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Abstract 

Equity index implied volatility functions are  known to be excessively skewed in comparison 

with implied volatility  at the single stock level. We study this stylized fact for the case of a  

major German stock index, the DAX, by  recovering  index implied  volatility from 

simulating the 30 dimensional return system of all DAX constituents. Option prices are 

computed after risk neutralization of the multivariate process which is estimated under the 

physical probability measure. The multivariate models belong to the class of  copula 

asymmetric dynamic conditional correlation models. We show  that moderate tail-

dependence coupled with asymmetric correlation response to negative news is essential  to 

explain the index implied volatility skew. Standard dynamic correlation models with zero 

tail-dependence fail to  generate a sufficiently steep implied volatility skew. 
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1 Introduction

For equity option markets, it is a widely documented stylized fact that the Black-Scholes

implied volatility function is highly asymmetric across strikes ever since the 1987 stock

market crash. More precisely, the implied volatility function, which is derived by equating

observed option prices at different strikes with the Black and Scholes (1973) option valuation

formula, regularly exhibits a steeper slope for out-of-the-money put than for out-of-the-

money call options, see e.g. Rubinstein (1994) among many others. This stylized fact,

which is usually referred to as the (equity) implied volatility skew, has received a high level

of attention in the literature. A second stylized fact of equity option markets, which has

attracted much less attention so far, is the observation that individual stock option skews

tend to be flatter than the implied volatility skew of the index. For instance, as Bakshi

et al. (2003) and Bollen and Whaley (2004) find for U.S. equity option markets and Branger

and Schlag (2004) for the German market, the index skew is significantly steeper than the

individual implied volatility skews of the constituents. This is surprising, since an index is

a mere basket of single stocks by construction. By portfolio diversification effects or from

liquidity considerations, one could also expect a reverse pattern.

Several hypotheses have been raised in the literature to explain the counterintuitive relation

of index versus stock implied volatility functions. Bakshi et al. (2003) attribute the described

stylized volatility features to differences in the skewness of the risk neutral distribution of

the index and individual stocks. They propose a market model in which individual stock

returns are decomposed into a market and an idiosyncratic factor and derive conditions

under which individual skews can be less negatively sloped than the index skew. In contrast,

Bollen and Whaley (2004) argue that the steepness of index skews does not result from

fundamental differences in the underlying distributions or processes but from supply and

demand conditions which drive up put prices. Branger and Schlag (2004) point out that

the index being a basket of stocks must be determined from the asset price dynamics of its



constituents. Using a multivariate jump-diffusion model, they show that excess basket skews

can stem from low correlation among the underlying Wiener processes and a high probability

of a common downward jump of all stocks. Remarkably, Bollerslev et al. (2008) find strong

evidence for non-diversifiable, modest-sized cojumps in individual stocks in high-frequency

data. In an empirical asset pricing study, Driessen et al. (2009) further demonstrate that the

differential pricing of individual and index options can be attributed to a large correlation

risk premium embedded in index options, whereas idiosyncratic variance risk in individual

options appears to be unpriced. Similar insights are obtained in Carr and Wu (2009).

In this work we choose a bottom-up approach and model the index as a basket of single stocks.

This is accomplished by a full-fledged multivariate model for all constituent stocks comprised

in the index. Doing so, we build on extensions of models with generalized autoregressive

conditional heteroskedasticity (GARCH), dynamic conditional correlation (DCC, Bollerslev

(1990), Engle (2002), Tse and Tsui (2002), Pelletier (2006)) and conditional cross sectional

dependence captured by a copula function (Lee and Long 2009). We then ask (i) to which

extent the model is able to replicate the observed patterns of implied volatility skews in

index options; and (ii) which model characteristics govern these features. The model allows

us to study the relevance of dynamic correlation and of the joint cross sectional dependence

beyond correlation simultaneously. While these questions have frequently been investigated

for the univariate case (see Engle and Mustafa (1992), Christoffersen and Jacobs (2004),

Christoffersen et al. (2006), Barone-Adesi et al. (2010) amongst others), we address them

within a multivariate framework.

The joint analysis of stock return and option data has recently triggered substantial interest

in multivariate option pricing models. Langnau (2010) extends the multivariate determin-

istic volatility model by allowing for a local correlation which depends both on time and

the path of the underlying index. Heston-type multivariate option pricing models are sug-

gested by Gouriéroux and Sufana (2004) and da Fonseca et al. (2008), while Luciano and

Schoutens (2006) develop a multivariate Lévy model which is driven by a common stochastic

2



time change. Factor models are proposed by Mo and Wu (2007), Şerban et al. (2008) and

Elkamhi and Ornthanalai (2009) to account for global versus country-specific and market

versus firm-specific factors in return and volatility. Unlike this literature we adopt a copula

DCC-GARCH model (C-DCC henceforth) due to its tractability in high-dimensions and its

flexibility. Moreover, the nested structure of the C-DCC model allows us to disentangle

the various sources that potentially contribute to the index skew, namely (i) alternative

distributional assumptions on model innovations; (ii) uncorrelated and independent versus

uncorrelated and (tail-)dependent innovations; (iii) conditionally heteroskedastic volatility

coupled with symmetric versus leveraged conditional correlation dynamics.1 Multivariate

option pricing in GARCH models is also considered in Goorbergh et al. (2005), Bernard and

Czado (2010), and Rombouts and Stentoft (2011) though for much smaller dimensions than

considered here.

Adopting a multivariate modeling approach to derivative valuation is challenging from several

points of view. First, by the curse of dimensionality, a direct calibration of the model, e.g.

by minimizing a cost functional defined across model implied and observed market prices

as in Barone-Adesi et al. (2010), does not seem to be viable in a high dimensional model

framework. We therefore need to identify model parameters from historical stock price

data. To this end, we rely on recent work by Engle et al. (2009) who suggest the use of

composite maximum likelihood (CML) estimation, coupled with quasi maximum likelihood

(QML) estimation for the marginal variance dynamics. Second, since CML/QML estimates

are obtained under the physical probability measure, we cannot compute option prices by

means of the estimated model without making very restrictive assumptions on the market

price of risk or the underlying distributional framework. Thus, an equivalent risk-neutral

pricing measure is called for, under which single stock processes are martingales with respect

to the filtration generated by all assets. We therefore move on in applying a feasible change

of measure to obtain an equivalent risk-neutral pricing measure. This measure change, which

builds on work by Gouriéroux and Monfort (2007) and Christoffersen et al. (2010), requires

knowledge of the moment generating function (MGF), which is unknown in our particular
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copula-based model framework. We therefore approximate the change of measure up to

second order, which allows us to treat the copula shape parameter as a free parameter.

By varying it, we study to which extent the basket implied volatility functions of the risk-

neutralized model fit the index option market.

Our results are twofold. First, the C-DCC model, when estimated from time series data

under the physical measure and risk-neutralized in the manner we outline below, cannot

fully account for the observed basket skew. When treating the copula shape parameter as

a free variable to search for the best fit, nearly all goodness of fit measures drop by around

30%, but there still remains some degree of steepness in the basket skew which cannot be

explained. Thus, the proposed measure change fails to capture all aspects of the risk-neutral

measure adopted by the market. Evaluating the out-of-sample pricing performance of the

model, we find this outcome to be robust across a couple of subsequent trading days. As

a second part of results, a sensitivity analysis suggests that fat-tailedness and the precise

dynamic specification of the threshold variance processes are not the decisive determinants of

the observed stylized facts of index versus constituent skews. This is because fat-tailedness at

the constituent level vanishes to a large extent at the basket level, while an increased response

of constituent variances to bad news has a similarly sized impact on both the basket skew

and the constituent skew. What substantially matters is the overall dependence structure

in the basket, in particular the non-zero probability of large negative returns in all stocks

coupled with a strong asymmetric response of the correlation dynamics to bad news, e.g.

after joint price deteriorations. These findings corroborate the common factor hypothesis

raised for instance in Branger and Schlag (2004) and Driessen et al. (2009), but additionally

stress the relevance of particular forms of correlation dynamics to explain the basket skew.

In Section 2, the C-DCC model is presented, and a discussion of model estimation follows

in Section 3. In Section 4, we describe the theory for the change of measure in multivariate

GARCH models and discuss option pricing. In Section 5 we provide and interpret the

empirical results, and Section 6 concludes.
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2 C-DCC models

In this section we present the C-DCC model as introduced by Lee and Long (2009). We

discuss the variance dynamics of the marginal distributions, the treatment of conditional

leptokurtosis, the specification of the correlation dynamics and, finally, the conditional de-

pendence of the data generating processes which drive asset prices.

2.1 The C-DCC model

Consider anN -dimensional vector of asset returns, rt = (r1,t, . . . , rN,t)
⊤, ri,t = log(Si,t/Si,t−1),

where Si,t is the price of asset i at time t and assume that first and second order moments of

rt are measurable with respect to Ft−1, the filtration generated by the multivariate process.

