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Abstract 

We consider choice over a set of monetary acts (random variables) and study a general class 
of preferences. These preferences favor diversification, except perhaps on a subset of 
sufficiently disliked acts, over which concentration is instead preferred. This structure 
encompasses a number of known models in this setting. We show that such preferences can 
be expressed in dual form in terms of a family of measures of risk and a target function. 
Specifically, the choice function is equivalent to selection of a maximum index level such that 
the risk of beating the target function at that level is acceptable. This dual representation 
may help to uncover new models of choice. One that we explore in detail is the special case 
of a bounded target function. This case corresponds to a type of satisficing and has 
descriptive relevance. Moreover, the model results in optimization problems that may be 
efficiently solved in large-scale. 
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1 Introduction

The notion of an aspiration level rests at the core of Simon’s [48] concept of bounded rationality. Namely, due

to limited cognitive resources and incomplete information, real-world decision makers may plausibly follow

heuristics in the face of risky choice. Satisficing behavior, in which the decision maker accepts the first

encountered alternative that meets a sufficiently high aspiration level, may prevail.

There is indeed ample empirical evidence that aspiration levels, or “targets,” play a central role in the

decision-making of many individuals. Mao [36], for instance, concludes after interviewing many executives,

that “risk is primarily considered to be the prospect of not meeting some target rate of return.” Other

studies (e.g., Roy [45], Lanzilloti [31], Fishburn [20], Payne et al. [41, 42], March and Shapira [37]) reach

similar conclusions regarding the importance of targets in managerial decisions. Diecidue and van de Ven [17]

provide many more references and propose a model combining expected utility with loss and gain probabilities,

which leads to a number of predictions consistent with empirical data. Recently, Payne [40] showed that many

decision makers would be willing to accept a decrease in a gamble’s expected value in order to reduce just the

probability of not beating a target.

The goal of this paper is to provide some formalism for the role of aspiration levels in rational choice

and to introduce a new model in this domain. We consider the case of a decision maker choosing from a

set of monetary acts (i.e., random variables), and define preferences over these acts. The structure of these

preferences is fairly general: in addition to the usual properties of a weak order, a mild continuity property,

and monotonicity, the only requirement we impose is the way the decision maker treats mixtures of acts.

In particular, we assume the decision maker prefers to diversify among acts, except possibly on a subset of

sufficiently unfavorable choices, for which concentration is preferred. We call these preferences aspirational

preferences. In the case when the concentration favoring set is empty, diversification is always preferred. Our

definition of diversification favoring is a standard one of convex preferences.

Our main theoretical result is a dual representation for choice under such preferences. This result states

that we can equivalently express choice in terms of a family of measures of risk and a target function: in

particular, the choice function for such preferences is equivalent to a maximum index such that the risk of

beating the target function at that index is acceptable. On the set of acts for which diversification is preferred,

the risk measures are convex risk measures (Föllmer and Schied [21, 22]). In this setting of monetary acts,

a number of popular models of choice, including expected utility theory and several generalizations, are

aspirational preferences and thus have this representation.

This characterization with risk measures has a number of important implications. First, it yields po-

tentially new interpretations for existing models of choice. For instance, Föllmer and Schied [21] show that

convex risk measures have a dual description in terms of robust expected value against a malicious adversary

who is manipulating the underlying probabilities. It then follows that expected utility (for example) under

a specific distribution can be equivalently expressed in a “robust form” in which the underlying distribution

is not precisely specified. In addition, structural properties, such as stochastic dominance, can be established

directly from known properties of convex risk measures. Moreover, from an optimization standpoint, the risk
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representation is important: indeed, over acts where the choice function is quasi-concave (prefers diversifica-

tion), the level sets that one must search over are in fact acceptance sets for the representing risk measure

family.

More generally, representation with risk measures and a target function potentially opens doors for new

choice models. One example of this that we explore in detail is the case when the target function is bounded.

In this case, the lower and upper limits of the target function correspond to a minimal requirement and a

satiation level, respectively. Acts that fail to attain the minimal requirement in any state are least preferred,

whereas acts that attain at least the satiation level in all states are most preferred. When the two levels

coincide, the target represents a single aspiration level. In this case of a bounded target function, we say the

decision maker has strongly aspirational preferences and call the choice function a strong aspiration measure

(SAM).

