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1 Introduction

In the last decades, stochastic algorithms have been extensively used for tackling combi-
natorial optimization problems. Owing to their success, they have been object of several
studies, both computational and theoretical. As for the former are concerned, the papers
present many applications of algorithms to classical optimization problems and to their
variants [3, 19, 25]. As for the latter, the studies focus mainly on the quality of the solution
provided and on the convergence behavior of the approaches [12, 13, 28]. This study moves
away from both these branches of the literature: Its aim is dealing with the exploration of
the search space.

The current study proposes a definition and an approach for measuring the exploration
performed by a stochastic algorithm during a run. Although the interest on this topic is
quite intuitive, few papers focus on these elements [7, 20, 23, 30, 32]. In none of them
this matter is treated from a general point of view. Instead, the main characteristic that
the definition of exploration must have is being independent on the specific procedure
considered: given a problem, an instance and some information on a run, one must be
able to measure the exploration performed. Such a measure needs to be coherent with
the behavior of the algorithm: In other words, one cannot just focus on the topological
space, locating there solutions and deciding a rule according to which to state whether the
procedure has explored deeply. For doing that, after fixing a representation of solutions,
one should define a distance measure, independently on the procedure to be evaluated.

After giving such a definition of exploration, the consequent quantification method is
applied to MAX–MIN Ant System[26, 27, 29, 6], an ant colony optimization (ACO) algo-
rithm. In particular, its main parameters are considered, and their impact on the explo-
ration performed is analyzed. Instances of the traveling salesman problem are considered.

The rest of the paper is organized as follows. In Section 2 the importance of the under-
standing of the explorative behavior of stochastic algorithms is depicted. Section 3 proposes
a representation of the space of solutions, a definition of exploration, and a consequent mea-
surement method. Section 4 shortly describes the MAX–MIN Ant Systemalgorithm and
the main elements needed for the application of such method. In Section 5 the experimental
analysis is reported, and the results are discussed. Finally, Section 6 concludes the paper.

2 The relevance of understanding exploration in stochastic
algorithms

While the theoretical interest in understanding the exploration performed by an algorithm
is quite intuitive, the practical relevance may be more muddled. On one hand, it may help
in understanding why some procedures work better than others on some specific problems.
On the other hand, some knowledge on the exploration may make a little bit more scientific
the choice of some algorithmic components.

Suppose one needs to deal with a problem whose formulation and feasible region are
known. In general, the solution proposed to the problem “selection and implementation of
an algorithm for solving some instances” will not be a global optimum. The feasible region
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is too wide for being exhaustively investigated. Some region that appears more familiar will
be strongly attractive. Most researchers and practitioners are somehow specialists of one or
few procedures. This leads them to choose it – or one of the few – for tackling any problem,
unless some other approach appears significantly better in the single case. In general, such
a clear ranking is not evident a priori. So, suppose this problem of algorithm selection is
avoided.

Even at this point, the problem is not yet solved: Whatever the approach chosen, in
the literature several modules for improving its performances are proposed [6, 5, 10, 11,
14, 15, 18, 21, 22, 31]. Some of them can be used together, some others are alternative.
The approach used in general is implementing a few variants of the algorithm, running
some “preliminary experiments” and choosing the version that appears to perform best.
The sub-optimality of this procedure is quite clear. Nonetheless, the experience on the
implication of each module is the only help in trying to get to, at least, a local optimum.
The same reasoning, on a smaller scale, may be done for the choice of the values to assign
to the parameters of the procedure. Some tuning procedures are available in the literature
[1, 4, 33], but in general the results they produce are affected by some starting point decided
by the implementer. The problem is again how to choose this starting point.

