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Abstract

This paper models Continuous Workout Mortgages (CWMs) in an economic envi-
ronment with refinancings and prepayments by employing a market-observable vari-
able such as the house price index of the pertaining locality. Our main results in-
clude: (a) explicit modelling of repayment and interest-only CWMs; (b) closed form
formulae for mortgage payment and mortgage balance of a repayment CWM; (c) a
closed form formula for the actuarially fair mortgage rate of an interest-only CWM.
For repayment CWMs we extend our analysis to include two negotiable parameters:
adjustable “workout proportion” and adjustable “workout threshold.” These results
are of importance as they not only help understanding the mechanics of CWMs and
estimating key contract parameters. These results are of importance as they not only
help in the understanding of the mechanics of CWMs and estimating key contract
parameters, but they also provide guidance on how to enhance the resilience of the
financial architecture and mitigate systemic risk.
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1 Introduction

The ongoing crisis has exposed the vulnerability of the most sophisticated financial struc-

tures to systemic risk. This crisis—emanating from mortgage loans to borrowers with

high credit risk—has devastated the capital base of financial intermediaries on both sides

of the Atlantic. Its impact on the real sector of the economy has given rise to a fear and

uncertainty not seen since the Great Depression of the 1930s (see Reinhart and Rogoff,

(2008); and Diamond and Rajan, (2008)).

The fragility of the financial intermediaries stems from the rigidity of the traditional

mortgage contracts such as the Fixed Rate Mortgages (FRMs), Adjustable Rate Mortgages

(ARMs) and their hybrids (see Stiglitz (1988); Campbell and Cocco (2003); Green and

Wachter (2005); and Reinhart and Rogoff (2008)). Modigliani (1974, p. 1) reiterates this

quite strongly when he states that: “As long as loan contracts are expressed in conventional

nominal terms, a high and variable rate of inflation — or more precisely a significant degree of un-

certainty about the future of the price level — can play havoc with financial markets and interfere

seriously with the efficient allocation of the flow of saving and the stock of capital.” This neces-

sitates reforming the financial architecture with facilities that can better absorb shocks in

the financial system in order to make it more resilient and mitigate systemic risk.

One such solution studied in this paper is that of Continuous Workout Mortgages

(CWMs) as expounded in Shiller (2008a), (2009b), (2008b) and Feldstein (2009). This fa-

cility eliminates the expensive workout of a defaulting rigid plain vanilla mortgage con-

tract. CWMs share the price risk of a home with the lender and thus provide automatic

adjustments for changes in home prices or incomes, for all home owners. Mortgage bal-

ances are thus adjusted and monthly payments are varied automatically with changing

home prices. This feature eliminates the incentive to rationally exercise the costly option

to default which, by construction, is embedded in every loan contract. Despite sharing
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the underlying risk, the lender continues to receive an uninterrupted stream of monthly

payments. Moreover, this can occur without multiple and costly negotiations.

Unfortunately, prior to the current crisis CWMs have never been considered. The aca-

demic literature (with the exception of Ambrose and Buttimer (2010), i.e., A&B hereafter)

therefore has not discussed its mechanics and especially its design. Shiller is the first

researcher, who forcefully articulates the exigency of its employment as stated above.

CWMs are conceived in his (2008b) and (2009b) studies1 as an extension of the well-

known Price-Level Adjusted Mortgages (PLAMs), where the mortgage contract adjusts

to a narrow index of local home prices instead of a broad index of consumer prices. In

a recent study Ambrose and Buttimer (2010) numerically investigate properties of Ad-

justable Balance Mortgages which bear many similarities to CWMs. Our simple and fully

analytic model complements that of a more intricate one of Ambrose and Buttimer (2010).

We rely on methodology which allows to value optional continuous flows (see e.g. Carr,

Lipton and Madan (2000) and Shackleton & Wojakowski (2007)).

For lenders to hedge risks, continuous workout mortgages thus need indicators and

markets for home prices and incomes. These markets and instruments already exist.2 For

example, the Chicago Mercantile Exchange (CME) offers options and futures on single-

family home prices. An example of this are the Real Estate MacroShares launched on

NYSE in May 2009. Furthermore, reduction of moral hazard incentives require inclusion

of home-price index of the neighborhood into the monthly payment formula. This is to

prevent moral hazard stemming from an individual failing to maintain or damaging the

property just to reduce mortgage payments. Likewise, occupational income indicators

matter along with the borrower’s actual income. This is again to prevent moral hazard

stemming from an individual deliberately losing a job just to reduce mortgage payments.

1See Shiller (2003) for home equity insurance.
2Creation of new markets for large macroeconomic risks is discussed in Shiller (1993). For derivatives

markets for home prices see Shiller (2009a).
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We feel that CWMs retain the positive attribute of PLAMs in reducing purchasing

power risk (see Leeds (1993)). They, however, improve upon PLAMs by reducing pre-

payment, default and interest rate risks, by the very nature of the contract where the bor-

rower shares in the risk of the housing market. This implies that borrowers participate in

the appreciation of the property during any positive economic event such as an interest

rate decrease, which mitigates prepayment risk. Borrowers, nonetheless, participate in

the depreciation of the property during any negative economic event, thereby reducing

default risk. This is because a CWM aims to keep the mortgage balance always lower

than or equal to the value of the property, thus keeping the embedded default option (at

or) out of the money at all times. Therefore, during the tenure of the mortgage which

is comprised of periods of varying economic cycles (including changing interest rates)

CWMs are anticipated to defy associated risks. The only risk which CWMs (like PLAMs)

currently cannot cure is liquidity risk. This, however, can be expected to alleviate over

time by their securitization and eventual deployment (in sufficient volume).

We implicitly assume the existence of an information infrastructure, where property

rights, foreclosure procedures (needed for real estate to serve as collateral) and accurate

method of valuing property are well established (see Levine, Loayza and Beck (2000)).

We also draw parallels (or similarities) between CWMs and Shared Income Mortgages

(SIMs) discussed in Ebrahim, Shackleton and Wojakowski (2009). This helps us derive

closed form solutions to price variants of CWMs based on observable inputs of local

home prices. Finally, we provide examples, where exogenous variables governing CWMs

imputed from real world observations involving individual home prices, house price in-

dices, individual incomes, occupational income indicators, etc.

This paper is structured as follows. Section 2 initiates the pricing of CWM with a sim-

ple model involving an interest only contract. This is extended to the amortizing CWM

in Section 3 and to CWMs with protective threshold in Section 4. Finally, we provide
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concluding comments in Section 7.