Choice under SAM seems to have noteworthy descriptive power. In particular, we find that SAM (with

just a single target) can address the classical examples of Allais [1] and Ellsberg [19]. This model also addresses

more recent paradoxes, such as an Ellsberg-like example due to Machina [34], and predicts well choice patterns

in a set of experiments related to gain-loss separability in Wu and Markle [50].

Thus, from the theory side, we find that a notion of targets is, to some extent, implicitly embedded in

several rational choice models and draw connections between preferences and risk measures. Pushing the limit

of this general representation to the case when the target becomes a central focus of the decision maker, we

obtain the SAM model. From the empirical side, application of SAM to some descriptive settings seems to

support the idea that aspiration levels play an important role in the decision making of individuals.

We refer the reader to some recent, related work. Cerreia-Vioglio et al. [11] axiomatize, in an Anscombe-

Aumann setting, a model of uncertainty averse preferences. These preferences are convex and monotone and

the authors provide a general representation result. Drapeau and Kupper [18] develop a similar representation

on fairly general topological spaces. Their work focuses on robustness interpretations and the representation

is presented primarily in terms of “acceptance sets,” whereas ours is in the form of risk measures and target

functions. We believe this latter form has important implications: the SAM model is, to our knowledge,

new, and is motivated from this form. Also differentiating us is that we do not require convex preferences

everywhere.

The allowance of a limited amount of risk-seeking merits a brief discussion. Risk-seeking behavior is

traditionally relegated purely to the realm of the descriptive.1 In a target-driven model like SAM, however,

there is some rationale for a decision maker to possibly prefer concentration when they have high aspirations.

Indeed, we show a consequence of the SAM model is that, under fairly mild conditions, concentration is a

necessary feature in order to be able to distinguish among acts with expected value below the target. This

property is another fairly direct result from the dual representation with convex risk measures. Intuitively, we

may reasonably expect decision makers to be willing to shun diversification and take risks when aspirations

are ambitious relative to available choices.
1Though, there is some debate on this point; one can trace some discussions back to Friedman and Savage [24] and Markowitz

[38], for instance.

2



Finally, we briefly contrast our work with models of target-based utility. There are interesting theoretical

connections between expected utility theory and probability of beating a benchmark on a higher dimensional

state space (see, for instance, Bordley and LiCalzi [6] and Castagnoli and LiCalzi [9]). In terms of practical

use, some issues arise with probability of beating a benchmark as a choice function. First, such a model favors

neither diversification nor concentration. This presents significant hurdles in application to optimization

settings (e.g., portfolio choice). Second, probability of beating a benchmark is insensitive to the magnitude

of gains and losses. In contrast, choice under SAM is in general not insensitive to the size of gains and losses

and can be efficiently optimized in problems with many decision variables. For tractability in optimization,

the important feature is that the choice function is be either quasi-concave or quasi-convex; we are not aware

of other models that incorporate mixed attitudes towards both risk and ambiguity that meet this criterion

(for example, prospect theory in general results in objective functions that are neither quasi-convex nor

quasi-concave).

Our outline is as follows. In Section 2, we describe the choice setting and define aspirational preferences,

then present the main representation result. Later in this section we briefly discuss the interpretation in terms

of robustness and characterize some general properties related to stochastic dominance. Section 3 is devoted

to the SAM model and some of its properties. Section 4 applies this model to the decision theory paradoxes

mentioned earlier, and Section 5 discusses optimization of the model with a portfolio choice example. Finally,

Section 6 offers some concluding remarks.

2 Aspirational preferences and dual representation

In this section, we introduce the basic choice problem we consider, then define aspirational preferences. We

then establish a generic representation result, in terms of risk measures, for these preferences.