The intuition of the implementer will never be replaced by some computation. Nonethe-
less, it may be required at a higher level: It may be restricted to the level of exploration
needed. An indication on the type of exploration allowed by specific modules would make
easier the choice between them. For clarifying the idea at the basic level, suppose the al-
gorithm has already been implemented. Only the parameters need to be set. Suppose the
value of one of them has to be between 0 and 1. Moreover, a tuning procedure is available.
It allows to choose “the best value” in a predefined range. Suppose resources allow to test
only 10 values. Should the whole set [0, 1] be considered, with consequent steps of 0.1? Or
should the set [0, 0.5] be analyzed with steps of 0.05? It depends on what is known on the
impact of the value of this parameter on the exploration performed, and on what is the
level of exploration desired. This knowledge allows a finer search in the suitable interval,
or at least it makes the process faster by allowing the a priori elimination of some value.

3 Exploration: a definition

Let a combinatorial optimization problem be mapped on a graph G = (N, A), where N
is the set of nodes and A the set of edges, and |N | = n and |A| = a. A solution is a
vector of a components. In particular, solution S is given by S = {x1, x2, ..., xa}. xi = 0
if the i-th edge is not included in it, and xi = Pi otherwise: Let Pi be the probability the
algorithm assigns to that edge when constructing that solution. Since stochastic algorithms
are considered, this probability is always computable, in a different way for each different
approach. In this sense, solutions are observed from the point of view of the algorithm.
Such a representation of solutions has been chosen for reflecting as much as possible the
characteristics of stochastic algorithms.

In order to observe the distribution of solutions in the space <a, it is necessary to define a
distance between solutions. The main requirements for this measure are the following: The
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distance between two solutions that share all the edges must be null regardless their proba-
bilities. The distance between two solutions that differ for some edges must depend on their
probabilities. Let S1 and S2 be two solutions (S1 = {x1, x2, ..., xa}, S2 = {y1, y2, ..., ya}).
Let di = xi − yi, if xiyi = 0, and di = 0 otherwise. The distance between S1 and S2 is

D(S1, S2) =
√∑

i∈A

(di)2. (1)

The distance between two solutions, then, lays in the interval
[
0,
√

2z
)
, where z is the

number of edges included in a solution. The upper bound is defined considering two solutions
made by z different edges with probabilities that tend to 1.

According to this representation, it is possible to group solutions in clusters [8, 9, 17].
An agglomerative hierarchical procedure [16] is considered: At each step, the two closest
solutions are grouped together to form a cluster. The distance between this new cluster
and the others, is the maximum distance [2] between the two just unified clusters and the
others. The aggregative procedure stops when the distance between the two closest clusters
is greater than a predefined threshold ε. For the purpose of this study, solutions that are
grouped in a cluster can be treated as a unique solution.

In this framework, it is possible to define the exploration:

The exploration performed by a stochastic algorithm in a run is given by the number of
clusters built.

In order to compute this value one only needs to know how the stochastic algorithm
associates probabilities to edges. As an application of this concept, from here on, an ACO
algorithm is studied.

4 The case of ant colony optimization

MAX–MIN Ant Systemis one of the best performing ant colony optimization algorithms
[26, 27, 29, 6]. InMAX–MINAnt Systemthe pheromone update is applied after the activity
of each colony of ants modifying the pheromone on each edge i ∈ A, τi, according to

τi = (1− ρ)τi + ∆τ b
i , (2)

where ∆τ b
i = 1/Cb if edge i belongs to the best solution b, and ∆τ b

i = 0 otherwise. Cb is
the cost associated with solution b. Solution b is either the iteration-best solution or the
best-so-far solution. The schedule according to which the solution to be used is chosen, is
described by [6].

The pheromone trail in MAX–MIN Ant Systemis bounded between τMAX and τmin .
Following [6], τMAX = 1/(ρCbest−so−far ), and τmin = [τMAX (1 − n

√
0.05)]/ [(n

2 − 1) n
√

0.05].
At the beginning of a run, the best solution corresponds to the one found by a problem
specific heuristic. The pheromone is set equal to τMAX on all the edges.