The copula multivariate GARCH model reads as

rt = µt − γt +H
1/2
t εt, (1)

εt = Σ−1/2ηt, (2)

ηt|Ft−1 ∼ C
(
F1(η1,t|δ1), . . . , FN(ηN,t|δN), θ

)
, (3)

where εt = (ε1,t, . . . , εN,t)
⊤ and ηt = (η1,t, . . . , ηN,t)

⊤. The vectors µt and γt in (1) collect

the Ft−1-measurable asset specific conditional mean processes and asset specific compen-

sators, respectively, which are explained in more detail below. The conditional covariance

matrix of rt is denoted by Ht, where the matrix square root is implemented by means of

the Cholesky decomposition.2 Let EP [X|Ft−1] be the Ft−1-conditional expectation of some

random variable X under the physical probability measure P , under which the estima-

tion is carried out. For the innovation vectors in (2) it is assumed that EP [ηt|Ft−1] = 0

and EP [ηtη
⊤
t |Ft−1] = Σ = (σij), i, j = 1, . . . , N . As a consequence the elements in εt

are uncorrelated processes with mean zero and unit variance, i.e. EP [εt|Ft−1] = 0 and

EP [εtε
⊤
t |Ft−1] = IN , where IN denotes the N -dimensional identity matrix. Although contem-

poraneously uncorrelated, the elements in εt are not independent since they obey a mixture
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representation of the random processes ηi,t. The marginal distributions of ηi,t, i = 1, . . . , N ,

are denoted by F (ηi,t|δi), and the joint distribution can be written by means of the copula

as C(F1(η1,t|δ1), . . . , FN(ηN,t|δN), θ). The parameters δ and θ govern the (excess) kurtosis of

ηi,t and the degree of contemporaneous dependence, respectively. Depending on the partic-

ular copula, θ reflects forms of tail-dependence between pairs of assets. For instance, one

could capture the notion that a simultaneous price deterioration between pairs of assets is

a-priori more likely than a joint upward movement of prices. In particular, if C(. . . , θ) is the

Gaussian copula and F (ηi,t|δi) the Gaussian distribution, the model coincides with common

multivariate GARCH specifications formalized within a framework of conditional normality.

In the following, the basic building blocks of the C-DCC model are sketched.

2.2 Constituent variance processes

Since its introduction, the univariate GARCH(1,1) model and its asymmetric generalization

(TGARCH) have proved to be suitable for describing a wide variety of financial market

data (Bollerslev 1986, Glosten et al. 1993, Bollerslev et al. 1994). We therefore employ this

parsimonious specification of conditional heteroskedasticity in order to isolate the correlation

dynamics. For each asset i, we presume a TGARCH(1,1) representation of the following form:

ri,t = log

(
Si,t

Si,t−1

)
= µi,t − γi,t + zi,t, i = 1, . . . , N, (4)

zi,t = ei,t
√
hii,t, ei,t ∼ (0, 1), (5)

hii,t = ϕi,0 + ϕi,1z
2
i,t−1 + ϕ−

i z
2
i,t−11[zi,t−1<0] + ϕi,2hii,t−1, (6)

where 1[•] denotes an indicator function, and ei,t is a univariate mean-zero, unit-variance in-

novation sequence characterized by cross sectional contemporaneous correlation. A leverage

effect is captured by the TGARCH model in (6) if ϕ−
i > 0. For notational convenience, asset

specific TGARCH parameters are collected in ϕi = (ϕi,0, ϕi,1, ϕ
−
i , ϕi,2)

⊤. As in Christoffersen

et al. (2010) we add a compensator γi,t to the mean equation (4) which ensures that the

conditional expected gross rate of return equals the drift under the physical measure, i.e. we
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require EP [Si,t/Si,t−1|Ft−1] = exp(µi,t), which implies exp(γi,t) = EP [exp(zi,t)|Ft−1].

To model the asset specific risk premia µi,t we draw upon the conditional variant of the

capital asset pricing model (CAPM), originally due to Sharpe (1964) and Lintner (1965).

More precisely, we assume that

µi,t = rf,t + λCovt−1[zi,t, rm,t], i = 1, . . . , N, (7)

where rf,t is the risk free rate and rm,t the excess return on the market portfolio, which we

identify with the DAX index in our case. Since (7) holds also for the market, λ has the

interpretation of the market price of risk. Arguably it is restrictive to adopt a one-factor

model and to assume a constant market price of risk, but we point out that this benchmark

model is underlying many empirical studies (e.g. Giovannini and Jorion (1989) and Chan

et al. (1992)) and can be confirmed empirically (de Santis and Gerard (1997)).

In setting out the TGARCH model, the conditional distribution in (5) is left unspecified.

For the majority of its empirical applications to daily asset returns the assumption of con-

ditional normality is made for the purposes of QML estimation of ϕi, while diagnostic tests

typically hint at remaining leptokurtosis of model innovations. As is evident from the spec-

ification of the copula multivariate GARCH model in (2), the εi,t are weighted sums of

dependent innovations εt = Σ−1/2ηt. Consequently, to allow for conditional leptokurtosis

of the marginal processes we presume that ηi,t follow generalized error distributions (GED)

with mean zero, unit variance and common shape parameter δ. The GED coincides with the

Gaussian distribution for δ = 2, see Nelson (1991) for further details on the GED.3

2.3 Dynamic conditional correlations

Multivariate GARCH models are widely adopted to describe second order comovements in

multiple asset return systems, see Bauwens et al. (2006) for a review. As a subclass of

multivariate GARCH models, DCC specifications have been introduced to cope with the
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curse of dimensionality in high dimensional systems (Bollerslev 1990, Engle 2002, Tse and

Tsui 2002, Pelletier 2006). In analogy to univariate GARCH models, the DCC variants in

Engle (2002) and Tse and Tsui (2002) formalize a response of current correlation matrices to

recent news and past correlations, while in Pelletier (2006) time-varying correlation patterns

are generated from a finite set of constant correlation matrices invoked by a Markov state

process. Since the latter approach can be seen as compromising between a constant and a

fully dynamic correlation model, we prefer to directly work with the fully dynamic model as

introduced in Engle (2002). It involves non-linear estimation of only a few parameters, and in

absence of news, it allows the correlation of the system to adjust slowly to its unconditional

levels.

To formalize dynamic conditional correlation consider the following covariance decomposition

Ht = DtRtDt, Dt = diag(
√
h11,t, . . . ,

√
hNN,t). (8)

In (8) the elements of Dt are standard deviations collected from the univariate TGARCH

models. The DCC(1,1) model as introduced by Engle (2002) reads as

Rt = Q∗
t
−1/2QtQ

∗
t
−1/2, Qt = Q(1− α1 − α2) + α1et−1e

⊤
t−1 + α2Qt−1. (9)

In (9), Q∗
t = Qt⊙IN , where⊙ denotes element-by-element multiplication, andQ is the uncon-

ditional second moment matrix of stacked univariate GARCH residuals et = (e1,t, . . . , eN,t)
⊤.

News response and persistence of the conditional correlation matrix are governed by the

parameters (α1) and (α1 + α2), respectively. The elements of Rt are of the form rij,t =

(qii,tqjj,t)
−1/2qij,t. By the Cauchy-Schwartz inequality, Rt is a correlation matrix such that

its diagonal elements are unity (rii,t = 1, i = 1, . . . , N). If α1 = α2 = 0, the model reduces

to a constant conditional correlation model (Bollerslev 1990).

A notable extension of the DCC(1,1) model is the asymmetric DCC (ADCC) (Cappiello

et al. 2006), which allows for leveraged correlations responding to negative market news.

Within the ADCC model the right hand side of (9) is replaced by

Qt = (1− α1 − α2)Q− α−N + α1(et−1e
⊤
t−1) + α−(nt−1n

⊤
t−1) + α2Qt−1, (10)
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where nt = et ⊙ 1[et<0] and 1[et<0] is an N -dimensional vector of indicator functions with

unit elements if ei,t < 0. N is the unconditional second moment matrix of nt. The dynamic

correlation matrix is again determined as Rt = Q∗
t
−1/2QtQ

∗
t
−1/2, which is positive definite

with probability one if (1− α1 − α2)Q− α−N is positive definite (Cappiello et al. 2006). If

α− > 0, the ADCC model captures the common view that conditional correlations respond

more strongly to bad news than to good news.

2.4 Conditional dependence

In most contributions to multivariate GARCH techniques, model innovations are presumed

to be independent and identically (iid) Gaussian distributed over both the time and the

cross sectional dimension. To address joint non Gaussian return distributions two main ap-

proaches can be distinguished. On the one hand, higher order unconditional cross moments

have been considered to carry informational content for an assets’ return distribution. In

this framework the empirical co-skewness or co-kurtosis (e.g. of an asset with the market)

enters equilibrium asset prices or portfolio allocations (see Chung et al. (2006) with further

references). On the other hand, drawing upon Sklar’s theorem, multivariate models have

been developed which strictly separate the marginal distributional features of innovations

from copula implied cross sectional dependence. In this framework generalizations towards

time varying correlation are formalized by means of a structural model supposed to describe

the copula parameter(s) in a predetermined or exogenous form (Granger et al. 2006, Patton

2006, Kim et al. 2008, Fantazzini 2009, Jin 2009, Creal et al. 2011, Christoffersen, Errunza,

Jacobs and Langlois 2011). As such, although offering some enhanced generality of cross

sectional dependence, the correlation patterns fitting in this model class are subject to strong

cross sectional homogeneity restrictions. Lee and Long (2009) suggest a copula based mul-

tivariate GARCH setting, where time variation of second order moments and unconditional

dependence of model innovations are conceptually separated but modeled simultaneously. To

specify the former, they propose established multivariate GARCH specifications (e.g. DCC),
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while the latter is formalized by means of a parametric copula distribution function. Thus,

similar to the motivation of DCC models which generalize the constant correlation case,

this framework allows for a richer (dynamic) structure of cross asset volatility in comparison

with the homogeneous correlation models. Accounting for these considerations, we adopt

the model by Lee and Long (2009).

