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Abstract 

We propose a simple but effective estimation procedure to extract the level and the 

volatility dynamics of a latent macroeconomic factor from a panel of observable indicators. 

Our approach is based on a multivariate conditionally heteroskedastic exact factor model 

that can take into account the heteroskedasticity feature shown by most macroeconomic 

variables and relies on an iterated Kalman filter procedure. In simulations we show the 

unbiasedness of the proposed estimator and its superiority to different approaches 

introduced in the literature. Simulation results are confirmed in applications to real inflation 

data with the goal of forecasting long-term bond risk premia. Moreover, we find that the 

extracted level and conditional variance of the latent factor for inflation are strongly related 

to NBER business cycles. 
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1 Introduction

In their highly influential paper, using a reduced form no–arbitrage framework with time–varying

risk premia, Ang and Piazzesi (2003) conclude that macroeconomic variables have an important

explanatory power for yields and that the inclusion of such variables in term structure models

can improve their forecasting performances significantly. More recently, many other studies (see,

among others, Ludvigson and Ng (2009b), Joslin et al. (2009), Duffee (2009) for the U.S. or

Wright (2009) in an international context) have documented that macroeconomic variables cap-

ture significant predictive power for bond excess returns over and above the standard financial

factors. In order to avoid relying on specific macro series, Ang and Piazzesi (2003) and Ludvigson

and Ng (2009a), measure different macroeconomic fundamentals as the first principal components

of blocks of large numbers of macroeconomic series.

In this paper we propose considering as possible macroeconomic factors relevant for modeling

the dynamics of the bond risk premia process (and therefore the whole term–structure). We take

into account not only the level of a macroeconomic variable, but also its volatility. Moreover, we

also propose a different method for reconstructing the level and volatility dynamics of the latent

macro–factor from a bunch of observable indicators. Our approach is considerably simpler from

a computational perspective than the classical ones introduced in the literature and at the same

time performs better in simulations as well as in a real data applications.

In macroeconomics, it is common to have a large set of indexes that measure or are highly

dependent on a latent macroeconomic variable. Given the pervasiveness of heteroskedasticity in

macroeconomic variables, we model the observable set of proxies using a multivariate conditionally

heteroskedastic exact factor model, i.e. a linear factor model where the heteroskedastic conditional

variance is a function of the past values of the latent factor (see for instance, Diebold and Nerlove

1989). In such a type of model, the conditional density, depending on unobservable variables, is

generally unknown. As a consequence, the log-likelihood function cannot be obtained explicitly

and hence standard maximum likelihood estimators cannot be employed (Harvey et al. 1992 ). To

overcome this problem, alternative estimation procedures have been proposed in the literature:

the Bayesian Markov chain Monte Carlo (MCMC) estimation methods introduced by Fiorentini

et al. (2004) and the indirect inference estimators introduced by Sentana et al. (2008).

However, following the direction proposed by Diebold and Nerlove (1989) and Sentana (2004),

in this study we introduce a (computationally) simple estimation approach that relies on filtering

the latent factor from a panel of data via an iterated Kalman filter procedure. This approach

hinges on recent results about efficient estimation of the macro-parameters in dynamic panel

data models with a common factor. In particular, Gagliardini and Gourieroux (2009) showed

that substituting the true factor values by their cross-sectional approximations does not lead

to any asymptotic efficiency loss. For the cross–sectional reconstruction of the latent factor we

propose an iterated process in which we estimate the volatility dynamics of the factor from the

time series of a first (time–invariant) Kalman filter approximation of the factor and use it in a new

cross–sectional conditional (time–varying) Kalman filter estimation. New volatility dynamics can
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be estimated from the dynamics of the new estimated factor and the procedure can be iterated

until convergence.

Simulation results based on different data–generating processes and the same amount of data

that are available in the empirical application show the unbiasedness of the proposed estimator

for the conditional variance parameters and its superiority to other simple alternative methods,

in particular, to the principal component approach used by Ludvigson and Ng (2009a).

The superiority of our approach is also confirmed by a real data application. Using a panel

of 21 monthly inflation time series, we filter the level and the volatility of inflation via several

different techniques. We test the ability of the estimated factors in forecasting long–term bond risk

premia and find that both the level and the volatility of inflation obtained via an iterated Kalman

filter significantly outperform the other competitors. Moreover, by analyzing the correspondence

between the different factors and National Bureau of Economic Research (NBER) business cycles,

we show that our inflation estimates are not only statistically but also economically significant.

The reminder of the paper is organized as follows. Section 2.1 describes in detail the procedure

of reconstructing the level and volatility dynamics of a latent factor. Section 2.2 shows the

performance of the latent macroeconomic variable and its volatility in a simulation study. In

Section 3 we apply our estimation technique on real macroeconomic data. Section 4 concludes.

2 Reconstructing the dynamics and volatility of the latent factor

Our purpose in this section is to reconstruct the underling time series dynamics of a latent

macroeconomic variable and its volatility process from the observations of a certain number of

proxies. We propose a simple estimation approach that exploits the possibility of filtering the

latent factor from cross-sectional information via an iterated Kalman filter procedure.

