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Abstract 

This contribution to the Handbook of Computational Finance, Springer-Verlag, gives an 

overview on modeling implied volatility data. After introducing the concept of Black-Scholes-

Merton implied volatility (IV), the empirical stylized facts of IV data are reviewed. We then 

discuss recent results on IV surface dynamics and the computational aspects of IV. The main 

focus is on various parametric, semi- and nonparametric modeling strategies for IV data, 

including ones which respect no-arbitrage bounds. 
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Forthcoming: Handbook of Computational Finance, Springer-Verlag

1 Introduction

The discovery of an explicit solution for the valuation of European style call
and put options based on the assumption a Geometric Brownian motion driv-
ing the underlying asset constitutes a landmark in the development of modern
financial theory. First published in Black and Scholes (1973), but relying heav-
ily on the notion of no-arbitrage in Merton (1973), this solution is nowadays
known as the Black-Scholes-Merton (BSM) option pricing formula. In recogni-
tion of this achievement, Myron Scholes and Robert C. Merton were awarded
the Nobel prize in economics in 1997 (Fischer Black had already died by this
time).

Although it is widely acknowledged that the assumptions underlying the
BSM model are far from realistic, the BSM formula still enjoys unrivalled
popularity in financial practice. This is not so much because practitioners
believe in the model as a good description of market behavior, but rather
because it serves as a convenient mapping device from the space of option
prices to a single real number called the (BSM-)implied volatility. Indeed, the
only unknown parameter involving the BSM formula is the volatility. Backed
out of given option prices it allows for straight forward comparisons of the
relative expensiveness of options across various strikes, expiries and underlying
assets. In practice calls and puts are thus quoted in terms of implied volatility.

For illustration consider Figure 1 displaying implied volatility (IV) as ob-
served on 28 Oct. 2008 and computed from options traded on the futures
exchange EUREX, Frankfurt. IV is plotted against relative strikes and time
to expiry. Due to institutional conventions, there is a very limited number of
expiry dates, usually one to three months apart for short-dated options and
six to twelve months apart for longer-dated ones, while the number of strikes
for each expiry is more finely spaced. The function resulting for a fixed expiry
is frequently called the ‘IV smile’ due to its U-shaped pattern. For a fixed
(relative) strike across several expiries one speaks of the term structure of
IV. Understandably, the non-flat surface, which also fluctuates from day to
day, is in strong violation to the assumption of a Geometric Brownian motion
underlying the BSM model.

Although IV observations are observed on this degenerate design, practi-
tioners think of them as stemming from a smooth and well-behaved surface.
This view is due to the following objectives in option portfolio management:
(i) market makers quote options for strike-expiry pairs which are illiquid or
not listed; (ii) pricing engines, which are used to price exotic options and
which are based on far more realistic assumptions than the BSM model, are
calibrated against an observed IV surface; (iii) the IV surface given by a listed
market serves as the market of primary hedging instruments against volatil-
ity and gamma risk (second-order sensitivity with respect to the spot); (iv)
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Fig. 1. IV surface of DAX index options from 28 Oct. 2008, traded at the EUREX.
IV given in percent across a spot moneyness metric, time to expiry in years.

risk managers use stress scenarios defined on the IV surface to visualize and
quantify the risk inherent to option portfolios.

Each of these applications requires suitably chosen interpolation and ex-
trapolation techniques or a fully specified model of the IV surface. This sug-
gests the following structure of this contribution: Section 2 introduces the
BSM-implied volatility and in Section 3 we outline its stylized facts. No-
arbitrage constraints on the IV surface are presented in Section 4. In Section 5,
recent theoretical advances on the asymptotic behavior of IV are summarized.
Approximation formulae and numerical methods to recover IV from quoted
option prices are reviewed in Section 6. Parametric, semi- and nonparametric
modeling techniques of IV are considered in Section 7.

2 The BSM model and implied volatility

We consider an economy on the time interval [0, T ∗]. Let (Ω,F ,P) be a prob-
ability space equipped with a filtration (Ft)0≤t≤T∗ which is generated by a
Brownian motion (Wt)0≤t≤T∗ defined on this space, see e.g. Steele (2000). A
stock price (St)0≤t≤T∗ , adapted to (Ft)0≤t≤T∗ (paying no-dividends for sim-
plicity) is modeled by the Geometric Brownian motion satisfying the stochas-
tic differential equation
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dSt

St
= µdt+ σ dWt , (1)

where µ denotes the (constant) instantaneous drift and σ2 measures the (con-
stant) instantaneous variance of the return process of (logSt)t≥0. We further-
more assume the existence of a riskless money market account paying interest
r. A European style call is a contingent claim paying at some expiry date T ,

0 < T ≤ T ∗, the amount ψc(ST ) = (ST −X)+, where (·)+ def
= max(·, 0) and X

is a fixed number, the exercise price. The payoff of a European style put is
given by ψp(ST ) = (X − ST )+.

Under these assumptions, it can be shown that the option price H(St, t)
is a function in the space C2,1

(
R+ × (0, T )

)
satisfying the partial differential

equation

0 =
∂H

∂t
+ rS

∂H

∂S
+

1

2
σ2S2 ∂

2H

∂S2
− rH (2)

subject to H(ST , T ) = ψi(ST ) with i ∈ {c, p}.
The celebrated BSM formula for calls solving (2) with boundary condition

ψc(ST ) is found to be

CBSM
t (X,T ) = StΦ(d1) − e−r(T−t)XΦ(d2) , (3)

with

d1 =
log(St/X) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, (4)

d2 = d1 − σ
√
T − t , (5)

and where Φ(v) =
∫ v

−∞ φ(u) du is the cdf of the standard normal distribution

with pdf φ(v) = 1√
2π
e−v2/2 for v ∈ R.