We implement the C-(A)DCC model in (3), (9) and (10) by means of the Clayton copula

in light of economic and technical considerations. From the former perspective, the copula

should be capable to characterize the index skew, which can be accomplished by choosing

a copula having positive lower tail-dependence and zero upper tail-dependence.4 Thus,

conditional on a large negative innovation hitting stock i, the probability that stock j is also

struck by a large negative innovation is bounded away from zero. Note, however, that vector

innovations εt are not directly drawn from the multivariate distribution, but are obtained as

a standardized draw from the underlying copula. As an implication of this standardization,

εt and ηt might differ with regard to their level of potential tail-dependence. In the following,

we will however not distinguish between the tail-dependence characteristics of εt and ηt (in

this regard see also Lee and Long (2009), p. 214, footnote 12).

¿From a technical perspective, numerical tractability of the copula density is essential to

avoid prohibitive complexity of the log-likelihood evaluation. Noting that asymmetric tail-

dependence could also be generated from other copula distributions (e.g. the (rotated)

Gumbel), we adopt the Clayton copula, since an analytical expression of its density function

is easy to obtain and the simulation of high-dimensional random vectors is straight forward.

In Section 5.2 this choice is justified by means of a specification test following the lines of

Genest and Rémillard (2008).

Formally, the Clayton copula reads as:

C(u1, . . . , uN ; θ) =

{(
N∑
i=1

u−θ
i

)
−N + 1

}−1/θ

, θ > 0 . (11)

As θ → 0, the Clayton copula approaches the independence copula. The lower and upper
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tail-dependence are, respectively, 2−1/θ and 0. Similar to the models proposed in Granger

et al. (2006) or Patton (2006), the copula multivariate GARCH framework could also allow

for a time dependent parametrization of the copula parameter θt. Since a main concern of

our modeling approach is parsimony we renounce on such a refinement, see Lee and Long

(2009) or Giacomini et al. (2006).

3 Maximum likelihood estimation

3.1 The likelihood function and general considerations

The log-likelihood function for the C-(A)DCC model is

ℓ(α, ϕ, θ, δ, λ,Q,N) =
T∑
t=1

log
[
f(rt; α, ϕ, θ, δ, λ,Q,N)

]
=

T∑
t=1

N∑
i=1

log [fi(ηi,t)] + log [c (F1(η1,t), . . . , FN(ηN,t))]

+
T

2
log |Σ| − 1

2

T∑
t=1

log |Ht| . (12)

In (12) c(u1, . . . , uN) = ∂NC(u1,...,uN )
∂u1··· ∂uN

denotes the copula density function and the last two

terms depend on the Jacobian of the transformation from observables in rt to the underlying

innovations ηt.

Maximization of the likelihood of the C-(A)DCC-in-mean model is intricate, since first and

second order data features have to be respected simultaneously. But even when proceeding

from the simplifying assumption that the mean process in (1) is constant, one-step esti-

mation, as originally suggested by Lee and Long (2009), is hardly feasible in systems with

dimensions larger than three. Moreover, such an approach would sacrifice the separation of

marginal volatility processes and correlation dynamics, which has been a principal argument

for the feasibility of dynamic correlation modeling in high dimensional systems. On the other

11



hand, the common three step estimation procedure due to Engle (2002) is known to suffer

from an incidental parameter problem, which affects the news response parameters α1 and

α− already in moderately sized set-ups of 30 to 50 assets to an economically relevant extent

(Lancaster 2000, Engle and Sheppard 2001, Engle et al. 2009). It is therefore reasonable to

expect – and empirical results reported in an earlier draft of this paper appear to confirm this

interpretation – that also the copula based DCC model is afflicted with this short-coming.

For this reason, we still adopt a three-stage log-likelihood optimization, but follow recent

suggestions of Engle et al. (2009) in implementing a composite maximum likelihood (CML)

estimator. CML involves averaging the quasi-likelihoods of bivariate subsets of assets. Each

of these subsets provides a valid quasi-likelihood, but is only weakly informative about

parameters. As demonstrated in Engle et al. (2009) this approach can handle parameter

estimation even in settings where the cross section of assets is larger than the time-series

dimension, but does not suffer from the incidental parameter problem. In our case such CML

estimation is simplified due to the homogeneity assumption imposed on the dependence

structure, which is reflected in the single copula parameter θ. This implies that the off-

diagonal elements in Σ are identical for all i, j, i ̸= j (diagonal elements are equal to unity

for the purpose of identification).

3.2 Estimation of the variance equations

Initializing an outer loop of model estimation, we assume that the mean process in (1)

is constant, i.e. µ = µt − γt, and work with the centered series of ri,t. As proposed in

de Santis and Gerard (1997) nontrivial conditional mean parameters can be recovered at

later iteration steps based on second order filtered data. By standard QML techniques we

obtain estimates of the marginal TGARCH volatility models for each asset specific return

process ri,t, i = 1, . . . , N .

In a second step, the unconditional matrices Q and N are estimated by means of the method
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of moment estimators5

Q̂ = T−1

T∑
t=1

êtê
⊤
t , and N̂ = T−1

T∑
t=1

n̂tn̂
⊤
t . (13)

In the third step, we jointly estimate the DCC parameter vector α = (α1, α2, α
−)⊤, the

copula parameter θ, and the shape parameter δ by means of CML techniques. To this end,

we form subsystems {r̃m,t}Mm=1, where each item r̃m,t = (ri,t, rj,t)
⊤, i ̸= j, is a bivariate vector

of the returns of two distinct assets. More precisely, we use the set of contiguous returns

which consists of M = N − 1 = 29 pairs r̃1,t = (r1,t, r2,t)
⊤, r̃2,t = (r2,t, r3t)

⊤, . . . , r̃N−1,t =

(rN−1,t, rNt)
⊤, where the numbering follows the alphabetical order as in Table 1.6 For given

market price of risk λ the composite log likelihood is given by

ℓc(α, θ, δ|ϕ,Q,N) =
1

M

T∑
t=1

M∑
m=1

lm,t(α, θ, δ|ϕ,Qm, Nm). (14)

where lm,t(α, θ, δ|ϕ,Qm, Nm) = log[f(r̃m,t; α, θ, δ)], while Qm and Nm denote the relevant

submatrices of Q and N .

In each iteration during the maximization of (14), we compute Σ numerically from of Ho-

effding’s lemma (Hoeffding 1940)

σi,j(θ) =

∫ ∫
[Fij(ηi, ηj|θ)− Fi(ηi)Fj(ηj)]dηidηj, (15)

where Fij(·) denotes a joint distribution function with corresponding marginals Fi(·) and

Fj(·). In light of Sklar’s Theorem (Sklar 1959), Fij(ηi, ηj|θ) is replaced by the copula function

C(ηi, ηj|θ). The double integral in (15) is evaluated in terms of Riemann sums. In each

iteration, the likelihood is evaluated based on η̂t = Σ1/2ε̂t, where ε̂t are the standardized

residuals obtained from the first two steps.

3.3 Estimation of the mean equations

As a first step to the estimate the market price of risk in the mean equation (7), we compute

the covariance Ĉovt−1[ri,t, rm,t] from the estimated covariance system Ĥt, t = 1, . . . , T , as
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follows. Denote the index by Bt =
∑N

i=1 aiSi,t, which is given by the weighted sum of its

constituents with absolute shares ai, i = 1, . . . , N (see Section 5.1 for a description of the

DAX index shares). Moreover, denote by wi = aiSi,t/Bt the relative weight of asset i in the

index in period t. We then have

Covt[ri,t+1, rm,t+1] = Covt

[
ri,t+1,

N∑
j=1

wjrj,t+1

]

=
N∑
j=1

wjCovt [ri,t+1, rj,t+1]

=
N∑
j=1

wjhij,t . (16)

By replacing in (16) the population values by the elements of the estimated Ĥt, we obtain

estimates Ĉovt[ri,t, rm,t].

In a second step we run the regressions

ri,t − rf,t = λ Ĉovt−1[ri,t, rm,t] , i = 1, . . . , N, t = 1, . . . , T .

This is a classical regression in the asset pricing literature dating to French et al. (1987) and

can be addressed by a number of panel regression techniques. We employ the mean group

estimator, which amounts to averaging across N separate OLS or weighted LS regression

estimates. More precisely, the mean group estimator is given by λ̂MG = N−1
∑N

i=1 λ̂i and

has variance Var[λ̂MG] = [N(N − 1)]−1
∑N

i=1(λ̂i − λ̂MG)2, see Pesaran and Smith (1995) for

more details and further references.