2.1 Model and estimation procedure

We model the latent factor dynamics at time t through a factor model for the N -dimensional

vector of the observed index returns rt = (rt,i)
N
i=1

rt = Bft + et, for t = 1...T (1)

with B the N × k matrix of factor loadings, et the N × 1 vector of idiosyncratic noises, and the

latent factor ft being the variables of interest, which are assumed to follow a general GARCH

type dynamic with (for simplicity) mean zero and (for identifiability) unconditional unit variance

i.e. ft ∼ N(0,∆t) with E[∆t] = ∆ = Ik the identity matrix of order k. Assuming the vector of

idiosyncratic noises et is conditionally orthogonal to ft and has a positive semidefinite diagonal

variance matrix Φ, the distribution of rt conditional on the information set It−1 containing rt−1

and ft−1 is N(0,Σt) where Σt = B∆tB
′ + Φ has the usual exact factor structure.

In the literature this type of model is called a multivariate conditionally heteroskedastic exact

factor model and nests several models widely used in empirical finance (for instance, Diebold
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and Nerlove 1989). When the variance of the factor is a function of lagged values of ft, as

in the GARCH case, the exact form of the conditional density of rt given its past is generally

unknown and, hence, the log-likelihood function cannot be explicitly obtained (Harvey et al.

1992). To overcome this problem, Bayesian Markov chain Monte Carlo (MCMC) estimation

methods (Fiorentini et al. 2004) and indirect inference estimators (Sentana et al. 2008) have been

proposed in the literature.

Here, instead, we propose a simpler approach in which we iterate between filtering the factor

with a Kalman filter in the cross–sectional dimension and estimating its variance dynamics in

the time series dimension. This approach hinges on the recent theories of efficient estimators

of the macro-parameters in dynamic panel data models with a common factor that show how

substituting the true factor values by their cross-sectional approximations does not lead to any

asymptotic efficiency loss (Gagliardini and Gourieroux 2009). These studies show that, under

certain speed of convergence assumptions,1 estimating the macro-parameter on the cross-sectional

approximations of the factors is root–T consistent, asymptotically normal and achieves the same

asymptotic efficiency bound as the one obtained with an observable factor (i.e. the Cramer-Rao

bound in linear Gaussian models). Therefore, the estimators built on the approximated factor

are asymptotically equivalent to the unfeasible estimator that uses the true factor values.

Different approaches can be used to approximate ft: simple cross sectional averaging, principal

component analysis (PCA) or factor analysis (FA). In this study we propose a reconstruction of

the ft factor by an iterative procedure in which the factor is first estimated with a Kalman filter

using the cross-section of the observable indicators at our disposal. From the time series of this

first approximation of the factor, the variance dynamics are estimated in a classical GARCH

framework. The estimated GARCH dynamics of the factor conditional variance are then used in

a conditional Kalman filter estimation to obtain new factor estimates. This iterative procedure

is run until convergence.

Before starting the procedure, we need an estimate of the factor loading matrix B. Given that

in these types of models the factor loadings are assumed to be constant over time, they can be

conveniently estimated from unconditional quantities. Moreover, conditionally heteroskedastic

factor models also imply unconditional covariance matrices that have an exact k factor structure

as in the traditional factor models. Hence, recalling that ∆ = Ik, the unconditional covariance

matrix Σ can be written as

Σ = BB′ + Φ (2)

Clearly, the correlation matrix R = D−1ΣD′−1 with D = diag(Σ) will also have the same factor

structure

R = B∗B∗′ + Φ∗ (3)

with B∗ = D−1B and Φ∗ = D−1ΦD′−1.
1When N, T → ∞ and T/N → c > 0 the fixed effects estimator is consistent, while if N, T → ∞ such that

T b/N = O(1), b > 1 the estimator is efficient.
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Given that in our case all the observed indexes are mainly driven by a single latent macroeco-

nomic variable they are supposed to measure, we assume a factor structure with only one common

factor (i.e. k = 1). Then, the correlation matrix takes the following simple structure.

R =













1 b∗1b
∗
2 . . . b∗1b

∗
N

b∗2b
∗
1 1 . . . b∗2b

∗
N

...
. . .

...

b∗N b∗1 b∗Nb∗2 . . . 1













where [B∗]i = b∗i is the generic element of the N × 1 vector B∗. This structure, together with the

fact that the factor loadings of the proxy are assumed to be all positive, suggests the possibility

to estimate the vector of standardized factor loadings B∗ by simply minimizing the difference

between any generic off diagonal element of the matrix B∗B∗′ with the corresponding element of

the sample unconditional correlation matrix [S∗]ij = s∗ij, that is

b̂∗ = argmin
b∗

N
∑

i=1

∑

j 6=i

(b∗i b
∗
j − s∗i,j)

2. s.t. 0 < b∗i < 1 ∀i (4)

The minimization algorithm in (4) projects the sample correlation matrix into the space spanned

by single factor models.

Having the estimated standardized factor loadings B̂∗’s, we can estimate the elements of the

diagonal matrix Φ∗ as [Φ̂∗]ii = 1 − (b̂∗i )
2. Then the original idiosyncratic variance matrix and

factor loadings are simply obtained as Φ̂ = DΦ̂∗D′ and B̂ = DB̂∗ respectively.