Given observed market prices C̃t, one defines – as first introduced by La-
tané and Rendelman (1976) – implied volatility as

σ̂ : CBSM
t (X,T, σ̂) − C̃t = 0 . (6)

Due to monotonicity of the BSM price in σ, there exists a unique solution
σ̂ ∈ R+. Note that the definition in (6) is not confined to European options.
It is also used for American options, which can be exercised at any time in
[0, T ]. In this case, as no explicit formulae for American style options exists, the
option price is computed numerically, for instance by means of finite difference
schemes, Randall and Tavella (2000).

In the BSM model volatility is just a constant, whereas empirically, IV
displays a pronounced curvature across strikes X and different expiry days T .
This gives rise to the notion of an IV surface as the mapping

σ̂ : (t,X, T ) → σ̂t(X,T ) . (7)
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Fig. 2. Time series of 1Y ATM IV (left axis, black line) and DAX index closing
prices (right axis, gray line) from 2000 to 2008.

In Figure 2, we plot the time series of 1Y at-the-money IV of DAX index
options (left axis, black line) together with DAX closing prices (right axis,
gray line). An option is called at-the-money (ATM) when the exercise price
is equal or close to the spot (or to the forward). The index options were
traded at the EUREX, Frankfurt (Germany), from 2000 to 2008. As is visible
IV is subject to considerable variations. Average DAX index IV was about
22% with significantly higher levels in times of market stress, such as after
the World Trade Center attacks 2001, during the pronounced bear market
2002-2003 and the financial crisis end of 2008.

3 Stylized facts of implied volatility

The IV surface displays a number of static and dynamic stylized facts which we
demonstrate here using the present DAX index option data dating from 2000
to 2008. These facts can be observed for any equity index market. They sim-
ilarly hold for stocks. Other asset classes may display different features, for
instance, smiles may be more shallow, symmetric or even upward-sloping, but
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this does not fundamentally change the smile phenomenon. A more complete
synthesis can be found in Rebonato (2004).

Stylized facts of IV are as follows:

1. The smile is very pronounced for short expiries and becomes flattish for
longer dated options. This fact was already visible in Figure 1.

2. As noted by Rubinstein (1994) this has not always been the case. The
strong asymmetry in the smile first appeared after the 1987 market tur-
moil.

3. For equity options, both index and stocks, the smile is negatively skewed.

We define the ‘skew’ here by ∂σ̂2

∂m

∣∣∣
m=0

, where m is log-forward moneyness

as defined in Section 5. Figure 3 depicts the time series of the DAX index
skew (left axis) for 1M and 1Y options. The skew is negative throughout
and – particularly the short-term skew – increases during times of crisis.
For instance, skews increase in the aftermath of the dot-com boom 2001
to 2003, or spike at 11 Sep. 2001 and during the heights of the financial
crisis 2008. As theory predicts, see Section 5, the 1Y IV skew has most of
the time been flatter than the 1M IV skew.

4. Fluctuations of the short-term skew are much larger. Figure 4 gives the
quantiles of the skew as a function of time to expiry. Similar patterns also
apply to IV levels and returns.

5. The IV surface term structure is typically upward sloping (i.e. has increas-
ing levels of IV for longer dated options) in calm times, while in times of
crisis it is downward sloping with short dated options having higher levels
of IV then longer dated ones. This is seen in Figure 3 giving the differ-
ence of 1M ATM IV minus 1Y ATM in terms of percentage points on the
right axis. A positive value therefore indicates a downward sloping term
structure. During the financial crisis the term structure slope achieved
unprecedented levels. Humped profiles can be observed as well.

6. Returns of the underlying asset and returns of IV are negatively correlated.
For the present data set we find a correlation between 1M ATM IV and
DAX returns of ρ = −0.69.

7. IV appears to be mean-reverting, see Figure 2, but it is usually difficult
to confirm mean reversion statistically, since IV data is often found to be
nearly integrated, see Fengler et al. (2007) for a discussion.

8. Shocks cross the IV surface are highly correlated, as can be observed
from the comovements of IV levels in Figure 2 and the skew and the
term structure in Figure 3. In consequence IV surface dynamics can be
decomposed into a small number of driving factors, see Chapter ???Set
link to Domininik’s Contribution??? of this handbook.
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Fig. 3. Time series of 1M and 1Y IV skew (left axis, gray line and black line
respectively) and time series of the IV term structure (right axis, black dotted line).

Skew is defined as ∂σ̂2

∂m

∣∣∣
m=0

, where m is log-forward moneyness. The derivative is

approximated by a finite difference quotient. IV term structure is the difference
between 1M ATM and 1Y ATM in terms of percentage points. Negative values
indicate an upward sloping term structure.

4 Arbitrage bounds on the implied volatility surface

Despite the rich empirical behavior, IV cannot simply assume any functional
form. This is due to constraints imposed by no-arbitrage principles. For IV,
these constraints are very involved, but are easily stated indirectly in the
option price domain. From now on, we set t = 0 and suppress dependence on
t for sake of clarity.

We state the bounds using a (European) call option; deriving the corre-
sponding bounds for a put is straightforward. The IV function must be such
that the call price is bounded by

max
(
S − e−rTX, 0

)
≤ C(X,T ) ≤ S . (8)

Moreover, the call price must be a decreasing and convex function in X, i.e.

−e−rT ≤ ∂C

∂X
≤ 0 and

∂2C

∂X2
≥ 0 . (9)
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Skew is defined as ∂σ̂2

∂m

∣∣∣
m=0

, where m is log-forward moneyness.

