” probabilities associated with the outcomes.

In particular, prospect theory assumes a probability weighting function w+ : [0, 1] →
[0, 1] for gains, and a probability weighting function w− : [0, 1] → [0, 1] for losses. The
decision weights π’s in equation (1) are defined as follows.

If k ≥ 1 then

π1 = w−(p1)

and

πi = w−(p1 + . . . + pi)− w−(p1 + . . . + pi−1) for 2 ≤ i ≤ k

If k < n then

πn = w+(pn)

and

πj = w+(pn + . . . + pj)− w+(pn + . . . + pj+1) for n− 1 ≥ j > k.

Tversky and Kahneman in [9] estimated the following parameter form

v(x) =

{
x0.88 for x > 0
−(−x)0.88 for x ≤ 0, (2)

λ = 2.25 and

w+(p) =
p0.61

(p0.61 + (1− p)0.61)1/0.61
w−(p) =

p0.69

(p0.69 + (1− p)0.69)1/0.69
. (3)

Obviously, the decision maker can adopt other trends both for value function and for risky
weighting function: a variety of specific functional forms have been suggested and are
reported in Tables 1 and 2.

With reference to Table 1 note that each function is increasing for x ≥ 0; moreover
some parameters require constraints. Inevitably there is not room to include every value
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Table 1: Summary of functional form for value function.
Name Abbreviation Equation
Linear Lin v(x) = x
Logarithmic Log v(x) = ln (a + x)
Power Pwr v(x) = xa

Quadratic Quad v(x) = ax− x2

Exponential Expo v(x) = 1− e−ax

Bell Bell v(x) = bx− e−ax

Hara hara v(x) = −(b + x)a

function∗ and every risky weighting function†, so that the more notable forms are selected
and reported in the Tables 1 and 2.

With reference to Table 2 note that most of the labels relate to the authors that seem
to have first reported them. The qualitative features of most of these functions are:

- concavity of w(p) for small p, close to 0, and

- convexity of w(p) for large p, close to 1.

Table 2: Summary of functional form for risky weighting function.
Name Abbreviation Equation
Linear Lin w(p) = p
Power Pwr w(p) = pr

Goldstein-Einhorn GE w(p) = spr

psr(1−p)r

Tversky-Kahneman TK w(p) = pr

(pr+(1−p)r)1/r

Wu-Gonzales WG w(p) = pr

(pr+(1−p)r)s

Prelec I PrlI w(p) = e−(− ln p)r

Prelec II PrlII w(p) = e−s(− ln p)r

3 Characterization of preferences
There is an ongoing debate in literature regarding the shape of the utility (or value func-
tions). The investors always prefer more money than less money, i.e the utility function

∗Excluded value functions include: v(x) = ekxβ −1 , the Log-Quadratic v(x) = ln(x+1)+a[ln(x+1)]2,
the Sumex v(x) = a ebx + c edx, and the Linear times Exponential v(x) = (ax + b)ecx.

†Excluded risky weighting functions include: the Exponential-Power w(p) = exp[− r
s (1 − ps)], the

Hyperbolic-logarithm w(p) = (1− r ln p)−r/s and a linear form with discontinuous end points.
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u is non-decreasing with u′ ≥ 0. The first degree stochastic dominance rule (FSD) is
appropriate for all investor with u′ ≥ 0 (with strict inequality at some range).

The FSD rule is a criterion that tell us whether one investment dominates another
investment where the only available information is that u ∈ U1 (U1 is the class of all
monotonic non decreasing utility functions). The non-decreasing assumption give partial
information on u and its precise shape is unknown.

There is much evidence that most investors are risk averters: their utility function has
non-negative first derivative and non positive second derivative (u′ ≥ 0, u′′ ≤ 0). We can
define U2 as the class of nondecreasing concave utility functions. Obviously, U2 ⊂ U1. A
risk averter will not play a fair game; moreover, risk averters will be ready to pay a risk
premium to insure their wealth.