With B̂∗ and Φ̂∗ at hand, we can now start the Kalman filter iteration. If the joint conditional

distribution of rt and ft given It−1 is normal, the model (1) has a natural conditionally Gaussian

linear state–space representation. In fact, considering the common factor ft as state variable,

equation (1) could be seen as a standard measurement equation. Hence, the Kalman filter would

coincide with the conditional expectation of ft given rt, which is optimal in the conditional mean

squared error sense. Actually, the optimality of the Kalman filter extraction of the factor holds

under the more general assumption that ft and rt follow a conditional joint distribution that

is elliptically symmetric (Sentana 1991). Thus, the conditional Kalman filter estimate of the

common factor would be given by the (unfeasible) updating equation of the filter

fCK
t = ∆tB

′Σ−1
t rt = ∆tB

′(B∆tB
′ + Φ)−1rt. (5)

In order to have a feasible conditional Kalman filter, we propose to start the iterative procedure

from the unconditional Kalman filter estimates with time–invariant weights

f̂
(0)
t = B̂′Σ̂−1rt = B̂′(B̂B̂′ + Φ̂)−1rt (6)

using the estimates B̂ and Φ̂ obtained from the unconditional information.

Having this first reconstruction of the dynamics of the latent macro–variable, we then get an

estimate of the dynamics of its volatility by estimating a GARCH model on f̂t. In this way we
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obtain a first estimate of the dynamics of the conditional variance of the factor i.e. ∆̂
(0)
t which is

then used in the conditional Kalman filter estimation of the factor

f̂
(1)
t = ∆̂

(0)
t B̂′Σ̂−1

t rt = ∆̂
(0)
t B̂′

(

B̂∆̂
(0)
t B̂′ + Φ̂

)−1
rt (7)

from which a new reconstruction of the latent factor can be computed and a new conditional

variance dynamics ∆̂
(1)
t estimated. Iterating this procedure provides our proposed estimator for

the dynamics of the latent factor and its conditional variance. Note that in practice, only a small

number of iterations is necessary to reach converge and the algorithm is very fast.

2.2 Simulations

We first judge the performance of the proposed approach on the accuracy in the reconstruction

of the time series of the latent factor ft. The first employed data generating process (DGP) is a

one factor model with the latent factor following a GARCH type dynamics with zero mean and

unconditional unit variance. We simulate 1000 paths and for each path we assume 49 years of

monthly observations (T = 588). Similarly to our real data application, we assume to have 20

observable indicators for the latent macroeconomic variable (N = 20). The true βs in the DGP

are randomly chosen within a range of values analogous to that estimated on the empirical data.

For comparison purposes we also include the result obtained with a simple cross-sectional average

of the indexes, the PCA and the FA with one factor.

To judge the accuracy in reconstructing the ft series with the various approaches, we compute

the Root Mean Square Error (RMSE) for each simulated path between the true path of the latent

factor and the estimated one. For each simulation path we also compute the correlation coefficient

between the two series. Results are reported in the first two rows of Table 1.

[Table 1 about here.]

According to both metrics, our proposed procedure for the latent ft process turns out to be

the most precise; it is the one with, on average, the smallest RMSE and the highest correlation

coefficient.

We then evaluate the ability of the different approaches to reconstruct the volatility dynamics

of the true factor by computing the RMSE and correlation coefficient between the true series

of simulated volatilities and the reconstructed ones obtained by fitting a GARCH(1,1) process

to the estimated ft series. Again, the Iterated Kalman filter provides the reconstruction of the

latent factor volatility with, on average, the lowest RMSE and the highest correlation coefficient,

as shown in the last two rows of Table 1.

Finally, in Figure 1, we plot the distributions of the estimated parameters of the GARCH

process for the volatility.

[Figure 1 about here.]
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The figure clearly shows that the estimates of the true parameters α and β of the GARCH

process in the factor DGP are both unbiased and reasonably accurate.

We also test the procedure on two more challenging volatility DGP processes: in the first

one the variance matrix of the idiosyncratic noise Φ is also time–varying, with each idiosyncratic

component following a different GARCH process. The second one consists of a two-regime process

with lagged return as the threshold variable where the local conditional variance evolves according

to a FIGARCH(1,d,1) model (see Baillie et al. 1996) in one regime and a model that is not of

a GARCH type in the second regime. Results for the two more complex volatility DGPs are

reported in Tables 2 and 3.

[Table 2 about here.]

[Table 3 about here.]

The results confirm in both cases the more accurate reconstruction of the latent process by

the proposed iterated Kalman filter method. Finally, as in Figure 1, in Figure 2 we plot the

distribution of the α and β parameter estimates in the case of DGP process with time varying

(GARCH type) idiosyncratic noise Φt.

[Figure 2 about here.]

GARCH parameter estimates seem to remain unbiased even in this misspecified context.

3 Real data application: bond risk premia forecasting

Economic theory suggests that (a great portion of) bond term premia variation is driven by

macroeconomic fundamentals. Yet, the link between macroeconomic activity and risk premia

might be hard to detect. Using different modeling setups, many recent studies (see, among others,

Ludvigson and Ng (2009b), Joslin et al. (2009), or Duffee (2009)) document that macroeconomic

variables capture significant predictive power for excess returns over and above the standard

financial factors. In this section we assess the performance of our iterated Kalman filter technique

in forecasting long–term bond excess returns.

3.1 Data and estimated inflation levels and variances

In our empirical study two different datasets are used.