To preclude calendar arbitrage, prices of American calls for the same
strikes must be nondecreasing across increasing expiries. This statement does
not hold for European style calls because their theta can change sign. No-
arbitrage implies, however, that there exists a monotonicity relationship along
forward-moneyness corrected strikes (also in the presence of dividend yield),
see Reiner (2000), Gatheral (2004), Kahalé (2004), Reiner (2004), Fengler
(2009). Denote by x = X/FT forward-moneyness, where FT is a forward
with expiry T , and by T1 < T2 the expiry dates of two call options whose
strike prices X1 and X2 are related by forward-moneyness, i.e. x1 = x2. Then

C(X2, T2) ≥ C(X1, T1) . (10)

Most importantly, this results implies that total implied variance must be non-
decreasing in forward-moneyness to preclude arbitrage. Defining total variance

as ν2(x, T )
def
= σ̂2(x, T )T , we have

ν2(x, T2) > ν2(x, T1) . (11)

Relationship (11) has the important consequence that one can visually check
IV smiles for calendar arbitrage by plotting total variance across forward
moneyness. If the lines intersect, (11) is violated.
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5 Implied volatility surface asymptotics

Many of the following results had the nature of conjectures and were gener-
alized and rigorously derived only very recently. Understanding the behavior
of IV for far expiries and far strikes is of utter importance for extrapolation
problems often arising in practice.

Throughout this section set r = 0 and t = 0. This is without loss of gen-
erality since in the presence of nonzero interest rates and dividends yields,
the option and underlying asset prices may be viewed as forward prices, see
Britten-Jones and Neuberger (2000). Furthermore define log-(forward) mon-

eyness by m
def
= log x = log(X/S) and total (implied) variance by ν2

def
= σ̂2T .

Let S = (St)t≥0 be a non-negative martingale with S0 > 0 under a fixed
risk-neutral measure.

5.1 Far expiry asymptotics

The results of this section can be found in more detail in Tehranchi (2010)
whom we follow closely.

The first theorem shows that the IV surface flattens for infinitely large
expiries.

Theorem 1 (Rogers and Tehranchi (2009)). For any M > 0 we have

lim
T→∞

sup
m1,m2∈[−M,M ]

|σ̂(m2, T ) − σ̂(m1, T )| = 0 .

Note that this result does not hinge upon the central limit theorem, mean-
reversion of spot volatility etc., only the existence of the martingale measure.
In particular, limT→∞ σ̂(m,T ) does not need to exist for any m.

The rate of flattening of the IV skew can be made more precise by the
following result. It shows that the flattening behavior of the IV surface as
described in Section 3 is not an empirical artefact, but has a well-founded
theoretical underpinning (for earlier, less general arguments see Hodges (1996)
and Carr and Wu (2003)).

Theorem 2 (Rogers and Tehranchi (2009)).

(i) For any 0 ≤ m1 < m2 we have

σ̂(m2, T )2 − σ̂(m1, T )2

m2 −m1
≤ 4

T
.

(ii) For any m1 < m2 ≤ 0

σ̂(m2, T )2 − σ̂(m1, T )2

m2 −m1
≥ − 4

T
.
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(iii) If St
P−→ 0 as t→ ∞, for any M > 0 we have

lim sup
T→∞

sup
m1,m2∈[−M,M ],m1 ̸=m2

T

∣∣∣∣ σ̂(m2, T )2 − σ̂(m1, T )2

m2 −m1

∣∣∣∣ ≤ 4 .

As pointed out by Rogers and Tehranchi (2009), the inequality in (iii) is sharp

in the sense that there exists a martingale (St)t≥0 with St
P−→ 0 such that

T
∂

∂m
σ̂(m,T )2 → −4 .

as T → ∞ uniformly for m ∈ [−M,M ]. The condition St
P−→ 0 as t → ∞,

is not strong. It holds for most financial models and is equivalent to the
statement that

C(X,T ) = E[(ST −X)+] → S0

as T → ∞ for some X > 0. The BSM formula (3) fulfills it trivially. Indeed
one can show that if the stock price process does not converge to zero, then
limT→∞ σ̂(m,T ) = 0, because ν2 <∞.

Finally Tehranchi (2009) obtains the following representation formula for
IV:

Theorem 3 (Tehranchi (2009)). For any M > 0 we have

lim
T→∞

sup
m∈[−M,M ]

∣∣∣∣∣σ̂(m,T ) −
√
− 8

T
log E[ST ∧ 1]

∣∣∣∣∣
with a ∧ b = min(a, b). Moreover there is the representation

σ̂2
∞ = lim

T→∞
− 8

T
log E[ST ∧ 1] (12)

whenever this limit is finite.

A special case of this result was derived by Lewis (2000) in the context of
the Heston (1993) model. For certain model classes, such as models based on
Lévy processes, the last theorem allows a direct derivation of σ̂∞.

The implication of these results for building an IV surface are far-reaching.

The implied variance skew must be bounded by
∣∣∣∂ν2

∂m

∣∣∣ ≤ 4 and should decay at

a rate of 1/T between expiries. Moreover, a constant far expiry extrapolation
in σ̂(m,Tn) beyond the last extant expiry Tn is wrong, since the IV surface
does not flatten in this case. A constant far expiry extrapolation in ν2(m,Tn)
beyond Tn is fine, but may not be a very lucky choice given the comments
following Theorem 2 number (iii).
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5.2 Short expiry asymptotics

Roper and Rutkowski (2009) consider the behavior of IV towards small times
to expiry. They prove

Theorem 4 (Roper and Rutkowski (2009)). If C(X, ϵ) = (S −X)+ for
some ϵ > 0 then

lim
T→0+

σ̂(X,T ) = 0 . (13)

Otherwise

lim
T→0+

σ̂(X,T ) =

 limT→0+

√
2πC(X,T )

S
√
T

if S = X

limT→0+
| log(S/X)|√

−2T log[C(X,T )−(S−X)+]
if S ̸= X

, (14)

in the sense that the LHS is finite (infinite) whenever the RHS is finite (infi-
nite).