2 Interest-only Continuous Workout Mortgage

To begin, we provide a simple example where the payment of a CWM is continuously

readjusted based on the current house price index of a location. To simplify our setup we

focus on interest only mortgages with repayment maturity T. Property is acquired at time

t = 0 for initial cost H0. Subsequent values of the house are not observable until the time

of its sale. In lieu of this information a house price index of the area Ht is observed for all

times t ≥ 0. To make things even simpler we assume that: (i) the loan to value ratio is

100%; (ii) the constant, risk free market interest rate is r; and (iii) i is the mortgage rate. If

the mortgage were an “ordinary” interest only mortgage, the borrower would repay the

continuous interest flow iH0dt plus a lump sum principal repayment H0 at maturity. The

risk free discounted present value of such payments equals

V =
∫ T

0
e−rtiH0dt + e−rT H0 = i

H0

r

(
1− e−rT

)
+ e−rT H0 . (1)

For an actuarially fair loan this present value should be equal to the initially borrowed

amount, i.e. V = H0, which gives i = r.

Now consider the home value weighted by the local home price index Ht and its initial

value H0

ht =
H0

H0
Ht . (2)

A continuous workout mortgage can be designed to protect the homeowner against falls

in the home value and the consequence of potential default. Starting backwards from

maturity T, implies the repayment H0 in this contract is replaced with

min {h0, hT} = h0 −max {0, h0 − hT} = h0 − (h0 − hT)
+ . (3)
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That is, the initial balance plus a short position in a put option on a house price index with

a strike price of h0 = H0. Similarly, for the interval 0 < t < T, the intermediate balance of

the loan on which interest payments are based can be adjusted to

min {h0, ht} = h0 −max {0, h0 − ht} = h0 − (h0 − ht)
+ , (4)

in lieu of H0. Substituting the above relationships the formula giving the expected present

value of the loan becomes

V = V − i
r

∫ T

0
E
[
e−rt (rh0 − rht)

+
]

dt− E
[
e−rT (h0 − hT)

+
]

. (5)

The value V is an expected present value as ht and hT are random variables contingent

on a house price index. Expectations (E) are computed under risk-neutral measure with

discounting at the riskless rate. Risk neutral valuation is employed because the house

price index Ht is traded.

Note that V is less than V as the consumer obtains extra protection against price falls.

The last term is in fact a protective put issued at the money. With appropriate assumptions

regarding the dynamics of the house price index Ht, its value, p (h0, h0, T, r, δ, σ), can

be expressed using the Black-Scholes (1973) formula. Parameters δ, σ are, respectively,

the service flow and volatility of the house price index (see Appendix A). Likewise, the

intermediate term is equal to the ratio of interest rates i/r times an integral of put options

written on a continuum of maturities from t = 0 to t = T. This integral is in fact a

floor issued at the money written on flow rht. The value of this floor, P (rh0, rh0, T, r, δ, σ),

can also be computed analytically employing the closed form expressions developed in

Shackleton and Wojakowski (2007) (see Appendix A).

The goal is now to establish the actuarially fair mortgage rate i for this CWM. This

calculation is of utmost importance for prospective originators of continuous workouts.

While the mortgage balance adjusts systematically and automatically, the mortgage rate i
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should be established only once as a part of the contract, remaining constant until matu-

rity. Using V from (1) and setting V = H0 and h0 = H0 yields

H0 = i
H0

r

(
1− e−rT

)
+ e−rT H0 −

i
r

P (rH0, rH0, T, r, δ, σ)− p (H0, H0, T, r, δ, σ) , (6)

where

P
(
rH0, rH0, T, r, δ, σ

)
= r

∫ T

0
p
(

H0, H0, t, r, δ, σ
)

dt . (7)

Solving (6) for i gives the mortgage interest rate.

Proposition 1 An interest-only Continuous Workout Mortgage (CWM) with protective put and

floor has the mortgage interest rate i equal to

i = r

[
H0
(
1− e−rT)+ p (H0, H0, T, r, δ, σ)

H0 (1− e−rT)− P (rH0, rH0, T, r, δ, σ)

]
. (8)

The above formula confirms our intuition on the constitution of a continuous workout

mortgage. If both protective put (p) and floor (P) are deep out of the money (as can be

the case when house prices are expected to strongly appreciate), then p, P→ 0 and i→ r.

However, when this is not the case and the market anticipates a possibility of a price fall

(as can be the case following a bubble), both put and floor are in the money and i > r on

new deals. This implies that the market prices the insurance offered by the continuous

workout as an ex ante increase of the mortgage rate i.

PUT FIGURE 1 AND TABLE 1 ABOUT HERE

Furthermore, the required interest i increases with risk σ consistent with option pric-

ing theory. Interestingly, increasing risk even to σ = 30% does not have a great impact on

i, as illustrated in Figure 1 and Table 1. For a typical loan with T = 30 years to maturity,

riskless rate r = 5% and a service flow δ = 1% the impact amounts to only an increase of

0.37% above 5%. Surprisingly, insuring the house price level is less costly as interest rates
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become higher. However, such guarantees are more expensive when time to maturity is

short and when the service flow is higher. The maturity effect is due to all options (i.e. the

put and the floor) in this example being issued at-the-money, thereby insuring price lev-

els of the property at the time of issuance. More time to maturity implies that the house

has more chance to appreciate and the guarantee to depreciate. Likewise, the service

flow effect is due to intensive property use and lower maintenance, which decreases its

value making guarantee more expensive. The δ represents a service flow to the occupier

that erodes capital gains in the home value H and therefore cannot be shared with the

lender. The higher the interest, the lower the impact of service flow and thus the lower

the vulnerability to moral hazard.

Table 1 gives numerical values of annual payments when the risk free interest rate is

r = 5%. Interest-only continuous workouts are compared to the corresponding fixed-rate

mortgages for different values of service flow, δ = 1% and δ = 4%. Note that fixed rate

(r = 5%) mortgage payments do not depend on the service flow.

From an analytical perspective, equation (8) is equivalent to the riskless rate r times a

fraction. To facilitate this interpretation, we re-write it as

i = r

[
H0e−rT − H0 − p (H0, H0, T, r, δ, σ)

P (rH0, rH0, T, r, δ, σ)− rH0
r (1− e−rT)

]
. (9)

The numerator of the fraction represents the present value H0e−rT of the forward sale

of the house at price H0, minus the initial value of the house H0, minus the cost of

the put protection p (H0, H0, T, r, δ, σ) to be paid through an increased mortgage interest

rate i. The denominator, meanwhile, represents intermediate period cash flows where

interest payments accommodate the cost of insurance. It is equal to the value of the

floor P (rH0, rH0, T, r, δ, σ) written on continuous flow rH0 minus the value of annu-

ity rH0
r
(
1− e−rT), based again on the same continuous flow rH0. Intuitively, this an-

nuity is still paid at rate r with the interest on difference r (H0 − Ht) added back to
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P (rH0, rH0, T, r, δ, σ) when Ht < H0.

From an economic perspective the above fraction is a ratio of two values, each corre-

sponding to a set of transactions. The first set of transactions—collected in the numera-

tor of (9)—occur at the beginning and at the end of the interval [0, T]. The appropriate

marginal discount rate for this protected forward sale is r. By contrast, transactions within

the interval (0, T)—collected in the denominator of (9)—must earn the marginal rate i > r

to offset the added insurance.3 In equilibrium, both marginal costs must be equal yielding

i.

