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Abstract 

In the presence of an endogenous treatment and a valid instrument, causal effects are 

(nonparametrically) point identified only for the subpopulation of compliers, given that the 

treatment is monotone in the instrument. Further populations of likely policy interest have 

been widely ignored in econometrics. Therefore, we use treatment monotonicity and/or 

stochastic dominance assumptions to derive sharp bounds on the average treatment effects 

of the treated population, the entire population, the compliers, the always takers, and the 

never takers. We also provide an application to labor market data and briefly discuss 

testable implications of the instrumental exclusion restriction and stochastic dominance. 
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1 Introduction

Endogeneity of the (binary) treatment variable and noncompliance to the treatment assignment

in randomized experiments are widespread phenomenons in the evaluation of treatment effects,

see for instance Bloom (1984). In the presence of an instrumental variable (IV) such as random

treatment assignment, Imbens and Angrist (1994) (see also Angrist, Imbens, and Rubin, 1996)

show that average treatment effects are point identified only for a subpopulation, given that the

treatment is monotone in the instrument. This local average treatment effect (LATE) refers to

the so called compliers, whose treatment status reacts on a change in the instrument. If both the

treatment and the instrument are binary and monotonicity is positive, the compliers are those

with the treatment value always being equal to the instrument value.

Whether the LATE is a relevant parameter heavily depends on the empirical context and has

been controversially discussed in the literature, see for instance Imbens (2009), Deaton (2010),

and Heckman and Urzúa (2010). In many applications, one prefers to make inference for further

or different populations. E.g., applications in the program evaluation literature typically want to

learn about the average treatment effects (ATE) on the treated or on the entire population. Note

that these parameters are themselves weighted averages of the ATEs on several subpopulations,

including the always takers (always treated irrespective of the instrument) and the never takers

(never treated irrespective of the instrument). So far, any of these groups has been widely ignored

in the econometric literature.

An exception is Frölich and Lechner (2010) who also point identify the ATEs on the always

takers and never takers. Therefore, they invoke both IV and selection on observables (or condi-

tional independence, see for instance Imbens, 2004) assumptions. This identification strategy is,

however, in contrast to virtually all other IV applications, where an instrument is used exactly

for the reason that no other source of identification (such as selection on observables) is avail-

able. Then, point identification for the never takers, always takers, the treated, and the entire

population is not feasible in a nonparametric framework (unless the complier share is 100 %).
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The main contribution of this paper is to show that informative nonparametric bounds on the

ATEs for populations other than the compliers can be attained under relatively weak assumptions.

In many empirical applications the identification of a reasonable set of values for the ATE on, for

instance, the treated might be preferable to the point identification of the LATE, which may suffer

from decreased external validity. The assumptions invoked in this paper are (i) monotonicity of

the treatment in the instrument and (ii) stochastic dominance of the potential outcomes of one

subpopulation over the others. The identifying power of these restrictions is investigated both

separably and jointly using the principal stratification framework suggested by Frangakis and

Rubin (2002). We derive sharp bounds for the always takers, never takers, the treated, and the

entire population. As a further contribution, we find testable implications of the IV exclusion

restriction and stochastic dominance when monotonicity is invoked.

Partial identification of economic parameters in general goes back to Manski (1989, 1994) and

Robins (1989). Previous work on nonparametric bounds under treatment endogeneity, which is

the problem considered here, has exclusively focused on the ATE on the entire population,1 but

neglected further populations. Manski (1990) bounds the ATE by invoking only mean indepen-

dence between the potential outcomes and the instrument. Considering binary outcomes, Balke

and Pearl (1997) derive sharp bounds under the same statistical independence considered in Im-

bens and Angrist (1994) and under monotonicity (see also Dawid, 2003) of the treatment in the

instrument. Also Shaikh and Vytlacil (2010) bound the ATE on the entire population in the

binary outcome case under monotonicity, see Bhattacharya, Shaikh, and Vytlacil (2005) for an

application. In addition, Shaikh and Vytlacil (2010) also consider the so-called “monotone treat-

ment response” assumption of Manski (1997), which a priori restricts the direction of the treat-

ment effect. This appears unattractive given that the latter is unknown and has to be estimated

and will, therefore, not be considered here. Cheng and Small (2006) extend the results for binary

outcomes to three treatments (in contrast to the standard binary treatment framework consid-

ered here) under particular forms of (one-sided) noncompliance.

1For the derivation of semiparametric bounds on the ATE on the entire population, see Chiburis (2010) and the
references therein.
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In contrast to much of the epidemiologic literature, Heckman and Vytlacil (2001) and Kita-

gawa (2009) allow for both discrete and continuous outcomes. Kitagawa partially identifies the

potential outcome distributions for the entire population under (various forms of) the exclusion

restriction and monotonicity and derives bounds on the ATE. Heckman and Vytlacil (2001) in-

voke a nonparametric threshold crossing model for the treatment instead of monotonicity for de-

riving the bounds. However, both approaches are equivalent by the results of Vytlacil (2002).

One interesting finding of Heckman and Vytlacil (2001) and Kitagawa (2009) is that the width

of their bounds is the same as those of Manski (1990) (see also Balke and Pearl, 1997, for binary

outcomes), given that the monotonicity/threshold crossing model assumptions are satisfied.

The present work adds to the literature on nonparametric bounds under endogeneity by con-

sidering more populations and an extended set of identifying assumptions. The identifying power

of jointly imposing monotonicity and stochastic dominance is demonstrated in an empirical appli-

cation to the U.S. Job Training Partnership Act. Using experimental data previously analyzed by

Abadie, Angrist, and Imbens (2002), we find (in addition to the point identified complier effect) a

significantly positive ATE on the earnings of the treated that lies within reasonably tight bounds.

Monotonicity and stochastic dominance have also been considered in a different context, namely

under non-random sample selection and attrition, see for instance Zhang and Rubin (2003), Lech-

ner and Melly (2007), Zhang, Rubin, and Mealli (2008), and Lee (2009), and Huber and Mellace

(2010).

The remainder of this paper is organized as follows. Section 2 characterizes the

endogeneity/noncompliance problem based on principal stratification. Section 3 discusses the

identifying assumptions and derives bounds on the ATEs for various populations. Section 4

very briefly presents the estimators. In Section 5, we consider an empirical application to

experimental labor market data. Section 6 concludes.
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2 Using principal stratification to characterize noncompliance

Suppose that we want to estimate the effect of a binary treatment T ∈ {1, 0} (e.g., a training

activity) on an outcome Y (e.g., labor market success such as employment or earnings) evaluated

at some point in time after the treatment. We will use the experimental framework to motivate

the problems of endogeneity and noncompliance. Assume that individuals are randomly assigned

into treatment or non-treatment according to the binary assignment variable Z ∈ {1, 0}, which

will serve as instrument. Denote by T (z) the potential treatment state for Z = z, and by Yi(1)

and Yi(0) the potential outcomes (see for instance Rubin, 1974) of individual i under treatment

and non-treatment.

Throughout the discussion we will rule out interference between individuals as well as

general equilibrium effects of the treatment, which is implied by the “Stable Unit Treatment

Value assumption” (SUTVA), see for instance Rubin (1990). Furthermore, we will assume that

mere assignment does not have any direct effect on the potential outcomes other than through

the treatment. Taking assignment to a training as an example, this rules out that individuals

change their labor market state as a reaction of being assigned to the training. What matters

is whether the training is actually received. This exclusion restriction and the SUTVA are

formalized in Assumption 1 (see also Angrist, Imbens, and Rubin, 1996):

Assumption 1:

Y (t, Z) = Y (t) ∀ t ∈ {0, 1} (exclusion restriction),

and

Yi(ti)⊥tj and Ti(zi)⊥zj ∀j 6= i (SUTVA).

Of course, the individual effect Yi(1) − Yi(0) can never be evaluated as individual i is

either treated or not treated, but cannot be observed in both states. However, under

particular assumptions aggregate parameters such as the average treatment effect (ATE)

∆ = E[Y (1)]− E[Y (0)] can be identified.
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Our second assumption restricts Z to be independent of the potential values of any post-

assignment variables, which holds by random assignment. Analogous to Imbens and Angrist

(1994), we make the following joint independence assumption:

Assumption 2:

Z⊥T (1), T (0), Y (1), Y (0) (joint independence),

where “⊥” denotes independence. Alternatively, one may assume that independence only holds

conditional on some observed pre-assignment variables X, such that Assumption 2 changes to

Z⊥T (1), T (0), Y (1), Y (0)|X = x, ∀x ∈ X , where X denotes the support of X. This is closely

related to the framework of Frölich (2007) who shows point identification of the LATE given a

conditionally valid instrument (given X). In the further discussion, conditioning on X will be

kept implicit, such that all results either refer to the experimental framework or to an analysis

within cells of X. Assumption 2 is equivalent to the “random assignment restriction” in Kitagawa

(2009) who, as an alternative, also considers the following, weaker assumption: Z⊥Y (1), Y (0).

This case would allow for dependence between the instrument and the potential treatment states.

It is not considered in this paper, as it is not consistent with (successful) randomization, which

implies independence of Z and any potential post-treatment variables.

Note that experimental compliance is perfect if T (1) = 1 and T (0) = 0 for all individuals. In

this case and under Assumptions 1 and 2, E[Y |Z = 1] − E[Y |Z = 0] = E[Y |T = 1] − E[Y |T =

0] = E[Y (1)] − E[Y (0)] = ∆, where the first equality follows from perfect compliance and the

second from random assignment. As all individuals are compliers, the ATE is identified. However,

if post-assignment complications occur such that T (z) 6= z for some subpopulation, selection bias

may flaw the validity of the evaluation in spite of the randomization of the assignment. This is

due to the potential threat that individuals systematically select themselves into the treatment

according to their potential outcomes.

