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1 Introduction

The main aim of this contribution is to present a model for the description of the dependence
among defaults of firms in an interrelated economy. The dependence we are interested in is
the one implied by the so called counterparty risk, defined by [6] as the risk that the default
of a firm’s counterparty might affect its own default probability.

The problem is widely studied and it is of interest for the analysis of the credit risk of
portfolios of dependent positions, such as, for example, portfolios of bank loans to enter-
prises. Different approaches have been proposed to tackle this issue.

A first class of models introduces dependence through the presence of common factors,
which determine the behavior of the economy and are linked to the business cycle. In
this way it is possible to reduce the dimension of the correlation matrix which has to be
considered, turning the attention from the correlation among positions to the correlation
among factors, which are usually considerably fewer than the number of positions. An
advantage of this widely accepted and widely applied approach is that conditionally on the
factors the positions are mutually independent.

Nevertheless, empirical evidence gathered in a number of studies shows that the depen-
dence among defaults cannot be fully explained using only factor models (see, for example,
[6], [4], [2]). In particular, default events exhibit clustering behaviors, especially in recession
periods, and firms seem to show correlation in their defaults due not only to a dependence
on some common risk factors, but also to some firm-specific risks. The counterparty risk
introduces an additional source of dependence and a mechanism of contagion through which
the financial distress can spread in the economy.

Recent empirical studies support the presence of contagion effects in the diffusion of
defaults (see, for example, [4] and the references therein). Taking into consideration this
evidence, we propose to extend a factor model that describes the value of a firm in order to
include an idiosyncratic term which takes into account the business connections with other
firms in the economy.

Different contributions in the literature rely on the introduction of network-like struc-
tures to model the dependence among positions in a portfolio of risks, see for example [3],
[4], [7]. To model the connections among firms in the economy we propose to introduce
a weighted network based on a spatial interaction model, with directed arcs which can
accounts both for the presence of business relations and for their intensity.

The structure of the paper is as follows. In Section 2, we introduce the use of net-
works to model business relations. Section 3 describes our network model including spatial
interaction, while in Section 4 we describe the credit contagion model. Section 5 concludes.

2 Networks for business relations

Many phenomena where interaction plays a crucial role are modeled using networks. There
are different types of networks which allow to describe different behavior of a system of in-
teracting or connected elements. The structure of a network can be analyzed by considering
some important properties such as the connectivity of each vertex and the strength of each
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interaction.
The graphical representation of networks enables us to easily grasp the essence of the

interactions. The elements of the system are usually represented using nodes while (di-
rected) edges describe the (directed) relationships which occur among nodes. Each arc can
be assigned a weight, which is usually interpreted as the intensity of the relation.

Many recent contributions in the credit risk literature introduce network structures to
explicitly model the interactions among the positions in a portfolio of firms, in order to
describe the microeconomic foundations of dependence and thus capture the effect of a
contagion mechanism.

Some of these approaches try to adapt some models from physics in order to describe the
economic interactions; see, for example, [7], in which the authors apply a lattice gas model
to describe couplings among counterparties. Other contributions in the literature propose to
use weighted networks to give a stylized description of the interaction among counterparties
and introduce some simplifying hypotheses on the structure of the dependence to make the
model analytically tractable; see, for example, [4], [3]. In [10] the authors apply queueing
theory to analyze the behavior of networks with looping lending relationships. Other recent
applications of network theory to the analysis of credit risk problems include the description
of interbank payment flows; see e.g. [8]. Furthermore, in [5] some business connection
variables such as the intensity of the relationships and the distance are considered as relevant
explanatory variables to describe the recovery rates of bank loans in Germany.

3 A business relation network with spatial interaction

In order to study the propagation of the defaults in a system of firms and its effects on the
assessment of credit risk, we build a model in which the business connections are modeled
using a directed weighted network where the nodes represent the firms, directed edges
between firms represent the business connections and the weight associated to each edge
gives a measure of the intensity of the connection.

The existence of the directed arc (k, i), connecting the origin node k to the destination
node i, means that the (possible) default of firm k will cause some financial distress to firm
i. The precise way in which we model this distress will be discussed in next session, but it
relies on the existence of a client-supplier relation.