Proposition 2 An interest-only Continuous Workout Mortgage (CWM) has mortgage interest i

and mortgage interest spread i−r
r independent of initial property value H0 equal to

i = r
[

1− e−rT + p (1, 1, T, r, δ, σ)

1− e−rT − P (r, r, T, r, δ, σ)

]
(10)

and
i− r

r
=

p (1, 1, T, r, δ, σ) + P (r, r, T, r, δ, σ)

1− e−rT − P (r, r, T, r, δ, σ)
. (11)

Proof. Use (8) and the homogeneity properties for put and floor

p (αS, αK, T, r, δ, σ) = αp (S, K, T, r, δ, σ) , P (αs, αk, T, r, δ, σ) = αP (s, k, T, r, δ, σ) ,

(12)

where α is a constant, S, K are values [$] and s, k are flows [$/yr.]. For α = H0 the initial

property value, H0, cancels out from the numerator and denominator of (8).

Property (10) is very useful as it allows quoting mortgage interest rate i to a (poten-

tial) borrower without knowing the value of the house to be purchased. This estimation is

based on the maturity of the loan, several market parameters and only needs the informa-

tion that the house value is determined at arms length. With the exception of the riskless

3In the current CWM insurance is added against random decline of terminal property value HT as well
as against intermediate falls in property value Ht, t < T, that negatively impact on the value of interest
payments before maturity.
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interest rate r, the parameters—such as the (average) service flow (δ) and the house price

volatility (σ) of the locality—relate to the dynamics of the house price index and can be

estimated from data. Likewise, the second property (11) provides a useful estimation of

the mortgage spread.

3 Repayment Continuous Workout Mortgage

A major innovation during years of Great Depression was fully amortizing mortgages

(see Green and Wachter (2005)). Their repayment flow rate (R) is constant in time and

their balance Qt decreases to become zero at maturity. That is, QT = 0. The amount owed

to the lender

Qt =
∫ T

t
R e−r(s−t)ds =

R
r

(
1− e−r(T−t)

)
(13)

is equal to the present value of remaining payments and is essentially an accounting iden-

tity. The dynamics of Qt is fully deterministic and is described by the ordinary differential

equation
dQt

dt
= rQt − R (14)

(with terminal condition QT = 0). It implies a growth in the balance Qt at rate r offset by

progressive constant mortgage payment flow R. The mortgage is fully repaid when the

interest flow on principal rQt is lower than the coupon flow R, in which case

R =
rQ0

1− e−rT . (15)

A Repayment Continuous Workout Mortgage (RCWM) scales down the repayment

flow R when the house price index of the location decreases. To emphasize that the repay-

ment flow of a RCWM changes with time as a function of the initial home value weighted

by the local house price index we denote it as R (ht). Furthermore, for a full workout, we
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assume that it linearly scales down the mortgage payment flow to

R (ht) = min
{

ρ, ρ
Ht

H0

}
= ρ min

{
1,

ht

h0

}
, (16)

where ρ is the maximal repayment flow of a RCWM elaborated below.

This setup fully protects the homeowner against a decline in the value of property

because the repayment flow R (ht) decreases whenever the house price index is below its

initial value. The repayment flow attains its maximal value and becomes constant (equal

to ρ, where ρ is a constant to be determined) whenever the house price index is above its

initial value. In this case repayments of a RCWM behave in the same way as repayments

of a standard fully amortizing mortgage. However, the maximal repayment flow of a

RCWM (ρ) must be set at a level higher than the repayment flow of a corresponding

standard fully amortizing mortgage. That is, ρ > R (see Proposition 4).

A partial workout will provide partial protection with the mortgage payment only

partly scaled down to

Rα (ht) = ρ min
{

1, 1− α

(
1− ht

h0

)}
= ρ

[
1− α

(
1− ht

h0

)+
]

, (17)

where 0 ≤ α ≤ 1. Depending on the value of α, the repayment flow can be adjusted

continuously between full protection (α = 1) and none at all (α = 0). For α = 0 the

repayment flow becomes constant equal to ρ. In this particular case the RCWM reduces

to the well-known, classic case of fully amortizing repayment mortgage. The reduction of

mortgage payment Rα (ht) as a function of current adjusted house price level ht and for

different “workout proportions” (α) is illustrated in Figure 2.

PUT FIGURE 2 ABOUT HERE

Note that due to the stochastic nature of the repayment flow there is (in general) no

guarantee that the mortgage will be repaid in full. This is the case when the maturity
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of the loan is kept fixed and the values of α are strictly greater than zero. Indeed, in the

worst case scenario of ht suddenly dropping to zero repayments of a full workout (α = 1)

also drop to zero. Mortgage repayments (17) are random, contingent on future values of

the house price index. Fortunately, it is possible to accurately price this random stream of

cash flows as follows.

The expected present value under the risk-neutral measure gives the mortgage balance

Qt = Et

[∫ T

t
Rα (hs) e−r(s−t)ds

]
= Et

[∫ T

t
ρ

(
1− α

(
1− hs

h0

)+
)

e−r(s−t)ds

]
. (18)

Since
hs

h0
=

Hs

H0
, (19)

we derive

Qt =
∫ T

t
ρe−r(s−t)ds− ρα

rH0
Et

[∫ T

t

(
rH0 − rHs

)+ e−r(s−t)ds
]

. (20)

Clearly, the first integral is given by (13) while the expectation in the second integral is

computed in closed form from to the floor formula on flow
{

rHs
}T

s=t with strike level rH0

for all t (see Shackleton and Wojakowski (2007))

Et

[∫ T

t

(
rH0 − rHs

)+ e−r(s−t)ds
]
= r

∫ T

t
p
(

Ht, H0, s− t, r, δ, σ
)

ds (21)

= P
(
rHt, rH0, T − t, r, δ, σ

)
, (22)

where p and P are the corresponding put and floor (see Appendix A). Combining the

above formulas we get the following Proposition.

Proposition 3 The mortgage balance of a Repayment Continuous Workout Mortgage (RCWM)

at time t ∈ [0, T] is equal to

Qt =
ρ

r

[
1− e−r(T−t) − α

H0
P
(
rHt, rH0, T − t, r, δ, σ

)]
, (23)
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where H0 and Ht are values of the house price index at times of origination (t = 0) and the

semi-closed interval t ∈ (0, T].

Clearly, for α = 0 we recover the full repayment case (13). Furthermore, with α > 0

and for the same ρ, the mortgage balance of a RCWM is lower. That does not mean,

however, that a full repayment mortgage and a RCWM both originating at the same time

t = 0 will have the same ρ. On the contrary, a RCWM has a higher mortgage payment flow

ρ. The intuition is that for a given “workout proportion” α ∈ [0, 1], the mortgage payment

flow ρ must be computed at origination to compensate for the guarantee against house

price decline provided by a RCWM.

