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Abstract

This paper studies robustness of bootstrap inference methods under moment conditions. In
particular, we compare the uniform weight and implied probability bootstraps by analyzing behaviors
of the bootstrap quantiles when outliers take arbitrarily large values, and derive the breakdown points
for those bootstrap quantiles. The breakdown point properties characterize the situation where the
implied probability bootstrap is more robust than the uniform weight bootstrap against outliers.
Simulation studies illustrate our theoretical findings.

1 Introduction

Since Hansen (1982), the generalized method of moments (GMM) has been a standard tool for empirical

analysis in econometrics. The GMM provides a unified framework for statistical inference in econometric

models that are specified by some moment conditions (see, e.g., Hall, 2005, for a review on the GMM).

However, recent research indicates that there are considerable problems with the GMM, particularly in

its finite sample performance, and that approximations based on the asymptotic theory can yield poor

results (see, e.g., the special issue of the Journal of Business and Economic Statistics, vol. 14).

To refine the approximations for the distributions of the GMM estimator and related test statistics,

bootstrap methods have been developed. A key issue to apply bootstrap methods to the GMM context

is that one typically needs to impose the overidentified moment conditions to the bootstrap resam-

ples. Hall and Horowitz (1996) suggested to use the uniform weight bootstrap with recentered moment

conditions, and established higher-order refinements of their bootstrap inference over the asymptotic

approximations. On the other hand, Brown and Newey (2002) suggested to use a weighted bootstrap
∗We would like to thank the seminar participants at the Info-Metrics conference 2010 at American University, Kyoto,

Seoul National, and Yale for helpful comments. This research was done when the first author was visiting Yale University,

financed by a fellowship of the Swiss National Science Foundation (SNSF).
†E-mail: lorenzo.camponovo@usi.ch. Address: Via Giuseppe Buffi 13, 6900 Lugano, Ticino, Switzerland.
‡E-mail: taisuke.otsu@yale.edu. Website: http://cowles.econ.yale.edu/faculty/otsu.htm. Address: P.O. Box 208281,

New Haven, CT 06520-8281, USA. Phone: +1-203-432-9771. Fax: +1-203-432-6167.
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based on the implied probabilities from the moment conditions (see also Hall and Presnell, 1999). These

implied probabilities can be computed based on the GMM (Back and Brown, 1993), empirical likeli-

hood (Owen, 1988), or generalized empirical likelihood (Smith, 1997, and Newey and Smith, 2004).

This implied probability bootstrap also provides a refinement over the asymptotic approximations.1

The purpose of this paper is to study robustness of the uniform weight and implied probability boot-

straps, based on the breakdown point theory in the literature of robust statistics (see Hampel, 1971, and

Donoho and Huber, 1983, for general definitions of breakdown point, and Singh, 1998, Salibian-Barrera,

Van Aelst and Willems, 2007, and Camponovo, Scaillet and Trojani, 2010a, for the use of breakdown

point theory in bootstrap contexts). The need for robust statistical procedures has been stressed by

many authors and is now widely recognized; see, e.g., Hampel, Ronchetti, Rousseeuw and Stahel (1986),

Maronna, Martin and Yohai (2006), and Huber and Ronchetti (2009). To be more precise, by extend-

ing the approach of Singh (1998), we analyze behaviors of bootstrap quantiles of the uniform weight

bootstrap and implied probability bootstrap (using Back and Brown’s, 1993, weight) when outliers take

arbitrary large values, and compare the breakdown points for these bootstrap quantiles. Our break-

down point analysis characterizes the situation where the implied probability bootstrap is more robust

than the uniform weight bootstrap against outliers. Therefore, researchers can decide which bootstrap

approach should be adopted for each application. In particular, when all elements of the moment func-

tions diverge to infinity as (the norm of) outliers diverge, the implied probability bootstrap is typically

more robust than the uniform weight bootstrap. The literature of robustness study in the GMM con-

text is relatively thin and is currently under development. Ronchetti and Trojani (2001) extended the

robust estimation techniques for (just-identified) estimating equations to overidentified moment condi-

tion models. Gagliardini, Trojani and Urga (2005) develop a robust GMM test for structural breaks.

Hill and Renault (2010) propose a GMM estimator with asymptotically vanishing tail trimming for

robust estimation of dynamic moment condition models. Kitamura, Otsu and Evdokimov (2010) and

Kitamura and Otsu (2010) studied local robustness against perturbations controlled by the Hellinger

distance for point estimation and hypothesis testing, respectively, in moment condition models. Our

breakdown point analysis studies global robustness of bootstrap methods when outliers take arbitrarily

large values.