Bond Data

We use monthly data (June 1961 onward) from the Federal Reserve Board constructed as in

Gürkaynak et al. (2006).2 Following Cochrane and Piazzesi’s (2005) procedure, bond excess

returns are calculated as 12–month holding period returns in excess of the one–year risk–free

2The data are available under http://www.federalreserve.gov/econresdata/researchdata.htm.
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rate.3 Furthermore, we construct our tent–shape bond–return forecasting factor described in

Cochrane and Piazzesi (2005) (hereafter CP factor) as a linear combination of forward rates. The

inclusion of the CP factor is motivated simply by the fact that it has high explanatory power for

bond excess returns.

Macroeconomic Data

The second dataset consists of monthly observations for 21 U.S. inflation time series. Exact

description of the data is given in Appendix A. The panel spans the period January 1959 –

December 2007 and has already been used as a part of other studies: see, among others, Stock

and Watson (2005), Ludvigson and Ng (2009b) and Ludvigson and Ng (2009a). We build two

alternative pairs of estimates for inflation levels and variances. First, similar to Ludvigson and

Ng (2009a), we extract the first principal component (PC) as a measure for inflation’s level.

PC volatility is computed from fitting a GARCH(1,1) on monthly data. Our second approach

for reconstructing the level and the variance of inflation is based on the iterated Kalman filter

procedure described in Section 2.1.

For our analysis we take the largest common period of the two datasets and split it into

two parts. We consider June 1961 to December 2003 as in-sample period. The rest of the

data (January 2004 - December 2008) has been left to evaluate the out-of-sample forecasting

performance of the different predictors. Summary statistics of the data are reported in Table 4.

[Table 4 about here.]

Figure 3 illustrates the difference between the level and the volatility of the two inflation

measures.

[Figure 3 about here.]

3.2 Financial variables, inflation measures, and business cycles

To begin with, we analyze the correspondence between the NBER business cycles and the different

financial and inflation measures. The last row of Table 4 reports the results. The weak correlation

(around 0.04) between the NBER recession and CP factor confirms Ludvigson and Ng (2009b)

finding that, without macro factors, bond risk premia appear virtually acyclical. Yet, theory

says that risk premia have a marked counter–cyclical behavior, compensating the investors for

macroeconomic risks. The almost two times higher correlation between the NBER business cycles

indicator and the iterated Kalman filter inflation variables in comparison to those estimated with

the PC approach assures more pronounced cyclical fluctuations in bond risk premia. By its

iterated nature, our measures for inflation seem to better capture perceptions of risks looming

on the investors horizon. Thus, they convey valid and timely information over and above that

3Let rx
(n)
t+1 denote the continuously compounded log excess return on an n year bond at time t + 1. Then bond

excess returns are defined as rx
(n)
t+1 = r

(n)
t+1 − y

(n)
t , where r

(n)
t+1 is the log holding period return from buying an n

year bond at time t and selling it at time t + 1, and y
(1)
t

is the log yield on a one year bond.
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contained in other financial and PC inflation fundamentals. These findings make the inflation

factors obtained by the iterated Kalman filter approach highly economically significant.

3.3 Long–term bond risk premia forecasting results

To assess the impact of the two different pairs of inflation factors on bond excess returns, we run

the following regressions:

Model M1 : rx
(n)
t+12 = γ0 + γ1CPt + ε

(n)
t+12

Model M2 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + ε

(n)
t+12

Model M3 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

IK
t + ε

(n)
t+12

Model M4 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

PC
t + ε

(n)
t+12

Model M5 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

PC
t + ε

(n)
t+12

Model M6 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + γ3volπ

IK
t + ε

(n)
t+12

Model M7 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

PC
t + γ3volπ

PC
t + ε

(n)
t+12,

Model M8 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + γ3π

PC
t + ε

(n)
t+12

Model M9 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

IK
t + γ3volπ

PC
t + ε

(n)
t+12,

where rx
(n)
t+12 are the excess returns on an n year nominal bond (n = 5, 10, 20, 30) at time t + 12.

CPt represents the CP factor, πt and volπt denote the inflation level and inflation volatility

factors, estimated by the two different approaches: iterated Kalman filter (denoted by πIK
t and

volπIK
t ) and principal component analysis (denoted by πPC

t and volπPC
t ), respectively. To this

end, we estimate nine different models. First, we regress the excess returns only on CP factor

(Model M1). This regression should serve as a benchmark model. Then, in Model M2 and Model

M3 we add one more predictor, the level and the volatility of inflation, each estimated by the

iterative Kalman filter approach. We repeat the same procedure for the next two models (Model

M4 and Model M5), where we add once again the level and the volatility of inflation, this time

estimated by the PC technique. In Model M6 and Model M7 we take into consideration all three

predictors: CP factor, level and volatility of inflation. The only difference between Model M6

and Model M7 is in the way the inflation variables are measured. In particular, in Model M6

the inflation variables are derived by the iterated Kalman filter procedure, whereas in M7 PCA

has been used. In contrast to the previous models, where the main idea is to assess performance,

the individual filtering techniques, the last two models (Model M8 and Model M9) provide a

direct comparison between the two level (Model M8) and the two volatility (Model M9) factors.