Having accomplished these steps, we obtain estimates for the entire system. As mentioned,

the procedure could be repeated based on a filtered return series. We will renounce on this

second loop, since we barely find the market price of risk to be significant at single stock

levels. It is only at the mean group level that we identify a significant positive market price

of risk. We will discuss this issue in more detail in the empirical section.
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4 Change of measure and estimation of option prices

The success of GARCH type volatility specifications in time series econometrics has been fol-

lowed by wide spread adoption of this model class for financial purposes, such as derivatives

pricing (Duan 1995, Christoffersen and Jacobs 2004). The estimation of GARCH models is,

however, accomplished under a physical measure P . For option pricing within the Harrison

and Kreps (1979) framework, an equivalent martingale measure needs to be chosen. For

instance, Duan (1995) introduced a GARCH based simulation approach for option valua-

tion, in which the pricing parameters are identified from historical observations and risk

neutralization is achieved by adjusting asset specific drift terms. Barone-Adesi et al. (2010)

propose to directly calibrate observed prices by means of empirical risk neutral martingale

sequences featuring GARCH type volatility. Given the number of parameters, a genuine

calibration to market prices is not feasible in our case. We therefore apply a multivariate

measure change of the GARCH process. In the following, we first present the theory that

underlies the change of measure, and second, detail the implementation of the simulation

based pricing algorithm.

4.1 Change of measure

Owing to the fundamental theorem of asset pricing (Dalang et al. 1990), arbitrage free option

prices can be calculated as discounted expected payoffs if and only if the discounted price

process of the underlying asset is a martingale under a so-called risk neutral probability

measure. In the present setup, the price process of the index constituents under P is given

by

Si,t = Si,t−1e
µi,t−γi,t+zi,t , (17)

where zi,t ∼ (0, hii,t) exhibits some zero-mean, heteroscedastic distribution. Clearly, these

processes do not meet the martingale property, which requires a change to an equivalent

martingale measure (EMM) denoted by Q.
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Our change of measure builds on the Esscher transform of the conditional physical probability

measure and therefore is applicable under conditional heteroscedasticity and nonnormality.

This use of the conditional Esscher transform is due to Gouriéroux and Monfort (2007) and

Christoffersen et al. (2010), but the Esscher transform is a well-established technique in ma-

thematical finance and insurance, see Esscher (1932), Gerber and Shiu (1994), Bühlmann

et al. (1996), Kallsen and Shiryaev (2002) and the review article by Hubalek and Sgarra

(2006), and is also used in Rombouts and Stentoft (2011). An overview of econometric

modeling based on the conditional Esscher transform can be found in Bertholon et al. (2008).

For the construction of an EMM consider the following, Ft-measurable and exponentially

affine Radon-Nikodym process:

dQ

dP
|Ft ≡ Lt = exp

{
−

[
t∑

j=1

ν⊤j zj +Ψj(νj)

]}
, (18)

where Ψj(νj) is the natural logarithm of the conditional MGF of zt = (z1,t, . . . , zN,t)
⊤, i.e.

EP [exp(−u⊤zt)|Ft−1] = exp(Ψt(u)) with u ∈ RN and {νt} is a N -dimensional, predeter-

mined, non-stochastic sequence which needs to be chosen in a suitable manner to obtain

the martingale property. It is straightforward to see that (18) is indeed a Radon-Nikodym

process, since (i) we have Lt > 0 by construction, and (ii) EP [Lt] = 1 follows from a repeated

application of the law of iterated expectations, see Lemma 1.1 of Christoffersen et al. (2010)

for the details of the argument. The following result is due to Gouriéroux and Monfort

(2007).

Proposition 4.1. The probability measure Q induced by Lt is an EMM if and only if

Ψt(νt − 1(i))−Ψt(νt) + µi,t − rf,t − γi,t = 0, i = 1, . . . , N , (19)

where 1(i) is a vector with all elements being zero except the i-th element which is unity.
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Proof: We need to show that e−rf,tEQ[Si,t+1|Ft] = Si,t.

e−rf,tEQ[Si,t+1|Ft] = e−rf,t
1

Lt

EP [Lt+1Si,t+1|Ft]

= e−rf,tEP [e−ν⊤t zt−Ψt(νt)Si,te
µi,t−γi,t+zi,t|Ft]

= Si,te
µi,t−rf,t−γi,t−Ψt(νt)EP [e−ν⊤t zt+zi,t|Ft]

= Si,t exp
[
µi,t − rf,t − γi,t −Ψt(νt) + Ψt(νt − 1(i))

]
,

where the first line follows from standard properties of Radon-Nikodym processes, see e.g.

Lemma 5.2.2 in Shreve (2004), while the remaining lines follow from plugging in (17) and (18)

and rearranging. Clearly the martingale property holds if and only if for all i = 1, . . . , N

condition (19) holds. �

This approach yields a martingale measure for the filtration generated by all assets. In

consequence the basket Bt =
∑N

i=1 aiSi,t follows a martingale as well, since

e−rf,tEQ[Bt+1|Ft] = e−rf,tEQ

[
N∑
i=1

aiSi,t+1|Ft

]

=
N∑
i=1

aiSi,t exp
[
µi,t − rf,t − γi,t −Ψt(νt) + Ψt(νt − 1(i))

]
= Bt

by the very same line of arguments under condition (19).

Some remarks on the measure change are in order. Since the discrete time framework is

an incomplete market setting, an infinite number of EMMs exist. The present approach

picks but one out of this set. As has been shown in Christoffersen et al. (2010), conditional

on using the Esscher transform, the choice is unique if the physical measure is infinitely

divisible. Yet, it remains arbitrary in some sense, and other methods for finding an EMM

could be used. Under certain conditions, however, the risk-neutral measure determined by

means of the Esscher transform may coincide with those identified with other strategies, see

Monoyios (2007) for further details.
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4.2 Option pricing

Option pricing requires a solution to (19). In certain cases this can be given exactly. Assume

that zt ∼ N (0, Ht), i.e. zt follows a classical multivariate GARCH process. Then Ψt(u) =

1
2
u⊤Htu and inserting into (19) yields, for i = 1, . . . , N ,

0 =
1

2
(νt − 1(i))⊤Ht(νt − 1(i))− 1

2
ν⊤t Htνt + µi,t − rf,t − γi,t

= −
N∑
j=1

hij,tνj,t +
1

2
hii,t − γi,t + µi,t − rf,t

= −
N∑
j=1

hij,tνj,t + µi,t − rf,t

since 1
2
hii,t = γi,t under normality. Putting this result into matrix notation and denoting

by 1 a vector of ones yields

Htνt = µt − rf,t1 ⇔ νt = H−1
t (µt − rf,t1) , (20)

which is the discrete time analogue to the solution of the market price of risk in the classical

multidimensional security market based on the Geometric Brownian motion. The solution

depends on the specification of the mean process µt, only.

Unfortunately, for the copula multivariate GARCH framework the MGF of zt is not available.

This poses three challenges. First, (19) does not admit an exact solution, second the Radon-

Nikodym process is not explicit, and third we cannot construct and characterize the risk-

neutral distribution for option pricing. We address these three issues as follows.

1. As also suggested by Christoffersen et al. (2010), we determine an approximate solu-

tion of (19) by means of a second order Taylor expansion of Ψ(νt) and Ψ(νt − 1(i))

in the neighborhood of zero. Noting that the gradient ▽Ψt(−u)|u=0 = 0 and the

Hessian{Ψt(−u)}|u=0 = Ht, this yields

νt ≈ H−1
t

(
µt − rt1N − γt +

1

2
ht

)
, (21)
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where γt = (γ1,t, . . . , γN,t)
⊤ and ht = (h11,t, . . . , hNN,t)

⊤. In case of nonnormality the

term 1
2
ht − γt drives a wedge between the risk-neutral and the physical distribution.

Moreover, comparing (21) with (20) shows that the approximate and exact solution

coincide in case of multivariate normality.

2. Similarly, a feasible Radon-Nikodym process is obtained by expanding Ψ(u) in (18) to

second order in the neighborhood of zero. This yields the approximate representation

Lt ≈ L̂t = exp

{
−

[
t∑

j=1

ν⊤j zj +
1

2
ν⊤t Htνt

]}
. (22)

As a consequence of the approximations (21) and (22) the effect of copula-specific

higher order dependence vanishes. However, this is not without merit, as it allows

us to interpret the copula shape parameter θ as a free parameter of the approximate

Radon-Nikodym process L̂t = L̂t(θ). We hence receive an additional degree of freedom

and can vary this parameter to study its impact on the implied volatility skew.

3. To overcome the lack of an explicit characterization of the risk neutral distribution

we observe that such knowledge is not necessary, if the Radon-Nikodym process is

known. Consider the valuation of a European style option with payoff function g(ST ) =

(ξ(ST −K))+ where ξ = 1 for a call and ξ = −1 for a put and set rf,t = rf for sake of

simplicity. The option price is then given by

Vt = e−rfTEQ[g(ST )|F0] = e−rfTEP [LTg(ST )|F0] . (23)

In consequence, simulating ST and LT under the measure P gives rise to the following

Monte Carlo estimator for the option price

V0 = e−rfT
1

n

n∑
i=1

L̂
(i)
T

(
ξ(S

(i)
T −K)

)+
(24)

= e−rfT
1

n

n∑
i=1

(
ξ(L̂

(i)
T S

(i)
T − L̂

(i)
T K)

)+
, (25)

where n denotes the number of simulation paths.