The rest of the paper is organized as follows. Section 2 investigates a benchmark example, inference

for a trimmed mean, to understand the basic idea of our breakdown point analysis. Section 3 generalizes

the results obtained in Section 2 to a moment condition model. Section 4 illustrates the theoretical

results by simulations. Section 5 concludes.
1An important feature of implied probabilities is that they provide semiparametrically efficient estimators for the

distribution function and it moments under the moment conditions (Back and Brown, 1993, and Brown and Newey, 1998).

Antoine, Bonnal and Renault (2007) employed implied probabilities to construct an asymptotically efficient estimator for

parameters in the moment conditions.
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2 Benchmark example

We start our analysis by introducing the benchmark example analyzed in Singh (1998) about the

trimmed mean. Consider a random sample {Xi}ni=1 of size n from X ∈ R. Suppose that we wish

to approximate the distribution of the 10% trimmed mean T (0.1) (i.e., 5% trimming for each side)

by a bootstrap method, when n ≥ 20. Let X(1) ≤ . . . ≤ X(n) be the ordered sample. Since n ≥ 20,

T (0.1) is always free from the largest observation X(n), which is treated as an outlier. On the other

hand, consider the trimmed mean T# (0.1) using the (uniform weight) bootstrap resample. Since the

bootstrap resample can contain X(n) more than once, T# (0.1) is not necessarily free from X(n). Letting

B (n, p) be a binomial random variable with parameters n and p, the probability that T# (0.1) is free

from X(n) is

p# = P

(
B

(
n,

1
n

)
≤ 1
)
.

Therefore, if X(n) → +∞, then 100
(
1− p#

)
% of resamples of T# (0.1) will diverge to +∞. In other

words, the bootstrap quantile Q#
t of T# (0.1) will diverge to +∞ for all t > p#.

Consider the situation where we have auxiliary information

E [g (Xi)] = 0,

where g : R → R is a scalar-valued function. Let ḡ = 1
n

∑n
i=1 g (Xi). Back and Brown (1993) showed

that under this auxiliary information, the distribution function of X can be efficiently estimated by

using the implied probabilities:

πi =
1
n
− 1
n

(g (Xi)− ḡ) ḡ
1
n

∑n
i=1 g (Xi)

2 , (1)

for i = 1, . . . , n.2,3 The second term in πi can be interpreted as a penalty term for the deviation from

auxiliary information: if |g (Xi)| becomes larger, then (g (Xi)− ḡ) ḡ tends to be positive and the weight

πi tends to be smaller. Let T ∗ (0.1) be the trimmed mean using a bootstrap sample based on the implied

probabilities {πi}ni=1. Then, the probability that T ∗ (0.1) is free from the largest observation X(n) is

written as

P
(
B
(
n, π(n)

)
≤ 1
)
.

Thus, in terms of the bootstrap quantiles, the implied probability bootstrap becomes more robust than

the uniform weight bootstrap when P
(
B
(
n, π(n)

)
≤ 1
)
> p# (or π(n) ≤ 1

n).

2For the breakdown point analysis, we focus on Back and Brown’s (1993) implied probability because of its simplicity.

It is interesting to extend the analysis to other implied probabilities such as the generalized empirical likelihood-based

implied probabilities discussed by Brown and Newey (2002).
3Our breakdown point analysis assumes that all implied probabilities are non-negative. This assumption is typically

justified when the sample size is sufficiently large. However, in finite samples, it is possible to have negative implied

probabilities. In the simulation study below, we adopt a shrinkage-type modification suggested by Antoine, Bonnal and

Renault (2007) to avoid negative implied probabilities.
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To adapt the conventional breakdown point theory to our setup, we need to analyze the limiting

behavior of g
(
X(n)

)
as X(n) → +∞. Let R̄ = R ∪ {+∞} ∪ {−∞} be the extended real line. Suppose

that

g
(
X(n)

)
→ g∗ ∈ R̄ as X(n) → +∞.

Then, the limit of π(n) is obtained as

π∗ =


1
n −

1
n

“
1− 1

n
− ḡ−

g∗

”“
ḡ−
g∗

+ 1
n

”
v̄−
g2∗

+ 1
n

if g∗ ∈ R \ {0}

1
n + 1

n

ḡ2
−
v̄−

if g∗ = 0
1
n2 if |g∗| = +∞

,

where ḡ− = 1
n

∑n−1
i=1 g

(
X(i)

)
and v̄− = 1

n

∑n−1
i=1 g

(
X(i)

)2. The limit of the probability P
(
B
(
n, π(n)

)
≤ 1
)

is

p∗ = P (B (n, π∗) ≤ 1) .