The quintessence of this theorem is twofold. First, the asymptotic behavior
of σ̂(X,T ) as T → 0+ is markedly different for S = X and S ̸= X. Note that
the ATM behavior of (14) is the well-established Brenner and Subrahmanyam
(1988)-Feinstein (1988) formula to be presented in Section 6.1. Second, con-
vergent IV is not a behavior coming for granted. In particular no-arbitrage
does not guarantee that a limit exists, see Roper and Rutkowski (2009) for a
lucid example. However, the limit of time-scaled IV exists and is zero:

lim
T→0+

ν(X,T ) = lim
T→0+

σ̂
√
T = 0 . (15)

5.3 Far strike asymptotics

Lee (2004) establishes the behavior of the IV surface as strikes tend to infin-
ity. He finds a one-to-one correspondence between the large-strike tail and
the number of moments of ST , and the small-strike tail and the number
of moments of S−1

T . We retain the martingale assumption for (St)t≥0 and

m
def
= log(X/S).

Theorem 5 (Lee (2004)). Define

p̃ = sup{p : ES1+p
T <∞} βR = lim sup

m→∞

ν2

|m|
= lim sup

m→∞

σ̂2

|m|/T
.

Then βR ∈ [0, 2] and

p̃ =
1

2βR
+
βR
8

− 1

2
,

with the understanding that 1/0 = ∞. Equivalently,

βR = 2 − 4(
√
p̃2 + p̃− p̃) .
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The next theorem considers the case m→ −∞.

Theorem 6 (Lee (2004)). Denote by

q̃ = sup{q : ES−q
T <∞} βL = lim sup

m→−∞

ν2

|m|
= lim sup

m→−∞

σ̂2

|m|/T
.

Then βL ∈ [0, 2] and

q̃ =
1

2βL
+
βL
8

− 1

2
,

with 1/0 = ∞, or

βL = 2 − 4(
√
q̃2 + q̃ − q̃) .

Roger Lee’s results have again vital implications for the extrapolation of
the IV surface for far strikes. They show that linear or convex skews for far
strikes are wrong by the O(|m|1/2) behavior. More precisely, the IV wings
should not grow faster than |m|1/2 and not grow slower than |m|1/2, unless
the underlying asset price is supposed to have moments of all orders. The
elegant solution following from these results is to extrapolate ν2 linearly in
|m| with an appropriately chosen βL, βR ∈ [0, 2].

6 Approximating and computing implied volatility

6.1 Approximation formulae

There is no closed-form, analytical solution to IV, even for European options.
In situations when iterative procedures is not readily available, such as in the
context of a spreadsheet, or when numerical approaches are not applicable,
such as in real time applications, approximation formulae to IV are of high
interest. Furthermore, they also serve as good inital values for the numerical
schemes discussed in section 6.2.

The most simple approximation to IV, which is due to Brenner and Sub-
rahmanyam (1988) and Feinstein (1988), is given by

σ̂ ≈
√

2π

T

C

S
. (16)

The rationale of this formula can be understood as follows. Define by K
def
=

S = Xe−rT the discounted ATM strike. The BSM formula then simplifies to

C = S
(

2 Φ(σ
√
T/2) − 1

)
.

Solving for σ yields the semi-analytical formula

σ =
2√
T

Φ−1

(
C + S

2S

)
, (17)
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where Φ−1 denotes the inverse function of the normal cdf. A first order Taylor
expansion of (17) in the neighborhood of 1

2 yields formula (16). In consequence,
it is exact only, when the spot is equal to the discounted strike price.

A more accurate formula, which also holds for in-the-money (ITM) and
out-of- the-money (OTM) options (calls are called OTM when S ≪ X and
ITM when S ≫ X), is based on a Taylor expansion of third order to Φ. It is
due to Li (2005):

σ̂ ≈


2 z
√

2
T − 1√

T

√
8z2 − 6α√

2z
if ρ ≤ 1.4

1
2
√
T

(
α+

√
α2 − 4(K−S)2

S(S+K)

)
if ρ > 1.4 ,

(18)

where z = cos
[
1
3 arccos

(
3α√
32

)]
, α =

√
2π

S+K (2C+K−S) and ρ = |K − S|SC−2.

The value of the threshold parameter ρ separating the first part, which is for
nearly-ATM options, and the second part for deep ITM or OTM options, was
found by Li (2005) based on numerical tests.

Other approximation formulae found in the literatur often lack a rigorous
mathematical foundation. The possibly most prominent amongst these are
those suggested by Corrado and Miller (1996) and Bharadia et al. (1996).
The Corrado and Miller (1996) formula is given by

σ̂ ≈ 1√
T

√
2π

S +K

C − S −K

2
+

√(
C − S −K

2

)2

− (S −K)2

π

 . (19)

Its relative accuracy is explained by the fact that (19) is identical to the second
formula in (18) after multiplying the second term under the square root by
1
2 (1 + K/S), which is negligible in most cases, see Li (2005) for the details.
Finally, the Bharadia et al. (1996) approximation is given by

σ̂ ≈
√

2π

T

C − (S −K)/2

S − (S −K)/2
. (20)

Isengildina-Massa et al. (2007) investigate the accuracy of six approxi-
mation formulae. According to their criteria, Corrado and Miller (1996) is
the best approximation followed by Li (2005) and Bharadia et al. (1996).
This finding holds uniformly also for deviations to up to 1% around ATM
(somewhat unfortunate, the authors do not consider a wider range) and up to
maturities of 11 months. As a matter of fact, the approximation by Brenner
and Subrahmanyam (1988) and Feinstein (1988) is of competing quality for
ATM options only.
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6.2 Numerical computation of implied volatility

Newton-Raphson

The Newton-Raphson method, which will be the method of first choice in most
cases, was suggested by Manaster and Koehler (1982). Denoting the observed

market price by C̃, the approach is described as

σi+1 = σi −
(
Ci(σi) − C̃

)
/
∂C

∂σ
(σi) , (21)

where Ci(σi) is the option price and ∂C
∂σ (σi) is the option vega computed at

σi. The algorithm is run until a tolerance criterion, such as |C̃ − Ci+1| ≤ ϵ,
is achieved; IV is given by σ̂ = σi+1. The algorithm may fail, when the vega
is close to zero, which regularly occurs for (short-dated) far ITM oder OTM
options. The Newton-Raphson method has at least quadratic convergence,
and combined with a good choice of the initial value, it achieves convergence
within a very small number of steps. Originally, Manaster and Koehler (1982)
suggested

σ0 =

√
2

T
| log(S/X) + rT | (22)

as initial value (setting t = 0). It is likely, however, that the approximation
formulae discussed in section 6.1 provide initial values closer to the solution.