19



Eq. (24) and (25) are equivalent, but it turns out that the latter representation is

particularly useful. As is seen from (23), the discounted process {LtSt} is a martingale

under P ; also {Lt} is a martingale under P . To enhance the efficiency of the sim-

ulations, one can therefore apply the empirical martingale simulation scheme (EMS)

proposed by Duan and Simonato (1998) to both {LtSt} and {Lt}. The EMS serves

as a variance reduction technique for the Monte Carlo estimate since it is a first order

moment matching strategy. It consists of applying a multiplicative correction factor to

simulated paths such that the simulated first moments coincide with their true means,

see Duan and Simonato (1998) for the details. Sampling from (25) by means of the

EMS scheme makes sure that {LtSt} has exactly the forward price as mean and that

the expectation of {Lt} is unity. This ensures that the put-call parity holds, which is

vital for the computation of implied volatility.

For basket option pricing, we simulate daily Monte Carlo TGARCH (log-)returns ri,t, i =

1, . . . , 30, in line with (5) and (6) and the (copula) (A)DCC dynamics according to (8), (9)

and (10) using the CML/QML parameter estimates. Multivariate uniform variates with a

dependence structure given by the Clayton copula are generated according to Algorithm 5.48

in McNeil et al. (2005). For drawing univariate GED random variables we follow Tadikamalla

(1980). As drift we use a constant annual interest rate rf = 2.61%, which corresponds to

the one-year EUR interbank offered rate on 7 December, 2005. The initial index level is

B0 = 5266.75. The simulation yields a 30-dimensional distribution of constituent asset

prices Si,Tj
, at expiry dates Tj, j = 1, . . . , 4. At each expiry the value of the DAX is

computed by BTj
=
∑30

i=1 aiSi,Tj
, where ai, i = 1, . . . , 30, denote the shares of each stock in

the index (see Table 1 for further details). Option prices are computed according to Eq. (25)

with BT replacing ST . For the Monte Carlo estimate we work with n = 10 000 paths, which

we find to be a reasonable simulation size to attain a sufficient level of convergence. To avoid

potential bias effects the seeds of the pseudo random number generators are set to the same

value for each model.
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Finally, referring to (4) we delineate how to approximate the compensator γi,t. By definition

γi,t = ψi,t(1), where ψi,t denotes the exponent of the marginal MGF of asset i under P .

Since this function is not available in closed form, it is determined by simulation. For the

30-dimensional system, we draw m = 50, 000 vectors η from the Clayton copula using a can-

didate θ and the considered marginal distributions, and compute vector valued random vari-

ables e = Q̂
1/2

Σ−1/2η. Hence, the elements in e are correlated according to the unconditional

correlation matrix of the system, but have unit variance. We now estimate the exponent of

the MGFs by means of the moment estimator given by ψ̂e
i (u) = log

[
m−1

∑m
j=1 exp(−ueij)

]
for a dense grid of u on some interval [ul, uu]. By the fact that zi,t =

√
hi,tei,t and by the

properties of the MGF we obtain as estimator of γ̂i,t = ψ̂i,t(1) = ψ̂e
i (
√
hi,t) which can be eval-

uated at each time step. In order to reduce the computational burden, the moment estimator

ψ̂e
i (u) is later replaced with a sixth order polynomial with even powers determined on [ul, uu]

by means of a least squares fit. As a matter of fact, the estimator γ̂i,t is an approximation in

the sense that we miss the state-dependent correlation in each time step. However, taking

state-dependent correlations into account appears infeasible. The procedure is repeated for

each value of θ considered for option pricing.

5 Empirical results

5.1 Data description

For the empirical analysis we use historical index and stock price data and an associated

cross section of index and single stock implied volatility data.

The historical price data cover the period from 5 February, 2001, to 7 December, 2005,

and comprise the DAX, which is the major index of the German stock market, and all its

30 constituents (T = 1229). Stock prices are corrected for capital adjustments and divi-

dend payments to avoid distortions in the estimation of the GARCH processes. Descriptive
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statistics are summarized in Table 1.

insert Table 1 about here

By definition, the DAX is a performance index, into which all dividends paid by its con-

stituents are reinvested. Thus, to price derivatives with the DAX as underlying asset the

dividend income stream must be set to zero. While this fact greatly simplifies derivatives

valuation, a perfect reproduction of markets would require to set up a dividend model for all

30 stocks and, in the course of index path simulation, to make the corresponding adjustments

to the index shares, when a dividend is paid by a constituent. To avoid this additional com-

plexity we model the constituents without any dividend payments and hence do not adjust

the index weights during the simulation. Since we are not interested in an exact replication

of observed single stock option prices, but in the qualitative patterns of index and single

stock skews the omission of dividends appears justified.

Throughout the analysis the basket (index) computation is done according to the weights

given in the second last column of Table 1. These weights correspond to how the DAX index

was calculated on 7 December, 2005. The weights change when a new stock is admitted

to the index and exchanged against another one, when a corporate action takes place, or

when – as discussed – a dividend is paid.7 As in the dividend case, we do not wish to model

the admittance of new stocks or corporate actions. We therefore work with the implicit

assumption that the index composition has not changed before 7 December, 2005, and will

not change thereafter. For the time period under consideration this assumption is legitimate,

since the last change took place on 22 September, 2003, the next following change took place

on 19 December, 2005.8 Thus, at least for almost two years of historical data the composition

of the DAX index did not change. Starting on 7 December, 2005, we are left with a number

of additional days to evaluate the out-of-sample pricing performance. We therefore take

7 December, 2005, as initial date for the present study.
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insert Table 2 about here

Option data consist of daily settlement implied volatility data of the DAX index and single

stock options traded at the EUREX on 7 December, 2005. We consider four expiries, namely

72, 100, 191, 282 calendar days, summing up to 132 out-of-the money options. The DAX

index option (ODAX) is of European style and belongs to the most liquidly traded index

contracts in Europe. In contrast to index options, single stock options traded at the EUREX

are of American style. A descriptive overview on the data is given in Table 2. As a means

of filtering, we eliminate all options with an implied volatility larger than 80%. It can be

seen that the index implied volatility function has a more pronounced negative slope in

comparison with individual equity option implied volatility functions. This is the stylized

empirical fact we seek to capture in modeling the index by means of the multivariate setup.

Note that the single stock implied volatility data are reported for illustrative purposes only

and are not used in any of the estimations.

5.2 In-sample estimation

For space considerations we do not provide detailed estimation results for the univariate

TGARCH processes characterizing the constituent return processes. Averaging the param-

eter estimates for the 30 DAX constituents we diagnose significant prevalence of leverage

effects in volatility (see Table 3). Detailed results on estimated TGARCH volatility models

for DAX constituents are available from the authors upon request.

insert Table 3 and Table 4 about here

Estimates for the correlation dynamics, the copula shape parameter and the GED shape

parameter are displayed in Table 4. Parameter estimates for the correlation dynamics are

very close to comparable results in the related literature (Engle and Sheppard 2001, Engle
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et al. 2009), but the standard errors for the news response parameters are likely to suffer

from the limited time series information (T = 1229). Augmenting the correlation dynamics

with a leverage parameter α− does not achieve a significant improvement of the fit as in

the related literature (Longin and Solnik 2001, Ang and Chen 2002). Again this finding

may be driven by the short time dimension of the data set. In the Gaussian model, the

correlation response to negative news is small (α̂1 + α̂− ≈ 0.035), but exceeds the news

response quantified by means of the symmetric DCC model (α̂1 ≈ 0.022). To the largest

extent correlation dynamics are driven by the autoregressive component (α̂2 ≈ 0.95). These

findings are in line with other evidence of ADCC models, such as Cappiello et al. (2006).

With regard to tail characteristics of the marginal distributions it turns out that log-

likelihood estimates are markedly in favor of the marginal GED specification, providing

clear evidence of conditional leptokurtosis in DAX returns. The estimated GED shape pa-

rameter is δ̂ = 1.43 for both the DCC and the ADCC model, which is far from the Gaussian

distribution implied by δ = 2.

The estimation results for the C-(A)DCC models as documented in Table 4 show evidence for

lower tail-dependence at a significance level of 10%. Conditional on the marginal distribution,

the copula parameter estimates are θ̂ ≈ 0.07 and θ̂ ≈ 0.11 under the Gaussian and GED

marginals, respectively. These low parameter estimates are in line with the trivariate models

considered in Lee and Long (2009) and are likely to reflect the strong homogeneity restriction

imposed on the dependence structure over all constituents and over time. Intuitively, one

would not expect too many events where the DAX constituents suffer simultaneously from

a massive price deterioration. Noting that model diagnostics are markedly improved by the

GED distribution, we also estimate (A)DCC models with leptokurtic marginals presuming

an independence copula. A formal likelihood ratio test of the independence copula against

the Clayton copula is significant at the 5% level for the DCC and ADCC models with GED

marginals. This underscores the relevance of dependence beyond correlation.
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The better fit achieved by means of the Clayton copula does not fully justify this model

choice, since other copula distributions might still outperform the Clayton copula based log-

likelihood statistics. As an alternative way to assess if this specific model choice is supported

by the data we subject it to a specification test proposed in Genest and Rémillard (2008).