Using the principal stratification framework advocated by Frangakis and Rubin (2002), the

population can be divided into four principal strata, denoted by G, according to the choice of T
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as a reaction of Z. As outlined in Angrist, Imbens, and Rubin (1996), the four groups are the

compliers, the always takers, who are always treated irrespective of the assignment, the never

takers, who are never treated irrespective of the assignment, and the defiers, who are treated

when not assigned, but not treated when assigned:

Table 1: Principal strata

Principal strata (G) T(1) T(0) Notion

11 1 1 Always takers
10 1 0 Compliers
01 0 1 Defiers
00 0 0 Never takers

It is obvious that we cannot directly observe the principal stratum an individual belongs to

as either T (1) or T (0) is known. Let Gi ∈ {11, 10, 01, 00} represent the principal stratum to

which subject i belongs. By Assumption 2, Gi is not affected by the instrument and can be

regarded as a covariate that is only partially observed in the data. Independence implies that

Y (0), Y (1)⊥z|T (0), T (1) (or Y (0), Y (1)⊥z|T (0), T (1), X under conditional independence). Thus,

potential outcomes are independent of the instrument given the principal stratum. Therefore,

any effect of Z on Y conditional on a principal stratum is well defined. It is yet not causal, as

the instrument has no direct effect on the outcome by Assumption 1. Any change in Y following

a change in Z must be triggered by a change in T . Hence, if the effect of Z on Y can be

scaled by the effect of Z on T within a stratum, the ATE of T on Y can be recovered for the

respective subpopulation. This is exactly how the LATE on the compliers is identified under the

monotonicity assumption discussed further below.

Table 2: Observed subgroups and principal strata

Observed subgroups o(Z, T ) principal strata

o(1, 1) = {i : Zi = 1, Ti = 1} subject i belongs either to 11 or to 10
o(1, 0) = {i : Zi = 1, Ti = 0} subject i belongs either to 01 or to 00
o(0, 1) = {i : Zi = 0, Ti = 1} subject i belongs either to 11 or to 01
o(0, 0) = {i : Zi = 0, Ti = 0} subject i belongs either to 10 or to 00

However, without the imposition of further assumptions, neither the principal strata

proportions nor the distribution of Y within any stratum is identified. To see this, note that
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the observed values of Z and T generate four observed subgroups, denoted as o(Z, T ), which

are all mixtures of two principal strata, see Table 2. Therefore, also the probability to belong

to an observed subgroup is a mixture of principal strata proportions, henceforth denoted as

πtt′ ≡ Pr(T (1) = t, T (0) = t′). Let Pt|z represent the observed treatment probability conditional

on assignment, Pr(T = t|Z = z), in the population of interest. Under Assumption 2, which

ensures that the strata proportions conditional on the instrument are equal to the unconditional

strata proportions, the relation between the observed Pt|z and the latent πtt′ is as displayed in

Table 3.

Table 3: Observed probabilities and principal strata proportions

Observed cond. selection prob. princ. strata proportions

P1|1 ≡ Pr(T = 1|Z = 1) π11 + π10

P0|1 ≡ Pr(T = 0|Z = 1) π01 + π00

P1|0 ≡ Pr(T = 1|Z = 0) π11 + π01

P0|0 ≡ Pr(T = 0|Z = 0) π10 + π00

Thus, point identification of causal effects can only be obtained by invoking further assump-

tions. E.g., under monotonicity of T in Z and effect homogeneity, the ATE on the entire pop-

ulation is identified. Albeit invoked in much of the IV literature, effect homogeneity is a very

unattractive assumption given the rich empirical evidence on effect heterogeneity in the field of

treatment evaluation. Under monotonicity and effect heterogeneity, the LATE on the compliers

is identified, but this effect may be “too local” to be of policy interest. Fortunately, assump-

tions as monotonicity and stochastic dominance also bear identifying power for further popula-

tions and may yield informative bounds, as discussed in the next section.

3 Assumptions and interval identification

The strategies for the partial identification of ATEs on various populations which we are going to

present in this section are based on the fact that each of the four observed conditional outcomes
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comes from a mixture of two principal strata:

E(Y |Z = 0, T = 1) =
π11

π11 + π01
· E(Y |Z = 0, T = 1, G = 11) (1)

+
π01

π11 + π01
· E(Y |Z = 0, T = 1, G = 01),

E(Y |Z = 1, T = 1) =
π11

π11 + π10
· E(Y |Z = 1, T = 1, G = 11) (2)

+
π10

π11 + π10
· E(Y |Z = 1, T = 1, G = 10),

E(Y |Z = 0, T = 0) =
π10

π00 + π10
· E(Y |Z = 0, T = 0, G = 10) (3)

+
π00

π00 + π10
· E(Y |Z = 0, T = 0, G = 00),

and

E(Y |Z = 1, T = 0) =
π01

π00 + π01
· E(Y |Z = 1, T = 0, G = 01) (4)

+
π00

π00 + π01
· E(Y |Z = 1, T = 0, G = 00).

Horowitz and Manski (1995) have shown that whenever it is possible to bound the mixing prob-

ability, sharp bounds can be obtained on any parameter that respects stochastic dominance of

the mixture components. We will use this fact to derive bounds for the ATEs on different popu-

lations. Note that similar arguments can be used to obtain bounds on other parameters respect-

ing stochastic dominance, as for instance the quantile treatment effect (QTE), see for instance

Abadie, Angrist, and Imbens (2002) and Frölich and Melly (2008).

3.1 Worst case bounds

Assume that the support Y of the outcome variable Y is bounded, i.e., Y = [yLB, yUB]. This

condition will rule out infinite upper or lower bounds on the ATE of any population. Without
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imposing any restrictions other than Assumptions 1 and 2, we obtain the following equations by

Table 3:

P1|0 − π01 = π11 ⇒ π01 ≤ P1|0, (5)

P0|1 − π01 = π00 ⇒ π01 ≤ P0|1,

P1|1 − P1|0 + π01 = π10 ⇒ π01 ≥ P1|0 − P1|1,

and thus, the lower and upper bounds on the defiers’ proportion are

π01 ∈ [max(0, P1|0 − P1|1),min(P1|0, P0|1)]. (6)

We denote by πmin
01 = max(0, P1|0−P1|1) and πmax

01 = min(P1|0, P0|1) the minimum and maximum

of admissible values for π01. The remaining strata proportions can be bounded analogously.

In order to bound the ATEs on the four populations, we introduce some additional notation.

We define Ȳz,t ≡ E(Y |Z = z, T = t) to be the conditional mean of Y given Z = z and T = t.

Furthermore, denote by FYz,t(y) ≡ Pr(Y ≤ y|Z = z, T = t) the conditional cdf of Y given Z = z

and T = t. Let qGz,t denote the share of individuals belonging to stratum G in the observed

subgroup o(z, t). If necessary, we will denote by q
G,πmax

01
z,t and q

G,πmin
01

z,t , the value of qGz,t when π01 is

equal to πmax
01 or πmin

01 , respectively. Then, F−1Yz,t
(qGz,t) ≡ inf{y : FYz,t(y) ≥ qGz,t} is the conditional

quantile function of Y given Z = z and T = t. Finally, let Ȳz,t(min |qGz,t) ≡ E(Y |Z = z, T = t, y ≤

F−1Yz,t
(qGz,t)) and Ȳz,t(max |qGz,t) ≡ E(Y |Z = z, T = t, y ≥ F−1Yz,t

(1− qGz,t)).

Using this notation, the upper and lower bounds, denoted by ∆UB
10 and ∆LB

10 , for the ATE on
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the compliers, ∆10, are respectively,

∆UB
10 = max

π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
P1|1 − P1|0 + π01

(7)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q000,0), Ȳ1,0(max |q001,0)

)
P1|1 − P1|0 + π01

]
,

∆LB
10 = min

π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·min

(
Ȳ1,1(max |q111,1), Ȳ0,1(max |q110,1)

)
P1|1 − P1|0 + π01

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 − P1|0 + π01

]
,

where q111,1 =
P1|0−π01

P1|1
(the share of always takers among those with Z = 1 and T = 1), q110,1 =

P1|0−π01

P1|0
(the share of always takers among those with Z = 0 and T = 1), q001,0 =

P0|1−π01

P0|1
(the

share of never takers among those with Z = 0 and T = 1), and q000,0 =
P0|1−π01

P0|0
(the share of never

takers among those with Z = 0 and T = 0). The proofs for the sharpness of these bounds as well

as for any bounds proposed below are provided in the appendix.

Four points are worth noting concerning the derivation of the bounds. First of all, they follow

from the application of the results of Horowitz and Manski (1995): since we are able to bound

the strata proportions, we can also bound the mean potential outcomes of the compliers under

treatment and non-treatment by using trimmed means that come from the observed subgroups.

Secondly, (7) has to be optimized w.r.t. admissible defier proportions, defined by (6). Thirdly, the

exclusion restriction (see Assumption 1) gives rise to the maximum and minimum operators. Note

that in the first (third) line in (7) one computes the upper (lower) bound of the compliers’ mean

potential outcome under treatment by subtracting the lower (upper) bound of the mean potential

outcome of the always takers. As their lower (upper) bound under treatment is not affected by the

value of Z due to the exclusion restriction, the lower (upper) bound is the maximum (minimum)

of the always takers’ lower (upper) bounds for Z = 1 and Z = 0. An analogous result holds for

lines 2 and 4 w.r.t. the bounds on the potential mean outcomes under non-treatment of the never

takers. Finally, these bounds are defined only if P1|0 < P1|1. This is equivalent to π10 > π01,

saying that the share of compliers is larger than the share of defiers.
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In a symmetric way one obtains the sharp upper and lower bounds on the ATE of the defiers,

∆01:

∆UB
01 = max

π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
π01

(8)

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q000,0), Ȳ1,0(max |q001,0)

)
π01

]
,

∆LB
01 = min

π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) ·min

(
Ȳ1,1(max |q111,1), Ȳ0,1(max |q110,1)

)
π01

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
π01

]
,

These bounds are only defined if P1|0 > P1|1, i.e., if there are more defiers than compliers. This

condition together with the previous discussion on the compliers implies that without imposing

monotonicity of the treatment w.r.t. the instrument as outlined below, bounds are informative

either for the defiers or for the compliers, but never for both populations.2 This also means

that unless P1|1 − P1|0 = 0, either positive (if P1|1 − P1|0 > 0) or negative (if P1|0 − P1|1 > 0)

monotonicity of T in Z is consistent with the data, but not both at the same time. See also the

discussion in the next subsection.

Concerning the always takers, note that their outcome is only observed under treat-

ment in both o(1, 1) and o(0, 1). The shares of always takers in o(1, 1) and o(0, 1) are,

respectively, π11/(π11 + π10) = (P1|0 − π01)/P1|1 and π11/(π11 + π01) = (P1|0 − π01)/P1|0.