The investor with utility function in U2 = {u : u′ ≥ 0, u′′ ≥ 0} (and to avoid trivial
cases there is at least one utility function with strict inequality) is called risk seeking. U2

is the class of nondecreasing convex utility function.
In the economic and finance literature it is very uncommon to claim that risk-seeking

prevail in the whole domain of outcomes. Friedman and Savage (see [3]) claim that the fact
that investors buy insurance, buy lottery tickets, and buy both insurance and lottery tickets
simultaneously imply that the investor utility function must have two concave regions with
a convex region in between.

Markowitz (see [7]) points out several severe problems with the Friedman and Savage
utility function. However, he shows that the problems are solved if the first inflection
point of Friedman and Savage utility function is exactly in correspondence to investor’s
current wealth. Thus, Markowitz introduces the idea that decisions are based on change of
wealth. Hence, the Markowitz utility function can be also thought of as a value function.
By analyzing some hypothetical games, Markowitz suggests that individuals are risk averse
for losses and risk seeking for gains, as long as the possible outcomes are not very extreme.
For extreme outcomes, Markowitz argues that individuals become risk averse for gains
and risk seeking for losses. Thus, Markowitz suggests a utility/value function which is
characterized by three inflexion points. Note that the central part of this function has a
reverse S-shape. In our study we confine the analysis to this region, i.e. to the reverse
S-shape range.

The most investigated class of value functions is the prospect theory S-shape func-
tion. Based on several experimental results with bets which are either negative or positive
outcomes, Kahneman and Tversky claim that the value function is concave for gains and
convex for losses, yielding an S-shape function.

Note that previous preferences concern only the sign of the first and second derivative of
the utility (value) function. Obviously we can build a stochastic indicator of the decision
maker preferences which is progressively weaker. For example we can require that the
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utility function belong to the set

U3 = {u : u′ ≥ 0, u′′ ≤ 0, u′′′ ≥ 0} (4)

and more generally to belong to

Un = {u ∈ Un−1 : (−1)nu(n) ≤ 0}, (5)

but economic meaning of highest derivatives is not evident.
A widely accepted hypothesis on preferences is the decreasing absolute risk aversion

(DARA) hypothesis (see [1]). If we define ρ = −u′′/u′ (whenever this quantity exists), the
DARA hypothesis implied ρ′ ≤ 0 and we have

UDARA = {u ∈ U2 : u′ 6= 0, ρ′ ≤ 0}. (6)

It is easy to verify that UDARA ⊂ U3.

Another property of decision maker preferences is prudence which entails a positive
third derivative and characterizes the so called precautionary saving (see [5]). For mea-
suring the degree of prudence we can introduce the absolute prudence index φ = −u′′′/u′′

and show that decreasing absolute prudence is a necessary and sufficient condition that
guarantees that the saving of wealthier people is less sensitive to the risk associated to
feature incomes. Observe that the decreasing absolute prudence (DAP) hypothesis entails
that the fourth derivatives of the utility functions are negative, a feature called temper-
ance. Finally, note that DAP can be used in conjunction with DARA hypothesis giving
the standard risk aversion set

USRA = {u ∈ U3 : u′ 6= 0, u′′ 6= 0, ρ′ ≤ 0, φ′ ≤ 0}. (7)

4 Second order stochastic dominance criteria
In this section we present traditional and recent stochastic dominance rules; for a formal
proof you can see [6].

Let A and B be two distinct prospects with cumulative distributions F and G, respec-
tively.

FSD (First-Degree Stochastic Dominance) The alternative A dominates the alternative
B with respect to first-degree stochastic dominance rule (A >FSD B) if and only if

F (x) ≤ G(x) ∀ x ∈ R⇔ EF u(x) ≥ EGu(x) ∀u ∈ U1, (8)

where there is a strict inequality for some x = x0 (first inequality), and a strict inequality
for some u0 ∈ U1 (second inequality).
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SSD (Second-Degree Stochastic Dominance) The alternative A dominates the alterna-
tive B with respect to second-degree stochastic dominance rule (A >SSD B) if and only
if ∫ x

−∞
[G(t)− F (t)] ≥ 0 ∀ x ∈ R⇔ EF u(x) ≥ EGu(x) ∀u ∈ U2, (9)

where there is a strict inequality for some x = x0, and a strict inequality for some u0 ∈ U2.
RSSSD (Risk Seeking Second-Degree Stochastic Dominance) The alternative A dom-

inates the alternative B with respect to risk seeking second stochastic dominance rule
(A >RSSSD B) if and only if

∫ ∞

x

[G(t)− F (t)] ≥ 0 ∀ x ∈ R⇔ EF u(x) ≥ EGu(x) ∀u ∈ U2, (10)

where there is a strict inequality for some x = x0, and a strict inequality for some u0 ∈ U2

(U2 is the class of all nondecreasing convex utility function, i.e. u ∈ U2 if u′ ≥ 0 and
u′′ ≥ 0).