Another element characterizing ACO algorithms is the random-proportional rule. In
particular, let ant k be in node u ∈ N , and let Nk ⊂ N be the set of nodes not visited yet.
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Moreover let Au
k ⊂ A be the set of edges going from u to nodes in Nk. Each edge i ∈ Au

k

has a probability of being chosen pi described in the random proportional rule:

pi =
[τi]

α [ηi]
β

∑
j∈Au

k
[τj ]

α [ηj ]
β
, (3)

where ηi is a heuristic measure associated with edge i [6].
Such a definition of probabilities may neglect the information on the attractiveness of

the edges. Consider, for example, the case of the last edge chosen: its probability is 1,
independently on its desirability. In the computation of exploration, this situation is an
inconvenience. In fact, the values of probabilities may depend more on randomness that
affects solutions construction than on the real indication of the algorithm.

In order to better represent this indication, to each edge i ∈ A a probability Pi is
associated:

Pi =
[τi]α[ηi]β∑

j∈A[τj ]α[ηj ]β
. (4)

In the following an experimental analysis on the traveling salesman problem is proposed.

5 Experimental analysis

In this section the impact of the values of the parameters on the exploration performed
by MAX–MIN Ant Systemis analyzed. The ACOTSP program implemented by Thomas
Stützle is considered [6]. The code has been released in the public domain and is avail-
able for free download on www.aco-metaheuristic.org/ aco-code/. The stopping criterion
considered is the fulfillment of 1000 objective function evaluations. In a deeper experimen-
tal analysis this horizon will be widened. At this early stage, no local search procedure
is applied. The code used for computing the exploration is available on the web page
http://www.paola.pellegrini.it.

Three TSP instances are used. They are generated through portgen, the instance
generator adopted in the DIMACS TSP Challenge. In particular, they consist of two di-
mensional integer-coordinate cities grouped in clusters that are uniformly distributed in a
square of size 106 × 106. Each instance includes 50 nodes. They are available on the web
page www.paola.pellegrini.it.

The parameters analyzed are α, β, ρ,m. The values suggested in the literature [6] α =
1, β = 3, ρ = 0.02,m = 50 are considered. Then, one parameter at a time is varied. The
values used for parameters are reported in Table (1). The number of values considered for
α and β is smaller than in the other two cases: Four elements are sufficient for observing
evident trends. For each set, the three instances are solved. The solutions built are recorded,
together with the probabilities associated to edges at each iteration. Then, the distance
matrix of the solutions are computed according to 1. The number of clusters in which
they are grouped is evaluated. In the three cases, the value of ε is varied between the
lower and the upper bound of distance among solutions, with steps of 0.5. In particular,
values between 0.5 and 10 are used. The distance between solutions varies in the interval
[0,
√

2n = 10) since a solution includes n edges.
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Table 1: Values tested for parameters

parameter values

α 1, 2, 3, 4
β 3, 4, 5, 6
ρ 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, 0.5, 0.7, 0.9
m 10, 20, 30, 50, 70, 100

Table 2: Exploration for different values of α and ε.

First instance
ε α

1 2 3 4

0.5 1000 1000 1000 1000
1.0 995 1000 1000 999
1.5 820 857 872 899
2.0 378 409 441 488
2.5 140 157 184 228
3.0 45 55 65 89
3.5 10 13 23 31
4.0 2 2 6 9
4.5 1 1 1 2
5.0 1 1 1 1
5.5 1 1 1 1
6.0 1 1 1 1

Second instance
ε α

1 2 3 4

0.5 1000 1000 1000 1000
1.0 983 988 985 990
1.5 688 731 754 796
2.0 293 329 350 398
2.5 111 134 153 187
3.0 40 49 63 75
3.5 13 15 21 30
4.0 4 6 7 11
4.5 1 1 1 2
5.0 1 1 1 1
5.5 1 1 1 1
6.0 1 1 1 1