Therefore, we can bound the upper and lower values of the mean potential outcome

under treatment for this population by min
(
Ȳ1,1(max |q11,π

max
01

1,1 ), Ȳ0,1(max |q11,π
max
01

0,1 )
)

and

max
(
Ȳ1,1(min |q11,π

max
01

1,1 ), Ȳ0,1(min |q11,π
max
01

0,1 )
)

, respectively. As already discussed, the intuition for

the optimization over different values of the instrument is that Z does not have a direct effect

on the mean potential outcomes. Therefore, the set of admissible potential outcomes for T = 1

is the intersection of possible values under Z = 0 and Z = 1.

Since the outcomes of the always takers are never observed under non-treatment, we have

2An equivalent result for the sample selection framework is discussed in Huber and Mellace (2010).
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to rely on the theoretical upper and lower bounds (at the theoretical ends of the support of Y )

denoted by yUB and yLB, respectively. The sharp upper and lower bounds for the ATE on the

always takers ∆11, are:

∆UB
11 = min

(
Ȳ1,1(max |q11,π

max
01

1,1 ), Ȳ0,1(max |q11,π
max
01

0,1 )
)
− yLB, (9)

∆LB
11 = max

(
Ȳ1,1(min |q11,π

max
01

1,1 ), Ȳ0,1(min |q11,π
max
01

0,1 )
)
− yUB,

The bounds are only defined if P1|0 > P0|1 ⇒ π11 > π00, i.e., if the share of always takers is larger

than the share of never takers.

Analogously, the outcomes of never takers are only observed under non-treatment in

both o(0, 0) and o(1, 0). The shares of never takers in o(0, 0) and o(1, 0) are, respectively,

π00/(π00 + π10) = (P0|1 − π01)/P0|0 and π00/(π00 + π01) = (P0|1 − π01)/P0|1. There-

fore, the upper and lower bounds on the mean potential outcome under treatment are

min
(
Ȳ1,0(max |q00,π

max
01

1,0 ), Ȳ0,0(max |q00,π
max
01

0,0 )
)

and max
(
Ȳ1,0(min |q00,π

max
01

1,0 ), Ȳ0,0(min |q00,π
max
01

0,0 )
)

,

respectively. For the never takers, only the outcomes under non-treatment are observed, which

again requires invoking the theoretical lower and upper bounds. The sharp upper and lower

bounds on the ATE of the never takers, ∆00, are, respectively:

∆UB
00 = yUB −max

(
Ȳ1,0(min |q00,π

max
01

1,0 ), Ȳ0,0(min |q00,π
max
01

0,0 )
)
, (10)

∆LB
00 = yLB −min

(
Ȳ1,0(max |q00,π

max
01

1,0 ), Ȳ0,0(max |q00,π
max
01

0,0 )
)
.

The bounds are defined if P1|0 < P0|1, i.e., if there are more never takers than always takers in

the population.

In the program evaluation literature, the population that received the treatment is often most

interesting. To derive the ATE on the treated population (denoted as ∆T=1), note that it is a

weighted average made up by three populations: the always takers, the compliers, and the defiers.
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The shares of these populations are, respectively, given by

2 · π11
2π11 + π10 + π01

=
2 · (P1|0 − π01)
P1|1 + P1|0

, (11)

π10
2π11 + π10 + π01

=
P1|1 − P1|0 + π01

P1|1 + P1|0
,

π01
2π11 + π10 + π01

=
π01

P1|1 + P1|0
.

Assuming the upper bound of the mean potential outcome under treatment and Z = 1 for the

always takers, Ȳ1,1(max |q111,1), implies assuming the lower bound of the mean potential outcome

under treatment for the compliers, Ȳ1,1(min |q101,1), and vice versa, as the weighted average of

both must always yield Ȳ1,1. For the same reason, assuming the upper bound of the mean

potential outcome under treatment and Z = 0 for the always takers, Ȳ0,1(max |q110,1), is equivalent

to assuming the lower bound of the mean potential outcome under treatment for the defiers,

Ȳ0,1(min |q010,1).

Note that concerning the always takers, Ȳ0,1(max |q110,1) is part of the upper bound for the

treated if Ȳ1,1(max |q111,1) ≥ Ȳ0,1(max |q110,1), because the upper bound for the always takers is

min(Ȳ1,1(max |q111,1), Ȳ0,1(max |q110,1)), see the previous discussion on the exclusion restriction. Thus,

for the values of π01, for which Ȳ1,1(max |q111,1) ≥ Ȳ0,1(max |q110,1), the upper bound is given by

∆UB1
T=1 = max

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ0,1(max |q110,1)−
2 · (P1|0 − π01)
P1|1 + P1|0

· yLB (12)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q000,0), Ȳ1,0(max |q001,0)

)
P1|1 + P1|0

]
,
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while for values of π01 for which Ȳ1,1(max |q111,1) < Ȳ0,1(max |q110,1) the maximization problem is

∆UB2
T=1 = max

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ1,1(max |q111,1)−
2 · (P1|0 − π01)
P1|1 + P1|0

· yLB (13)

+
π01

P1|1 + P1|0
·∆UB

01 +
P1|1

P1|1 + P1|0
· Ȳ1,1

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q000,0), Ȳ1,0(max |q001,0)

)
P1|1 + P1|0

]
.

Finally, the upper bound is the maximum of both conditions, ∆UB
T=1 = max

(
∆UB1
T=1 ,∆

UB2
T=1

)
.

An analogous result holds for the lower bound. For values of π01 with Ȳ1,1(min |q111,1) ≤

Ȳ0,1(min |q110,1), it follows that

∆LB1
T=1 = min

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ0,1(min |q110,1)−
2 · (P1|0 − π01)
P1|1 + P1|0

· yUB (14)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆LB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 + P1|0

]
,

while for other values of π01,

∆LB2
T=1 = min

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ1,1(min |q111,1)−
2 · (P1|0 − π01)
P1|1 + P1|0

· yUB (15)

+
π01

P1|1 + P1|0
·∆LB

01 +
P1|1

P1|1 + P1|0
· Ȳ1,1

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 + P1|0

]
.

Therefore, ∆LB
T=1 = min

(
∆LB1
T=1,∆

LB2
T=1

)
.

Interestingly, the bounds on ∆T=1 are always informative despite the fact that either the

bounds for the compliers or for the defiers are not informative. The bounds on ∆T=1 can be

regarded as a weighted average of the bounds on the always takers, compliers, and defiers, however,

taking account for the requirement that assuming the upper bound of one population may imply

14



the lower bound for another one. One needs to consider all feasible combinations of upper and

lower bounds to obtain the results (12), (13), (14), and (15). This is discussed in more detail in

the appendix. In a symmetric way one can bound the ATE on the non-treated, ∆T=0, which is

not reported here.

Finally, we derive the bounds for the ATE on the entire population, denoted as ∆. This effect

is a weighted average based on a mixture of all four populations (always takers, compliers, defiers,

and never takers). From Table 3, it follows that

π11 = P1|0 − π01, (16)

π10 = P1|1 − P1|0 + π01,

π00 = P0|1 − π01.

Furthermore, assuming the lower bound of the mean potential outcome given Z = 0 for the

never takers implies assuming the upper bound of the mean potential outcome for the compliers,

and vice versa. The same argument holds for the outcomes of the never takers and defiers given

Z = 1. Analogously to ∆T=1, the bounds on ∆ are a function of the intersection of admissible

potential outcomes for T = 1 under Z = 0 and Z = 1 for the always takers and of the intersection

for T = 0 under Z = 0 and Z = 1 for the never takers. Therefore, four possible combinations

for Ȳ1,1(max |q111,1), Ȳ0,1(max |q110,1) and Ȳ1,0(min |q001,0), Ȳ0,0(min |q000,0), respectively, arise. However,

as we will show in the appendix, all four combinations yield the same upper and lower bounds,

which are

∆UB = P1|0 · Ȳ0,1 − (P1|0 − πmin
01 ) · yLB + P1|1 · Ȳ1,1 (17)

− (P1|0 − πmin
01 ) ·max

(
Ȳ1,1(min |q11,π

min
01

1,1 ), Ȳ0,1(min |q11,π
min
01

0,1 )
)

+ (P0|1 − πmin
01 ) ·min

(
Ȳ0,0(max |q00,π

min
01

0,0 ), Ȳ1,0(max |q00,π
min
01

1,0 )
)

− P0|1 · Ȳ1,0 + (P0|1 − πmin
01 ) · yUB − P0|0 · Ȳ0,0 ,
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and

∆LB = P1|0 · Ȳ0,1 − (P1|0 − π01) · yUB + P1|1 · Ȳ1,1 (18)

− (P1|0 − π01) ·min
(
Ȳ1,1(max |q11,π

min
01

1,1 ), Ȳ0,1(max |q11,π
min
01

0,1 )
)

+ (P0|1 − π01) ·max
(
Ȳ0,0(min |q00,π

min
01

0,0 ), Ȳ1,0(min |q00,π
min
01

1,0 )
)

− P0|1 · Ȳ1,0 + (P0|1 − π01) · yLB − P0|0 · Ȳ0,0 .

Again, these bounds are always informative no matter whether the bounds for the compliers or

those for the defiers are not informative.

Note that ∆LB, ∆UB might be narrower than the IV bounds derived by Manski (1990). The

reason is that we assume joint independence of the instrument and any potential post-treatment

variable (see Assumption 2) due to randomization of the treatment assignment, whereas Manski

only imposes mean independence of the potential outcomes: E(Y (t)|Z = 1) = E(Y (t)|Z = 0)

for t ∈ {0, 1}. For the same reason, also Balke and Pearl (1997) find their bounds to be sharper

than the Manski bounds. However, their result refer to binary outcomes, whereas the findings

presented here also apply to continuous outcomes.

In order to see the difference between our bounds and those of Manski, consider the case

that the lower bound on the defier share which is consistent with the data is zero, πmin
01 = 0.