Denote by VKT the class of all prospect theory value functions (where the subscript KT
denotes Kahneman and Tversky): functions which are S-shaped with an inflexion point at
x = 0. Thus, v ∈ VKT if v′ ≥ 0 ∀x 6= 0, v′′ ≥ 0 for x < 0, and v′′ ≤ 0 for x > 0. We call
v a value function, rather than a utility function, to be consistent with the terminology of
Kahneman and Tversky.

PSD (Prospect Stochastic Dominance) Let A and B be two distinct prospects with
cumulative distributions F and G, respectively. Then A dominates B (A >PSD B) for all
S-shape utility/value functions, v ∈ VKT , if and only if

∫ 0

y

[G(t)− F (t)] ≥ 0 ∀ y ≤ 0 ,

∫ x

0

[G(t)− F (t)] ≥ 0 ∀ x ≥ 0 (11)

(Once again, we require a strict inequality for some pair (y0, x0) and for some v0 ∈ VKT ).
Denote by VM the class of all Markowitz utility functions: functions which are reverse

S-shaped with an inflexion point at x = 0. Thus, v ∈ VKT if v′ ≥ 0 ∀x 6= 0, v′′ ≤ 0 for
x < 0, and v′′ ≥ 0 for x > 0. As Markowitz’s function, like the prospect theory value
function, depends on change of wealth, we denote it by VM rather than UM .

MSD (Markowitz Stochastic Dominance) Let A and B be two distinct prospects with
cumulative distributions F and G, respectively. Then A dominates B (A >MSD B) for all
reverse S-shape utility/value functions, v ∈ VM , if and only if

∫ y

−∞
[G(t)− F (t)] ≥ 0 ∀ y ≤ 0 ,

∫ ∞

x

[G(t)− F (t)] ≥ 0 ∀x ≥ 0 (12)

(Once again, we require a strict inequality for some pair (y0, x0) and for some v0 ∈ VM).
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5 Intuitive explanation, graphical representation, nec-
essary and sufficient conditions of stochastic domi-
nance criteria

Let A and B be two distinct prospects with cumulative distributions F and G, respectively.
The intuition of FSD is straightforward: FSD dominance requires that the two distributions
being compared not cross but they can tangent each other. If A dominates B by FSD rule
then F must be below G (in weak sense) for the whole range of x. If F and G intercept
then there is an utility function u∗ ∈ U1 such that EF [u∗(x)] > EG[u∗(x)] and there is
another utility function u∗∗ ∈ U1 such that EF [u∗∗(x)] < EG[u∗∗(x)].

A sufficient condition for FSD is
Sufficient rule I : F >FSD G if

min
x

[F (x)] ≤ max
x

[G(x)]. (13)

There are many more necessary rules for FSD but the following three are the most impor-
tant ones.

Necessary rule I : EF (x) > EG(x) is a necessary condition for FSD.
Necessary rule II : If A >FSD B then the geometric mean‡ of A must be larger than

the geometric mean of B.
Necessary rule III (Left tail condition): If A >FSD B then

min
x

[F (x)] ≥ min
x

[G(x)]. (14)

The condition (14) means that the distribution G of B starts to accumulate area before
distribution F . This is called the “left tail” problem because a thicker left tail is a sufficient
condition for no dominance.

The intuitions of SSD is relatively straightforward too. The condition for SSD domi-
nance of A over B is that

∫ x

−∞[G(t) − F (t)dt ≥ 0], ∀x. Graphically, this mean that the
area enclosed between G and F from −∞ to any value x is positive. Thus, the SSD rule
states that for any negative area (F > G) there is larger preceding positive area (G > F ).