If g∗ ∈ R\{0}, then the sign of
(

1− 1
n −

ḡ−
g∗

)(
ḡ−
g∗

+ 1
n

)
determines robustness of the implied probability

bootstrap. If
(

1− 1
n −

ḡ−
g∗

)(
ḡ−
g∗

+ 1
n

)
is positive (or negative), then p∗ > p# (or p∗ < p#) and the

implied probability bootstrap is more (or less) robust than the uniform weight bootstrap. If g∗ = 0,

then p# > p∗ is always satisfied and the uniform weight bootstrap is more robust than the implied

probability bootstrap. On the other hand, if |g∗| = +∞, then p∗ > p# is always satisfied and the

implied probability bootstrap becomes more robust. These findings are summarized as follows.

Proposition 1. Consider the setup of this section. If X(n) → +∞, the followings hold true.

(i) The uniform weight bootstrap quantile Q#
t of T# (0.1) will diverge to +∞ for all t > p#.

(ii) The implied probability bootstrap quantile Q∗t of T ∗ (0.1) will diverge to +∞ for all t > p∗.

(iii) If g∗ = 0, then p# > p∗ is always satisfied. If |g∗| = +∞, then p# < p∗ is always satisfied.

For the divergent case, |g∗| = +∞, we can numerically compare p# = P
(
B
(
n, 1

n

)
≤ 1
)
and p∗ =

P
(
B
(
n, 1

n2

)
≤ 1
)
. For example, when the sample size is n = 20, we have p# = 0.736 and p∗ = 0.999.

This means that for the uniform weight bootstrap, a single outlier implies the divergence of more than

26% of resamples of T# (0.1), while for the implied probability bootstrap, a single outlier implies the

divergence of less than 1% of resamples of T ∗ (0.1). Section 4.1 illustrates this proposition by simulations.

Although the results obtained in this section is insightful, there are several limitations: (i) the

statistic of interest is a trimmed mean, (ii) X is scalar, and (iii) g (·) is a scalar-valued function and

does not contain parameters. The next section discusses how to generalize the insights obtained in this

section.
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3 Breakdown point theory

We now introduce our setup. Let {Xi}ni=1 be a random sample of size n from X ∈ Rd. Consider the

situation where we have the following overidentified moment conditions:

E [g (Xi, θ0)] = E

[
g1 (Xi, θ0)

g2 (Xi, θ0)

]
= 0,

where g1 and g2 are scalar-valued functions and θ0 ∈ R is a scalar parameter. In this case, Back and

Brown’s (1993) implied probabilities are defined as

πi =
1
n
− 1
n

{
g
(
Xi, θ̂

)
− ḡ

(
θ̂
)}′ [ 1

n

n∑
i=1

g
(
Xi, θ̂

)
g
(
Xi, θ̂

)′]−1

ḡ
(
θ̂
)
,

for i = 1, . . . , n, where θ̂ is an estimator of θ0 and ḡ
(
θ̂
)

= 1
n

∑n
i=1 g

(
Xi, θ̂

)
. For simplicity and technical

tractability (basically to obtain an explicit formula for πi), we focus on the case of dim (g) = 2. Remark

3 below discusses some extensions for the case of dim (g) > 2. Let
{
X(i)

}n
i=1

be the ordered sample,

where
∥∥X(1)

∥∥ ≤ . . . ≤
∥∥X(n)

∥∥ and ‖·‖ is the Euclidean norm. Suppose we are interested in a real-

valued object Tn = Tn (X1, . . . , Xn; θ0), where Tn → +∞ as
∥∥X(n)

∥∥ → +∞.4 We also assume that as∥∥X(n)

∥∥→ +∞,

 g1

(
X(n), θ̂

)
g2

(
X(n), θ̂

) → (
g1∗

g2∗

)
∈ R̄2,



1
n

∑n−1
i=1 g1

(
X(i), θ̂

)
1
n

∑n−1
i=1 g2

(
X(i), θ̂

)
1
n

∑n−1
i=1 g1

(
X(i), θ̂

)2

1
n

∑n−1
i=1 g2

(
X(i), θ̂

)2

1
n

∑n−1
i=1 g1

(
X(i), θ̂

)
g2

(
X(i), θ̂

)


→



ḡ1−

ḡ2−

v11

v22

v12


∈ R5.