Third instance
ε α

1 2 3 4

0.5 1000 1000 1000 1000
1.0 995 997 997 997
1.5 649 718 738 816
2.0 215 256 298 369
2.5 51 73 90 132
3.0 10 20 29 44
3.5 3 5 7 13
4.0 1 2 2 3
4.5 1 1 1 1
5.0 1 1 1 1
5.5 1 1 1 1
6.0 1 1 1 1

The results are reported in Figures 1 and 2 and in Tables 2, 3, 4, 5. The only measure
considered is the level of exploration performed. The quality of the solutions generated
is neglected, being out of the scope of this analysis. They are grouped according to the
parameter being changed. In the graphics, the x-axis represents the variation of ε, while the
y-axis the number of clusters, i.e. the exploration. The maximum value reported for ε is 6.
In fact, for ε ≥ 6 the exploration is equal to 1 no matter what the value of the parameters
are. The range of the exploration goes from 1 to 1000, the number of solutions generated.
Clearly, the results point out that the exploration is a decreasing function of ε. Moreover, it
is to be remarked that the conclusions that can be drawn on the impact of the parameters
on the exploration are the same whatever value we consider for ε, provided that it does not
imply extreme values (exploration equal either to 1000 or to 1).

Figure 1 and Tables 2, 3 concern parameters α and β. In both cases the exploration
is an increasing function of the value of the parameter. The reason of this trend can be
found by observing the relation between the variations of the pheromone values and the
consequent modifications of the probabilities associated to edges: Let us consider the ratio
between the probabilities associated to two edges i and j at a specific time:

pi

pj
=

Pi

Pj
=

[
τi

τj

]α [
ηi

ηj

]β

. (5)

Suppose, with no loss of generality, that ηi > ηj . The further the value of (5) from 1,
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Table 3: Exploration for different values of β and ε.

First instance
ε β

3 4 5 6

0.5 1000 1000 1000 999
1.0 995 997 998 994
1.5 820 924 945 947
2.0 378 584 656 704
2.5 140 282 355 398
3.0 45 124 172 210
3.5 10 50 77 105
4.0 2 14 30 43
4.5 1 3 10 13
5.0 1 1 2 3
5.5 1 1 1 1
6.0 1 1 1 1

Second instance
ε β

3 4 5 6

0.5 1000 1000 1000 1000
1.0 983 995 997 995
1.5 688 853 921 929
2.0 293 478 601 658
2.5 111 233 320 382
3.0 40 111 170 217
3.5 13 47 79 113
4.0 4 18 33 49
4.5 1 5 13 17
5.0 1 1 2 5
5.5 1 1 1 1
6.0 1 1 1 1

Third instance
ε β

3 4 5 6

0.5 1000 1000 1000 1000
1.0 995 999 998 999
1.5 649 896 930 940
2.0 215 462 576 622
2.5 51 183 270 332
3.0 10 61 124 151
3.5 3 19 45 64
4.0 1 6 17 26
4.5 1 1 4 8
5.0 1 1 1 1
5.5 1 1 1 1
6.0 1 1 1 1
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Figure 1: Number of clusters as a function of ε when varying parameters α and β.
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Table 4: Exploration for different values of ρ and ε.

First instance
ε ρ

0.02 0.05 0.1 0.2 0.25 0.3 0.5 0.7 0.9

0.5 1000 1000 1000 1000 1000 955 899 825 680
1.0 995 996 1000 997 997 922 825 755 590
1.5 820 853 916 965 957 852 725 653 481
2.0 378 422 539 702 700 657 552 476 348
2.5 140 171 241 371 401 385 329 316 219
3.0 45 58 106 184 216 209 182 186 122
3.5 10 16 35 86 98 101 91 109 66
4.0 2 3 11 34 41 44 47 57 35
4.5 1 1 3 12 17 18 22 25 17
5.0 1 1 1 5 6 7 9 12 8
5.5 1 1 1 1 3 2 4 5 4
6.0 1 1 1 1 1 1 2 2 2