Regula falsi

The regula falsi is more robust than Newton-Raphson, but has linear conver-
gence only. It is particularly useful when no closed-form expression for the
vega is available, or when the price function is kinked as e.g. for American
options with high probability of early exercise.

The regula falsi is initialized by two volatility estimates σL and σH with
corresponding option prices CL(σL) and CH(σH) which need to include the
solution. The iteration steps are:

1. Compute

σi+1 = σL −
(
CL(σL) − C̃

) σH − σL
CH(σH) − CL(σL)

; (23)

2. if Ci+1(σi+1) and CL(σL) have same sign, set σL = σi+1; if Ci+1(σi+1)
and CH(σH) have same sign, set σH = σi+1. Repeat step 1.

The algorithm is run until |C̃−Ci| ≤ ϵ, where ϵ the desired tolerance. Implied
volatility is σ̂ = σi+1.



14

7 Models of implied volatility

7.1 Parametric models of implied volatility

Since it is often very difficult to define a single parametric function for the
entire surface (see Chapter 2 in Brockhaus et al. (2000) and Dumas et al.
(1998) for suggestions in this directions), a typical approach is to estimate
each smile independently by some nonlinear function. The IV surface is then
reconstructed by interpolating total variances along forward moneyness as
is apparent from section 4. The standard method is linear interpolation. If
derivatives of the IV surface with respect to time to expiry are needed, higher
order polynomials for interpolation are necessary. Gatheral (2006) suggests
the well-behaved cubic interpolation due to Stineman (1980). A monotonic
cubic interpolation scheme can be found in Wolberg and Alfy (2002).

In practice a plethora of functional forms is used. The following selection
of parametric approaches is driven by their respective popularity in three
different asset classes (equity, fixed income, FX markets) and by the solid
theoretical underpinnings they are derived from.

Gatheral’s SVI parametrization

The stochastic volatility inspired (SVI) parametrization for the smile was
introduced by Gatheral (2004) and is motivated from the asymptotic extreme
strikes behavior of a IV smile, which is generated by a Heston (1993) model.
It is given in terms of log-forward moneyness m = log(X/F ) as

σ̂2(m,T ) = a+ b
(
ρ(m− c) +

√
(m− c)2 + θ2

)
, (24)

where a > 0 determines the overall level of implied variance and b ≥ 0 (pre-
dominantly) the angle between left and right asymptotes of extreme strikes;
|ρ| ≤ 1 rotates the smile around the vertex, and θ controls the smoothness of
the vertex; c translates the graph.

The beauty of Gatheral’s parametrization becomes apparent observing
that implied variance behaves linear in the extreme left and right wing as
prescribed by the moment formula due to Lee (2004), see section 5.3. It is
therefore straight forward to control the wings for no-arbitrage conditions.
Indeed, comparing the slopes of the left and right wing asymptotes with The-
orem 6, we find that

b(1 + |ρ|) ≤ 2

T
,

to preclude arbitrage (asymptotically) in the wings. The SVI appears to fit a
wide of range smile patterns, both empirical ones and those of many stochastic
volatility and pure jump models, Gatheral (2004).
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The SABR parametrization

The SABR parametrization is a truncated expansion of the IV smile which
is generated by the SABR model proposed by Hagan et al. (2002). SABR is
an acronym for the ‘stochastic αβρ model’, which is a two-factor stochastic
volatility model with parameters α, the initial value of the stochastic volatility
factor; β ∈ [0, 1], an exponent determining the dynamic relationship between
the forward and the ATM volatility, where β = 0 gives rise to a ‘stochastic
normal’ and β = 1 to a ‘stochastic log-normal’ behavior; |ρ| ≤ 1, the correla-
tion between the two Brownian motions; and θ > 0, the volatility of volatility.
The SABR approach is very popular in fixed income markets where each asset
only has a single exercise date, such as swaption markets.

Denote by F the forward price, X is as usual the strike price. The SABR
parametrization is a second order expansion given by

σ̂(X,T ) = σ̂0(X)
{

1 + σ̂1(X) T
}

+ O(T 2) , (25)

where the first term is

σ̂0(X) =
θ

χ(z)
log

F

X
(26)

with

z =
θ

α

F 1−β −X1−β

1 − β

and

χ(z) = log

(√
1 − 2ρz + z2 + z − ρ

1 − ρ

)
;

the second term is

σ̂1(X) =
(1 − β)2

24

α2

(FX)1−β
+

1

4

ρβθα

(FX)(1−β)/2
+

2 − 3ρ2

24
θ2 . (27)

Note that we display here the expansion in the corrected version as was pointed
out by Ob lój (2008); unlike the original fomula this version behaves consis-
tently for β → 1, as then z(β) → θ

α log F
X .

The formula (25) is involved, but explicit and can therefore be computed
efficiently. For the ATM volatility, i.e. F = X, z and χ(z) disappear, and the
first term in (25) collapses to σ̂0(F ) = αF β−1.

As a fitting strategy, it is usually recommended to obtain β from a log-
log plot of historical data of the ATM IV σ̂(F, F ) against F and to exclude
it from the subsequent optimizations. Parameter θ and ρ are inferred from a
calibration to observed market IV; during that calibration α is found implicitly
by solving for the (smallest) real root of the resulting cubic polynomial in α,
given θ and ρ and the ATM IV σ̂(F, F ):
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α3 (1 − β)2T

24F 2−2β
+ α2 ρβθT

4F (1−β)
+ α

(
1 +

2 − 3ρ2

24
θ2T

)
− σ̂(F, F )F 1−β = 0 .