All coefficients are estimated with ordinary least squares, and standard errors are corrected for

autocorrelation and heteroskedasticity. Table 5 and Table 6 present the results.

[Table 5 about here.]

[Table 6 about here.]
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The estimated coefficients for the CP factor are positive and highly significant for predicting

bond risk premia at all maturities. Fully in line with the literature, the CP factor accounts

for around 28% of the excess returns variation. The strength of the predictive power of the

inflation factors changes with time to maturity of a bond, explaining up to 6% of the variation

in addition to the CP factor. The estimated coefficients for level and volatility of inflation are

negative, and they are significant most of the time. The negative correlation between the different

inflation measures and excess returns is quite intuitive, as higher inflation decreases the value of

the nominal bond. Including both level and volatility of the inflation factor (see Models M6

and M7) in the regression does not seem to improve the accuracy, and both predictors become

statistically not significant.4

Although, at first glance, both filtering techniques seem to perform equally well, the ability of

our approach to reconstruct in a more accurate way both the level and the volatility of inflation

has empirical merits. First, in–sample results providing direct comparison between the individual

level and volatility factors (see Model M8 and Model M9 presented in Table 5 and Table 6) reveal

that the iterated Kalman filter variables are significant most of the time, whereas the impact of

the PC measures is always negligible. Second, the dominance of our approach is confirmed by an

out-of-sample study. Forecasting results covering the period January 2004 to December 2008 are

shown in Table 7.

[Table 7 about here.]

The superior predictive ability test of Hansen (2005) (see Table 7) reveals that our inflation’s

level and volatility measures on top of the CP factor matter for forecasting bond risk premia,

significantly outperforming other alternatives. Importantly, however, their impact can differ,

depending on the time to maturity of a bond.

We also test the performance of the two filtering techniques in a more challenging framework.

Without making any additional assumptions, we create a pool of predictors, including the two

different pairs of inflation measures and the CP factor, and let the data themselves choose the

most informative variables. This is achieved by finding for each possible number of predictors

the subset of the corresponding size that gives the smallest residual sum of squares.5 Then, we

use the Bayesian Schwarz Information Criterion (BIC) to select the best model. We find that

regressing the excess returns on the CP factor and the volatility of inflation obtained by the

iterated Kalman filter i.e. Model M3 leads to optimal results.

Finally, we discuss the overall impact of the individual inflation factors in forecasting bond

risk premia. Based on the in–sample fit, out–of–sample forecasting, and economic significance,

we document that the most important macroeconomic variable for bond excess returns represents

the volatility of inflation estimated via the iterated Kalman filter technique. Yet, our inflation

volatility measure is no longer a statistically significant predictor of long–term bond risk premia

4This result is a consequence of the high correlation between the two variables (and both series are very persis-

tent) together with the necessary Newey-West correction that substantially lowers the t-statistics.
5This procedure is known in the literature as best subset selection. See Hastie et al. (2001) for more details.
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once the level of inflation is in the same regression. The reason for this is the high correlation

between the two iterated Kalman filter factors. However, their impact varies with the time to

maturity of a bond. In general, we may conclude that the iterated Kalman filter technique allows

us to extract in a more accurate way the investors’ perceptions of inflation risk in comparison

with alternative approaches.

4 Conclusions

In this paper we propose a new, computationally simple approach for reconstructing the level and

volatility dynamics of a latent macroeconomic factor from a large panel of macroeconomic indices.

Our estimation procedure is based on the iterated Kalman filter technique in which we iterate

between filtering the unobservable factor with a Kalman filter in the cross–sectional dimension

and estimating its variance dynamics in the time series dimension.

We assess the performance of our iterated Kalman filter approach on a set of empirical studies.

Extensive simulation results reveal the accuracy of our latent factor volatility estimates and

its superiority in comparison with other alternative approaches. Encouraged by those results,

we test the ability of our approach to reconstruct in a more accurate way the unobservable

macroeconomic driver and its volatility on a real data application – bond risk premia forecasting.

Using a panel of a large number of inflation time series, we filter the level and the volatility of

inflation via different techniques. We find that in predicting long–term bond risk premia, our

inflation estimates significantly outperform the other competitors. In addition, looking at the

correspondence between NBER business cycles and inflation fundamentals, we conclude that our

estimates are not only statistically but also economically significant.

Our analysis could be taken a step further by studying the performance of bond risk premia in a

term structure modeling framework. The iterated Kalman technique could also be to used obtain

more accurate estimates for other important macroeconomic predictors such as real activity.

However, those extensions are left for future research.
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A Data Appendix

This appendix presents U.S. inflation data used in our real data analysis. The first column lists

the short name of the inflation variable, followed by its mnemonic in column 2, and a brief data

description in column 4. All data series are from Global Insights Basic Economic Database. The

third column shows the transformations used to assure stationarity of the individual time series.

In particular, ∆ ln and lv denote the first difference of the logarithm and the level of the series,

respectively. These data span the period January 1959 - December 2007 for a total of 588 monthly

observations.