Comparing nine copula specification tests, Berg (2009) finds this test to be among the most

preferable to detect deviations from a particular copula distribution supposed under the

null hypothesis. The test builds on a Cramér-von Mises statistic contrasting the empirical

copula and its parametric competitor, both evaluated by means of rank-based pseudo random

variables. This allows to test the copula specification without making specific distributional

assumptions on the margins. We compute the test statistic from residuals η̂t = Σ1/2ε̂t, where

Σ = Σ(θ̂) is evaluated at the CML estimator θ̂ (and δ̂ for GED).9 Since the distribution of

the test statistic is unknown, a bootstrap simulation needs to be implemented. The details

of the bootstrap scheme are described in Appendix C.2 of Berg (2009). Based on K = 1000

replications, the bootstrap p-values are 0.307 and 0.186 (0.062 and 0.089) for the DCC and

ADCC model with Gaussian (GED) marginals, respectively. In conclusion, we cannot reject

the Clayton copula assumption at the 5% significance level.

insert Table 5 about here

We estimate the market price of risk by means of OLS and WLS mean group estimators. For

the latter the market variance is used to weight the observations, which can be computed from

first stage estimates of Ĥt analogously to (16). As documented in Table 5, WLS estimates

turn out significant at the 5% level and close to unity for both the DCC and the ADCC

model. Nevertheless, we caution about the interpretation of these results since the literature

on fitting GARCH-in-mean models to daily returns typically tends to report statistically

insignificant conditional mean parameters, see e.g. Bollerslev et al. (1994) and Blair et al.

(2002). Only at lower frequencies, e.g. for monthly data, significant market prices of risk

can be inferred, see Engle et al. (1987) and de Santis and Gerard (1997). We interpret this
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ambiguity as evidence for the existence of an economically meaningful market price of risk,

which however cannot be statistically confirmed for single processes modeled at the daily

frequency. For pricing options, we will therefore use – uniformly for all models and assets –

a market price of risk of λ = 1.

5.3 Model implied volatility skews

Table 6 documents performance statistics for a couple of C-(A)DCC model specifications to

assess their explanatory content for observed option prices. For convenience, the top row of

Table 6 repeats the data of the implied volatility skews from Table 2. For model comparison

we use two price based measures, namely the root mean squared (pricing) error (RMSE) and

the mean absolute pricing error (MAPE) as in Barone-Adesi et al. (2010), and an implied

volatility based RMSE. Implied volatility σ̂ is obtained by solving

σ̂ : V0 − V BS
0 (σ) = 0 , (26)

where V BS
0 (σ) = ξ

[
S0Φ(ξd1)− e−rfTKΦ(ξd2)

]
is the Black-Scholes valuation formula for

calls (ξ = 1) and puts (ξ = −1) with strike K and expiry date T , with Φ denoting the cumu-

lative density function of the Gaussian distribution, d1 =
[
log(S0/K) + (rf +

1
2
σ2)T

]
/(σ

√
T )

and d2 = d1 − σ
√
T . The initial index or spot level is S0, the risk-free rate rf . In the right

hand side panels of Table 6, we additionally document model implied skew characteristics

at the index and average constituent level over the set of four maturities. As a measure of

the implied volatility skew we use the symmetric difference σ̂K=90% − σ̂K=110%, where the

percentage is relative to the initial index or spot level. For all simulation runs, the constants

of the individual GARCH parameters, ϕ0, have been adjusted, such that the resulting term

structure of basket implied volatility matches the observed term structure of DAX options.

This adjustment is within the parameters’ standard errors and serves to avoid a bias when

comparing the performance statistics across alternative models.

As argued in the discussion of the approximate risk-neutralization, we interpret the copula

26



shape parameter as a free variable. We therefore document pricing errors for three benchmark

cases: (i) the case of the independence copula, which is nested in the Clayton copula for

θ → 0; (ii) the CML estimator θ̂ determined under P ; (iii) a best fitting θ obtained by

successively increasing θ in steps of 0.01.

insert Table 6 about here

As is apparent from Table 6, for both types of modeling directions, i.e. DCC versus ADCC

and Gaussian versus GED marginals, the cases of independence (θ = 0) suffer from marked

approximation losses relative to a scenario with mild tail-dependence as diagnosed under

the physical measure (θ = θ̂). All measures of fit are around 25% smaller than under the

independence case. However, this fit can still be improved by allowing for slightly stronger

tail-dependence. The best match is obtained for θ = 0.33, for which all measures of fit drop

by an additional 30%. As is visible from the right block of columns the improvement of the

fit is due to substantially steeper basket implied volatility skews that emerge as a result of

the higher cross sectional dependence.

insert Figure 1 and Figure 2 about here

Figures 1 and 2 contrast observed DAX option prices with model implied option prices

as simulated from the best fitting C-ADCC model with GED innovations (δ = 1.43) and

θ = 0.33. Figure 1 shows market and model prices across a relative strike metric, the spot

moneyness (strike divided by underlying price). As can be seen, out-of-the-money puts

(spot moneyness less than one) tend to be underpriced across all expiries in comparison with

out-of-the-money calls (spot moneyness larger than one) which in turn are too expensive,

in particular for longer dated options. This impression is confirmed in Figure 2 displaying

the corresponding implied volatility functions. The RMSE expressed in implied volatility

is less than one percent (the exact figure is 0.779, see Table 6 last row). Reading from
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the plot we observe that the mismatch can attain between one and two percentage points

in volatility depending on the expiry. Despite these remaining discrepancies, we find the

overall fit remarkably good when taking into consideration that it is obtained by variation

of a single parameter and not by a direct calibration as in comparative studies (Engle and

Mustafa (1992), Christoffersen and Jacobs (2004), Christoffersen et al. (2006), Barone-Adesi

et al. (2010)).

Studying the model implied index skews, we observe that most models produce index skews

which are conspicuously flatter than seen in the data. It is only the model implied volatility

skew of the C-ADCC model (simulated with GED marginals and θ = 0.33) that matches the

data for the shortest expiry; moving to longer time horizons, however, its index skew decays

much faster than documented in Table 2. A similar observation applies when comparing

index skews with average constituent skews. The symmetric DCC models either based on

normal or GEDmarginals yield index skews that are never in excess of the average constituent

skews, except in the case of highest cross sectional dependence. The asymmetric DCC models

perform better, but only for the short-dated skews. For the long-term expiries at 191 and

282 days to maturity, the index skews drop to the levels measured for the average constituent

skew.

insert Table 7 about here

The assessment of the C-ADCC model so far has been conditional on a particular trading day,

namely 7 December, 2005. As a robustness check, we evaluate the models’ out-of-sample

pricing performance by simulating the C-ADCC model up to seven further trading days

ahead. We use the parameter estimates as of 7 December, 2005, and only update the con-

ditional covariance matrices given the realized shocks in the 30 underlying assets between 8

and 16 December, 2005. As documented in the data description, the DAX composition

changed on 19 December, 2005. Therefore the out-of-sample evaluation period terminates

on 16 December, 2005. The loss measures for the model based option prices and the model
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based implied volatilities are documented in Table 7. Choosing the most preferable C-ADCC

specification with copula parameter θ = 0.33 we find that all loss functions are of compa-

rable magnitude as documented in Table 6. This observation also applies to the relative

magnitude of basket versus constituent skews (not documented for sake of space). Hence the

risk-neutralized physical process of speculative returns carries ex-ante predictive content for

the stylized features of market implied volatility which is comparable to ’in-sample’ model

accuracy as measured on 7 December, 2005.

Overall, we conclude that the price processes estimated from time series data and risk-

neutralized by means of the Esscher transform fail to match the stylized features of index

implied volatility skews in all respects. On the one hand this observation could indicate

conceptual shortcomings of the considered exponentially linear pricing kernel. Evidence from

the cross section of asset returns and from yield curve modeling suggests that quadratic (or

otherwise nonlinear) pricing kernels, as studied e.g. in Dittmar (2002), Ahn et al. (2002), and

Bakshi et al. (2010) and recently advanced in the discrete time framework by Christoffersen

et al. (2011) and Monfort and Pegoraro (2011), might be empirically relevant. On the

other hand, it is of interest to explore in depth the versatility of the present exponentially

linear framework. Below we will follow this second route. We will ask: are there parameter

constellations which better reproduce the stylized facts? And which insights do they provide

for our understanding of flat constituent versus steep index skews? We address these issues

by means of a sensitivity analysis.