For further details on calibrations issues we refer to Hagan et al. (2002) and
West (2005), where the latter has a specific focus on the challenges arising in
illiquid markets. Alternatively, Mercurio and Pallavicini (2006) suggest a cali-
bration procedure for all parameters (inluding β) from market data exploiting
both swaption smiles and constant maturity swap spreads.

Vanna-Volga method

In terms of input information, the vanna-volga (VV) approach is probably
the most parsimonious amongst all constructive methods for building an IV
surface, as it relies on as few as three input observations per expiry only. It is
popular in FX markets. The VV method is based on the idea of constructing
a replication portfolio that is locally risk-free up to second order in spot and
volatility in a fictitious setting, where the smile is flat, but varies stochastically
over time. Clearly, this setting is not only fictitious, but also theoretically
inconsistent, as there is no model which generates a flat smile that fluctuates
stochastically. It may however be justified by the market practice of using a
BSM model with a regularly updated IV as input factor. The hedging costs
incurred by the replication portfolio thus constructed are then added to the
flat-smile BSM price.

To fix ideas, denote the option vega by ∂C
∂σ , volga by ∂2C

∂σ2 and vanna by
∂2C
∂σ∂S . We are given three market observations of IV σ̂i with associated strikes
Xi, i = 1, 2, 3, with X1 < X2 < X3, and same expiry dates Ti = T for
which the smile is to be constructed. In a first step, the VV method solves the
following system of linear equations, for an arbitrary strike X and for some
base volatility σ̃:

∂CBSM

∂σ
(X, σ̃) =

3∑
i=1

wi(X)
∂CBSM

∂σ
(Xi, σ̃)

∂2CBSM

∂σ2
(X, σ̃) =

3∑
i=1

wi(X)
∂2CBSM

∂σ2
(Xi, σ̃) (28)

∂2CBSM

∂σ∂S
(X, σ̃) =

3∑
i=1

wi(X)
∂2CBSM

∂σ∂S
(Xi, σ̃)

The system can be solved numerically or analytically for the weights wi(X),
i = 1, 2, 3. In a second step, the VV price is computed by

C(X) = CBSM (X, σ̃) +
3∑

i=1

wi(X)
[
CBSM (Xi, σ̂i) − CBSM (Xi, σ̃)

]
, (29)
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from which one obtains IV by inverting the BSM formula. These steps need to
be solved for each X to construct the VV smile. For more details on the VV
method, approximation formulae for the VV smile, and numerous practical
insights we refer to the lucid description presented by Castagna and Mercurio
(2007). As a typical choice for the base volatility, Castagna and Mercurio
(2007) suggest σ̃ = σ2, where σ2 would be an ATM IV, and σ1 and σ3 are 25∆
put and the 25∆ call IV, respectively. As noted there, the VV method is not
arbitrage-free by construction, in particular convexity can not be guaranteed,
but it appears to produce arbitage-free estimates of IV surfaces for usual
market conditions.

7.2 Non- and semiparametric models of implied volatility

If potential arbitrage violations in the resulting estimate are of no particular
concern, virtually any non- and semiparametric method can be applied to
IV data. A specific choice can often be made from practical considerations.
We therefore confine this section to pointing to the relevant examples in the
literature.

Piecewise quadratic or cubic polynomials to fit single smiles was ap-
plied by Shimko (1993), Malz (1997), Ané and Geman (1999) and Hafner
and Wallmeier (2001). Aı̈t-Sahalia and Lo (1998), Rosenberg (2000), Cont
and da Fonseca (2002) and Fengler et al. (2003) employ a Nadaraya-Watson
smoother. Higher order local polynomial smoothing of the IV surface was
suggested in Fengler (2005), when the aim is to recover the local volatility
function via the Dupire formula, or by Härdle et al. (2010) for estimating
the empirical pricing kernel. Least-squares kernel regression was suggested in
Gouriéroux et al. (1994) and Fengler and Wang (2009). Audrino and Colangelo
(2009) rely on IV surface estimates based on regression trees in a forecasting
study. Model selection between fully parametric, semi- and nonparametric
specifications is discussed in detail in Aı̈t-Sahalia et al. (2001).

7.3 Implied volatility modeling under no-arbitrage constraints

For certain applications, for instance for local volatility modeling, an arbitrage-
free estimate of the IV surface is mandatory. Methods producing arbitrage-free
estimates must respect the bounds presented in section 4. They are surveyed
in this section.

Call price interpolation

Interpolation techniques to recover a globally arbitrage-free call price function
have been suggested by Kahalé (2004) and Wang et al. (2004). It is crucial
for these algorithms to work that the data to be interpolated are arbitrage-
free from the beginning. Consider the set of pairs of strikes and call prices
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(Xi, Ci), i = 0, . . . , n. Then, applying to (9), the set does not admit arbitrage
in strikes if the first divided differences associated with the data observe

−e−rT <
Ci − Ci−1

Xi −Xi−1
<
Ci+1 − Ci

Xi+1 −Xi
< 0 (30)

and if the price bounds (8) hold.
For interpolation Kahalé (2004) considers piecewise convex polynomials

which are inspired from the BSM formula. More precisely, for a parameter
vector Θ = (θ1, θ2, θ3, θ4)⊤ with θ1 > 0, θ2 > 0 consider the function

c(X;Θ) = θ1 Φ(d1) −X Φ(d2) + θ3X + θ4 , (31)

where d1 =
[

log(θ1/X) + 0.5 θ22
]
/θ2 and d2 = d1 − θ2. Clearly, c(X;Θ) is

convex in strikes X > 0, since it differs from the BSM formula by a linear
term, only. It can be shown that on a segment [Xi, Xi+1] and for Ci, Ci+1

and given first order deratives C ′
i and C ′

i+1 there exists a unique vector Θ
interpolating the observed call prices.