Note that the second condition requires that the limits are finite and restricts the form of g and/or the

limit of θ̂. In this case, the limit of π(n) is obtained as

π∗ =



1
n − c∗ if g1∗ ∈ R and g2∗ ∈ R

1
n2 + 1

n

ḡ2
2−
v22

if |g1∗| = +∞ and g2∗ ∈ R
1
n2 + 1

n

ḡ2
1−
v11

if g1∗ ∈ R and |g2∗| = +∞
1
n2 + 1

n
(ḡ1−−ḡ2−)2

v11+v22−2v12
if |g1∗| = +∞ and |g2∗| = +∞

,

4For brevity, as in Singh (1998), we consider only the case where Tn → +∞ as
‚‚X(n)

‚‚→ +∞. Nevertheless, following

the definition of finite sample breakdown point in Donoho and Huber (1983), the results in our paper extend straightforward

to the case Tn → +∞ as Xi → x∗ ∈ R. In the case of a statistic with bounded support, the definition can be modified to

ask the statistic to converge to its boundaries (see, e.g., Genton and Lucas, 2003).
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where

c∗ =
1
n

{(
v11 +

1
n
g2

1∗

)(
v22 +

1
n
g2

2∗

)
−
(
v12 +

1
n
g1∗g2∗

)2
}−1

×



(
v22 + 1

ng
2
2∗
) {(

1− 1
n

)
g1∗ − ḡ1−

} (
ḡ1− + 1

ng1∗
)

−
(
v12 + 1

ng1∗g2∗
) {(

1− 1
n

)
g2∗ − ḡ2−

} (
ḡ1− + 1

ng1∗
)

−
(
v12 + 1

ng1∗g2∗
) {(

1− 1
n

)
g1∗ − ḡ1−

} (
ḡ2− + 1

ng2∗
)

+
(
v11 + 1

ng
2
1∗
) {(

1− 1
n

)
g2∗ − ḡ2−

} (
ḡ2− + 1

ng2∗
)


.

Therefore, we obtain the following result.

Proposition 2. Consider the setup of this section. If
∥∥X(n)

∥∥→ +∞, the followings hold true.

(i) The uniform weight bootstrap quantile Q#
t from the resamples T#

n of Tn will diverge to +∞ for all

t > p# = P
(
B
(
n, 1

n

)
= 0
)
.

(ii) The implied probability bootstrap quantile Q∗t from the resamples T ∗n of Tn will diverge to +∞ for

all t > p∗ = P (B (n, π∗) = 0).

Note that this proposition is presented for the non-robust statistic Tn (i.e., a single outlier yields

divergence of Tn). More generally, if the statistic Tn is robust to k outliers (the trimmed mean T (0.1)

with n = 20 in Section 2 corresponds to the case of k = 1), then this proposition holds for p# =

P
(
B
(
n, 1

n

)
≤ k

)
and p∗ = P (B (n, π∗) ≤ k).

Proposition 2 shows that in this setting the implied probability bootstrap is not necessarily more

robust than the uniform weight bootstrap. In particular, the robustness properties of the implied

probability bootstrap depend also on the terms ḡ1−, ḡ2−, v11, v22, and v12. Nevertheless, note that

ḡ1−, ḡ2− are the components of the empirical moment without considering the outlier, and consequently

they are typically close to 0. Therefore, if either |g1?| = +∞, |g2?| = +∞ or both |g1?| = +∞ and

|g2?| = +∞, then the implied probability bootstrap becomes typically more robust than the uniform

weight bootstrap.

If we impose more assumptions, this proposition can be presented by using the notion of the quantile

breakdown point (Singh, 1998). Let bT be the upper breakdown point of Tn, i.e., nbT is the smallest

number of observations whose Euclidean norm need to go to +∞ in order to force Tn to go to +∞. In

our context, the upper breakdown point of quantiles {Qt}t∈(0,1), where Qt := Qt(X1, . . . , Xn), can be

defined as

UBt = inf
{
b ∈

[
1
n
, bT

]
: nb ∈ N and Qt(X1, . . . , Xn)→ +∞

}
,

where b is the fraction of observations X(n), X(n−1), . . . , X(nb+1) such that
∥∥X(j)

∥∥ → +∞, for all j =

nb+ 1, . . . , n.5 Consider the situation where as
∥∥X(j)

∥∥→ +∞, g1

(
X(j), θ̂

)
g2

(
X(j), θ̂

) → (
g1∗

g2∗

)
∈ R̄2,

5The same argument applies to the lower breakdown point which focuses on the lower tail (i.e., Qt(X1, . . . , Xn)→ −∞).
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and for any j 6= j′, g1

(
X(j), θ̂

)
/g1

(
X(j′), θ̂

)
→ 1, and g2

(
X(j), θ̂

)
/g2

(
X(j′), θ̂

)
→ 1, where n−k+1 ≤

j, j′ ≤ n, 1 ≤ k ≤ n. In this case, for j = n− k + 1, . . . , n, the limit of π(j) is obtained as:

π∗,k =



1
n − c∗,k if g1∗ ∈ R and g2∗ ∈ R

k
n2 + 1

n

ḡ2
2−,k

v22,k
if |g1∗| = +∞ and g2∗ ∈ R

k
n2 + 1

n

ḡ2
1−,k

v11,k
if g1∗ ∈ R and |g2∗| = +∞

k
n2 + 1

n
(ḡ1−,k−ḡ2−,k)2

v11,k+v22,k−2v12,k
if |g1∗| = +∞ and |g2∗| = +∞

,

where ḡ1−,k, ḡ2−,k, v11,k, v22,k, and v12,k are the limits of 1
n

∑n−k
i=1 g1

(
X(i), θ̂

)
, 1
n

∑n−k
i=1 g2

(
X(i), θ̂

)
,

1
n

∑n−k
i=1 g1

(
X(i), θ̂

)2
, 1
n

∑n−k
i=1 g2

(
X(i), θ̂

)2
, and 1

n

∑n−k
i=1 g1

(
X(i), θ̂

)
g2

(
X(i), θ̂

)
, respectively, which

are assumed to be finite, and

c∗,k =
1
n

{(
v11,k +

k

n
g2

1∗

)(
v22,k +

k

n
g2

2∗

)
−
(
v12,k +

k

n
g1∗g2∗

)2
}−1

×



(
v22,k + k

ng
2
2∗
) {(

1− k
n

)
g1∗ − ḡ1−,k

} (
ḡ1− + k

ng1∗
)

−
(
v12,k + k

ng1∗g2∗
) {(

1− k
n

)
g2∗ − ḡ2−,k

} (
ḡ1−,k + k

ng1∗
)

−
(
v12,k + k

ng1∗g2∗
) {(

1− k
n

)
g1∗ − ḡ1−,k

} (
ḡ2−,k + k

ng2∗
)

+
(
v11,k + k

ng
2
1∗
) {(

1− k
n

)
g2∗ − ḡ2−,k

} (
ḡ2−,k + k

ng2∗
)


.

Then, following proposition holds.

Proposition 3. Let Tn be a statistic with breakdown point bT ∈ (0, 1). Under the setup of this section,

the followings hold true.

(i) (Singh, 1998, Theorem 1) The upper breakdown point of the uniform weight bootstrap quantile Q#
t

is

UB#
t =

1
n

min
{
k ∈ {1, . . . , n} : P

(
B

(
n,
k

n

)
≥ nbT

)
≥ 1− t

}
.

(ii) The upper breakdown point of the implied probability bootstrap quantile Q∗t is

UB∗t =
1
n

min {k ∈ {1, . . . , n} : P (B (n, kπ∗,k) ≥ nbT ) ≥ 1− t} .

We close this section by remarks on the main result.

Remark 1. [Implication for confidence interval and hypothesis testing] The upper breakdown point

of the bootstrap quantile describes the minimal fraction of outliers in the original sample such that

the bootstrap quantile diverges to infinity. It turns out that when this occurs, inference based on the

bootstrap distribution becomes meaningless. For example, if the researcher wish to construct a bootstrap

confidence interval for a parameter of interest, the breakdown of the bootstrap quantiles implies non-

informative confidence intervals for the parameter of interest. Thus, the quantile breakdown point can

be considered as a diagnostic tool to check robustness of bootstrap-based inference by describing up to

which fraction of contaminations the bootstrap distribution still provides some reliable information.
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Remark 2. [Statistics by recentered moments] For the uniform weight bootstrap, the bootstrap statistic

T#
n is typically computed by using recentered moments, i.e., g# (Xi, θ) = g

(
X#
i , θ

)
− 1
n

∑n
i=1 g

(
X#
i , θ

)
(Hall and Horowitz, 1996). This recentering is required to satisfy the moment conditions by bootstrap

resamples. On the other hand, the implied probability bootstrap does not require such recentering

since the bootstrap resamples always satisfy the moment conditions at θ̂ by construction. Therefore,

it is possible that the breakdown point of the bootstrap statistic T#
n (say b#T ) is different from the

breakdown point bT of Tn and T ∗n . In this case, bT in Proposition 3 (i) should be replaced by b#T .