As in the case of FSD there exist many necessary and sufficient rules for risk aversion
(SSD).

Sufficient rule I : The FSD rule is a sufficient condition for SSD.
Sufficient rule II : minx[F (x)] < maxx[G(x)] is a sufficient rule for SSD.
Necessary rule I : EF (x) ≥ EG(x) is a necessary condition for dominance of A over B

in U2.
‡It is well known that the geometric mean is defined only for positive numbers; note that the rates of

return rk can be negative or positives number, but xk = 1 + rk, the terminal wealth of 1 euro invested is
positive.
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Necessary rule II : if A >FSD B then the geometric mean of A must be larger than
the geometric mean of B.

Necessary rule III (Left tail condition): The left tail of G must be thicker than the
left tail of F , i.e. minx[G(x)] > minx[F (x)].

The intuition of RSSSD rule is important in particular because both PSD and MSD
preference contain risk seeking regions. As in SSD, also with RSSSD we calculate the
area enclose between the two cumulative distributions. However, this time the area ac-
cumulation is done from the upper bound (+∞) to x. One is tempted to believe that if
F dominates G by RSSSD rule then G dominates F by SSD. This is not true as simple
examples show. By RSSSD criterion for reach negative area enclosed between F an G
there must be a larger positive area located to the right of it.

Sufficient rule I : The FSD rule is a sufficient condition for RSSSD.
Necessary rule I : EF (x) ≥ EG(x) is a necessary condition for dominance of A over B

in U2.
Necessary rule II (Right tail condition): The right tail of F must be thicker than

the right tail of G, i.e. maxx[F (x)] > maxx[G(x)].
Graphically, the previous necessary condition means that the last area (largest x) en-

closed between G and F is positive.
The intuition of PSD relates directly to the preceding explanation about SSD and

RSSSD. On the other hand, the MSD rule combines the two conditions
∫∞

x
[G(t)−F (t)]dt ≥

0, ∀x > 0 and
∫ y

−∞[G(t) − F (t)]dt ≤ 0, ∀ y < 0, therefore the MSD rule requires both
the left tail condition and the right tail condition. Note that MSD is generally not “ the
opposite” of PSD. In other words, if F dominates G by PSD, this not necessary mean that
G dominates F by MSD. This is easy to see, because having a higher mean is a necessary
condition for dominance for both criteria. Therefore, if F dominates G by PSD, and F
has a higher mean than G, then G cannot dominate F by MSD. However, if the two
distribution have the same mean, then PSD and MSD are opposite (see for example [6]).

6 Algorithms for empirical distributions
In this section we present both some tricks that can reduce enormously the number of
comparisons and some SD algorithms in the framework of uniform discrete distributions.

6.1 The reduction of comparisons

To obtain the efficient sets (non dominated portfolios) corresponding to the each stochas-
tic dominance criterion, we need to know the precise shape of various distributions under
comparison. In practice, stochastic dominance criteria are commonly applied to empirical
distributions (e.g. ex-post rates of return of mutual funds, or other available portfolios).
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In such cases, if we have n observations, say n monthly rates of return, then each obser-
vation is usually assigned an equal probability of 1/n. Thus, for each fund we have an
empirical distribution which can be used from decision maker also as an estimate of future
distributions.

Given an admissible set containing T alternative mutual funds (risky projects), each
stochastic dominance rule requires P T

2 = T !/(T − 2)! pairwise comparisons in order to
determinate an efficient subset. We emphasize permutation rather than combinations,
because for each pair of distributions F and G we have to examine whether F dominates G
and if such dominance not exist we also have to check whether G dominates F . Moreover,
for each pair a large number of calculations have to be performed. Since for practical
purposes these comparisons often involve a considerable amount of resources in terms of
computing time, a number of tricks have been proposed in literature in order to reduce the
comparisons.

A necessary condition for all stochastic dominance criteria is that the superior invest-
ment must have a higher or equal mean. Therefore, the number of necessary comparison
can be reduced to CT

2 = T (T−1)/2 by computing the mean rate of return and ordering the
funds in decreasing order. By the same token, we can use the other necessary conditions
(for example the left or right tails which are easy to check), to further reduce the number
of comparisons.