Proposition 4 For a given “workout proportion” α ∈ [0, 1], the mortgage payment flow param-

eter is given by

ρ =
rQ0

1− e−rT − α
H0

P (rH0, rH0, T, r, δ, σ)
, (24)

where Q0 is the initial value of the loan.

Remark 5 The mortgage payment flow ρ is a constant parameter which is computed at origina-

tion (t = 0) for the duration of the contract. It should not be confused with mortgage payment

Rα (ht) given by equation (17) which is a function of randomly changing adjusted house price

level ht. Mortgage payments Rα (ht) decrease when home prices decline.

Remark 6 For α = 0 the mortgage becomes a standard repayment type. Equation (24) yields

ρ = R in accordance with equation (15).

Equation (24) is of utmost importance for potential originators of continuous workouts

with repayment features. This pricing condition helps us evaluate the maximal annual

payment for this mortgage. A broker can instantly compute this quantity on a computer

screen and make an offer to a customer. More importantly, different levels of protection

can be offered to different borrowers.
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In fact all brokers in the world use a special version of this formula already. This is

because for α = 0 equation (24) yields the value of mortgage payment for the unprotected,

standard repayment mortgage, defined by equation (15). Since P > 0 it is clear that the

protection commands a higher payment, as α > 0 implies ρ > R.

PUT TABLE 2 ABOUT HERE

For a 30-year repayment mortgage the continuous workout premium is not very large

making RCWMs very attractive. As summarized in Table 2, in a typical situation when

interests are 5% and volatility is 15%, the mortgage payment increases from $6.44 thou-

sand a year for a standard fixed rate repayment mortgage, to $6.82 thousand a year for a

corresponding full continuous workout. This is for an initial loan of $100 thousand and

when the service flow rate is 1%. Therefore, the full protection costs only $383.41 a year,

i.e., it only adds about $31.95 to a monthly repayment of about $536.34.

PUT FIGURE 3 ABOUT HERE

From Figure 3 we also observe that the service flow rate δ does not influence the stan-

dard repayment level (no workout, α = 0, flat dotted line). However, adding a con-

tinuous workouts (full α = 1 or partial α = 1
2 ) to a property with higher service flow

(e.g. δ = 1% or δ = 4%) increases the monthly insurance premium only slightly. Lines for

partial protection (α = 1
2 ) lie only minimally below half-way between lines for α = 1 and

α = 0. For δ = 4% and σ = 30%, for example, the endpoint of the line for partial pro-

tection is located at 11.46, only slightly below the midpoint 11.55. For lower volatilities

the partial protection premium converges exactly to the midpoint, unless the service flow

parameter δ is larger than the riskless rate, in which case (not reported on Figure 3) this

line is “repelled” down from the midpoint, even for low volatilities.

PUT FIGURE 4 ABOUT HERE
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Finally, it is interesting to note that the cost of protection—in terms of basis points that

are added to standard repayment by full protection—is higher at lower interest rates. See

Figure 4. This spread essentially mimics the behaviour of an at the money put option as

a function of the interest rate r.

Similarly, the evaluation of mortgage balances can be done using (23). This is a very

important information when the customer sells the house and prepays the mortgage. This

expression is also of practical importance for computation of annual mortgage statements

which are typically sent to customers at each year end.

4 Repayment CWM with Protective Threshold

A significant increase in home prices leads to a considerable increase in mortgage pay-

ments. If such an increase is faster than the growth in household income, it leads to

a drain on discretionary income (see Wilcox (2009)). Wilcox (2009)—in a comment on

Shiller’s (2009b) paper—is of the view that households would still be willing to accept

this risk as they would be able to extract equity from their appreciating homes as discre-

tionary income. He, however, fails to observe that this risk would already be priced ex

ante by the calculation of an appropriate mortgage rate. The higher the risk assumed by

the household, the lower the mortgage rate would be.

There are, in fact, several ways to fine-tune a CWM to make it less or more expensive.

One such tuning parameter is α for repayment CWM which specifies the proportion of re-

sponse of mortgage balance. If the workout proportion α is set higher than 0 and closer

to 1, the household benefits from a lower mortgage balance in poor states of the economy

but must assume a higher mortgage repayment flow ρ parameter on a daily basis.4 Con-

versely, if the household sets α closer to 0 (corresponding to the case of fixed rate standard

4Recall that ρ defines the maximal annual repayment for a CWM i.e. the payment in good states of the
economy, when housing values appreciate.
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repayment mortgages) it sets a lower repayment flow. This, however, leads to a higher

mortgage balance in poor states of the economy. Thus, by setting lower repayments, the

household bears a higher risk of negative equity during times of house price downturns.

A second way is to set a different protection threshold, higher or lower than the initial

house price index level H0. If, for example, we set a lower threshold K < H0, the protec-

tion kicks-in only after house values fall below K. For such a CWM the household then

repays

Rα (ht, k) = ρ min
{

1, 1− α

(
1− ht

k

)}
= ρ

[
1− α

(
1− ht

k

)+
]

, (25)

where

k =
H0

H0
K < H0 . (26)

Note that in the special case when the strike price K equals H0 (or, equivalently, k = h0),

the repayment rate (25) reverts back to (17). A selectable protection threshold thus effec-

tively defines a new family of CW mortgages which we term as Threshold Repayment

Continuous Workout Mortgages. To use Figure 2 to illustrate (25) i.e. how the threshold

protection works, assume e.g. h0 = 120 and k = 100. Automatic workout will start when

ht falls below the threshold k = 100.

Proposition 7 The mortgage balance of a Threshold Repayment Continuous Workout Mortgage

(TRCWM) at time t ∈ [0, T] is equal to

Qt =
ρ

r

[
1− e−r(T−t) − α

K
P
(
rHt, rK, T − t, r, δ, σ

)]
, (27)

where Ht is the value of the house price index at time t ≥ 0 and K is the “protection threshold.”

Proof. We have

Qt = Et

[∫ T

t
ρ

[
1− α

(
1− hs

k

)+
]

e−r(s−t)ds

]
. (28)
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Using hs
k = Hs

K
we get

Qt =
∫ T

t
ρe−r(s−t)ds− ρα

rK

∫ T

t
Et

[(
rK− rHs

)+ e−r(s−t)
]

ds . (29)

The first integral is given by

∫ T

t
ρ e−r(s−t)ds =

ρ

r

(
1− e−r(T−t)

)
, (30)

while the expectation in the second integral is computed in closed form from to the floor

formula on flow
{

rHs
}T

s=t with strike rK evaluated at time t (see Shackleton and Wo-

jakowski (2007))

∫ T

t
Et

[(
rK− rHs

)+ e−r(s−t)
]

ds = r
∫ T

t
p
(

Ht, K, s− t, r, δ, σ
)

ds (31)

= P
(
rHt, rK, T − t, r, δ, σ

)
, (32)

where p and P are the corresponding put and floor (see Appendix A). Substituting (32)

and (30) into (29) we derive (27).