Short Name Mnemonic Tran Description

PPI: fin gds pwfsa ∆ ln Producer Price Index: Finished Goods (82=100,Sa)

PPI: cons gds pwfcsa ∆ ln Producer Price Index: Finished Consumer Goods (82=100,Sa)

PPI: int materials pwimsa ∆ ln Producer Price Index:Intermed Mat.Supplies & Components(82==100,Sa)

PPI: crude matls pwcmsa ∆ ln Producer Price Index: Crude Materials (82=100,Sa)

Spot market price psccom ∆ ln Spot market price index: bls & crb: all commodities(1967=100)

PPI: nonferrous materials pw102 ∆ ln Producer Price Index: Nonferrous Materials (1982=100, Nsa)

NAPM com price pmcp lv Napm Commodity Prices Index (Percent)

CPI-U: all punew ∆ ln Cpi-U: All Items (82-84=100,Sa)

CPI-U: apparel pu83 ∆ ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)

CPI-U: transp pu84 ∆ ln Cpi-U: Transportation (82-84=100,Sa)

CPI-U: medical pu85 ∆ ln Cpi-U: Medical Care (82-84=100,Sa)

CPI-U: comm. puc ∆ ln Cpi-U: Commodities (82-84=100,Sa)

CPI-U: dbles pucd ∆ ln Cpi-U: Durables (82-84=100,Sa)

CPI-U: services pus ∆ ln Cpi-U: Services (82-84=100,Sa)

CPI-U: ex food puxf ∆ ln Cpi-U: All Items Less Food (82-84=100,Sa)

CPI-U: ex shelter puxhs ∆ ln Cpi-U: All Items Less Shelter (82-84=100,Sa)

CPI-U: ex med puxm ∆ ln Cpi-U: All Items Less Medical Care (82-84=100,Sa)

PCE defl gmdc ∆ ln Pce, Impl Pr Defl:Pce (2000=100) (AC) (BEA)

PCE defl: dlbes gmdcd ∆ ln Pce, Impl Pr Defl:Pce; Durables (2000=100) (AC) (BEA)

PCE defl: nondble gmdcn ∆ ln Pce, Impl Pr Defl:Pce; Nondurables (2000=100) (AC) (BEA)

PCE defl: service gmdcs ∆ ln Pce, Impl Pr Defl:Pce; Services (2000=100) (AC) (BEA)
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Performance Comparison - Simulations

Simple Factor Principal Iterated
Average Analysis Component Kalman

Average correlation on ft 0.9634 0.9892 0.9422 0.9899

Average RMSE on ft 1.7594 0.1470 0.3372 0.1394

Average correlation on σt 0.9467 0.9671 0.9247 0.9687

Average RMSE on σt 0.6506 0.1296 0.1466 0.0545

Table 1: Performance comparison of different filtering methods for the factor dynamics and
its conditional volatility over 1000 simulation paths. The methods are: simple cross–sectional
averages, Factor Analysis, Principal Component, and Iterated Kalman filter. The performance
measures are the average correlation and the average Root Mean Square Error (RMSE).
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Performance Comparison - Simulation of DGP Model with Time–Varying Φt

Simple Factor Principal Iterated
Average Analysis Component Kalman

Average correlation on ft 0.9627 0.9893 0.9404 0.9899

Average RMSE on ft 1.7405 0.1475 0.3421 0.1397

Average correlation on σt 0.9491 0.9698 0.9240 0.9707

Average RMSE on σt 0.6444 0.1283 0.1458 0.0533

Table 2: Performance comparison of different filtering methods for the factor dynamics and
its conditional volatility over 1000 simulation paths of a DGP model with time–varying Φt. The
methods are: simple cross–sectional averages, Factor Analysis, Principal Component, and Iterated
Kalman filter. The performance measures are the average correlation and the average Root Mean
Square Error (RMSE).
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Performance Comparison - Simulation of DGP Model with Two Regimes

Simple Factor Principal Iterated
Average Analysis Component Kalman

Average correlation on ft 0.9629 0.9891 0.9414 0.9898

Average RMSE on ft 1.7582 0.1472 0.3394 0.1403

Average correlation on σt 0.6159 0.6371 0.5951 0.6419

Average RMSE on σt 0.6908 0.2213 0.2285 0.2049

Table 3: Performance comparison of different filtering methods for the factor dynamics and its
conditional volatility over 1000 simulation paths of a DGP model with two-regime processes.
The methods are: simple cross–sectional averages, Factor Analysis, Principal Component, and
Iterated Kalman filter. The performance measures are the average correlation and the average
Root Mean Square Error (RMSE).
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Summary Statistics of Data

rx
(5)

rx
(10)

rx
(20)

rx
(30) CP π

IK
volπ

IK
π

PC
volπ

PC

Panel A:

Mean 0.011 0.013 0.011 0.009 0.006 0.838 1.034 0.034 0.876
Std 0.056 0.104 0.198 0.325 0.019 0.579 2.109 1.014 0.694
AC1 0.931 0.921 0.880 0.798 0.916 0.989 0.993 0.973 0.953