The appendix shows that ∆UB, ∆LB are maximized and minimized, respectively, for π01 = πmin
01 ,

just as stated in (17) and (18). Therefore, if πmin
01 = 0, the worst case bounds coincide with

those under positive monotonicity of T in Z, which imposes π01 = 0 and is discussed in Section

3.2. Heckman and Vytlacil (2001) show that under (an assumption which is equivalent to)

monotonicity, Manski’s bounds simplify to

∆UB
Ma =

(
Pmax
1|z · Ȳz,1 + (1− Pmax

1|z ) · yUB
)
−
(
Pmax
0|z · Ȳz,0 + (1− Pmax

0|z ) · yLB
)
,

∆LB
Ma =

(
Pmin
1|z · Ȳz,1 + (1− Pmin

1|z ) · yLB
)
−
(
Pmin
0|z · Ȳz,0 + (1− Pmin

0|z ) · yUB
)
,
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where Pmax
t|z and Pmin

t|z denote the maximum and minimum values of Pt|z w.r.t. Z. πmin
01 = 0

implies that P1|1 > P1|0 and P0|0 > P0|1. Then, Manski’s upper bound becomes

∆UB
Ma =

(
P1|1 · Ȳ1,1 + P0|1 · yUB

)
−
(
P0|0 · Ȳ0,0 + P1|0 · yLB

)
.

On the other hand, since Ȳ0,1(min |q11,00,1 ) = Ȳ0,1 and Ȳ1,0(min |q00,01,0 ) = Ȳ1,0, our upper bound

becomes

∆UB =
(
P1|1 · Ȳ1,1 + P1|0 · Ȳ0,1 − P1|0 ·max(Ȳ1,1(min |q11,01,1 ), Ȳ0,1) + P0|1 · yUB

)
−

(
P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0 − P0|1 ·min(Ȳ0,0(max |q00,00,0 ), Ȳ1,0) + P1|1 · yLB

)
.

After some simple algebra it is easy to see that ∆UB < ∆UB
Ma if either Ȳ1,1(min |q11,01,1 ) > Ȳ0,1 or

Ȳ0,0(max |q00,00,0 ) < Ȳ1,0. This suggests that Manski’s and our upper bounds are the same unless

the difference in the potential outcomes of compliers and defiers is sufficiently “large” such that

at least one of the two conditions above is met. Equivalent arguments and results follow for the

lower bound and for the case in which πmin
01 = P1|0 − P1|1.

We conclude the discussion on the worst case bounds by noting that they are likely to be

very wide for the entire population and for most other groups. Therefore, they are often not

helpful for obtaining meaningful results in empirical applications. The following subsections will

introduce further assumptions that appear plausible in many empirical problems and might entail

considerably tighter bounds.

3.2 Monotonicity

This subsection discusses the identifying power of monotonicity of the treatment in the instru-

ment. (Weak) monotonicity of T in Z implies that the treatment state under Z = 1 is at least as

high as under Z = 0 for all individuals.

Assumption 3:
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Pr(T (1) ≥ T (0)) = 1 (montonicity).

As the potential treatment state never decreases in the instrument, the existence of the defiers

(stratum 01) is ruled out. A symmetric result is obtained by assuming Pr(T (0) ≥ T (1)) = 1

which implies that stratum 10 does not exist. Note that assuming Pr(T (1) ≥ T (0)) = 1 (positive

monotonicity) is only consistent with the data if P1|1−P1|0 ≥ 0, otherwise stratum 01 must neces-

sarily exist. Similarly, Pr(T (0) ≥ T (1)) = 1 (negative monotonicity) requires that P1|0−P1|1 ≥ 0,

see Table 3. Even though these are necessary conditions for the respective monotonicity assump-

tion, they are not sufficient. Due to the symmetry of positive and negative monotonicity, we will

only focus on Assumption 3 (positive monotonicity) in the subsequent discussion.

In their seminal paper on the identification of the local average treatment effect (LATE),

Imbens and Angrist (1994) (see also Angrist, Imbens, and Rubin, 1996) show that ∆10 is point

identified under Assumptions 1, 2, and 3. I.e., the worst case bounds collapse to a single point

given that π01 is equal to zero:

∆10 =

(
P1|1

P1|1 − P1|0
· Ȳ1,1 −

P1|0

P1|1 − P1|0
· Ȳ0,1

)
−
(

P0|0

P1|1 − P1|0
· Ȳ0,0 −

P0|1

P1|1 − P1|0
· Ȳ1,0

)
=

(P1|1 · Ȳ1,1 + P0|1 · Ȳ1,0)− (P1|0 · Ȳ0,1 + P0|0 · Ȳ0,0)
P1|1 − P1|0

=
Pr(T = 1|Z = 1) · E(Y |Z = 1, T = 1) + Pr(T = 0|Z = 1) · E(Y |Z = 1, T = 0)

Pr(T = 1|Z = 1)− Pr(T = 1|Z = 0)

− Pr(T = 1|Z = 0) · E(Y |Z = 0, T = 1) + Pr(T = 0|Z = 0) · E(Y |Z = 0, T = 0)

Pr(T = 1|Z = 1)− Pr(T = 1|Z = 0)

=
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
. (19)

The final equation yields the well known result that the ATE on the compliers is just the ratio

of two differences in conditional expectations, namely the intention to treat effect divided by the

share of compliers.

There is a further difference to the worst case scenario worth noting because it allows

constructing tests for the instrumental exclusion restriction. Under monotonicity the observed

18



subgroup o(0, 1) (not instrumented but treated) consists of always takers only, such that

Ȳ0,1 immediately gives the mean potential outcome under treatment for the always takers.

An optimization similar to the worst case bounds of the kind max
(
Ȳ1,1(min |q111,1), Ȳ0,1)

)
and min

(
Ȳ1,1(max |q111,1), Ȳ0,1)

)
(with π01 = 0) is, thus, not required here. Note, however,

that this comparison gives a testable implication for the exclusion restriction. If it holds,

Ȳ1,1(min |q111,1) ≤ Ȳ0,1 ≤ Ȳ1,1(max |q111,1), otherwise Z has a direct effect on the outcomes

of the always takers. Similarly, Ȳ1,0 is the mean potential outcome under non-treatment

for the never takers. Therefore, another testable implication of the exclusion restriction is

Ȳ0,0(min |q000,0) ≤ Ȳ1,0 ≤ Ȳ0,0(max |q000,0).3

In the absence of defiers the bounds for the always takers and never takers (∆11 and ∆00)

simplify to

∆UB
11 = Ȳ0,1 − yLB, (20)

∆LB
11 = Ȳ0,1 − yUB,

and

∆UB
00 = yUB − Ȳ1,0, (21)

∆LB
00 = yLB − Ȳ1,0.

These bound are sharp because E(Y |T = 1, G = 11) and E(Y |T = 0, G = 00) are now point

identified by Ȳ0,1 and Ȳ1,0 (if the exclusion restriction holds). However, monotonicity does not

impose any restrictions on the distributions of Y |T = 0, G = 11 and Y |T = 1, G = 00 such that

the worst case bounds yLB, yUB have to be assumed.

Under the monotonicity assumption, the bounds on the ATEs of the treated (∆T=1) and the

3Kitagawa and Hoderlein (2009) propose a formal test for the validity of instruments. They test for both
violations of the exclusion restriction and the monotonicity assumption jointly by checking for negative densities
of the compliers’ treated or non-treated outcomes, whereas the testable implications considered here only refer to
the exclusion restriction.

19



entire population (∆) are trivially derived as a linear combination of the ATE on the compliers

and the bounds for the always takers and never takers, respectively. These components are

weighted by the share of the respective population, which is point identified in the absence of

defiers. Therefore, we obtain

∆UB
T=1 =

2 · P1|0

P1|1 + P1|0
·∆UB

11 +
P1|1 − P1|0

P1|1 + P1|0
·∆10, (22)

∆LB
T=1 =

2 · P1|0

P1|1 + P1|0
·∆LB

11 +
P1|1 − P1|0

P1|1 + P1|0
·∆10,

and

∆UB = P1|0 ·∆UB
11 + (P1|1 − P1|0) ·∆10 + P0|1 ·∆UB

00 , (23)

∆LB = P1|0 ·∆LB
11 + (P1|1 − P1|0) ·∆10 + P0|1 ·∆LB

00 .

These bounds are sharp because the bounds on the always takers and never takers are sharp.

Interestingly, Balke and Pearl (1997), Heckman and Vytlacil (2001), and Kitagawa (2009)

show that under monotonicity, their bounds of the ATE on the entire population coincide with the

worst case bounds of Manski (1990) who only imposes the exclusion restriction. I.e., Assumption

3 does, if it is satisfied, not bring any additional identifying power for ∆. As already mentioned

in Section 3.1, this is also the case for our bounds. It is easy to show that for πmin
01 = 0 (positive

monotonicity), the worst case bounds 17 and 18 collapse to those in 23. This is due to the fact that

under monotonicity, the exclusion restriction implies that Ȳz,t(min |qGz,t) ≤ Ȳz,t ≤ Ȳz,t(max |qGz,t).

3.3 Stochastic dominance

Stochastic dominance states that the potential outcome evaluated at any rank in the distribution

of one population is at least as high as that of some other population. This rules out the crossing

of potential outcomes of two populations. The stochastic dominance assumption has been used

in the sample selection framework by Zhang and Rubin (2003), Lechner and Melly (2007), Zhang,
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Rubin, and Mealli (2008), Lee (2009), and Huber and Mellace (2010). We will show that it also

bears identifying power in the IV framework.

Assumption 4:

Pr(Y (t)|G = 10 ≤ y) ≤ Pr(Y (t)|G = g ≤ y) ∀ t ∈ {0, 1}, g ∈ {11, 00}, y in the support of Y

(stochastic dominance).

Assumption 4 states that at any rank, the potential outcomes of the compliers are at least as the

high as those of the always takers and the never takers. When considering the ATE, stochastic

dominance is only required to hold w.r.t. the mean. The latter condition is weaker than the way

Assumption 4 is stated, which, for instance, also restricts the variance across different populations.

However, Assumption 4 would be required when considering quantile treatment effects, too.

Furthermore, note that the kind of stochastic dominance considered here is only one out of many

possible relations between the potential outcomes of various populations. Its plausibility has to

be judged in the light of the empirical application and theoretical considerations. Fortunately and

as discussed in the next subsection, stochastic dominance has testable implications if it is jointly

assumed with monotonicity. In the application presented in Section 5 we will test Assumption 4

and show that it is not rejected at any reasonable significance level.

Under stochastic dominance alone, the ATE on the compliers is bounded by

∆UB
10 = max

π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
P1|1 − P1|0 + π01

(24)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q001,0)

)
P1|1 − P1|0 + π01

]
,

∆LB
10 = min

π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·min

(
Ȳ1,1, Ȳ0,1(max |q110,1)

)
P1|1 − P1|0 + π01

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 − P1|0 + π01

]
.