Similarly, setting t = 0 and solving for ρ in (27) we derive the mortgage payment

parameter of a TRCWM.

Proposition 8 For a given “workout proportion” α ∈ [0, 1], the mortgage payment flow of a

Threshold Repayment Continuous Workout Mortgage (TRCWM) is given by

ρ =
rH0

1− e−rT − α
K

P
(
rH0, rK, T, r, δ, σ

) , (33)

where H0 is the initial value of the loan, H0 is the initial value of the house price index and K is

the “protection threshold.”

Proof. For t = 0 equation (27) becomes

Qt =
ρ

r

(
1− e−rT − α

K
P
(
rH0, rK, T, r, δ, σ

))
. (34)
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Substituting Q0 = H0 and solving for ρ gives (33).

PUT FIGURE 5 ABOUT HERE

Figure 5 illustrates how a high threshold K commands a higher maximal repayment

ρ for the household to benefit from higher reduction of mortgage balance Qt (scaled for

given ρ and r). The higher the threshold K, the earlier the workout kicks in, providing a

greater reduction of the mortgage balance in poor states of the economy. In the particular

case of no protection (K → 0), a CWM reverts back to the standard repayment mortgage.

The mortgage payment ρ converges to a constant value equal to R given by (15).

5 Refinancing and Prepayment of CWMs

Refinancing constitutes a major risk faced by financial institutions as it leads to termi-

nation of profitable businesses at inopportune moments. Lenders also face prepayment

risk because they don’t know for how long a loan will be outstanding. Financial insti-

tutions can mitigate this risk by imposing a penalty to deter potentially mobile borrow-

ers or those who flip property frequently. The penalty in this section is designed so as

to mimic those found in alternative mortgages like subprime (see Chomsisengphet and

Pennington-Cross (2006)) and is in the spirit of Stanton and Wallace (1998). It can be

evaluated using the methodology described below.

Empirical evidence confirms that borrowers do not prepay optimally, i.e. they do not

maximize the loss to the lender. Reasons for prepaying typically include a sale of the

property due to: a) change of employment & relocations; b) change in family composition

(e.g. births, children leaving for university); c) a natural disaster, accident or default of the

borrower followed by insurance indemnity payment. These factors are relatively constant

in time and are often modelled in the mortgage industry using the constant Conditional
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Prepayment Rate (CPR) convention or the Public Securities Association (PSA) benchmark

(see e.g. Fabozzi (2005)). These professional conventions do not explicitly model prepay-

ments due to refinancings which typically occur at an increased rate during periods of

decreasing interest rates.

Prepayments can be modelled using a hazard rate (prepayment intensity) approach.

The random prepayment time τp is modelled as a Poisson process with intensity λ and

is independent of state variables governing the processes for house prices. Formally, in-

formation in the model is described by enlarged filtration G, generated by the Brownian

motion Zt and the prepayment indicator process 1{t≤τp} (see e.g. Bielecki and Rutkowski

(2002)).

Financial institutions typically impose a dollar prepayment penalty Πτp at refinancing

time τp. It is often a fixed fraction α of the principal outstanding Qτp and is imposed if

refinancing occurs before some lock-in date T∗

Πτp = αQτp 1τp<T∗ =

 αQτp if τp < T∗

0 otherwise.
(35)

The prepayment penalty is attractive to only serious long term investors who like to

match the cost of financing with the income and the growth in the value of the asset

instead of just their permanent income in case of alternative mortgages (see Hurst and

Stafford (2004); Doms and Krainer (2007)).

In practice, the contract is negotiated so that no prepayment occurs immediately. For

interest-only Continuous Workout Mortgages (see Section 2) the value of the mortgage at

origination is equal to the expected value of outstanding cash flows

M0 = E


∫ T

0
1t<τp e−rtctdt︸ ︷︷ ︸

payments

+ 10<τp≤Te−rτSτp︸ ︷︷ ︸
prepayment

+ 1T<τp e−rTST︸ ︷︷ ︸
repayment

 . (36)
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Working out expectations with respect to random prepayment time τp gives

M0 = E
[∫ T

0
F (t) e−rtctdt +

∫ T

0
g (t) e−rtStdt + F (T) e−rTST

]
, (37)

where the expectation is to be taken along the remaining house price risk dimension. In

the first integral and in the last term above

F (t) = Pr
(
t < τp

)
= e−λt (38)

is the cumulative probability of the loan surviving beyond time t and g (t) is the proba-

bility density of the loan being prepaid within time interval (t, t + dt] i.e.

g (t) =
d
dt

(1− F (t)) = λe−λt . (39)

Defining the adjusted principal of a CWM outstanding at time t ∈ [0, T] as

Qt = min {h0, ht} = h0 − (h0 − ht)
+ , (40)

we can also express the remaining components of (37):

• ct is the value of continuous payments received until prepayment date or maturity,

whichever comes first

ct = iQt ; (41)

• St is the lump sum payment received if prepayment occurs before maturity, and is

equal to principal outstanding Qt plus applicable prepayment penalty Πt (if any);

St = Qt + Πt ; (42)

• ST is the lump sum payable at the tenure of the CWM (defined in the indenture of

the contract) if prepayment did not occur, i.e. any capital outstanding

ST = QT . (43)
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Note that (43) implies that if prepayment did not occur before maturity, the principal

must be repaid in full. The other important assumption is that the house price index of

the locality is used to estimate the automatic workout if prices depreciate. Alternatively,

the property can be re-appraised or a sale will reveal its value Hτp if a prepayment occurs,

or HT at maturity.

As long as prepayment does not occur early (t < τp) the lender receives ct i.e., the

contractual interest flow which automatically incorporates the continuous workout. Fur-

thermore, if prepayment does not occur before maturity (T < τp), the lender receives the

principal as a lump sum on maturity. Otherwise, if prepayment occurs at time τp ∈ (0, T),

the interest flow ceases immediately and the lender receives a lump sum corresponding

to the workout-adjusted principal payback and prepayment penalty (if any).