Panel B:

rx
(5) 1.00

rx
(10) 0.96 1.00

rx
(20) 0.82 0.92 1.00

rx
(30) 0.62 0.72 0.90 1.00

CP 0.43 0.48 0.49 0.44 1.00

π
IK -0.22 -0.25 -0.26 -0.26 -0.06 1.00

volπ
IK -0.31 -0.36 -0.31 -0.29 -0.15 0.89 1.00

π
P C -0.30 -0.29 -0.30 -0.29 -0.41 0.55 0.42 1.00

volπ
P C -0.23 -0.24 -0.26 -0.26 -0.38 0.49 0.49 0.69 1.00

NBER 0.04 0.46 0.45 0.17 0.24

Table 4: Panel A reports summary statistics for the following variables: 5, 10, 20, 30 year bond
excess returns (denoted by rx(5), rx(10), rx(20), rx(30), respectively), Cochrane and Piazzesi (2005)
factor (denoted by CP), inflation level and inflation volatility factors estimated by iterated Kalman
filter (denoted by πIK

t and volπIK
t ), inflation level and inflation volatility factors estimated by

principal component technique (denoted by πPC
t and volπPC

t ). NBER is a binary variable, where
one indicates month designated as recessions by the National Bureau of Economic Research. AC1
denotes the first autocorrelation coefficient. Panel B reports cross–correlations.
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Panel A: Predictive Regression Analysis 5 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept −0.002 0.013 0.005 −0.001 0.002 0.004 −0.007 0.009 0.001
(−0.310) (1.168) (0.678) (−0.174) (0.239) (0.339) (−0.640) ( 0.748) (0.088)

CP Factor 1.533∗∗∗ 1.474∗∗∗ 1.410∗∗∗ 1.351∗∗∗ 1.472∗∗∗ 1.408∗∗∗ 1.383∗∗∗ 1.403∗∗∗ 1.465∗∗∗

(4.749) (4.555) (4.219) (3.982) (4.173) (4.102) (4.022) (4.192) (4.245)
Inflation Level −0.016 0.001 −0.012
(Iterated Kalman) (−1.433) (0.059) (−0.869)
Inflation Vol −0.005 −0.005 −0.006
(Iterated Kalman) (−1.545) (−0.826) (−1.629)
Inflation Level −0.009 −0.012 −0.004
(PCA) (−1.430) (−1.510) (−0.626)
Inflation Vol −0.004 0.006 0.005
(PCA) (−0.548) ( 0.615) (0.694)

R
2 0.257 0.285 0.294 0.279 0.259 0.294 0.282 0.289 0.297

Adjusted R
2 0.256 0.283 0.292 0.277 0.257 0.290 0.279 0.285 0.293

Panel B: Predictive Regression Analysis 10 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept −0.013 0.018 0.001 −0.011 −0.002 0.002 −0.016 0.0152 −0.005
(−1.164) ( 0.991) (0.088) (−1.094) (−0.165) (0.119) (−0.901) (0.708) (−0.351)

CP Factor 3.025∗∗∗ 2.899∗∗∗ 2.772∗∗∗ 2.707∗∗∗ 2.869∗∗∗ 2.778∗∗∗ 2.733∗∗∗ 2.841∗∗∗ 2.857∗∗∗

(4.649) (4.521) (4.251) (4.077) (4.146) (4.203) (4.077) (4.331) (4.271)
Inflation Level −0.035∗ −0.002 −0.031
(Iterated Kalman) (−1.751) (−0.078) (−1.278)
Inflation Vol −0.011∗ −0.010 −0.012∗

(Iterated Kalman) (−1.917) (−0.960) (−1.928)
Inflation Level −0.015 −0.018 −0.003
(PCA) (−1.410) (−1.371) (−0.284)
Inflation Vol −0.011 0.005 0.008
(PCA) (−0.748) ( 0.287) (0.587)

R
2 0.283 0.320 0.328 0.303 0.288 0.328 0.303 0.320 0.330

Adjusted R
2 0.282 0.317 0.325 0.300 0.285 0.324 0.299 0.316 0.326

Table 5: Results for ordinary least squares regressions for nine different models (labeled as M1, M2,. . .,M9) utilizing annual returns on 5- and 10-year Treasury

bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗ ,∗∗ ,∗∗∗ indicate statistical

significance at the 10%, 5%, and 1% level, respectively. The data span the period June 1962 to December 2003. See text for more details.
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Panel A: Predictive Regression Analysis: 20 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept −0.042∗∗ 0.017 −0.016 −0.039∗∗ −0.011 −0.005 −0.036 0.009 −0.002
(−1.976) (0.634) (−0.972) (−2.045) (−0.449) (−0.157) (−1.114) (0.248) (−0.624)

CP Factor 5.901∗∗∗ 5.659∗∗∗ 5.438∗∗∗ 5.2422∗∗∗ 5.458∗∗∗ 5.482∗∗∗ 5.224∗∗∗ 5.481∗∗∗ 5.438∗∗∗

(4.366) (4.439) (4.300) (4.235) (4.016) (4.298) (4.129) (4.456) (4.176)
Inflation Level −0.066∗ −0.019 −0.056
(Iterated Kalman) (−1.964) (−0.362) (−1.359)
Inflation Vol −0.019∗∗ −0.015 −0.012∗∗

(Iterated Kalman) (−2.348) (−1.169) (−2.123)
Inflation Level −0.032 −0.031 −0.011
(PCA) (−1.542) (−1.437) (−0.466)
Inflation Vol −0.032 −0.003 −5.3e − 05
(PCA) (−0.983) (−0.103) (−0.001)