Kahalé (2004) proceeds in showing that for a sequence (Xi, Ci, C
′
i) for

i = 0, . . . , n + 1 with the (limit) conditions X = 0, Xi < Xi+1, Xn+1 = ∞,
C0 = S0, Cn+1 = 0, C ′

0 = −e−rT and C ′
n+1 = 0 and

C ′
i <

Ci+1 − Ci

Xi+1 −Xi
< C ′

i+1 (32)

for i = 1, . . . , n there exists a unique C1 convex function c(X) described
by a series of vectors Θi for i = 0, . . . , n interpolating observed call prices.
There are 4(n + 1) parameters in Θi, which are matched by 4n equations in
the interior segments Ci = c(Xi;Θi) and C ′

i = c′(Xi;Θi) for i = 1, . . . , n,
and four additional equations by the four limit conditions in (X0, C0) and
(Xn+1, Cn+1).

A C2 convex function is obtained in the following way: For j = 1, . . . , n,
replace the jth condition on the first order conditions by γj = c′(Xj ;Θj) and
γj = c′(Xj ;Θj−1), for some γj ∈]lj , lj+1[ and lj = (Cj − Cj−1)/(Xj −Xj−1).
Moreover add the condition c′′(Xj ;Θj) = c′′(Xj ;Θj−1). This way the number
of parameters is still equal to the number of constraints.

Concluding, the Kahalé (2004) algorithm for a C2 call price function is as
follows:

1. Put C ′
0 = −e−rT , C ′

n+1 = 0 and C ′
i = (li + li+1)/2 for i = 1, . . . , n, where

li = (Ci − Ci−1)/(Xi −Xi−1).
2. For each j = 1, . . . , n compute the C1 convex function with continuous

second order derivative at Xj . Replace C ′
j = γj .

Kahalé (2004) suggests to solve the algorithm using the Newton-Raphson
method.

An alternative, cubic B-spline interpolation was suggested by Wang et al.
(2004). For observed prices (Xi, Ci), i = 0, . . . , n, 0 < a = X0 < . . . < Xn =
b <∞ they consider the following minimization problem:
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min ||c′′(X) − e−rTh(X)||22
s.t. c(Xi) = Ci, i = 0, . . . , n , (33)

c′′(X) ≥ 0 X ∈ (0,∞) ,

where || · ||2 is the (Lebesgue) L2 norm on [a, b], h some prior density (e.g., the
log-normal density) and c the unknown option price function with absolutely
continuous first and second order derivatives on [a, b]. By the Peano kernel
theorem, the constraints c(Xi) = Ci, i = 1, . . . , n can be replaced by∫ b

a

Bi(X) c′′(X) dX = di, i = 1, . . . , n− 2 , (34)

where Bi is a normalized linear B-spline with the support on [Xi, Xi+2] and
di the second divided differences associated with the data. Wang et al. (2004)
show that this infinite-dimensional optimization problem has a unique solution
for c′′(X) and how to cast it into a finite-dimensional smooth optimization
problem. The resulting function for c(X) is then a cubic B-spline. Finally they
devise a generalized Newton method for solving the problem with superlinear
convergence.

Call price smoothing by natural cubic splines

For a sample of strikes and call prices, {(Xi, Ci)}, Xi ∈ [a, b] for i = 1, . . . , n,
Fengler (2009) considers the curve estimate defined as minimizer ĝ of the
penalized sum of squares

n∑
i=1

{
Ci − g(Xi)

}2

+ λ

∫ b

a

{g′′(v)}2 dv . (35)

The minimizer ĝ is a natural cubic spline, and represents a globally arbitrage-
free call price function. Smoothness is controlled by the parameter λ > 0.
The algorithm suggested by Fengler (2009) observes the no-arbitrage con-
straints (8), (9), and (10). For this purpose the natural cubic spline is con-
verted into the value-second derivative representation suggested by Green and
Silverman (1994). This allows to formulate a quadratic program solving (35).
Put gi = g(ui) and γi = g′′(ui), for i = 1, . . . , n, and define g = (g1, . . . , gn)⊤

and γ = (γ2, . . . , γn−1)⊤. By definition of a natural cubic spline, γ1 = γn = 0.
The natural spline is completely specified by the vectors g and γ, see Sec-
tion 2.5 in Green and Silverman (1994) who also suggest the nonstandard
notation of the entries in γ.

Sufficient and necessary conditions for g and γ to represent a valid cubic
spline are formulated via the matrices Q and R. Let hi = ui+1 − ui for
i = 1, . . . , n− 1, and define the n× (n− 2) matrix Q by its elements qi,j , for
i = 1, . . . , n and j = 2, . . . , n− 1, given by

qj−1,j = h−1
j−1 , qj,j = −h−1

j−1 − h−1
j , and qj+1,j = h−1

j ,
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for j = 2, . . . , n − 1, and qi,j = 0 for |i − j| ≥ 2, where the columns of Q are
numbered in the same non-standard way as the vector γ.

The (n− 2) × (n− 2) matrix R is symmetric and defined by its elements
ri,j for i, j = 2, . . . , n− 1, given by

ri,i = 1
3 (hi−1 + hi) for i = 2, . . . , n− 1

ri,i+1 = ri+1,i = 1
6hi for i = 2, . . . , n− 2 ,

(36)

and ri,j = 0 for |i− j| ≥ 2. R is strictly diagonal dominant, and thus strictly
positive-definite.

Arbitrage-free smoothing of the call price surface can be cast into the
following iterative quadratic minimization problem. Define a (2n − 2)-vector
y = (y1, . . . , yn, 0, . . . , 0)⊤, a (2n− 2)-vector ξ = (g⊤, γ⊤)⊤ and the matrices,
A =

(
Q,−R⊤) and

B =

(
In 0
0 λR

)
, (37)

where In is the unit matrix with size n. Then

1. Estimate the IV surface by means of an initial estimate on a regular
forward-moneyness grid J = [x1, xn] × [T1, Tm].

2. Iterate through the price surface from the last to the first expiry, and solve
the following quadratic programs.
For Tj , j = m, . . . , 1, solve

min
ξ

−y⊤ξ +
1

2
ξ⊤Bξ (38)

subject to

A⊤ξ = 0

γi ≥ 0

g2−g1
h1

− h1

6 γ2 ≥ −e−rTj

− gn−gn−1

hn−1
− hn−1

6 γn−1 ≥ 0

g1 ≤ St if j = m

g
(j)
i < g

(j+1)
i if j ∈ [m− 1, 1]

for i = 1, . . . , n (∗)

g1 ≥ St − e−rTju1

gn ≥ 0

(39)

where ξ = (g⊤, γ⊤)⊤. Note that we suppress the explicit dependence on
j except in conditions (∗) to keep the notation more readable. Condi-

tions (∗) implement (10); therefore g
(j)
i and g

(j+1)
i are related by forward-

moneyness.