Using (38) and (39) in (37) the value of the mortgage at origination can be shown to be

equal to

M0 = E
[∫ T

0
e−(r+λ)t (ct + λSt) dt + e−(r+λ)TST

]
. (44)

Proposition 9 (CWM valuation equation) In an economic environment with prepayments,

the relationship linking contractual parameters (contract rate i and early prepayment penalty α)

of a Continuous Workout Mortgage to other exogenous parameters is given by

M0 = H0 + H0 (i− r)
1− e−(r+λ)T

r + λ
+ λαH0

1− e−(r+λ)T∗

r + λ
(45)

−P ((i + λ) H0, (i + λ) H0, T, r + λ, δ + λ, σ)

−P (λαH0, λαH0, T∗, r + λ, δ + λ, σ)

−p (H0, H0, T, r + λ, δ + λ, σ)

where T∗ is the last date the penalty (35) is chargeable, while P and p are closed-form expressions

for floor and at-the-money put given in Appendix A.
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Proof. Substituting (41), (42) and (43) into (44) we get

M0 = E
[∫ T

0
e−(r+λ)t [iQt + λ (Qt + Πt)] dt + e−(r+λ)TQT

]
. (46)

Grouping terms and introducing the penalty (35) gives

M0 = E
[∫ T

0
e−(r+λ)t [(i + λ) Qt + λαQt1t<T∗ ] dt + e−(r+λ)TQT

]
. (47)

Distributing the expectation operator over the plus sign yields

M0 = E
[∫ T

0
e−(r+λ)t (i + λ) Qtdt

]
+ E

[∫ T∗

0
e−(r+λ)tλαQtdt

]
+ E

[
e−(r+λ)TQT

]
. (48)

Using expression (40) for current balance, the first expectation can be computed as

E
[∫ T

0
e−(r+λ)t (i + λ) Qtdt

]
= H0

∫ T

0
e−(r+λ)tdt− E

[∫ T

0
e−(r+λ)t (h0 − ht)

+ dt
]
(49)

= (i + λ) H0
1− e−(r+λ)T

r + λ

−P ((i + λ) H0, (i + λ) H0, T, r + λ, δ + λ, σ) ,

where P is given by the floor formula (see Appendix A). Similarly, the second expectation

in (48) is equal to

E
[∫ T∗

0
e−(r+λ)tλαQtdt

]
= λαH0

1− e−(r+λ)T∗

r + λ
(50)

−P (λαH0, λαH0, T∗, r + λ, δ + λ, σ) .

The third expectation in (48) can be expressed using the Black-Scholes at the money put

formula (see Appendix A)

E
[
e−(r+λ)TQT

]
= H0e−(r+λ)T − p (H0, H0, T, r + λ, δ + λ, σ) . (51)

Replacing expectations (49), (50) and (51) in (48) and after some algebra then gives (45).

Remark 10 The value of the put in (45) can be expressed as the probability of the mortgage loan
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surviving until maturity time T multiplied by an otherwise identical at-the-money European put

option on the property

p (H0, H0, r + λ, δ + λ, σ, T) = e−λT p (H0, H0, r, δ, σ, T) . (52)

The main difficulty in (45) is computing expressions giving the floor value

P (X0, k, $, φ, σ, T) =
∫ T

0
E
[
e−$t (k− Xt)

+
]

dt =
∫ T

0
e−λtE

[
e−rt (k− Xt)

+
]

dt , (53)

where $ = r + λ and φ = δ + λ i.e. sums of floorlets on X struck at k over a continuum of

maturities t ∈ [0, T]. In the last integral in (53) each floorlet is weighted by the probability

e−λt that the loan will “survive” beyond t. This is because each (k− Xt)
+ will be due only

if the loan was not prepaid before t. These sums can be interpreted as weighted floors on

flow Xt. In our setup flows Xt are generated by prepaid “fractions” of the property value

λHt and λαHt (see Remark that follows). Weighted floors can be computed thanks to

closed-form solution developed in Shackleton and Wojakowski (2007) (see Appendix A).

Remark 11 Flows in both expressions for finite floors P appearing in (45) are written on flows

iHt + λHt and λαHt. Flow iHt results from regular interest payment, while λHt and λαHt

can be interpreted as effective flows resulting from prepayments statistically occurring at rate λ.

Initial values of these flows enter the two floor functions P appearing in (45). A bank securitizing

CWMs after bundling them into portfolios will effectively be exposed to both flows λHt and λαHt.

The former flow results from earlier principal repayments due to prepayments at rate λ throughout

the lifetime [0, T] of the product. The latter flow represents the supplementary principal fraction α

accruing at rate λ during period [0, T∗] when early prepayment penalty is charged.

In order to eliminate arbitrage the value of the mortgage at origination, M0, must be

equal to the value of the loan outstanding, H0. Solving this condition, i.e. M0 = H0, where

M0 is given by (45) above, enables linking of the key parameters of the contract, such as

23



the contract rate i and the prepayment penalty α and express them as functions of market

data and other inputs (such as the prepayment rate λ) and constraints. We will focus on

this problem in sections that follow.

Remark 12 When M0 = H0 and in absence of prepayment penalties (α = 0) the CWM valuation

equation gives

H0 (i− r)
1− e−(r+λ)T

r + λ
= P ((i + λ) H0, (i + λ) H0, T, r + λ, δ + λ, σ) (54)

+p (H0, H0, T, r + λ, δ + λ, σ)

i.e. in absence of arbitrage the extra income generated by charging the customer the premium

i − r > 0 must compensate the cost of continuous workout insurance expressed by the floor P

(intermediate, continuous workouts) and the put p (automatic workout at maturity).

6 Numerical Illustration

To illustrate CWM valuation in a world with prepayment risk, we focus on the case of a

CWM for which also α > 0 and T∗ > 0. This case is particularly important for residential

mortgages where early prepayment penalties are invariably imposed in practice. Note

that unlike the case without prepayment and in addition to terms expressing income from

early prepayment penalty, valuation now depends on the sum of floorlets weighted by

the probability of the mortgage “surviving” over the time period [0, T). This quantity is

analytically expressed by the floor function P ((i + λ) H0, (i + λ) H0, T, r + λ, δ + λ, σ).

Some key parameters can be expressed explicitly. For example, given parameters such

as the prepayment rate λ, prepayment penalty fraction α and lock-in time T∗ we can

explicitly compute the contract rate i as follows

i = r×
r

r+λ H0

(
1− e−(r+λ)T

)
− λα

r+λ H0

(
1− e−(r+λ)T∗

)
+ Pλ,T + αPλ,T∗ + p

r
r+λ H0

(
1− e−(r+λ)T

)
− Pr,T

(55)
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where

Pu,τ = P (uH0, uH0, τ, r + λ, δ + λ, σ) : u = λ, r; τ = T, T∗ (56)

and

p = p (rH0, rH0, T, r + λ, δ + λ, σ) . (57)

When λ = 0 (no prepayment) and T∗ = 0 or α = 0 (no early prepayment penalty) we

recover the expression (8). Here too, it is readily seen that in fact H0 can be eliminated

from (55) to obtain expressions similar to (9) and (10). This means that there is no size

effect, i.e. the contract rate i is an intensive parameter, insensitive to the size of the loan

and thus to the size of the property.

Equation (55) implies that the contract rate i can be decreased by higher prepayment

penalties α. A further reduction in the contract rate i is achieved by extending the lock-

in period T∗ towards maturity T. This is, however, not immediate to be seen from (55).