Remark 3. [Higher dimension case] Our breakdown point analysis can be extended to the case of

dim (g) > 2. However, if each element of g
(
X(n), θ̂

)
takes a different limit as

∥∥X(n)

∥∥ → +∞, we

need to explicitly evaluate the limit of the inverse
[

1
n

∑n
i=1 g

(
Xi, θ̂

)
g
(
Xi, θ̂

)′]−1

and the result be-

comes more complicated and less intuitive. To obtain a comprehensible result, it would be reasonable

to consider the case where all elements of g
(
X(n), θ̂

)
take only two limiting values. In this case,

we can split g
(
X(n), θ̂

)
into two sub-vectors and apply the partitioned matrix inverse formula for[

1
n

∑n
i=1 g

(
Xi, θ̂

)
g
(
Xi, θ̂

)′]−1

.

Remark 4. [Time series data] In order to suitably capture the dependence of the data generating

process in a time series framework, the bootstrap requires some modifications. Consequently, besides

the conventional uniform bootstrap also the implied probability bootstrap analyzed in our study cannot

be directly applied to the time series case. Combining the ideas of Kitamura (1997) and Brown and

Newey (2002), in a recent study Allen, Gregory and Shimotsu (2010) propose an extension of the implied

probability bootstrap to the time series case by developing an empirical likelihood block bootstrap for

time series. We expect that the breakdown point analysis of our paper can be adapted to such a modified

bootstrap method (see Camponovo, Scaillet and Trojani (2010b) for the use of breakdown point analysis

for the bootstrap in time series context).

4 Simulations

4.1 Benchmark example

To evaluate our theoretical results in finite samples, we first conduct a simulation study for the bench-

mark example introduced in Section 2. The setup is as follows. Let {X1, . . . , X20} be a scalar iid sample

of size n = 20 from X ∼ N (0, 1). As in Section 2, we wish to estimate the distribution of the 10%

trimmed mean T (0.1) = 1
18

∑19
i=2X(i), where X(1) ≤ X(2) ≤ · · · ≤ X(n) is the ordered sample. In

order to study the robustness of the bootstrap methods, we consider two data generating processes:

(i) no contamination (Xi ∼ N (0, 1), 1 ≤ i ≤ 20), and (ii) contamination (Xi ∼ N (0, 1), 1 ≤ i ≤ 19,

and X20 = 3, 5, 10, 20, 100). We compare the uniform weight bootstrap quantile Q#
t and the implied

probability bootstrap quantile Q∗t to estimate the quantile Qt of the trimmed mean T (0.1). For the
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implied probability bootstrap, we consider four moment functions: g1 (X) = X, g2 (X) = X2 − 1,

g3 (X) = |X|−1/2 − E
[
|X|−1/2

]
, and g4 (X) = |X|−1/2 sgn (X). Note that as X → +∞,

g1 (X)→ +∞, g2 (X)→ +∞, g3 (X)→ −E
[
|X|−1/2

]
, g4 (X)→ 0.

Thus, Proposition 1 says that for g1 and g2, the implied probability bootstrap is more robust than the

uniform weight bootstrap. On the other hand, the conclusion is undetermined for g3, and the implied

probability bootstrap becomes less robust for g4.

To ensure that all the implied probabilities are non-negative, we employ a shrinkage approach sug-

gested by Antoine, Bonnal and Renault (2007), i.e., π̃i = 1
1+εn

πi+ εn
1+εn

1
n with εn = −nmin {min1≤i≤n πi, 0}.

As pointed out by Antoine, Bonnal and Renault (2007) this approach preserves the order of the implied

probabilities, has no impact when the imply probabilities are already non-negative, and assigns zero

probability only to the observation associated to the smallest probability when negative.

Table 1 reports the Monte Carlo medians of the bootstrap quantiles Q#
t and Q∗t for t =0.9, 0.95,

and 0.99, based on 200 draws, over 1, 000 replications. Without contamination, both methods provide

very similar results. In the presence of contamination, the results basically confirm the theoretical

predictions in Proposition 1. For large values of contamination, the uniform weight bootstrap quantiles

Q#
t dramatically increase. In particular, for the case of X20 = 100, Q#

.95 becomes larger than 11 whereas

Q.95 is 0.4806. In contrast, the implied probability bootstrap quantiles using g1 and g2 show desirable

stability. For the case of g3 (or g4), the implied probability bootstrap quantiles are slightly closer (or

further) to the target Qt than the uniform weight bootstrap quantiles. Overall the simulation for the

benchmark case suggests that our breakdown point analysis reasonably characterizes (lack of) robustness

of the bootstrap methods in finite samples.