R
2 0.299 0.336 0.340 0.322 0.310 0.341 0.322 0.338 0.340

Adjusted R
2 0.297 0.334 0.338 0.319 0.307 0.337 0.318 0.334 0.336

Panel B: Predictive Regression Analysis: 30 Year Excess Returns

M1 M2 M3 M4 M5 M6 M7 M8 M9

Intercept −0.072∗∗ 0.029 −0.031 −0.065∗∗ −0.009 0.008 −0.049 0.007 −0.016
(−2.027) (0.798) (−1.215) (−2.113) (−0.218) (0.177) ( −0.905) (0.170) (−0.368)

CP Factor 8.779∗∗∗ 8.372∗∗∗ 8.057∗∗∗ 7.564∗∗∗ 7.874∗∗∗ 8.213∗∗∗ 7.477∗∗∗ 7.928∗∗∗ 7.845∗∗∗

(3.830) (4.013) (3.911) (3.901) (3.460) (3.886) (3.692) (4.092) (3.560)
Inflation Level −0.112∗∗ −0.070 −0.085∗

(Iterated Kalman) (−2.292) (−0.808) (−1.690)
Inflation Vol −0.030∗∗∗ −0.013 −0.027∗∗

(Iterated Kalman) (−2.602) (−0.751) (−2.260)
Inflation Level −0.061 −0.053 −0.027
(PCA) (−1.639) (−1.325) (−0.708)
Inflation Vol −0.066 −0.017 −0.021
(PCA) (−1.113) (−0.262) (−0.353)

R
2 0.246 0.285 0.283 0.275 0.262 0.286 0.276 0.288 0.285

Adjusted R
2 0.244 0.282 0.280 0.272 0.259 0.282 0.271 0.284 0.280

Table 6: Results for ordinary least squares regressions for nine different models (labeled as M1, M2,. . .,M9) utilizing annual returns on 20- and 30-year Treasury

bonds. Standard errors are corrected for autocorrelation and heteroskedasticity. t-statistics are reported in parenthesis. Asterisks ∗ ,∗∗ ,∗∗∗ indicate statistical

significance at the 10%, 5%, and 1% level, respectively. The data span the period June 1962 to December 2003. See text for more details.
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Panel A: Out-of-Sample Mean Squared Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

Model M1 0.0033 (0.0972) 0.0091 (0.0079) 0.0320 (0.0000) 0.0873 (0.0000)

Model M2 0.0029 (0.1385) 0.0074 (0.1387) 0.0256 (0.0479) 0.0706 (0.0644)

Model M3 0.0028 (0.6321) 0.0070 (0.3957) 0.0241 (0.3365) 0.0674 (0.3459)

Model M4 0.0035 (0.0602) 0.0103 (0.0000) 0.0378 (0.0000) 0.1044 (0.0000)

Model M5 0.0033 (0.0789) 0.0094 (0.0000) 0.0343 (0.0000) 0.0947 (0.0000)

Model M6 0.0028 (0.4037) 0.0070 (0.6307) 0.0242 (0.6062) 0.0683 (0.5857)

Model M7 0.0035 (0.0473) 0.0104 (0.0000) 0.0377 (0.0000) 0.1042 (0.0000)

Panel B: Out–of–Sample Mean Absolute Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

Model M1 0.0418 (0.0834) 0.0786 (0.0000) 0.1576 (0.0000) 0.2473 (0.0000)

Model M2 0.0400 (0.3525) 0.0697 (0.1293) 0.1381 (0.1790) 0.2146 (0.0910)

Model M3 0.0391 (0.6545) 0.0676 (0.3945) 0.1349 (0.3555) 0.2120 (0.3186)

Model M4 0.0439 (0.0672) 0.0862 (0.0000) 0.1738 (0.0000) 0.2768 (0.0000)

Model M5 0.0422 (0.1149) 0.0812 (0.0000) 0.1643 (0.0000) 0.2612 (0.0000)

Model M6 0.0390 (0.4887) 0.0676 (0.6905) 0.1348 (0.6384) 0.2117 (0.6722)

Model M7 0.0440 (0.0315) 0.0861 (0.0000) 0.1737 (0.0000) 0.2767 (0.0000)

Table 7: Results (mean squared errors (Panel A) and mean absolute errors (Panel B)) of out–
of–sample forecasting performance of seven different models for 5-, 10-, 20- and 30-year Treasury
Bond excess returns, as described in detail in the text. p-values of the superior predictive ability
(SPA) test of Hansen (2005) are reported in parenthesis. The results are based on out-of-sample
period, January 2004 - December 2008.
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Figure 1: Probability distribution function (pdf) of the estimation error over 1000 simulation
paths of the parameters of the GARCH(1,1) process for the factor conditional variance σ2

t =
c + αf2

t−1 + βσ2
t−1.
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Figure 2: Probability distribution function of the estimation error over 1000 simulation paths of
the parameters of the GARCH(1,1) process for the factor conditional variance σ2

t = c + αf2
t−1 +

βσ2
t−1 in a DGP with time varying (GARCH type) idiosyncratic noise Φt.
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Figure 3: The upper panel plots the two estimates of inflation level: iterated Kalman filter (blue
line) and PC (black line) based on a panel of 21 inflation time series, as described in text. The
lower panel plots the inflation volatility filtered by the two techniques. Once again the blue line
indicates the iterated Kalman filter estimate, whereas the black line represents the dynamics of
the PC volatility. The shaded bars denote months designated as recessions by NBER.
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