Furthermore, knowing that First-Degree Stochastic Dominance implies all second order
stochastic dominance, it is suggested that FSD be conduced first.

Finally, remember that all the stochastic dominance criteria are transitive rules and
this property can reduces, once again, the number of necessary comparisons. Indeed,
suppose for example that we have 100 investments. Then, after ranking these investments
by their means, we have a maximum of 100·99/2 = 4 950 comparisons to perform. Suppose
that the investment with maximum mean I100 dominates, say, 30 out of the available 100
investments. Then these 30 investments will be relegated into the inefficient set. Suppose
that Ij is relegated into the inefficient set. Should we keep Ij in the meantime in order
to check whether Ij dominates Ik (where k 6= j 6= 100)? There is no need because, if Ij

dominates Ik, due to the transitivity, also I100 dominates Ik. Thus, it is guaranteed that the
inferiority of Ik will be discovered by I100, hence Ij can be safely relegated into the inefficient
set. This means that after comparing I100 to all the other investments (99 comparisons),
if 30 investments are dominated by I100, the maximum number of comparisons left will be(
69
2

)
=2 346. Using the transitivity property the total number of comparisons in the above

hypothetical example is reduced from 4 950 to 2 346 + 99 = 2 445. By the same token, the
number of comparisons can be further reduced when more investments are relegated into
the inefficient set by investments other than I100.
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6.2 Algorithms for SD rules

In practice, stochastic dominance criteria are applied to empirical distributions, for example
to ex-post rates of return of mutual funds. Denote by A and B be two distinct mutual
funds with cumulative distributions F and G, respectively. Reorder the observations of A
and B from the lowest to the highest value such that

A : x1 ≤ x2 ≤ . . . ≤ xn

B : y1 ≤ y2 ≤ . . . ≤ yn

(15)

(If there are two identical observations, write them one after the other and assign 1/n
probability to each one).

The FSD algorithm : A (or F ) dominates B (or G) by FSD if and only if xi ≥ yi for
all i = 1, 2, . . . n and there is at least one strict inequality.

As the FSD, the SSD algorithm require to rank all observation. Then define the “cu-
mulate” observations:

xx1 = x1, xx2 = x1 + x2, . . . xxi =
i∑

j=1

xj, . . . , xxn =
n∑

j=1

xj,

yy1 = y1, yy2 = y1 + y2, . . . yyi =
i∑

j=1

yj, . . . , yyn =
n∑

j=1

yj.

(16)

The SSD algorithm : A (or F ) dominates B (or G) by SSD if and only if xxi ≥ yyi

for all i = 1, 2, . . . n and there is at least one strict inequality.
As in SSD, also with RSSSD we calculate the area enclosed between the two distribu-

tion. However, this time the area accumulation is computed from the end observation xn

to any value. Therefore, the new definition of cumulative observation is:

xx1 = xn xx2 = xn + xn−1, . . . , xxi = xn + xn−1 + . . . xn−i+1,

. . . , xxn = xn + xn−1 + . . . + x1,

yy1 = yn, yy2 = yn + yn−1, . . . , yyi = yn + yn−1 + . . . yn−i+1,

. . . , yyn = yn + yn−1 + . . . + y1.

(17)

The RSSSD algorithm : A (or F ) dominates B (or G) by SSD if and only if xxi ≥ yyi

for all i = 1, 2, . . . , n and there is at least one strict inequality.
With the preceding explanation about SSD and RSSSD algorithms the formulation

of PSD and MSD is immediate; however note that we must consider separately the case
of observations less or equal zero and greater than zero.
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7 The empirical analysis
In jugging the quality of an investment decision making rule two factors have to be token
into account: the severity of the underlying assumption and the efficiency evaluated in
term of the relative size of resultant efficient set. Based only on the first factor, the FSD is
the best criterion, because the only assumption required is u′ ≥ 0. However this rule seem
to be very ineffective in that the size of resultant efficient set is often very similar to the
size of the initial feasible set. Generally, the larger the number of assumption, the smaller
the induced efficient set.