4.2 Hall and Horowitz’s (1996) example

The second example, considered in a simulation study by Hall and Horowitz (1996), is based on a

simplified version of an asset pricing model. Let {Xi}ni=1 be a random sample, where

Xi =

(
Z1i

Z2i

)
∼ N

((
0

0

)
,

(
0.22 0

0 0.22

))
. (2)

Then, we consider following moment conditions

E [g (Xi, θ0)] = E

[(
1

Z2i

)
(exp (µ− θ0 (Z1i + Z2i) + 3Z2i)− 1)

]
= 0,

where θ0 = 3 is the parameter of interest, and µ is a known constant. As a statistic of interest, we

consider the overidentifying restriction test statistic (called Hansen’s J-statistic)

Tn = min
θ
nĝ (θ)′

[
1
n

n∑
i=1

g
(
Xi, θ̃

)
g
(
Xi, θ̃

)′]−1

ĝ (θ) ,

9



where ĝ (θ) = 1
n

∑n
i=1 g (Xi, θ), and θ̃ = arg minθ ĝ (θ)′ ĝ (θ) is a preliminary estimator. This statistic

is used to check the validity of the overidentifying restrictions. We compare the uniform weight and

the implied probability bootstrap quantiles, Q#
t and Q∗t , respectively, to estimate the quantile Qt of

the J-statistic Tn. To compute the implied probabilities, we use
{
g
(
Xi, θ̂

)}n
i=1

, the moment functions

evaluated at the two-step GMM estimator θ̂ = arg minθ nĝ (θ)′
[

1
n

∑n
i=1 g

(
Xi, θ̃

)
g
(
Xi, θ̃

)′]−1

ĝ (θ).

Before introducing the simulation results, we apply our breakdown point analysis derived in Section

3 to this setup. Let g (X, θ0) = (g1 (X, θ0) , g2 (X, θ0))′. As Z1 → +∞, we have g1 ((Z1, Z2) , θ0) → −1

and g2 ((Z1, Z2) , θ0) → −Z2. On the other hand, as Z1 → −∞, we have g1 ((Z1, Z2) , θ0) → +∞
and g2 ((Z1, Z2) , θ0) → +∞ (if Z2 is positive) or −∞ (if Z2 is negative). Therefore, Proposition 2

indicates that the implied probability bootstrap will be more robust than the uniform weight bootstrap

for negative outliers in Z1. For positive outliers in Z1, Proposition 2 does not provide a definitive

answer about which bootstrap method is more robust. On the other hand, as |Z2| → +∞, although

|g2 ((Z1, Z2) , θ0)| → +∞, g1 ((Z1, Z2) , θ0) → exp (µ−X1) − 1. Therefore, the implied probability

bootstrap will be more robust than the uniform weight bootstrap.

We now illustrate the above theoretical predictions by Monte Carlo simulations. We consider a

sample of size n = 100, and two data generating processes: (i) no contamination (Xi distributed as in

equation (2), i = 1, . . . , 100), and (ii) contamination (Xi distributed as in equation (2), i = 1, . . . , 99,

while Z1,100 = −3,−1, 1, 3, and Z2,100 = −3,−1, 1, 3). Table 2 and Table 3 report the median of the

uniform weight and implied probability bootstrap quantiles, based on 100 draws, over 1, 000 replications.

Also in this case, to ensure that all the implied probabilities are non-negative we apply the shrinkage

approach introduced in Antoine, Bonnal and Renault (2007). Without contaminations both the uniform

weight and the implied probability bootstrap approach provide accurate approximations to the target

distribution. In the presence of contaminations, we can see that the breakdown point analysis provides

useful descriptions of the (lack of) robustness of the bootstrap methods. From the tables, we observe

that positive outliers in Z1 and positive or negative outliers in Z2 do not deteriorate the reliability of

the bootstrap methods; but negative outliers in Z1 dramatically decreases the accuracy of the uniform

weight bootstrap compared to the implied probability bootstrap. For example, in the case of X1n = −3,

Q#
.9 is larger than 58 whereas Q.9 is 2.7587. On the other hand, Q∗.9 is 5.8244. Therefore, for this

example, our breakdown point analysis recommends to use the implied probability bootstrap to guard

against outliers.