Therefore, to illustrate the sensitivity of the contract rate i to various inputs we present a

numerical example assuming the following case:

market interest rate r 10% p.a.

service flow rate δ 7.5% p.a.

house price volatility σ 1%, 5% & 10% p.a.

term T 30 years

lock-in period T∗ 5 years

prepayment penalty α none & 5% of outstanding balance

We further assume that an individual, initially paying i = 10% per annum on a stan-

dard mortgage loan without prepayment penalties (base case) is offered to refinance his

mortgage. A zero-profit bank offers a set of alternative mortgages, with and without pre-

payment penalty. Figure 6 summarizes Continuous Workout Mortgage contracts offered

to this individual under different house price volatility market scenarios and as a function
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of the prepayment rate λ. It combines these two types of CWMs in three market scenarios

encompassing low and high volatilities.

INSERT FIGURE 6 ABOUT HERE.

The adopted range of the prepayment rate λ allows to do computations for different

types of individuals, according to how likely they are to prepay their mortgage. Our

range encompasses 50%, 100%, 200% and 400% multiples of the long-term standard PSA

value of 6% annual prepayment rate (λ = 0.06). This results in values for λ which are

0.03 (less likely to prepay than average), 0.06 (average), 0.12 (twice more likely to prepay

as average) and 0.24 (four times more likely to prepay compared to average).

When volatility is low (σ = 1%) the probability of a continuous workout being trig-

gered is low. From Figure 6 it is clear that in this case the lender expects to make money

on customers prepaying early. These homeowners are charged the prepayment penalty.

A zero-profit bank will pass on this gain to customers by offering a lowered interest on

these CWM mortgages up front.

When volatility is moderate (σ = 5%) the probability of continuous workout being

triggered increases. Figure 6 suggests that this will be reflected in the contract rate i of

the CWM which will have to be increased, even for customers not expected to prepay

(λ = 0). However, the contract rate i can still be reduced by introducing a prepayment

penalty.

Higher volatilities (σ = 10%) will mean yet more protection offered to customers but

at a higher cost reflected in further increases of the CWM contract rate i. Only for cus-

tomers with sufficiently high prepayment rate λ the contract rate i can be reduced.

As intuitively expected, higher volatility and higher prepayment rates will typically

mean increased risks to the lender (workout risk, prepayment risk). This will result in

charging higher contract rate i up front. However, for realistic market parameter values,
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increases of contract rate i are moderate rather than dramatic (e.g. increase by up to 0.1%

on average, when rates are in the range of 10%). Furthermore, these increases can be

further moderated by introducing early prepayment penalties, as is practiced for most

mortgage contracts. Figure 7 illustrates this point further by plotting combinations of

early prepayment parameters α and T∗ for different levels of prepayment intensity λ, for

which the contract rate i of a Continuous Workout Mortgage remains “preserved” i.e.

equal to i = 10%.

INSERT FIGURE 7 ABOUT HERE.

7 Concluding Remarks

The current crisis has increased the awareness of the susceptibility of the economy to

fragile plain vanilla mortgages. We argue that different variants of Continuous Work-

out Mortgages can be offered to homeowners as an ex ante solution to non-anticipated

real estate price declines. “If workouts are part of the original mortgage contract, then

they can be done continually, systematically, and automatically, eliminating the delays,

irregularities and uncertainties that are seen with the workouts we have observed in the

subprime crisis. A great deal of human suffering at a time of economic contraction would

be eliminated.” (Shiller (2009b), Article 4, p. 11.)

This paper has attempted to mitigate this fragility by bringing into focus and formal-

izing the above intuition. CWMs are related to PLAMs (advocated by Franco Modigliani

for high inflation regimes) as pointed out by Shiller (2008b), (2008a) and (2009b). CWMs

share some positive attributes with PLAMs (such as purchasing power risk) and mitigate

other negative attributes (such as default risk, interest rate risk and prepayment risk).

The only residual risk attributed to CWMs is liquidity risk. It too can be alleviated by

employing it in sufficient amount to warrant its securitization.
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We model a variety of Continuous Workout Mortgages (CWMs), including interest-

only and repayment contracts. For repayment CWMs we extend our analysis to include

two negotiable parameters: adjustable “workout proportion” α and adjustable “protec-

tion threshold” K. The “workout proportion” α enables the workout protection to change

the proportion while the “protection threshold” K can be set so as the workout starts (and

stops) working below (above) a specific level.

An interest-only CWM protects both (a) interest payments and (b) terminal repayment

against declines of property value. The insurance for this is paid for via interest i which

is increased above r (the riskless rate in our examples).

A repayment CWM protects against declines in property value. As there is no termi-

nal repayment, this mortgage protects intermediate repayments Rα (ht), which decrease

as house price decreases. The premium of this insurance is incorporated into higher max-

imal repayment flow parameter ρ, established ex ante. Furthermore, a repayment mort-

gage, and thus a continuous workout repayment mortgage, has the advantage of reducing

moral hazard. This is due to the earlier repayment of the loan’s principal.

The main contributions of this paper thus are: (a) simple modelling of variants of

CWMs; (b) closed form formulae for key parameters of CWMs. For repayment contracts,

we provide closed form expressions for mortgage balances and payments. For interest-

only CWMs, we provide closed form expressions for mortgage interest. These formulae

are of utmost importance for potential originators of CWMs. Our results help in the

understanding the mechanics of CWMs and estimation of key contract parameters for

providing the protection level to borrowers in the form of protection threshold. Thus,

employment of CWMs should be recommended to improve the resilience of the financial

system, mitigate systemic risk and enhance the quality of life of agents in the economy.
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A Appendix: Floor and Put Formulae

Floors P on flow s with strike flow level k for finite horizon T can be computed using the

following closed-form formula (see Shackleton and Wojakowski (2007)):

P (s0, k, T, r, δ, σ) = E
[∫ T

0
e−rt (k− st)

+ dt
]

(58)

= Asa
0
(
1s0<k − N (−da)

)
− s0

δ

(
1s0<k − e−δT N (−d1)

)
(59)

+
k
r

(
1s0<k − e−rT N (−d0)

)
− Bsb

0
(
1s0<k − N (−db)

)
,

where

A =
k1−a

a− b

(
b
r
− b− 1

δ

)
, (60)

B =
k1−b

a− b

(
a
r
− a− 1

δ

)
,

and

a, b =
1
2
− r− δ

σ2 ±

√(
r− δ

σ2 −
1
2

)2

+
2r
σ2 , (61)

whereas the cumulative normal integrals N (·) are labelled with parameters dβ

dβ =
ln s0 − ln k +

(
r− δ +

(
β− 1

2

)
σ2
)

T

σ
√

T
(62)

(different to the standard textbook notation) for elasticity β which takes one of four values

β ∈ {a, b, 0, 1}.

Standard Black-Scholes (1973) put on S with strike value of K can be computed using

p (S0, K, T, r, δ, σ) = Ke−rT N (−d0)− S0e−δT N (−d1) (63)

where d0 and d1 can be computed using formula (62) in which values S0 and K can (for-

mally) be used in place of flows s0 and k.