The intuition of this result is that the compliers’ mean potential outcome under treatment

cannot be lower than that of the always takers, while under non-treatment it cannot be
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lower than the one of the never takers. Therefore, we now have the minimization problems

min
(
Ȳ0,0, Ȳ1,0(max |q001,0)

)
and min

(
Ȳ1,1, Ȳ0,1(max |q110,1)

)
, as Ȳ0,0 is the lower bound on the

compliers’ mean potential outcome in the mixed population with the defiers and Ȳ1,1 in the

mixed group with the always takers. The sharpness of these bounds and all other bounds under

stochastic dominance proposed below follows from the fact that they are special cases of the

worst case bounds and that we can apply Lemma 1 in Huber and Mellace (2010) to formally

prove their sharpness.

The bounds for the defiers are the same as in the worst case scenario, since we do not impose

any stochastic dominance assumption w.r.t. the potential outcomes of this population. The

bounds for the ATEs on the always takers and never takers are, respectively,

∆UB
11 = min

(
Ȳ1,1, Ȳ0,1(max |q11,π

max
01

0,1 )
)
− yLB, (25)

∆LB
11 = min

π01

[
max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
−

P0|0 · Ȳ0,0 − (P0|1 − π01) ·max
(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 − P1|0 + π01

]
,

and

∆UB
00 = max

π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
P1|1 − P1|0 + π01

(26)

− max
(
Ȳ1,0(min |q001,0), Ȳ0,0(min |q000,0)

)]
,

∆LB
00 = yLB −min

(
Ȳ1,0(max |q00,π

max
01

1,0 ), Ȳ0,0

)
.

Ȳ1,1, Ȳ0,0 are now the upper bounds on the mean potential outcome under treatment and the mean

potential outcome under non-treatment for the always takers and the never takers, respectively.

Moreover, stochastic dominance implies that the always takers’ upper bound under non-treatment

cannot be higher than the compliers’ upper bound under non-treatment and that the never

takers’ upper bound under treatment cannot be higher than the compliers’ upper bound under

treatment. This is a considerable improvement over the worst case bounds, as it allows us to
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replace the theoretical upper bound yUB by observed quantities. Note that the substitution of

the theoretical upper bounds by the compliers’ bounds requires the optimization over all possible

values of π01.

The upper bound on the ATE of the treated is now a function of Ȳ1,1 and Ȳ0,1(max |q110,1). For

those values of π01 for which Ȳ1,1 ≥ Ȳ0,1(max |q110,1), the upper bound is

∆UB1
T=1 = max

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ0,1(max |q110,1)−
2 · (P1|0 − π01)
P1|1 + P1|0

· yLB (27)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q001,0)

)
P1|1 + P1|0

]
,

while for the remaining values,

∆UB2
T=1 = max

π01

[
(P1|1 + P1|0 − π01) · Ȳ1,1 − 2 · (P1|0 − π01) · yLB + π01 ·∆UB

01

P1|1 + P1|0
(28)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00,min

1,0 )
)

P1|1 + P1|0

 .
As in the worst case scenario, the maximum of both conditions yields the upper bound:

∆UB
T=1 = max

(
∆UB1
T=1 ,∆

UB2
T=1

)
. Concerning the lower bound, if π01 is such that Ȳ1,1(min |q111,1) ≤

Ȳ0,1(min |q110,1), then

∆LB1
T=1 = min

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ0,1(min |q110,1)−
2 · (P1|0 − π01) · P0|0

(P1|1 + P1|0) · (P1|1 − P1|0 + π01)
· Ȳ0,0 (29)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆LB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P1|0 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 + P1|0

]
,
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otherwise,

∆LB2
T=1 = min

π01

[
P1|0 − π01
P1|1 + P1|0

· Ȳ1,1(min |q111,1) +
π01

P1|1 + P1|0
·∆LB

01 (30)

−
P0|0 · Ȳ0,0 − (P1|0 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 + P1|0

]
.

Therefore, ∆LB
T=1 = min

(
∆LB1
T=1,∆

LB2
T=1

)
For the ATE on the entire population stochastic dominance implies the following bounds:

∆UB = max
π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1 (31)

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
+

(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q001,0)

)
− P0|1 · Ȳ1,0

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q111,1), Ȳ0,1(min |q110,1)

)
P1|1 − P1|0 + π01

− P0|0 · Ȳ0,0
]
,

and

∆LB = min
π01

[
P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1 (32)

− (P1|0 − π01) ·
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
P1|1 − P1|0 + π01

− (P1|0 − π01) ·min
(
Ȳ1,1, Ȳ0,1(max |q110,1)

)
+ (P0|1 − π01) ·max

(
Ȳ0,0(min |q000,0), Ȳ1,0(min |q001,0)

)
− P0|1 · Ȳ1,0 + (P0|1 − π01) · yLB − P0|0 · Ȳ0,0

]
.

In contrast to the worst case bounds, we have to optimize w.r.t. π01 under stochastic dominance

because some of the theoretical bounds have been substituted by the compliers’ bounds.

While invoking either monotonicity or stochastic dominance might tighten the bounds con-

siderably (or even lead to point identification for the compliers), a joint imposition of both as-
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sumptions is likely shrink the identified sets even further. Therefore, the next section discusses

the joint identifying power of monotonicity and stochastic dominance.

3.4 Monotonicity and stochastic dominance

In this subsection we derive the bounds under both monotonicity (Assumption 3) and stochastic

dominance (Assumption 4). Since ∆10 is point identified under Assumptions 1 to 3, Assumption

4 does not bring any further improvement w.r.t. the compliers. For all other populations, the

bounds become tighter by invoking both assumptions.

The upper and lower bounds of the ATE on the always takers are now

∆UB
11 = Ȳ0,1 − yLB, (33)

∆LB
11 = Ȳ0,1 −

(
P0|0

P1|1 − P1|0
· Ȳ0,0 −

P0|1

P1|1 − P1|0
· Ȳ1,0

)
.

As under stochastic dominance, the upper bound of the always takers’ mean potential outcome

under non-treatment cannot be higher than the compliers’ upper bound under non-treatment.

Furthermore, monotonicity implies that the latter is point identified by
P0|0

P1|1−P1|0
· Ȳ0,0−

P0|1
P1|1−P1|0

·

Ȳ1,0. Again, ∆LB
11 is sharp by Lemma 1 in Huber and Mellace (2010). Similarly, the bounds for

the never takers tighten to

∆UB
00 =

(
P1|1

P1|1 − P1|0
· Ȳ1,1 −

P1|0

P1|1 − P1|0
· Ȳ0,1

)
− Ȳ1,0, (34)

∆LB
00 = yLB − Ȳ1,0.

By the monotonicity assumption,
P1|1

P1|1−P1|0
· Ȳ1,1−

P1|0
P1|1−P1|0

· Ȳ0,1 is the compliers’ mean potential

outcome under treatment. Under stochastic dominance, this is an upper bound for the never

takers’ mean potential outcome under treatment.

As under monotonicity, the bounds for the treated and the entire population are weighted
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averages of the bounds on the various subgroups:

∆UB
T=1 =

2 · P1|0

P1|1 + P1|0
·∆UB

11 +
P1|1 − P1|0

P1|1 + P1|0
·∆10, (35)

∆LB
T=1 =

2 · P1|0

P1|1 + P1|0
·∆LB

11 +
P1|1 − P1|0

P1|1 + P1|0
·∆10,

and

∆UB = P1|0 ·∆UB
11 + (P1|1 − P1|0) ·∆10 + P0|1 ·∆UB

00 , (36)

∆LB = P1|0 ·∆LB
11 + (P1|1 − P1|0) ·∆10 + P0|1 ·∆LB

00 .

As a final remark it is worth noting that under Assumptions 1 to 3, Assumption 4 (stochastic

dominance) is testable. Recall that the always takers’ potential outcome distribution is identified

by Y |Z = 0, T = 1. Therefore, stochastic dominance of the compliers can be tested by comparing

the distributions of Y |Z = 0, T = 1 and Y |Z = 1, T = 1, which also encounters compliers and,

therefore, has to stochastically dominate. Equivalently, the distribution of Y |Z = 1, T = 0,

which are the never takers’ potential outcomes under non-treatment, must be dominated by the

distribution of Y |Z = 0, T = 0, which contains never takers and compliers. The intuition is that

since the distribution of the potential outcomes of always takers (never takers) is not affected

by Z under the exclusion restriction, the observed subgroup consisting of both compliers and

always takers (never takers) stochastically dominates the observed subgroup with always takers

(never takers) alone. The respective null hypotheses to be tested are Pr(Y |Z = 1, T = 1 ≤ y) ≤

Pr(Y |Z = 0, T = 1 ≤ y) and Pr(Y |Z = 0, T = 0 ≤ y) ≤ Pr(Y |Z = 1, T = 0 ≤ y) for all y in the

support of Y , see Section 5 for the application of stochastic dominance tests.

4 Estimation

Estimators can be constructed by using the sample analogs of the bounds derived under the var-

ious assumptions, which is straightforward. To this end, we define the following sample parame-
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ters:

P̂1|1 ≡
∑n

i=1 Ti · Zi∑n
i=1 Zi

, P̂0|1 ≡ 1−
∑n

i=1 Ti · Zi∑n
i=1 Zi

,

P̂1|0 ≡
∑n

i=1 Ti · (1− Zi)∑n
i=1(1− Zi)

, P̂0|0 ≡ 1−
∑n

i=1 Ti · (1− Zi)∑n
i=1(1− Zi)

,

ˆ̄Y1,1 ≡
∑n

i=1 Yi · Ti · Zi∑n
i=1 Ti · Zi

, ˆ̄Y0,1 ≡
∑n

i=1 Yi · Ti · (1− Zi)∑n
i=1 Ti · (1− Zi)

,

ˆ̄Y1,0 ≡
∑n

i=1 Yi · (1− Ti) · Zi∑n
i=1(1− Ti) · Zi

, ˆ̄Y0,0 ≡
∑n

i=1 Yi · (1− Ti) · (1− Zi)∑n
i=1(1− Ti) · (1− Zi)

,

ˆ̄Yt,s(max |qGt,s) ≡

∑n
i=1 Yi · I{Ti = s} · I{Zi = t} · I{Y ≥ ŷ1−qGt,s}∑n
i=1 I{Ti = s} · I{Zi = t} · I{Y ≥ ŷ1−qGt,s}

,

ˆ̄Yt,s(min |qGt,s) ≡

∑n
i=1 Yi · I{Ti = s} · I{Zi = t} · I{Y ≤ ŷqGt,s}∑n
i=1 I{Ti = s} · I{Zi = t} · I{Y ≤ ŷqGt,s}

,

ŷqGt,s ≡ min

{
y :

∑n
i=1 Ti ·Di · I{Yi ≤ y}∑n

i=1 Ti ·Di
≥ qGt,s

}
,

ŷLB ≡ min(Y ), ŷUB ≡ max(Y )

where I{·} is the indicator function. Using these expressions instead of the population parameters

in the various formulas for the bounds immediately yields feasible estimators.
√
n-consistency

and asymptotic normality of the estimators under monotonicity or monotonicity and stochastic

dominance follows from the results by Lee (2009) and its discussion is, therefore, omitted.