5.4 Sensitivity analysis

Table 8 documents stylized features of simulated index and constituent option prices that

are obtained by marginal variation of core parameters of the C-ADCC model generated from

GED margins. First, the asymmetry parameters of the univariate TGARCH specifications

(γ−i ) are increased, while the ADCC parameters are kept constant. We choose parameters of
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ϕ̄− = 0.089 and ϕ̄− = 0.098, which imply, on average, a 10% and 20% increase of the leverage

characterizing the estimated volatility models. Second, leaving the univariate second order

dynamics unchanged, the leverage parameter of the correlation model is shifted upwards to

α− = 0.030, 0.051 and α− = 0.101 corresponding to a 20%, 200% and 400% increase in the

leverage parameter. When varying leverage dynamics we simultaneously reduce the autore-

gressive parameters in the variance or the correlation equation such that the second order

persistence remains unchanged in comparison with the estimated models. As a consequence

the unconditional second order moments do not change under these variations and, hence,

the term structure of implied volatility remains constant.

insert Table 8 about here

As can be seen in the top of Table 8, increasing the parameter of the asymmetric second

order dynamics at constituent levels acts positively on both the volatility skews of index

options and the average constituent skew. In particular, if coupled with the cross sectional

dependence prevailing at θ = 0.33, the small changes in the leverage variance parameter

result in a basket skew close to the empirical figures in Table 2. Both the basket and the

average constituent skews, are however similar in magnitude. Thus, asymmetries in the

single stock variances cannot explain the empirically observed wedge between both skews.

We find a similar comovement of index and constituent skews when reducing the GED shape

parameter δ to allow for more heavy-tailedness in the conditional distributions (unreported

results, available upon request).

Sensitivity results for the correlation response to bad news are displayed in the lower part

of Table 8. For low cross sectional dependence, i.e. the C-ADCC model with θ = 0 (in-

dependence copula) and θ = 0.11 (CML estimate), the model implied skews of index and

constituent volatilities are somewhat increased, but the average index skew is still of similar

(or smaller) magnitude than the average constituent skew. This result holds irrespective

of the level of the asymmetry parameter α−. Thus, even substantially leveraged corre-
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lation dynamics cannot explain the index skew under scenarios of independent or weakly

tail-dependent vector innovations entering the dynamic system.

Setting θ = 0.33 and varying the correlation responses to bad news the C-ADCC model

replicates the stylized features of implied volatility skews in a much better way. For the two

choices α− = 0.051 and α− = 0.101 we find a marked excess index skew over the average

constituent skew for short-dated expiries. But also for the longer maturities of 191 and

282 days, the simulation based index skew is well above the one quantified at the average

constituent level. Nevertheless, despite these improvements, the model implied basket skew

still decays at a faster rate over the various time horizons than is empirically documented in

Table 2.

As a final observation, inspecting the RMSE or MAPE loss measures for the two simulation

designs θ = 0.33, α− = 0.051 and θ = 0.33, α− = 0.101 shows that a systematic calibration of

model parameters to implied volatility would offer a closer fit to the actual implied volatility

functions than can be achieved by means of the estimated model. For instance, the implied

volatility RMSE statistic shrinks by around 35% when replacing the CML estimates with

α− = 0.101 and α2 = .911.

Summarizing the sensitivity analysis, we conclude that in the framework of the C-ADCC

model the excess index skew cannot be driven by a leverage effect in the variance dynamics.

Rather the principal sources are some level of lower tail-dependence coupled with lever-

aged correlation dynamics which are beyond the magnitudes estimated from stock return

data. Steep index versus flat constituent skews do not emerge from either source alone.

The intuition can be understood as follows. For pricing plain vanilla derivatives, it is not

instantaneous correlation that matters but the terminal dependence structure at the rele-

vant expiries. The terminal dependence structure among assets, however, does not change

sufficiently when either of the features, i.e. cross sectional dependence or strongly leveraged

correlation, appears alone. In this sense, leveraged correlation serves as a channel for cross
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sectional dependence to act on the terminal distribution such that steep index skews emerge.

6 Conclusions

We model the German DAX index, a major economy-wide stock basket comprising 30 blue

chips, by means of the joint dependence of all constituent stocks in a multivariate model

which features stochastic volatility, dynamic conditional correlation and conditional cross

sectional dependence which is formalized by means of a copula as in Lee and Long (2009).

Building on Engle et al. (2009), we adopt a CML/QML estimation strategy, which remains

feasible in high dimensions, and suggest a theory for a change to an equivalent risk-neutral

pricing measure following Gouriéroux and Monfort (2007) and Christoffersen et al. (2010).

We simulate asset price paths along with an approximate Radon-Nikodym process under

the physical measure to price European style index options. We then study the implied

volatility skews which are generated by the model at the basket and at the constituents’ level.

Specifying constituent stocks as threshold GARCH processes, we allow for different types of

dynamics, such as symmetric and asymmetric correlation dynamics, and impose alternative

assumptions on the data generating process, such as Gaussian or fat-tailed innovations and

zero versus positive (cross sectional) tail-dependence. Since all models are nested, the setup

allows to disentangle the various sources responsible for the steepness of the implied volatility

index skew.

We find that the implied volatility index skews obtained from the CML/QML estimates can

explain a substantial fraction of the observed index skew, but still are too mild to match the

empirical patterns. In an evaluation of out-of-sample pricing performance this result remains

robust. For a deeper analysis, we vary selected parameters and study their impact on the

skews. This sensitivity analysis demonstrates that cross sectional dependence coupled with a

strong asymmetric news response in correlation generates a strong index and flat constituent

skews. This conclusion holds irrespective of the distributional assumptions that underly the
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innovation process. We thus corroborate the common jump hypothesis of Branger and Schlag

(2004), but additionally provide evidence for the role of asymmetric correlation dynamics

which drive up the index skew relative to the average constituent skew.

Summarizing we find that the copula based ADCC model performs remarkably well in de-

scribing the index implied volatility surface as a basket of single stocks. To explain the

remaining unexplained fraction of skewness in index implied volatility two main directions

for future research arise. First, one could move beyond the exponentially affine pricing kernel

and employ the more sophisticated specifications as suggested in Christoffersen et al. (2011)

and Monfort and Pegoraro (2011). Second, given the importance of dependence beyond

correlation, one could employ alternative copula models which strictly separate the marginal

volatility processes and the copula, as suggested by Granger et al. (2006), Patton (2006),

Kim et al. (2008), Fantazzini (2009), Jin (2009), Christoffersen, Errunza, Jacobs and Lan-

glois (2011). It is likely that both directions provide additional insights on the relationship

between single stock implied volatility and index skews.
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Notes

1Stochastic volatility, jumps and alternative distributional assumptions are well understood drivers of

implied volatility in the univariate setting, see Hull and White (1987), Jorion (1988), Barndorff-Nielsen

(1997), Bates (2000), Eraker et al. (2003) among many others. Formalized arguments for the relation

between stochastic volatility and implied volatility are given in Renault and Touzi (1996) and Garcia and

Renault (1998).

2In all instances we use the Cholesky decomposition as matrix square root for computational reasons.

Since this choice might create an issue of lacking invariance with respect to variable ordering, we checked our

results for robustness. We find that the estimates obtained by composite maximum likelihood do qualitatively

not depend on variable ordering (see Section 3 for the details). The same applies to the simulation results

of basket option prices and for the average implied volatility skews of constituent stocks. This is because

our marginal variance processes are sufficiently homogeneous and cross-sectional dependence sufficiently

moderate such that the total basket variance, which is the main driver of plain vanilla basket option prices,

is hardly influenced by changing the order of names in the basket. All results for simulated basket option

prices, which are reported in Section 5, are obtained for the order of appearance in Table 1. Clearly, an issue

of invariance might arise if one were to consider pricing of strongly path-dependent options or best-of and

worst-of options. Both topics are not within the scope of this work.

3Practically, it turns out that QML parameter estimates obtained for the variance processes are close to

alternative estimates derived under more realistic innovation distributions (standardized t−distribution or

GED). For this reason we estimate the univariate GARCH processes by means of QML, and later, treat the

margins of the multivariate innovation vector ηt = Σ1/2εt to be leptokurtic as implied by the GED.

4For a formal definition of the concept of tail-dependence see e.g. McNeil et al. (2005), pp. 208–209.

5This step builds on the assumption that the unconditional expectations of Qt and of et−1e
⊤
t−1 are

identical. As argued in Aielli (2009) the factual violation of this assumption renders the estimators in (13)

inconsistent. Aielli (2009) therefore proposes a consistent DCC model which is in full analogy to the model

outlined in (1) to (3) except that the innovations et in (9) are replaced by (Qt⊙IN )1/2et. However, experience

with our own simulations as well as the results reported in Aielli (2009) show that the actual bias is almost

negligible in systems of bivariate dimension. Since CML estimation is built on bivariate subsets of assets,

the empirical analysis relies upon the standard DCC model.
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6To check robustness of our choice of contiguous pairs, we also considered randomized pairs of returns

with alternative dimensions of M = 29, 99. Over all these different choices CML estimates did not differ

substantially. We therefore document the empirical results only for the contiguous pairs case.

7For a description of the terms and conditions of the DAX performance index, see Deutsche Börse (2007).

8On 22 September, 2003, Continental replaced MLP, and on 19 December, 2005 the Bayr. Hypo- und

Vereinsbank was removed in favor of the Hypo Real Estate Holding. As an extraordinary event, on 31

January, 2005, Bayer AG split off part of its business (Lanxess AG).