21

The resulting price surface is converted into IV. It can be beneficial obtain
a first coarse estimate of the surface by gridding it on the estimation grid.
This allows to more easily implement condition (10). The minimization prob-
lem can be solved by using the quadratic programming devices provided by
standard statistical software packages. The reader is referred to Fengler (2009)
for the computational details and the choice of the smoothing parameter λ.
In contrast to the approach by Kahalé (2004), a potential drawback this ap-
proach suffers from is the fact that the call price function is approximated by
cubic polynomials. This can turn out to be disadvantageous, since the pricing
function is not in the domain of polynomials functions. It is remedied however
by the choice of a sufficiently dense grid in the strike dimension in J .

IV smoothing using local polynomials

As an alternative to smoothing in the call price domain Benko et al. (2007)
suggest to directly smooth IV by means of constrained local quadratic polyno-
mials. This implies minimization of the following (local) least squares criterion

min
α0,α1,α2

n∑
i=1

{
σ̃i − α0 − α1(xi − x) − α2(xi − x)2

}2 Kh(x− xi) , (40)

where σ̃ is observed IV. We denote by Kh(x − xi) = h−1K
(
x−xi

h

)
and by

K a kernel function – typically a symmetric density function with compact
support, e.g. K(u) = 3

4 (1 − u2)1(|u| ≤ 1), the Epanechnikov kernel, where
1(A) is the indicator function of some set A. Finally, h is the bandwidth
which governs the trade-off between bias and variance, see Härdle (1990) for
the details on nonparametric regression. Since Kh is nonnegative within the
(localization) window [x−h, x+h], points outside of this interval do not have
any influence on the estimator σ̂(x).

No-arbitrage conditions in terms of IV are obtained by computing (9) for
an IV adjusted BSM formula, see Brunner and Hafner (2003) among oth-
ers. Expressed in forward moneyness x = X/F this yields for the convexity
condition

∂2CBSM

∂x2
= e−rT

√
Tφ(d1)

×

{
1

x2σ̂T
+

2d1

xσ̂
√
T

∂σ̂

∂x
+
d1d2
σ̂

(
∂σ̂

∂x

)2

+
∂2σ̂

∂x2

}
(41)

where d1 and d2 are defined as in (4) and (5).
The key property of local polynomial regression is that it yields simultane-

ously to the regression function its derivatives. More precisely, comparing (40)
with the Taylor expansion of σ̂ shows that

σ̂(xi) = α0, σ̂
′(xi) = α1, σ̂

′′(xi) = 2α2 . (42)
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Based on this fact Benko et al. (2007) suggest to miminize (40) subject to

e−rT
√
Tφ(d1)

{
1

x2α0T
+

2d1α1

xα0

√
T

+
d1d2
α0

(α1)
2

+ 2α2

}
≥ 0 , (43)

with

d1 =
α2
0T/2 − log(x)

σ
√
T

, d2 = d1 − α0

√
T .

This leads to a nonlinear optimization problem in α0, α1, α2.
The case of the entire IV surface is more involved. Suppose the purpose

is to estimate σ̂(x, T ) for a set of maturities {T1, . . . , TL}. By (11), for a
given value x, we need to ensure ν̂2(x, Tl, ) ≤ ν̂2(x, Tl′), for all Tl < T ′

l .
Denote by Khx,hT

(x − xi, Tl − Ti) a bivariate kernel function given by the
product of the two univariate kernel functions Khx

(x− xi) and KhT
(T − Ti).

Extending (40) linearly into the time-to-maturiy dimension then leads to the
following optimization problem:

min
α(l)

L∑
l=1

n∑
i=1

Khx,hT (x− xi, Tl − Ti)
{
σ̃i − α0(l)

−α1(l)(xi − x) − α2(l)(Ti − T ) − α1,1(l)(xi − x)2

−α1,2(l)(xi − x)(Ti − T )
}2

(44)

subject to√
Tlφ(d1(l))

{
1

x2α0(l)Tl
+

2d1(l)α1(l)

xα0(l)
√
Tl

+
d1(l)d2(l)

a0(l)
α2
1(l) + 2α1,1(l)

}
≥ 0 ,

d1(l) =
α2
0(l)Tl/2 − log(x)

α0(l)
√
Tl

, d2(l) = d1(l) − a0(l)
√
Tl, l = 1, . . . , L

2Tlα0(l)α2(l) + α2
0(l) > 0 l = 1, . . . , L

α2
0(l)Tl < α2

0(l′)T ′
l , Tl < T ′

l .

The last two conditions ensure that total implied variance is (locally) nonde-

creasing, since ∂ν2

∂T > 0 can be rewritten as 2Tα0α2 + α2
0 > 0 for a given T ,

while the last conditions guarantee that total variance is increasing across the
surface. From a computational view, problem (44) calculates for a given x the
estimates for all given Tl in one step in order to warrant that ν̂ is increasing
in T .

The approach by Benko et al. (2007) yields an IV surface that respects
the convexity conditions, but neglects the conditions on call spreads and the
general price bounds. Therefore the surface may not be fully arbitrage-free.
However, since convexity violations and calendar arbitrage are by far the most
virulent instances of arbitrage in observed IV data occurring the surfaces will
be acceptable in most cases.
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