5 Application

We apply the methods outlined in the last sections to a randomized experiment that was con-

ducted within the Job Training Partnership Act (JTPA), a large publicly-funded U.S. training

program taking place in the 1980s and 1990s. The largest JTPA component was training for eco-

nomically disadvantaged individuals, the so called “Title II”. The latter covered roughly 1 million

participants per year in the early 1990s, see for instance Orr, Bloom, Bell, Doolittle, Lin, and

Cave (1996) for more details. The sample we investigate has been previously analyzed by Abadie,

Angrist, and Imbens (2002) and consists of 11,204 adults that had applied for Title II between
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November 1987 and September 1989. Applicants were randomly assigned to be offered a training

and those not receiving an offer were excluded from Title II for 18 months. We evaluate the

average effect of the training on the sum of earnings in the 30-months after training assignment,

which, according to Abadie, Angrist, and Imbens (2002), is a suitable measure of the program’s

lasting economic impact on participants.

Table 4: Observed strata proportions

Conditional treatment probability estimate standard error

P1|1 ≡ Pr(T = 1|Z = 1) 0.642 (0.006)

P0|1 ≡ Pr(T = 0|Z = 1) 0.358 (0.006)

P1|0 ≡ Pr(T = 1|Z = 0) 0.015 (0.002)

P0|0 ≡ Pr(T = 0|Z = 0) 0.985 (0.002)

Let Z denote the random assignment indicator, Y the earnings outcome, and T the actual

training state. As shown in Table 4, compliance with the treatment assignment was not perfect.

Only 64.2 % of those who were offered a training actually took advantage of the offer, while 35.8

% did not. 98.5 % of the individuals that were randomized out did not receive the training, but

1.5 % participated anyway. Table 5 reports the estimated bounds on the strata proportions in

the worst case scenario and the respective point estimates under Assumption 3 (monotonicity).

Table 5: Estimated (bounds on the) proportions of latent strata

Latent strata Worst case bounds Proportions under monotonicity

Always takers [0.000, 0.015] 0.015
Compliers [0.627, 0.642] 0.627
Never takers [0.343, 0.358] 0.358
Defiers [0.000, 0.015] -

We estimate bounds on the ATEs of the compliers, the always takers, the never takers, the

treated, and the total population under the worst case, stochastic dominance, and/or monotonic-

ity. Whenever optimization over the share of defiers is required, we use an equidistant grid of

100 values within the minimum (0) and maximum(0.015) possible share. We do not estimate

defier effects because P̂1|1 > P̂0|1, implying that the bounds for the defiers are not informative in

the worst case scenario. Furthermore, defiers are ruled out under monotonicity (and under both
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monotonicity and stochastic dominance). Finally, note that also the bounds for the always takers

are not informative in the worst case scenario, because P̂1|0 < P̂0|1 such that the share of always

takers is smaller than the share of never takers. However, under monotonicity and/or stochastic

dominance, informative bounds can be obtained for this population.

Concerning inference, we compute the 95% confidence intervals for the respective ATE (i.e.,

for the parameters of interest, not for its bounds) based on the method described in Imbens and

Manski (2004):

(
∆̂LB − 1.645 · σ̂LB, ∆̂UB + 1.645 · σ̂UB

)
,

where ∆̂LB, ∆̂UB are the estimated bounds and σ̂LB, σ̂UB denote their respective estimated stan-

dard errors. The latter are obtained by bootstrapping the original sample 1999 times and esti-

mating ∆̂LB, ∆̂UB in each bootstrap replication in order to estimate their distributions. As worst

case bounds yUB and yLB, we take the maximum and minimum cumulative earnings observed in

the data, which are 155,760 and 0, respectively.

Table 6: ATE estimates and confidence intervals

Assumptions Compliers Always takers Never takers Treated Entire pop.

Worst case [628, 1942] [-155760, 65536] [-13980, 143943] [-4569, 2408] [-5924, 52163]
(-114, 2686) Not informative (-14453, 162095) (-6152, 3122) (-6599, 58939)

Stoch. dom. [637, 1942] [-16803, 17440] [-13980, 5624] [-521, 2408] [-4405, 2673]
(-102, 2686) (-17452, 17851) (-14452, 6221) (-1284, 3121) (-4858, 3192)

Monoton. [1849, 1849] [-142245, 13515] [-13980, 141780] [-4532, 2365] [-5917, 52163]
(945, 2753) (-160550, 16390) (-14453, 159859) (-6114, 3081) (-6590, 58939)

Both [1849, 1849] [-2167, 13515] [-13980, 3551] [1671, 2365] [-3882, 2628]
(945, 2753) (-4990, 16390) (-14453, 4131) (933, 3081) (-4333, 3151)

Bounds in square brackets and 95 % confidence intervals in round brackets.

Confidence intervals are based on 1999 bootstraps. Average treatment effects are rounded.

Table 6 presents the results under the various assumptions. The bounds of the ATE estimates

are given in square brackets, the 95% confidence intervals are in round brackets. The worst case

bounds are not informative for the always takers and very wide for all other populations apart

from the compliers. For the latter, we find a positive ATE, even without imposing any further

assumptions on top of the exclusion restriction. However, the effect is not statistically significant
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on the 5% level. Imposing stochastic dominance narrows the bounds for the compliers only

slightly and the effect is again not significant. Even though the assumption has more identifying

power for the other populations, the identification region of any group other than the compliers

still includes a zero effect.

As discussed before, monotonicity of T in Z (such that defiers are ruled out) entails point

identification of the ATE on the compliers. The estimate, which is highly significant, suggests that

on average, training generates 1849 USD of additional earnings in the 30-months after training

assignment for those participating in the training if assigned and not participating if not. The

bounds for any other group, however, still include the possibility of a zero effect on earnings.

When invoking both monotonicity and stochastic dominance, the results suggest that the ATE

on the treated, which often represent the most interesting (from a policy perspective) population,

is significantly positive. Both its upper and lower bound are not too far from the point estimate

for the compliers, suggesting that the effects on both populations might be comparable in the

application considered.

As mentioned in Section 3.4, stochastic dominance of the compliers’ potential outcomes has

testable implications if monotonicity holds. We test the null hypotheses of stochastic dominance

w.r.t. the always takers and the never takers, namely that Pr(Y |Z = 1, T = 1 ≤ y) ≤ Pr(Y |Z =

0, T = 1 ≤ y) and Pr(Y |Z = 0, T = 0 ≤ y) ≤ Pr(Y |Z = 1, T = 0 ≤ y) for all y in the support

of Y , by means of one-sided Kolmogorov-Smirnov tests for two samples. The test statistics are

reported in Table 7 and are not significant, suggesting that stochastic dominance cannot be

rejected in either case.

Table 7: Stochastic dominance tests

H0: Compliers dominate always takers H0: Compliers dominate never takers

KS test statistic 0.026 0.006
p-value 0.931 0.896

Finally, Table 8 gives the estimates separately for the 6,102 females and 5,102 males in the

sample. In general, the bounds for the females tend to be tighter the the ones for the males.
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Furthermore, the former provide more evidence in favor of a positive effect of the training on the

cumulative earnings. The ATE on the compliers is significantly positive even in the worst case

scenario. Under monotonicity and stochastic dominance, also the lower bound for the always

takers is positive (in addition to the complier effect and the lower bound of the ATE on the

treated, which are positive in all samples), albeit not statistically significant.

Table 8: ATE estimates and confidence intervals by gender

Females
Assumptions Compliers Always takers Never takers Treated Entire pop.

Worst case [928, 2075] [-114739, 65536] [-11934, 104756] [-3426, 2598] [-4612, 36704]
(53, 2949) Not informative (-12582, 120490) (-5070, 3496) (-5350, 42402)

Stoch. dom [957, 2075] [-13267, 14224] [-11934, 4244] [21, 2567] [-3234, 2348]
(77, 2869) (-14053, 14640) (-12465, 5078) (-916, 3362) (-3832, 2977)

Monoton. [1942, 1942] [-101576, 13163] [-11934, 102805] [-3391, 2520] [-4612, 36704]
(906, 2977) (-117690, 17106) (-12582, 118567) (-5045, 3398) (-5350, 42402)

Both [1942, 1942] [852, 13163] [-11934, 2320] [1886, 2520] [-2832, 2266]
(906, 2977) (-3299, 17106) (-12582, 3129) (981, 3398) (-3412, 2901)

Males
Assumptions Compliers Always takers Never takers Treated Entire pop.

Worst case [606, 1881] [-155760, 50316] [-16216, 141489] [-3306, 2292] [-6579, 53906]
(-978, 3440) Not informative (-17079, 157783) (-5699, 3802) (-7686, 60166)

Stoch. dom. [612, 1881] [-20909, 21521] [-16216, 7254] [-563, 2292] [-5580, 3353]
(-969, 3440) (-22510, 22379) (-17079, 8428) (-2218, 3803) (-6512, 4425)

Monoton. [1825, 1825] [-141596, 14164] [-16216, 139544] [-3222, 2260] [-6579, 53906]
(-45, 3696) (-157341, 18261) (-17079, 155721) (-5609, 3769) (-7686, 60166)

Both [1825, 1825] [-5666, 14164] [-16216, 5439] [1562, 2260] [-5063, 3326]
(-45, 3696) (-9937, 18261) (-17079, 6601) (8, 3769) (-5987, 4401)

Note: Bounds in square brackets and 95 % confidence intervals in round brackets.