2.1 Model preliminaries and aspirational preferences

Our setup falls into the framework of Savage [46] in the special case of monetary acts. Specifically, we consider

a set S of states of the world, endowed with a sigma-algebra Σ. An element s ∈ S is an individual state of

the world, while an element A ∈ Σ is an event. There is a set of consequences X. An element x ∈ X is an

individual consequence. For our analysis, we focus exclusively on the case X = R and interpret an individual

consequence x ∈ X as a monetary outcome. An act is a measurable function from S to R: its inverse applied

to any interval I ⊂ R is an event, i.e., belongs to Σ. We denote acts by f, g, h. An act f is constant if there

is an individual consequence x ∈ X such that f(s) = x for all s ∈ S. In this case we write f = x. The set of

all acts on (S,Σ) is denoted by L0(S,Σ), while the set all bounded acts on (S,Σ) is denoted by L∞(S,Σ). A

subset G ⊆ L∞(S,Σ) is said to be closed if it belongs to the topology endowed on L∞(S,Σ) by the sup-norm

||f || = sups∈S |f(s)|.
For f, g ∈ L0(S,Σ) we say that f state-by-state dominates g if and only if f(s) ≥ g(s) for all s ∈ S. In

this case we write (with some abuse of notation) that f ≥ g. We say that a mapping ρ from a subset G of

L0(S,Σ) to R is nondecreasing when for all f, g ∈ G, if f ≥ g then ρ(f) ≥ ρ(g).
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For f, g ∈ L0(S,Σ) and λ ∈ [0, 1], the convex combination h = λ f + (1 − λ) g is defined state-by-state,

i.e., h(s) = λ f(s) + (1− λ) g(s).

While not needed generally, we will often consider cases when (S,Σ) is endowed with a probability measure

P. A probability measure is a mapping from Σ to [0, 1], such that P (S) = 1, P (∅) = 0, and P (A ∪B) =

P (A) + P (B) for all A,B ∈ Σ such that A ∩ B = ∅. The triple (S,Σ,P) is called a probability space. A

probability space is said to be atomless when there exists no s ∈ S such that P ({s}) > 0. Moreover, given

a probability measure P on (S,Σ) and an act f ∈ L0(S,Σ), we call the function x → P ({s ∈ S : f(s) ≤ x}),
x ∈ R, the cumulative distribution function of f with respect to P. We denote by P the set of all probability

measures on (S,Σ).

In a setup like this, any probabilities are entirely “subjective” in the sense that they are part of the decision

maker’s preference structure and not fixed in advance by the model. Strictly speaking, the framework does not

formally separate uncertainty resulting from “risk” versus that from “ambiguity,” as is done in an Anscombe-

Aumann [2] setting. To us, this does not seem like a severe limitation, especially for real-world applications.2

Moreover, nothing in our setup precludes the possibility of some objective, probabilistic structure in the

model, such as in the experimental settings we later consider. In these cases, decision makers would be hard

pressed to disagree on the various “objective” probabilities, and notions of risk versus ambiguity should be

clear from context.

We consider the situation of a decision maker who wants to choose an act from a closed and convex subset

F ⊆ L∞(S,Σ). Note that elements in F are assumed to be bounded.3

We model decision maker’s preferences using a preference relation � on F . For acts f, g ∈ F , the decision

maker weakly prefers f to g if and only if f � g. As usual, � and∼ are defined by [f � g ⇔ (f � g) and¬(g � f)]

and [f ∼ g ⇔ (f � g) and (g � f)]. We call a function ρ : F → R ∪ {−∞,∞} a functional representation of

� when for all f, g ∈ F , f � g if and only if ρ(f) ≥ ρ(g).

The conditions for existence of a functional representation are well established. In the interests of formally

defining the preference relation, we make this explicit. Ultimately, our focus will be on the form of this

representation and its dual structure with risk measures. For our purposes, as explained below, we weaken

the standard assumption (e.g., Debreu [15]) of continuity.

Property 1 (Weak order and upper semi-continuity). Let � be a weak order on F that satisfies:

(i) For all f ∈ F , the set {g ∈ F : g � f} is closed in F (upper semi-continuity).