5 Conclusion

This paper studies robustness of the uniform weight and implied probability bootstrap inference methods

for moment condition models. In particular, we analyze the breakdown point properties of the quantiles

for those bootstrap methods. Simulation studies illustrate the theoretical findings. Our breakdown point

analysis can be an informative guideline for applied researchers who wish to decide which bootstrap

10



method should be applied. It is interesting to apply our breakdown point analysis to more specific

setups (e.g., instrumental variable regression models to evaluate the effects of outliers in dependent,

endogenous, and instrumental variables). Also it is important to extend our analysis to dependent data

setups, where different bootstrap methods need to be employed. These extensions are currently under

investigation by the authors.
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No Con. Contamination

3 5 10 20 100

Q.9 0.2862 0.3951 0.3959 0.3959 0.3959 0.3959

True Q.95 0.3718 0.4794 0.4806 0.4806 0.4806 0.4806

Q.99 0.5259 0.6304 0.6318 0.6318 0.6318 0.6318

Q#
.9 0.3057 0.4717 0.5753 0.8759 1.4678 5.9124

Uniform Q#
.95 0.3828 0.5692 0.7199 1.1642 2.2249 11.1105

Q#
.99 0.5150 0.7438 0.9712 1.6452 3.1368 16.4478

Q∗.9 0.2738 0.2987 0.2991 0.3012 0.3033 0.3014

Implied (g1) Q∗.95 0.3537 0.3932 0.4054 0.4171 0.3944 0.3847

Q∗.99 0.4870 0.5594 0.6015 0.6447 0.6699 0.5394

Q∗.9 0.3110 0.3591 0.3170 0.3100 0.3100 0.3127

Implied (g2) Q∗.95 0.3929 0.4418 0.3987 0.3905 0.3922 0.3956

Q∗.99 0.5327 0.5990 0.5526 0.5383 0.5300 0.5311

Q∗.9 0.2748 0.3915 0.4500 0.6377 1.1405 5.5538

Implied (g3) Q∗.95 0.3519 0.4832 0.5670 0.8751 1.4840 5.8935

Q∗.99 0.4713 0.6440 0.7913 1.3181 2.4231 11.2638

Q∗.9 0.2978 0.4725 0.5806 0.9102 1.5299 5.9821

Implied (g4) Q∗.95 0.3817 0.5724 0.7236 1.2005 2.2758 11.1675

Q∗.99 0.5235 0.7483 0.9828 1.6872 3.2835 16.6013

Table 1: Quantiles of the uniform weight and implied probability bootstrap. “No Con.” means

“No Contamination”. The rows labelled “True” report the simulated quantiles of T (0.1) based on 20,000

realizations of T (0.1). The rows labelled “Uniform” report the uniform weight bootstrap quantiles.

The rows labelled “Implied (ga)” report the implied probability bootstrap quantiles using the moment

function ga for a =1, 2, 3 and 4.
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No Con. Contamination in Z1,100

−3 −1 1 3

Q.9 3.1668 2.7587 2.3036 3.4342 3.4452

True Q.95 4.7095 3.8809 3.1513 5.1804 5.1977

Q.99 9.6176 13.9351 13.6717 10.4805 10.4859

Q#
.9 3.1211 58.1749 9.1001 3.1438 3.1087

Uniform Q#
.95 4.8497 74.9338 16.9474 4.8567 4.8215

Q#
.99 9.6616 92.2483 36.6108 9.6870 9.6094

Q∗.9 3.1279 5.8244 4.7028 3.1489 3.1453

Implied Q∗.95 4.7993 9.8464 7.3681 4.7236 4.7080

Q∗.99 9.9595 25.4335 16.8625 9.6343 9.6143

Table 2: Quantiles of the uniform weight and implied probability bootstrap. “No Con.” means

“No Contamination”. The rows labelled “True” report the simulated quantiles of the J-statistic distri-

bution based on 20,000 realizations. The rows labelled “Uniform” report the uniform weight bootstrap

quantiles. The rows labelled “Implied" report the implied probability bootstrap quantiles.

No Con. Contamination in Z2,100

−3 −1 1 3

Q.9 3.1668 3.1032 3.1048 3.1943 3.2773

True Q.95 4.7095 4.4612 4.5147 4.7413 4.7080

Q.99 9.6176 8.3591 9.0743 9.3187 8.6588

Q#
.9 3.1211 3.2885 3.1263 3.2061 3.0363

Uniform Q#
.95 4.8497 4.7722 4.6984 4.8426 4.4571

Q#
.99 9.6616 8.5820 9.2276 9.6337 7.9688

Q∗.9 3.1279 3.3369 3.1345 3.1840 3.0562

Implied Q∗.95 4.7993 4.8033 4.6676 4.7596 4.5438

Q∗.99 9.9595 8.4371 8.7645 9.4534 7.9938

Table 3: Quantiles of the uniform weight and implied probability bootstrap. “No Con.” means

“No Contamination”. The rows labelled “True” report the simulated quantiles of the J-statistic distri-

bution based on 20,000 realizations. The rows labelled “Uniform” report the uniform weight bootstrap

quantiles. The rows labelled “Implied" report the implied probability bootstrap quantiles.
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