Confidence intervals are based on 1999 bootstraps. Average treatment effects are rounded.
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6 Conclusion

This paper sheds light on the question of what can be learnt about the average treatment effects

(ATE) on various populations under endogeneity/noncompliance when a valid instrumental vari-

able (IV) is at hand. Since the work by Imbens and Angrist (1994) it is well known that a local

ATE (LATE) on the compliers (who take the treatment if instrumented, but do not if not) is

point identified under monotonicity of the treatment in the instrument. Even though point iden-

tification is not feasible for other groups, we show that informative bounds can be obtained for

the always takers (treated irrespective of the instrument), the never takers (not treated irrespec-

tive of the instrument), the treated population, and the entire population. We also investigate

the identifying power of stochastic dominance of the potential outcomes of the compliers over

those of the always takers and never never takers.

The main contribution is the derivation of sharp bounds under monotonicity, under stochastic

dominance, and under both assumptions. Using estimators that are based on the sample analogs

of our identification results, we also provide an application to the U.S. Job Training Partnership

Act using experimental data previously analyzed by Abadie, Angrist, and Imbens (2002). We

find (on top of the complier effect) a significantly positive ATE on the earnings of the treated,

a group of major policy interest. As valuable “by-products” of our identification results we also

obtain testable implications of the IV exclusion restriction (no direct effect of the instrument

on the outcome) and of stochastic dominance, respectively, when monotonicity is assumed. The

statistical power of these implications might be investigated in future research.
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A Appendix

A.1 Worst case scenario

We will only show the sharpness of the upper bounds, the proofs for the lower bounds are symmetric.

A.1.1 Proof of the sharpness of the bounds for the compliers

First of all, note that if w is a random variable which is distributed as a two components mixture

f(w) = p · f(w1) + (1− p) · f(w2) p ∈ [0, 1],

then

E(w) = p · E(w1)UB + (1− p) · E(w2)LB , (A.1)

where E(w1)UB is the upper bound of E(w1) and E(w2)LB is the lower bound of E(w2). By Assumption 1 and

equations (2) and (3) we have

E(Y |T = 1, G = 10)UB =
P1|1

P1|1 − P1|0 + π01
· Ȳ1,1 (A.2)

−
P1|0 − π01

P1|1 − P1|0 + π01
· E(Y |T = 1, G = 11)LB ,

and

E(Y |T = 0, G = 10)LB =
P0|0

P1|1 − P1|0 + π01
· Ȳ0,0 (A.3)

−
P0|1 − π01

P1|1 − P0|1 + π01
· E(Y |T = 0, G = 00)UB .

Lemma 1 together with Proposition 1 in Imai (2008) implies that Ȳ1,1(min |q11
1,1) is the sharp lower bound of

E(Y |Z = 1, T = 1, G = 11) and that Ȳ0,1(min |q11
0,1) is the sharp lower bound of E(Y |Z = 0, T = 1, G = 11).

By Assumption 1, E(Y |Z = 1, T = 1, G = 11) = E(Y |Z = 0, T = 1, G = 11) = E(Y |T = 1, G = 11). Thus,

E(Y |T = 1, G = 11) ≥ Ȳ1,1(min |q11
1,1) and E(Y |T = 1, G = 11) ≥ Ȳ0,1(min |q11

0,1). This implies that

E(Y |T = 1, G = 11)LB = max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
. (A.4)

Similarly, Lemma 1 together with Proposition 1 in Imai (2008) implies that Ȳ0,0(max |q00
0,0) is the sharp upper

bound of E(Y |Z = 0, T = 0, G = 00) and that Ȳ1,0(max |q00
1,0) is the sharp upper bound of E(Y |Z = 1, T =
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0, G = 00). Again, by Assumption 1 we have E(Y |T = 0, G = 00) ≤ Ȳ1,0(max |q00
1,0) and E(Y |T = 0, G = 00) ≤

Ȳ0,0(max |q00
0,0). Therefore,

E(Y |T = 0, G = 00)UB = min
(
Ȳ1,0(max |q00

1,0), Ȳ0,0(max |q00
0,0)
)
. (A.5)

This shows that ∆UB
10 = E(Y |T = 1, G = 10)UB − E(Y |T = 0, G = 10)LB is the sharp upper bound of ∆10 for a

given value of π01, which is unknown. Therefore, ∆UB
10 is obtained by maximizing w.r.t. π01.

A.1.2 Proof of the sharpness of the bounds for the defiers

By Assumption 1, (A.1), (1) and (4) we have

E(Y |T = 1, G = 01)UB =
P1|0

π01
· Ȳ0,1 (A.6)

−
P1|0 − π01

π01
· E(Y |T = 1, G = 11)LB ,

and

E(Y |T = 0, G = 01)LB =
P0|1

π01
· Ȳ1,0 (A.7)

−
P0|1 − π01

π01
· E(Y |T = 0, G = 00)UB .

Thus, by (A.4) and (A.5), ∆UB
01 = E(Y |T = 1, G = 01)UB − E(Y |T = 0, G = 01)LB is the sharp upper bound of

∆01 for a given value of π01, which is unknown. Therefore, ∆UB
01 is obtained by maximizing w.r.t. π01.

A.1.3 Proof of the sharpness of the bounds for the always takers

Lemma 1 together with Proposition 1 in Imai (2008) implies that Ȳ1,1(max |q11
1,1) is the sharp upper bound of

E(Y |Z = 1, T = 1, G = 11) and that Ȳ0,1(max |q11
0,1) is the sharp upper bound of E(Y |Z = 0, T = 1, G = 11). By

Assumption 1, E(Y |T = 1, G = 11) ≤ Ȳ1,1(max |q11
1,1) and E(Y |T = 1, G = 11) ≤ Ȳ0,1(max |q11

0,1). This implies that

E(Y |T = 1, G = 11)UB = min
(
Ȳ1,1(max |q11

1,1), Ȳ0,1(max |q11
0,1)
)
. (A.8)

Since the sampling process does not impose any restriction on Y |T = 0, G = 11 for a fixed value of π01, ∆UB
11 =

E(Y |T = 1, G = 11)UB − yLB is the sharp upper bound of ∆11. Since both Ȳ1,1(max |q11
1,1) and Ȳ0,1(max |q11

0,1) are

increasing in π01, ∆UB
11 is maximized for π01 = πmax

01 .
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A.1.4 Proof of the sharpness of the bounds for the never takers

Lemma 1 together with Proposition 1 in Imai (2008) implies that Ȳ0,0(min |q00
0,0) is the sharp lower bound of

E(Y |Z = 0, T = 0, G = 00) and that Ȳ1,0(min |q00
1,0) is the sharp lower bound of E(Y |Z = 1, T = 0, G = 00). Again,

by Assumption 1 we have that E(Y |T = 0, G = 00) ≥ Ȳ1,0(min |q00
1,0) and E(Y |T = 0, G = 00) ≥ Ȳ0,0(min |q00

0,0).

Therefore,

E(Y |T = 0, G = 00)LB = max
(
Ȳ1,0(min |q00

1,0), Ȳ0,0(min |q00
0,0)
)
. (A.9)

Since the sampling process does not impose any restriction on Y |T = 1, G = 00 for a fixed value of π01, ∆UB
00 =

yUB − E(Y |T = 0, G = 00)LB is the sharp upper bound of ∆00. Since both Ȳ0,0(min |q00
0,0) and Ȳ1,0(min |q00

1,0) are

decreasing in π01, ∆UB
00 is maximized for π01 = πmax

01 .

A.1.5 Proof of the sharpness of the bounds for the treated

We will only show the sharpness of the upper bound given that Ȳ1,1(max |q11
1,1) ≥ Ȳ0,1(max |q11

0,1). The proof for the

case that Ȳ1,1(max |q11
1,1) < Ȳ0,1(max |q11

0,1) is symmetric and the proof for the lower bound could be derived in an

analogous way to the upper bound and is, therefore, omitted. Note that

∆T=1 =
2 · (P1|0 − π01)

P1|1 + P1|0
·∆11 +

P1|1 − P1|0 + π01

P1|1 + P1|0
·∆10 +

π01

P1|1 + P1|0
·∆01. (A.10)

For the upper bound, substituting ∆11 by ∆UB
11 , ∆10 by ∆UB

10 and ∆01 by ∆UB
01 in (A.10) would give a sharp upper

bound on ∆T=1. However, such a bound would contradict (A.1) since it is impossible to have the upper bounds

for the always takers and the defiers at the same time in the mixture. This, however, shows that the admissible

sharp upper bound would be the maximum of

∆UB1
T=1 =

2 · (P1|0 − π01) ·
(
Ȳ0,1(max |q11

0,1)− yLB
)

P1|1 + P1|0
(A.11)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10

+
P1|0 · Ȳ0,1 − (P1|0 − π01) · Ȳ0,1(max |q11

0,1)

P1|1 + P1|0

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

P1|1 + P1|0
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and

∆UB2
T=1 =

2 · (P1|0 − π01) ·
(
max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
− yLB

)
P1|1 + P1|0

(A.12)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10

+
P1|0 · Ȳ0,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 + P1|0

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

P1|1 + P1|0
.

After some simple algebra (A.13) and (A.12) can be rewritten as

∆UB1
T=1 =

P1|0 − π01

P1|1 + P1|0
· Ȳ0,1(max |q11

0,1)−
2 · (P1|0 − π01)

P1|1 + P1|0
· yLB (A.13)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

P1|1 + P1|0
,

and

∆UB2
T=1 =

P1|0 − π01

P1|1 + P1|0
·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
−

2 · (P1|0 − π01)

P1|1 + P1|0
· yLB (A.14)

+
P1|1 − P1|0 + π01

P1|1 + P1|0
·∆UB

10 +
P1|0

P1|1 + P1|0
· Ȳ0,1

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

P1|1 + P1|0
.

To prove that ∆UB1
T=1 ≥ ∆UB2

T=1 , it is sufficient to show that

Ȳ0,1(max |q11
0,1) ≥ max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
,

which is always satisfied since Ȳ0,1(max |q11
0,1) ≥ Ȳ1,1(min |q11

1,1) by Assumption 1. Thus, ∆UB1
T=1 is the sharp upper

bound of ∆T=1, given that Ȳ1,1(max |q11
1,1) ≥ Ȳ0,1(max |q11

0,1) and for a given value of π01, which is unknown.