Empirical studies of the SD criteria generally focus on two main issues: the effectiveness
of the various SD rules and the performance of mutual funds relative to an unmanaged
portfolio (benchmark). Our empirical analysis concerns the application of second order
stochastic dominance criteria previously described and cumulative prospect theory to rates
of return of a set of Italian mutual funds. The performance of 32 mutual funds are been
considered including also the Stock Exchange Mibtel Index. The funds considered belong to
different classes, have different total capital and refer to different management companies§.
The size of each efficient set are computed for weekly, monthly, quarterly and semi-annual
rate of return. The data regard the Monday net prices in a period of 30 months. The
comparisons related to stochastic dominance criteria are summarized in Table 3, where
the last row presents the results relative to the famous mean-variance rule and the column
“all time” indicates the number of funds (and the funds) which belong to the efficient set
for any kind of sampling. The FSD rule (not reported on the Table), which as well known

Table 3: Size of efficient sets from an initial feasible set of 33 portfolios
weekly monthly quarterly semi-annual all time

Observations 130 30 10 5
SSD 17 20 16 3 1(11)
RSSSD 3 3 3 1 1(11)
PSD 11 15 14 15 4(11,12,18,33)
MSD 3 2 3 15 2(29,33)
M-V 11 15 13 10 7(11,13,15,24,28,29,30)

is virtually assumption free, is very ineffective especially when the number of observations
§The mutual funds considered are: 1.Arca 27, 2. Azimut Borse Int., 3. Centrale Global 4. Epta-

International 5. Fideuram Azione 6. Fondicri Int. 7. Genercomit Int., 8. Investire Int., 9. Prime Global,
10. SanPaolo Int., 11. Centrale Italia, 12. Epta aziaoni Italia, 13. Fondicri Sel. Italia, 14. Genercomit
Azioni Italia, 15. Gesticredit Borsit, 16. Imi Italy, 17. Investire Azion., 18. Oasi Azionario Italia, 19.
Azimut Europa, 21. Gesticredit Euro Az., 21. Imi Europe, 22. Investire Europa, 23. Sanpaolo H. Europe,
24. Arca BB, 25 Azimut Bil., 26. Eptacapital, 27. Genercomit, 28. Investire Bil., 29. Arca TE, 30.
Fideuram Performance, 31. Fondo Centrale, 32. Genercomit Espansione, 33. Mibtel index.

13



is relatively large (the efficient set coincides with the initial set for weekly and monthly
observations).

On the other hand, the SSD rule is very effective, hence indicating that the assumption
of risk aversion substantially reduce the size of the efficient set.

The RSSSD and MSD rules relegate many funds to the inefficient set. In most cases
these assumptions reduce the size of the efficient set quite dramatically.

Another important finding is that PSD rule is effective: the size of efficient sets is
suitable for a optimal choice. Note also that the mean-variance efficient set is very similar
in size to the PSD efficient set.

The same data set has been analyzed as well in the context of the cumulative prospect
theory, assuming both the value function (with λ = 1 and λ = 2.25) and the functional
form of risky weighting reported proposed by Tversky and Kahneman and described in
relations (2) and (3). Table 4 reports for each sampling the funds which have obtained the
five best performances. Note that in our analysis the λ parameter produces two different

Table 4: The first five positions of performance ranking evaluated with CPT
weekly monthly quarterly semi-annual

λ = 1 11,16,33,15, 13 11,16,33,13,17 11,16,33,13,17 11,16,13,33,17
λ = 2.25 29,24,28,27,26 11,28,29,24,27 11,16,13,17,33 11,16,13,33,17

orders even if for quarterly and semi-annual data the ranking is very similar. However for
λ = 2.25 the losses have a more relevant importance so that the cardinality of sample can
affect the ranking.

8 Concluding remarks
This contribution represents a first attempt to rank a set of mutual funds by using cumu-
lative prospect theory and new second order stochastic dominance criteria. Even if the
empirical comparison is examined for weekly, monthly, quarterly, semi-annual rates of re-
turn, the results refer to a unique data set; therefore we cannot jump to hasty conclusions.
Anyway, the outcomes obtained suggest that the RSSSD and MSD rules relegate too many
portfolios to the inefficient set, while the PSD criterion is very effective, hence indicating
that the assumptions of CPT are valid and can be used in order to make optimal selections.
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