More precisely, we choose as an indicator of the presence of a connection with k which
may cause distress to i the fact that firm k is a client of firm i. The basic idea is that
if a client which represents a significant percentage of the turnover of firm i, let us say a
percentage above a given threshold, defaults, this causes difficulties to firm i and may result
in a serious distress for the firm.

A natural choice for the measure of the intensity of the connection is given by the the
percentage of sales on the turnover of the firm; therefore, the weight associated to the
edge (k, i), wki, is given by the percentage of sales to client k on the turnover of firm i.
An example of a network of business connections is shown in figure 1, which depicts the
incoming and outgoing arcs for two generic nodes k and i which are connected; notice that
the presence of the arc (k, i) indicates that firm k is a client of firm i and the weight wki
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Figure 1: Example of network of business connections.

gives the per cent sales to k on the turnover of i. Of course, different and more general
choices could be made, but this definition of the business connections is straightforward and
fairly natural.

In our model the edges in the network are determined by considering a spatial dimension
and resorting to an entropy spatial interaction model constrained to origins which takes
into account both the economic weight of the different firms and their distance; on spatial
interaction models see, for example, [12].

As it is known, entropy spatial interaction models can be obtained by maximizing the
entropy of the system under the available information on the distance matrix between the
origin and destination nodes and on the weights assigned to these origins and destinations,
which account for the size of the outgoing (for origins) or incoming (for destinations) flows.

Let us indicate with n the number of firms in the system, and let us consider a
generic firm i ∈ { 1, 2, . . . , n }. Let us denote by πki the probability that firm k, with
k ∈ { 1, 2, . . . , n }, is connected to firm i, i.e. that it is a client of firm i, and by dki the
distance between firms k and i. Moreover, let s(k) denote the economic sector of firm k
and let Wk be a weight representing the relative attractiveness of firm k; in the spatial
interaction model the weight Wk can naturally be defined as the overall turnover of firm k.

Let us observe that the probability πki that firm k is a client of firm i coincides with
the probability that the directed arc (k, i) exists in the network and can be decomposed
into the product of the probability Ps(i)s(k) that a client of i pertains to sector s(k) and the
probability Qki that firm k is a client of firm i conditional to the fact that the client of i
pertains to sector s(k)

πki = Ps(i)s(k) Qki. (1)

In order to compute these probabilities we assume that the probability Ps(i)s(k) that a
client of i pertains to sector s(k) (i.e. to the same sector of firm k) is the same for all firms
in the same sector, and that it coincides with the percentage of the output of sector s(i)
sold to sector s(k), so that it can be computed as follows

Ps(i)s(k) = Prob{ client of i ∈ s(k) } =
As(i)s(k)∑S
j=1 As(i)j

, (2)

where S is the number of sectors and the S × S matrix A =
(
As(i)s(k)

)
is the input-output

table of the economy, in which the element As(i)s(k) represents the output of sector s(i) sold
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to sector s(k).
Moreover, in order to compute the conditional probability Qki we apply an entropy

spatial interaction model constrained to origins which makes this probability depend on the
relative attractiveness of the different firms and their distance as follows

Qki = Prob{ k is a client of i | client of i ∈ s(k) } = Wk
e−αs(i)dki

∑
j∈Ss(k)

Wje
−αs(i)dji

(3)

where Ss(k) denotes the set of firms in sector s(k) and αs(i) is a positive real parameter,
dependent on the sector s(i), which determines the relevance of the effect of distance on the
business relations.

It can be seen that the sum of the probabilities πki on all k ∈ { 1, 2, . . . , n } is equal to
1 for all nodes i ∈ { 1, 2, . . . , n }.

Once determined which arcs exist in the network, we need to compute their weights,
where the weight wki of arc (k, i) is given by the per cent sales to client k on the turnover
of firm i. Formally, let us indicate with I(k,i) the indicator function of arc (k, i), which
takes value 1 if the arc (k, i) exists and value 0 otherwise. We make the assumption that
the weight wki on the arc (k, i) is proportional to the output of sector s(i) sold to sector
s(k) and to the weight Wk that determines the relative attractiveness of firm k, i.e. to the
turnover of firm k, as follows

wki =
As(i)s(k)∑S
j=1 As(i)j

Wk I(k,i)∑
j∈Ss(k)

Wj I(j,i)
. (4)

The business relation network defined in such a way will be used in next section to
model the contagion of defaults in the system.