Therefore, we have to maximize ∆UB1
T=1 w.r.t. π01 to obtain the upper bound.

A.1.6 Proof of the sharpness of the bounds for the entire population

We will only prove the sharpness of the upper bound. The proof for the lower bound is analogous and is omitted

for this reason. First of all, we will show that all four possible combinations of Ȳ1,1(max |q11
1,1), Ȳ0,1(max |q11

0,1) and

Ȳ1,0(min |q00
1,0), Ȳ0,0(min |q00

0,0) yield the same upper bound. To see this, suppose the contrary. Then, we would

compute the upper bound for the entire population in a similar way as the one for the treated. Thus, for the values
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of π01 for which Ȳ1,1 ≥ Ȳ0,1(max |q11
0,1) and Ȳ1,0(min |q00

1,0) ≥ Ȳ0,0(min |q00
0,0) , the upper bound would be

∆UB1 = max
π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + (P1|1 − P1|0 + π01) ·∆UB

10 (A.15)

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|1 · Ȳ1,0

]
= max

π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+
(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)
− P0|1 · Ȳ1,0

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|1 · Ȳ1,0

]
.

Secondly, for the values of π01 for which Ȳ1,1 ≤ Ȳ0,1(max |q11
0,1) and Ȳ1,0(min |q00

1,0) ≤ Ȳ0,0(min |q00
0,0), we would

get

∆UB2 = max
π01

[
P1|1 · Ȳ1,1 − (P1|0 − π01) · yLB + π01 ·∆UB

01 (A.16)

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|0 · Ȳ0,0

]
= max

π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+
(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)
− P0|1 · Ȳ1,0

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|1 · Ȳ1,0

]
.

For the values of π01 for which Ȳ1,1 ≥ Ȳ0,1(max |q11
0,1) and Ȳ1,0(min |q00

1,0) ≤ Ȳ0,0(min |q00
0,0) , we would have

∆UB3 = max
π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1 (A.17)

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+
(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)
− P0|1 · Ȳ1,0

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|1 · Ȳ1,0

]
.

Finally, for the values of π01 for which Ȳ1,1(max |q11
1,1) ≤ Ȳ0,1(max |q11

0,1) and Ȳ1,0(min |q00
1,0) ≥ Ȳ0,0(min |q00

0,0) , we
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would obtain

∆UB4 = max
π01

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1 (A.18)

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+
(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)
− P0|1 · Ȳ1,0

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− P0|1 · Ȳ1,0

]
.

A closer inspection of these bounds shows that they are algebraically equal: ∆UB1 = ∆UB2 = ∆UB3 = ∆UB4 =

∆UB .

In order to see that ∆UB is sharp, note that

∆ = (P1|0 − π01) ·∆11 + (P1|1 − P1|0 + π01) ·∆10 + π01 ·∆01 + (P0|1 − π01) ·∆00. (A.19)

For the upper bound, substituting ∆11 by ∆UB
11 , ∆10 by ∆UB

10 , ∆01 by ∆UB
01 and ∆00 by ∆UB

00 in (A.19) would

give a sharp upper bound on ∆. However, such a bound would contradict (A.1), since it is impossible to have the

upper bounds for the always takers and the defiers and the lower bounds for the never takers and the defiers at

the same time in the mixtures. Because of the symmetry of the problem, we will just consider the case in which

Ȳ1,1(max |q11
1,1) ≥ Ȳ0,1(max |q11

0,1) and Ȳ1,0(min |q00
1,0) ≥ Ȳ0,0(min |q00

0,0). In this case we can directly substitute ∆10

by ∆UB
10 in (A.19), without contradicting (A.1).

Given (A.19) and (A.1), the sharp upper bound under Ȳ1,1(max |q11
1,1) ≥ Ȳ0,1(max |q11

0,1) and Ȳ1,0(min |q00
1,0) ≥

Ȳ0,0(min |q00
0,0) is the maximum of the following four admissible upper bounds:

∆UB1 = max
π01

[
(P1|0 − π01) · (Ȳ0,1(max |q11

0,1)− yLB) + (P1|0 − π01) ·∆UB
10 (A.20)

+ P1|0 · Y0,1 − (P1|0 − π01) · Ȳ0,1(max |q11
0,1)

− P0|1 · Y1,0 + (P0|1 − π01) · Ȳ1,0(min |q00
1,0)

+ (P0|1 − π01) · (yUB − Ȳ1,0(min |q00
1,0))

]
= max

π01

[
(P1|0 − π01) ·∆UB

10 − (P1|0 − π01) · yLB

+ P1|0 · Y0,1 − P0|1 · Y1,0 + (P0|1 − π01) · yUB
]
,
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∆UB2 = max
π01

[
(P1|0 − π01) · (Ȳ0,1(max |q11

0,1)− yLB) + (P1|0 − π01) ·∆UB
10 (A.21)

+ P1|0 · Y0,1 − (P1|0 − π01) · Ȳ0,1(max |q11
0,1)

− P0|1 · Y1,0 + (P0|1 − π01) · Ȳ1,0(max |q00
1,0)

+ (P0|1 − π01) · (yUB − Ȳ1,0(max |q00
1,0))

]
= max

π01

[
(P1|0 − π01) ·∆UB

10 − (P1|0 − π01) · yLB

+ P1|0 · Y0,1 − P0|1 · Y1,0 + (P0|1 − π01) · yUB
]
,

∆UB3 = max
π01

[
(P1|0 − π01) · (Ȳ0,1(min |q11

0,1)− yLB) + (P1|0 − π01) ·∆UB
10 (A.22)

+ P1|0 · Y0,1 − (P1|0 − π01) · Ȳ0,1(min |q11
0,1)

− P0|1 · Y1,0 + (P0|1 − π01) · Ȳ1,0(min |q00
1,0)

+ (P0|1 − π01) · (yUB − Ȳ1,0(min |q00
1,0))

]
= max

π01

[
(P1|0 − π01) ·∆UB

10 − (P1|0 − π01) · yLB

+ P1|0 · Y0,1 − P0|1 · Y1,0 + (P0|1 − π01) · yUB
]
,

∆UB4 = max
π01

[
(P1|0 − π01) · (Ȳ0,1(min |q11

0,1)− yLB) + (P1|0 − π01) ·∆UB
10 (A.23)

+ P1|0 · Y0,1 − (P1|0 − π01) · Ȳ0,1(min |q11
0,1)

− P0|1 · Y1,0 + (P0|1 − π01) · Ȳ1,0(max |q00
1,0)

+ (P0|1 − π01) · (yUB − Ȳ1,0(max |q00
1,0))

]
= max

π01

[
(P1|0 − π01) ·∆UB

10 − (P1|0 − π01) · yLB

+ P1|0 · Y0,1 − P0|1 · Y1,0 + (P0|1 − π01) · yUB
]
.

Since ∆UB1 = ∆UB2 = ∆UB3 = ∆UB4 = ∆UB , ∆UB is the sharp upper bound for ∆. Finally we have have to

show that ∆UB is maximized for π01 = πmin
01 . It is sufficient to see that the first derivative of ∆UB w.r.t. π01 is

always negative, let

Y 11,min ≡ max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
,
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and

Y 00,max ≡ min
(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

we have

Y 11,min − Y 00,max + (P1|0 − π01) · ∂Y
00,max

∂π01
− (P1|0 − π01) · ∂Y

11,min

∂π01
< yUB − yLB ,

which is always satisfied.

A.2 Monotonicity

A.2.1 Proof of the sharpness of the bounds for the always takers

Under monotonicity and the IV exclusion restriction E(Y |T = 1, G = 11) is identified by Ȳ0,1. Since monotonicity

does not impose any restrictions on the distribution of Y |T = 0, G = 11 the worst case bounds yLB , yUB have to

be assumed. This implies that ∆UB
11 and ∆LB

11 are the sharp upper and lower bounds of ∆11.

A.2.2 Proof of the sharpness of the bounds for the never takers

Under monotonicity and the IV exclusion restriction E(Y |T = 0, G = 00) is identified by Ȳ1,0. Since monotonicity

does not impose any restrictions on the distribution of Y |T = 1, G = 00 the worst case bounds yLB , yUB have to

be assumed. This implies that ∆UB
00 and ∆LB

00 are the sharp upper and lower bounds of ∆00.

A.2.3 Proof of the sharpness of the bounds for the treated

These bounds are linear combinations of ∆10 and the bounds on ∆11. Therefore, they are sharp.

A.2.4 Proof of the sharpness of the bounds for the entire population

These bounds are linear combinations of ∆10 and the bounds on ∆11 and ∆00. Therefore, they are sharp.

A.3 Stochastic dominance

Lemma 1 in Huber and Mellace (2010) shows that under stochastic dominance, the upper bounds of E(Y |T =

1, Z = 1, G = 11) and E(Y |T = 0, Z = 0, G = 00) are Ȳ1,1 and Ȳ0,0, respectively. Moreover, stochastic dominance

implies that E(Y |T = 0, G = 11) ≤ E(Y |T = 0, G = 10) and E(Y |T = 1, G = 00) ≤ E(Y |T = 1, G = 10). All

bounds are special cases of the worst case bounds under the restrictions just mentioned. Therefore, all of them are
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sharp.

A.4 Monotonicity and stochastic dominance

A.4.1 Proof of the sharpness of the bounds for always takers

Under monotonicity and the IV exclusion restriction E(Y |T = 1, G = 11) is identified by Ȳ0,1. Stochastic dominance

implies that E(Y |T = 0, G = 11) ≤ E(Y |T = 0, G = 10) =
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
. Thus, ∆LB

11 is the sharp lower bound

of ∆11.

A.4.2 Proof of the sharpness of the bounds for never takers

Under monotonicity and the IV exclusion restriction E(Y |T = 0, G = 00) is identified by Ȳ1,0. Stochastic dominance

implies that E(Y |T = 1, G = 00) ≤ E(Y |T = 1, G = 10) =
P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0
. Thus, ∆UB

00 is the sharp upper bound

of ∆00.

A.4.3 Proof of the sharpness of the bounds for the treated

These bounds are linear combinations of ∆10 and the bounds on ∆11. Therefore, they are sharp.

A.4.4 Proof of the sharpness of the bounds for the entire population

These bounds are linear combinations of ∆10 and the bounds on ∆11 and ∆00. Therefore, they are sharp.
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