Second instance
ε ρ

0.02 0.05 0.1 0.2 0.25 0.3 0.5 0.7 0.9

0.5 1000 1000 1000 1000 999 951 843 826 850
1.0 983 990 990 996 984 901 759 717 712
1.5 688 739 851 935 920 819 627 576 542
2.0 293 354 463 659 654 611 455 413 380
2.5 111 144 210 367 373 355 284 261 232
3.0 40 57 99 206 202 197 155 153 135
3.5 13 21 39 100 106 99 87 81 69
4.0 4 7 15 46 48 52 42 45 35
4.5 1 1 4 19 22 25 19 18 20
5.0 1 1 1 7 6 9 10 10 9
5.5 1 1 1 1 2 4 4 5 4
6.0 1 1 1 1 1 1 2 2 1

Third instance
ε ρ

0.02 0.05 0.1 0.2 0.25 0.3 0.5 0.7 0.9

0.5 1000 1000 1000 1000 999 983 797 804 667
1.0 995 998 1000 998 993 947 739 705 567
1.5 649 749 825 947 918 837 643 579 456
2.0 215 289 409 627 657 545 480 417 311
2.5 51 81 159 337 374 302 286 248 184
3.0 10 21 56 156 177 147 162 135 109
3.5 3 6 19 64 84 73 87 68 61
4.0 1 1 6 24 37 27 43 35 30
4.5 1 1 1 9 14 13 17 18 16
5.0 1 1 1 3 5 5 8 8 8
5.5 1 1 1 1 2 2 4 4 4
6.0 1 1 1 1 1 1 1 2 2

the stronger the attractiveness of edge i with respect to j. During a run of the algorithm,
the only variable element in (5) is the ratio between pheromone values. A high value of
α implies that a slight change in this ratio, going from slightly below to slightly above 1
(or viceversa), implies a strong variation of the ratio between the probabilities. A similar
reasoning can be made for β: a high value of this parameter amplifies a lot any variation
of τi/τj . As a consequence, the lower these parameters, the less extreme the short term
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Table 5: Exploration for different values of m and ε.

First instance
ε m

10 20 30 50 70 100

0.5 1000 1000 999 1000 999 1000
1.0 998 996 997 995 995 996
1.5 924 867 828 820 789 798
2.0 550 439 398 378 360 350
2.5 260 182 160 140 133 124
3.0 107 62 50 45 32 35
3.5 41 19 14 10 7 7
4.0 13 4 3 2 1 1
4.5 3 1 1 1 1 1
5.0 1 1 1 1 1 1
5.5 1 1 1 1 1 1
6.0 1 1 1 1 1 1

Second instance
ε m

10 20 30 50 70 100

0.5 1000 1000 999 1000 999 1000
1.0 993 993 991 983 988 982
1.5 839 745 698 688 664 670
2.0 454 359 308 293 295 275
2.5 215 147 121 111 122 108
3.0 97 57 43 40 36 36
3.5 42 20 12 13 10 10
4.0 16 6 4 4 3 2
4.5 4 1 1 1 1 1
5.0 1 1 1 1 1 1
5.5 1 1 1 1 1 1
6.0 1 1 1 1 1 1

Third instance
ε m

10 20 30 50 70 100

0.5 1000 1000 999 1000 999 1000
1.0 999 994 996 995 997 993
1.5 838 751 680 649 626 610
2.0 429 295 244 215 210 183
2.5 159 96 70 51 61 44
3.0 56 27 14 10 12 9
3.5 19 8 5 3 4 2
4.0 6 3 1 1 1 1
4.5 1 1 1 1 1 1
5.0 1 1 1 1 1 1
5.5 1 1 1 1 1 1
6.0 1 1 1 1 1 1

variation of the ratio between probabilities. Given that they need to sum to one, this implies
that, the lower these parameters, the less extreme the probabilities, i.e. the further from 0
and 1. From this, it comes that the distance between solutions is in general smaller, and,
then, the exploration is lower. For visualizing this observation, one may think that with a
low value of α (or β), ants need the ratio between τ ’s to be very high before being forced
to move to a specific region of the search space. Once such a high ratio is reached, it may
be very hard, and it may take a long time, to update the pheromone in such a way that the
edges that are very attractive now can be neglected. In this long period, ants will not go
far from already visited areas. If α is high, instead, even one single deposit of pheromone
may imply a great modification of the ratios between probabilities.