Both floor (58) and put (63) formulae assume that the underlying flow s or asset S
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follows the stochastic differential equation

dst

st
=

dSt

St
= (r− δ) dt + σdZt (64)

with initial values s0 and S0, respectively. Clearly, (64) describes a geometric Brownian

motion under risk-neutral measure where Zt is the standard Brownian motion, σ is the

volatility, r is the riskless rate and δ is the service flow. We assume that (64) describes

the dynamics of the repayment flow s. Similarly, (64) also defines the dynamics of the

value S of the real estate property. Alternatively, the model could be specified under the

actual probability measure, extending Shiller and Weiss (1999) to allow for computation

of floors, for example along the lines of Shackleton and Wojakowski (2007).
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B Tables

Volatility σ Interest-only mortgage payments Repayment mortgage payments
Standard CWM Standard CWM
r = const. i > r ρ = R (α = 0) ρ > R (α = 1)

(δ = 1%) (δ = 4%) (δ = 1%) (δ = 4%)

0.025 5. 5. 5.02 6.44 6.44 6.46
0.05 5. 5.01 5.15 6.44 6.45 6.59
0.075 5. 5.03 5.36 6.44 6.48 6.78
0.1 5. 5.1 5.62 6.44 6.55 7.
0.125 5. 5.21 5.9 6.44 6.67 7.24
0.15 5. 5.37 6.2 6.44 6.82 7.5
0.175 5. 5.57 6.53 6.44 7.01 7.78
0.2 5. 5.82 6.87 6.44 7.23 8.08
0.225 5. 6.1 7.24 6.44 7.47 8.4
0.25 5. 6.41 7.63 6.44 7.75 8.74
0.275 5. 6.76 8.04 6.44 8.05 9.1
0.3 5. 7.13 8.47 6.44 8.37 9.48
0.325 5. 7.53 8.93 6.44 8.72 9.88
0.35 5. 7.96 9.41 6.44 9.09 10.3
0.375 5. 8.42 9.91 6.44 9.49 10.8
0.4 5. 8.91 10.4 6.44 9.92 11.2
0.425 5. 9.42 11. 6.44 10.4 11.7
0.45 5. 9.96 11.6 6.44 10.9 12.3
0.475 5. 10.5 12.2 6.44 11.4 12.8
0.5 5. 11.1 12.8 6.44 11.9 13.4

Table 1: Annual payments when the current interest rate is r = 5%. Interest-only and
repayment continuous workouts compared to the corresponding fixed-rate (interest-only
and repayment) mortgages for different values of service flow δ = 1% and δ = 4%.
Fixed rate (r = 5%) mortgage payments do not depend on the service flow δ. Initial loan
balance, Q0, is normalized to $ 100 thousand.
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Volatility σ Interest-only mortgage payments Repayment mortgage payments
Standard CWM Standard CWM
r = const. i > r ρ = R (α = 0) ρ > R (α = 1)

(δ = 1%) (δ = 4%) (δ = 1%) (δ = 4%)

0.025 10. 10. 10. 10.52 10.52 10.52
0.05 10. 10. 10.01 10.52 10.53 10.53
0.075 10. 10.01 10.03 10.52 10.54 10.56
0.1 10. 10.03 10.09 10.52 10.56 10.62
0.125 10. 10.07 10.18 10.52 10.6 10.72
0.15 10. 10.14 10.33 10.52 10.67 10.86
0.175 10. 10.24 10.52 10.52 10.78 11.06
0.2 10. 10.38 10.76 10.52 10.92 11.29
0.225 10. 10.55 11.03 10.52 11.09 11.56
0.25 10. 10.77 11.35 10.52 11.31 11.87
0.275 10. 11.03 11.71 10.52 11.56 12.21
0.3 10. 11.32 12.1 10.52 11.85 12.58
0.325 10. 11.66 12.52 10.52 12.18 12.98
0.35 10. 12.03 12.97 10.52 12.53 13.42
0.375 10. 12.44 13.45 10.52 12.93 13.88
0.4 10. 12.88 13.97 10.52 13.35 14.37
0.425 10. 13.36 14.51 10.52 13.81 14.89
0.45 10. 13.87 15.08 10.52 14.3 15.44
0.475 10. 14.42 15.69 10.52 14.82 16.01
0.5 10. 15. 16.32 10.52 15.37 16.62

Table 2: Annual payments when the current interest rate is r = 10%. Interest-only and
repayment continuous workouts compared to the corresponding fixed-rate (interest-only
and repayment) mortgages for different values of service flow δ = 1% and δ = 4%. Fixed
rate (r = 10%) mortgage payments do not depend on the service flow δ. Initial loan
balance, Q0, is normalized to $ 100 thousand.
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C Figures
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Figure 1: Interest-only Continuous Workout Mortgage. Required interest i as a function
of risk σ. Tenure is T = 30 years or T = 1 years to maturity, riskless rates are r = 5% and
r = 15% and service flow rate is either δ = 1% (thick lines) or 4% (dashed lines).
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Figure 2: Repayment Continuous Workout Mortgage (with Threshold). Reduction of
mortgage payment Rα (ht) as a function of current adjusted house price level ht and dif-
ferent “workout proportions” α. Full workout is α = 100% (thick solid line), no workout
(standard repayment mortgage, thin dashed line) is α = 0. Maximal annual repayment
(mortgage repayment parameter) is normalized to one i.e. ρ = 1 and h0 = k = 100. To
illustrate the “threshold” variant of workouts assume k = 100 and a higher starting price
level e.g. h0 = 120.
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Figure 3: Repayment Continuous Workout Mortgage. Mortgage payment ρ as a function
of risk σ. Partial workout (α = 1

2 ) is positioned between full workout (α = 1, thick lines)
and standard repayment (no workout, α = 0, dotted flat line). Tenure is T = 30 years
to maturity, riskless rate is r = 10%. Service flow rates are δ = 1% (solid lines) or 4%
(dashed lines).
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Figure 4: Repayment Continuous Workout Mortgage. Mortgage payment spread ρα −
rH0 (1− exp (−rT))−1 as a function of interest rate r for full workout (α = 1). Tenure is
T = 30 years to maturity, service flow rates are δ = 1% (dashed line), 4% (solid line) and
8% (bold line). H0, is normalized to $ 100 thousand.
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Figure 5: Threshold Repayment Continuous Workout Mortgage (TRCWM) with thresh-
old parameter K. Increase in the mortgage payment flow ρ (above) compared to reduction
of mortgage balance rQt/ρ (below), as a function of “workout threshold” K. Interest rate
r = 5% and 10%, service flow rate δ = 1% and 4%, volatility σ = 15%, term T = 30 years
to repayment, initial house price and index H0 = 100.
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Figure 6: Continuous Workout Mortgage contract rate i as a function of the prepayment
rate λ.
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Figure 7: Continuous Workout Mortgage contract-rate-preserving combinations (at
i = 10%) of early prepayment parameters α and T∗ for diffrerent levels of prepayment
intensity λ.
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