9The assumptions on the margins enter via the second moment matrix Σ. The test statistic is, how-

ever, computed from the empirical margins obtained from the rank-based pseudo random numbers that are

constructed from η̂t.
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Constituent Min Max Mean Med Std Skew. Kurt. ăi wi

DAX -8.87 7.55 -.019 .033 1.76 -0.05 5.54 - -

Adidas-Salomon -11.53 8.63 .068 .041 1.85 -0.14 7.13 2.56 1.23
Altana -19.03 14.16 .013 -.021 2.26 -0.56 12.81 3.92 0.57
Allianz -15.14 12.66 -.071 .033 2.70 -0.12 6.50 22.13 8.81
BASF -8.25 13.70 .035 .022 1.87 0.51 8.45 29.29 5.81
Bayer -18.97 33.01 -.021 -.046 2.55 1.21 29.97 40.82 4.38
BMW -11.42 8.30 .006 .027 2.05 -0.18 5.92 18.57 2.19
Commerzbank -13.30 15.44 -.008 .000 2.55 0.13 7.95 30.44 2.44
Continental -11.15 9.08 .122 .071 2.05 0.20 5.49 8.13 1.89
Deutsche Börse -10.76 8.50 .073 .106 1.72 -0.24 5.96 5.92 1.63
Deutsche Bank -14.06 12.58 -.002 .041 2.32 -0.15 6.42 28.91 7.67
Daimler Chrysler -10.96 9.81 .004 -.027 2.23 0.00 5.09 48.62 6.59
Dt. Post -9.33 8.63 -.009 .000 1.95 -0.08 5.28 34.65 2.08
Dt. Telekom -16.44 13.54 -.065 -.065 2.66 0.06 6.59 147.80 6.55
E.ON -7.98 8.95 .039 .055 1.79 0.12 6.05 38.67 9.89
Fresenius Medical -12.66 26.51 .000 -.014 2.26 1.08 20.55 1.92 0.49
Henkel KGaA -7.71 7.11 .019 .029 1.51 -0.07 6.32 3.32 0.88
Hypo-Vereinsbank -15.67 14.14 -.063 -.068 2.95 -0.12 6.13 33.57 2.66
Infineon -15.44 16.06 -.140 -.129 3.64 0.02 5.00 34.16 0.84
Dt. Lufthansa -16.36 15.71 -.050 -.096 2.42 0.06 9.13 23.39 0.87
Linde -14.33 10.65 .021 .034 1.77 -0.25 8.67 4.53 0.88
MAN -11.39 11.08 .034 .028 2.37 -0.08 5.54 7.88 1.08
Metro -10.38 17.62 -.016 -.052 2.21 0.42 8.61 8.05 0.96
Münchener Rück -17.04 13.23 -.082 -.036 2.65 -0.33 8.02 10.29 3.73
RWE -7.66 9.07 .039 .024 1.79 0.15 5.40 26.00 4.83
SAP -15.11 22.67 .003 .000 3.00 0.76 9.89 11.89 5.79
Schering -16.10 8.49 .004 .051 1.90 -0.81 10.88 9.69 1.70
Siemens -8.95 10.59 -.026 -.016 2.47 0.16 4.55 46.76 9.80
Thyssen Krupp -12.04 7.70 .005 .063 2.12 -0.11 5.30 23.00 1.25
Tui -18.45 14.46 -.053 -.096 2.63 -0.01 8.08 12.57 0.69
Volkswagen -9.66 10.69 -.002 -.084 2.20 -0.06 5.17 12.32 1.81

Table 1: Descriptive summary statistics for constituent log returns from 6 February, 2001
until 7 December, 2005 (T = 1229 observations). Index weights (number of shares) ai for
the DAX constituents are obtained after multiplying the weights given in the column ăi with
the constant catenation factor 1000/6019.57, i.e. ai = 1000ăi/6019.57. Relative weights in
column wi (in percentage units) are computed as of 7 December, 2005.
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Index Constituents
Maturity (days) 72 100 191 282 72 100 191 282
Min 12.91 13.32 14.08 14.69 20.74 21.25 21.54 21.70
Max 18.60 18.81 18.91 19.23 23.15 23.41 23.38 23.56
Mean 15.10 15.54 16.29 16.79 21.48 21.99 22.27 22.47
Median 14.73 15.27 16.19 16.74 21.18 21.79 22.17 22.39
Std 1.88 1.82 1.55 1.42 0.77 0.69 0.60 0.61
Imp. vol. skew (%) 5.69 5.62 5.21 4.86 2.09 1.72 1.29 1.25

Table 2: Summary statistics for implied volatilities of the DAX and its constituents (averaged
values) observed as of 7 December, 2005. Maturities are given in calender days. The implied
volatility skew is defined as σ̂K=90%− σ̂K=110%, where σ̂K is the implied volatility of an option
with strike K.
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ϕ̄0 ϕ̄1 ϕ̄− ϕ̄2

6.3× 10−6

(4.0×10−6)
0.032

(2.4×10−2)
0.081

(3.1×10−2)
0.913

(3.5×10−2)

Table 3: Averaged QML TGARCH estimates and their average (robust) standard errors for
the 30 DAX constituent return processes, i.e. excluding the DAX index, as listed in Table 1.
Single stock variance equation is given by hii,t = ϕi,0+ϕi,1z

2
i,t−1+ϕ

−
i z

2
i,t−11[zi,t−1<0]+ϕi,2hii,t−1,

for i = 1, . . . , 30, where zi,t = ei,t
√
hii,t−1 and ei,t ∼ N (0, 1) for the purpose of QML

estimation.
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CML estimates Log-lik

Model α̂1 α̂2 α̂− θ̂ δ̂
DCC 0.0218

(1.943)
0.940
(24.46)

2 6409.2

ADCC 0.0100
(0.777)

0.949
(24.45)

0.025
(1.176)

2 6410.0

DCC 0.0205
(1.825)

0.943
(24.63)

1.43
(26.91)

6446.5

ADCC 0.0091
(0.714)

0.951
(25.01)

0.0250
(1.127)

1.43
(26.31)

6447.2

C-DCC 0.0212
(1.904)

0.943
(25.25)

0.0675
(1.607)

2 6410.8

C-ADCC 0.0100
(0.816)

0.951
(27.72)

0.024
(1.118)

0.0661
(1.485)

2 6411.4

C-DCC 0.0202
(1.748)

0.946
(25.95)

0.1134
(1.713)

1.43
(25.80)

6448.7

C-ADCC 0.0094
(0.733)

0.953
(25.97)

0.023
(1.029)

0.1108
(1.787)

1.43
(25.31)

6449.3

Table 4: Estimation results for the parameters governing the correlation dynamics
(α1, α

−, α2)
⊤, the shape parameter δ of the marginal distribution of ηi,t and the Clayton

copula shape parameter θ for all considered C-(A)DCC-GARCH models (t−ratios given in
parentheses). Correlation dynamics follow Qt = (1 − α1 − α2)Q − α−N + α1(et−1e

⊤
t−1) +

α−(nt−1n
⊤
t−1) + α2Qt−1. The assumption of Gaussian innovations corresponds to δ = 2.

The rightmost column block gives composite log-likelihood values. Sample period is from 6
February, 2001, until 7 December, 2005 (T = 1229 observations).
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DCC ADCC
OLS 1.050

(2.945)
1.020
(2.867)

WLS 1.188
(2.045)

1.167
(2.085)

Table 5: Market price of risk λ̂ for (A)DCC models estimated by means of a mean group
estimator. WLS weights are estimated index variances obtained from first stage QML es-
timation. The sample period is from 6 February, 2001, until 7 December, 2005 (T = 1229
observations). t−ratios given in parentheses.
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trading date RMSE (prices) MAPE (prices) RMSE (imp. vol)
07/12/2005 6.21 0.051 0.779
08/12/2005 6.91 0.056 0.847
09/12/2005 5.72 0.050 0.604
12/12/2005 5.93 0.053 0.752
13/12/2005 7.52 0.061 0.963
14/12/2005 6.33 0.048 0.736
15/12/2005 8.01 0.070 1.100
16/12/2005 7.00 0.075 1.000

Table 7: Out-of-sample pricing for days following 7 December, 2005 based on the C-ADCC
model with GED margins and θ = 0.33. All model parameters are kept constant as given
in Table 4, while variances and correlations are daily updated according to the realized
innovations. RMSE (prices) = root mean squared error of prices, MAPE = mean absolute
price error, RMSE (imp. vol.) = root mean squared error expressed in terms of 100×implied
volatility.
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Figure 1: Price fit as of 7 December, 2005, for the GED based C-ADCC model with the
Clayton copula for θ = 0.33; all other parameters as obtained by the CML/QML estimation.
Crosses are model prices, circles correspond to observed prices of DAX index options. Option
prices are displayed across spot moneyness, i.e. relative to the underlying asset. Out-of-the-
money put prices appear for a spot moneyness less than one, out-of-the-money call prices
for a spot moneyness larger than one. Options with 72 days to expiry appear as the lowest
price function, options with 282 days to expiry as the top price function; options with 100
and 191 days to expiries appear in between.
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Figure 2: Implied volatility functions as of 7 December, 2005, for the GED based C-ADCC
model with the Clayton copula for θ = 0.33; all other parameters as obtained by CML/QML
estimation. Crosses are model implied volatilities, circles correspond to market implied
volatilities of DAX index options. Implied volatility is displayed across spot moneyness, i.e.
relative to the underlying asset, and maturity is given in calender days.
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