Figures 2(a), 2(b) and 2(c) and Table 4 report the results achieved when varying ρ.
The relation between this parameter and the exploration is more complicated than in the
previous case. Up to a certain threshold (that in these cases is around 0.25), the exploration
is an increasing function of ρ. Beyond this threshold, the exploration is a decreasing function
of this parameter. The first trend may be due to the fact that, for very low values of ρ, the
amount of pheromone deposited and its evaporation are very low as well. As a consequence,
several updates may be necessary before changing the ranking of the attractiveness of edges:
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Figure 2: Number of clusters as a function of ε when varying parameters ρ and m.

Several updates will be necessary before changing the area to be investigated with high
probability. In this low range, then, the higher ρ, the higher the exploration. On the other
hand the situation changes once the threshold is passed: An increase of the value of this
parameter implies that, even with one single update, the evaporation on the edges that are
not used is very high. The same applies to the deposit on the ones included in the best
solution. The latter edges, then, become much more attractive than the others in a very
short time. Solutions including different edges are very seldom constructed. The higher the
value of ρ the stronger this effect, and then the smaller the distance between solutions and
the consequent exploration.

Finally, Figures 2(d), 2(e) and 2(f) and Table 5 concern parameter m. In this case, the
exploration appears decreasing in the value of the parameter. This may be explained by
observing that the greater m, the lower the number of iterations performed in a run, and
then the lower the number of different probability distributions used. A solution composed
by edges with low probabilities, is very unlikely to be constructed. Moreover, if only few
probability distributions are used, it is quite unlikely that such edges will ever have a high
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probability, and then will ever be part of a solution constructed. In this sense, a high value
of m implies that the edges used are often the same, and then that the distance between
solutions is small. It follows that the higher m, the lower the exploration.

In [24] exploration was introduced only from an intuitive point of view. It was intended
as the distribution of solutions in promising areas of the search space. This interpretation
may be seen as the distribution of solutions inside clusters. The analysis of this fact may be
object of future research, but nothing appears to be really in contrast with this experimental
analysis.

6 Conclusions

In this paper a definition of the exploration of the search space performed by a stochastic
algorithm is proposed. Its main distinction with respect to what is present in the literature,
is that it can be quite easily applied to any stochastic algorithm. It is based on cluster anal-
ysis: the distribution of solutions found is evaluated. The space in which they are studied
is the space of the probabilities that the algorithm itself associates to solution components.
The consequent quantification measure presented allows to make fair comparison on the
exploration performed by different approaches.

Moreover, an application of the measurement method is reported. It is based on MAX–
MIN Ant Systemand on the traveling salesman problem. The computations reported allow
to observe some relations between the the values of the parameters of the algorithm and
the exploration performed. Such an understanding will allow to better analyze the behavior
of the procedure. More practically, it will allow to properly set the parameters, once the
exploration needed in a run is decided. In these first experiments, only one parameter at
a time is varied, and no local search is applied. Both these points need to be object of
further analysis. In particular, it is expectable that the interaction between parameters has
an impact on the exploration performed. Such an interaction may come up, for example, in
one parameter taking the upper hand against the others, or in two parameters having similar
weights, and then pushing in the same (or opposite) direction on the level of exploration.
These limitations will be overcome in future research.

Another element that will be object of investigation is the relation between the measure
of exploration proposed and other - algorithm specific - methods presented in the literature.
Among the others, for ant colony optimization, the average branching factor [6] may be
considered for a comparison.

Moreover, a very interesting point to clarify is the link between exploration of the
algorithm and quality of the solutions found.
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