4 The credit contagion model

The network of firms described in the previous section can be applied to model the coun-
terparty risk, which gives rise to a contagion effect and may provoke clustering of defaults
during crisis periods.

To this aim we use the network of business relations to model the connections in the
system of firms applying a discrete time model analogous to that proposed in [1]; this model
describes the asset value of firms by taking into account the counterparty risk of the firms
connected by arcs in the network.

The asset value of firm i at time t, Vi(t), is modeled as the sum of three components: a
macroeconomic component F , modeled using a factor model which takes into account the
influence of the business cycle (on factor models see, for example, [11], [9]), a microeconomic
component M which introduces a contagion effect due to the business connections with other
firms and a residual idiosyncratic term ε:

Vi(t) = Fi(t) + Mi(t) + εi(t) t = 0, 1, . . . (5)
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The value of the macroeconomic component Fi(t) is described by the following factor
model:

Fi(t) =
J∑

j=1

β
s(i)
j Yj(t) t = 0, 1, . . . , (6)

where Y (t) = (Y1(t), Y2(t), . . . , YJ(t)) is the vector of the values at time t of the driving
factors, s(i) represents the economic sector of firm i and βs

j is the weight of factor j for the
firms of sector s. The driving factors Yj , with j ∈ { 1, 2, . . . , J }, follow a vector stochastic
process modeled according to the nature of the macroeconomic factors considered.

The microeconomic component, Mi(t), takes into account the effects of past distresses
on the health of firm i and is defined as follows

Mi(t) = µs(i)

∞∑

τ=1

λτ
s(i)

[
p(t− τ)−

∑

k∈Ci(t−τ)

δk(t− τ)wki(t− τ)

]
, (7)

where µs ∈ R+ is a real parameter dependent on the economic sector of the firm, λs, with
0 ≤ λs < 1, is a dampening factor which determines the distress memory of firms in sector
s, p(t) is the average default rate of the economy at time t, Ci(t) is the set of clients of firm
i, i.e. the subset of nodes in the network which are origins of arcs entering node i, δk(t) is
the indicator function of default of client k which takes value 1 if client k defaults at time
t and wki is the weight of arc (k, i), given by the percentage of the sales to client k on the
turnover of firm i.

The quantity within brackets represents a measure of the distress undergone by firm i
at time (t− τ) due to the defaults observed among its clients. This distress measure is the
difference between the average default rate of the economy, p(t− τ), and the percentage of
turnover of firm i sold to clients which defaulted in period (t−τ); therefore it has a negative
value if the firm suffered a rate of defaults of clients higher than the average rate of the
economy, and a positive value in the opposite case. Notice that this distress measure affects
the health of the firm with a one-period delay and its effects are dampened according to an
exponential decay in time.

Furthermore, we have a residual idiosyncratic term εi(t), which is assumed to be nor-
mally distributed with zero mean and standard deviation σεi . As is usual in factor models,
we assume that the residual idiosyncratic terms ε1(t), ε2(t), . . . , εN (t) are both mutually
independent and independent of the factors Y1, Y2, . . . , YJ .

As in a structural approach, in our model a firm defaults when the value of its asset
falls below a given threshold.

From equations (7) and (5) we can see that the default of a client lowers the value of the
microeconomic component and thus the asset value of the firm; as a result, the probability
of crossing the default threshold for the firm increases.

This is the mechanism through which the contagion of defaults spreads in the system.
In the network of firms, the contagion of defaults starts with the default of a node and
spreads along the directed edges which connect the firms, proceeding in the direction of the
edges.
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5 Concluding remarks

In this contribution we tackle the issue of modeling the microeconomic relations among the
firms in a network economy in order to describe the contagion mechanism which spreads
the financial distress in the system when a firm defaults.

To this aim we define a weighted network based on a spatial interaction model to de-
scribe the business relations that take place among the firms and we include the effect of
the microeconomic interactions as an additional idiosyncratic term in a factor model that
describes the value of the firms in the network. A default occurs when the value of a firm
cross a given default threshold and has repercussions on the financial health of the con-
nected firms in the subsequent periods, thus representing a possible source of contagion of
defaults.
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