(ii) There exists H ⊂ F that is order-embeddable4 into [0, 1] such that for all f, g ∈ F with f � g, there

exists h ∈ H such that f � h � g .
2Gilboa [26], for instance, mentions that objective probabilities are somewhat “controversial.”
3The representation result that follows does not require this. One could consider more general acts in L0(S,Σ). However, some

care would be required in handling the technical conditions for the underlying topology. For simplicity, we focus on the case of

bounded acts in our basic setup.
4H is order-embeddable into [0, 1] when there exists a order-preserving function j : (H,�)→ [0, 1]. j is order-preserving when

it is increasing and for f, g ∈ H with f � g we have j(f) > j(g).
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The assumption of a weak order is standard, while (i) and (ii) in Property 1 are technical conditions needed

to obtain a functional representation of �. Properties (i) and (ii) are weaker then the standard continuity

conditions of Debreu [15], but are sufficient to obtain a functional representation of �.5 Indeed, for the

purposes of this paper, the classical continuity assumption is too restrictive. This is because we also want to

include in our framework preference relations in the spirit of Simon [48], e.g., f � g if and only if ρ(f) ≥ ρ(g),

where ρ : F → R satisfies ρ(f) > 0 on {f ≥ 0} (satisfactory payoffs) and ρ(f) < 0 on {f < 0} (unsatisfactory

payoffs). Following a generalization of Rader [43], we impose upper semi-continuity (Property (i)) on �.

This is weaker than continuity and allows preference relations as mentioned. Bosi and Mehta [7] shows that

Property (i) is not only sufficient for a functional representation, but also necessary if the preference relation

is separable; that is, Property (ii) holds.

We then require the following.

Property 2 (Monotonicity). For all f, g ∈ F , if f ≥ g then f � g.

Monotonicity says that an act that dominates another state-wise is preferred among the two. This is a

classical assumption on preferences, and it says that decision makers do not prefer less to more.

The final property we impose is how preferences favor mixtures of positions.

Property 3 (Mixing). There exists a partition of F into three disjoint subsets F++, F−− and F0, termed

the diversification favoring, concentration favoring and neutral sets of acts, respectively, such that for all

f ∈ F++, g1, g2 ∈ F0, h ∈ F−−, we have

f � g1 ∼ g2 � h,

and the following conditions hold:

(i) Diversification favoring set: For all f, g ∈ F++, h ∈ F , if f � h, g � h then

λf + (1− λ)g � h ∀λ ∈ [0, 1].

(ii) Concentration favoring set: For all f, g ∈ F−−, h ∈ F , if h � f , h � g then

h � λf + (1− λ)g ∀λ ∈ [0, 1].

Property (i) is simply the definition of convex preferences, and it states that diversification among acts in

F++ never results in a position that is worse. This is a classical notion of risk aversion. Property (ii) says the

opposite: diversification does not help for acts in the set F−−.

In our general setup, we are allowing for both risk aversion and risk seeking. Note, however, that any risk

seeking behavior that is permitted is localized on a set of less preferable acts. Intuitively, the decision maker

will consider avoiding diversification only if available choices are sufficiently unfavorable.

As a very simple example of a situation that may merit concentration, and as a prelude to some of

the discussion that will follow on target-oriented choice, consider a decision maker who wishes to attain a
5Debreu [15] assumes, in addition to Property (i), that {g ∈ F : f � g} is closed in F .
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particular payoff level. Without loss, we set this desired level to zero. Now consider a pair of acts f, g ∈ F ,

f, g ≤ 0, that are unfavorable in that each meets this desired payoff in only a single state, and these states are

different across f and g. In other words, there exist s′, s′′ ∈ S, s′ 6= s′′, with f(s) = 0 (g(s) = 0) if and only if

s = s′ (s = s′′). For any convex combination of f and g, h = λ f + (1− λ) g for λ ∈ (0, 1), we have h < 0. If

the decision maker diversifies, they will always attain a mixed position that never attains the desired payoff

level. Here, it may be reasonable to prefer at least one of f or g, which each have some chance of attaining

the desired level, individually over any mixture.

While this is a very simple (and admittedly contrived) example, it illustrates an important point. Namely,

there may be situations, particularly in models of choice that focus on aspiration levels, in which some risk

seeking behavior is sensible. Note, however, that we do not impose that F−− be nonempty. We allow for risk

seeking, but do not require it.

Definition 1. A decision maker with preference relation � satisfying Properties 1-3 is said to have aspira-

tional preferences on F with partition F++, F−−, F0.

The partition in Property 3 is not uniquely characterized by the preference relation� and thus the partition

is part of our definition of aspirational preferences. We note the following in cases when two different partitions

of F exist such that � satisfies Property 3.

Proposition 1. Assume that � is a preference relation on F and Property 3 holds for two different partitions

F++, F−−, F0 and G++, G−−, G0. Then either G++ ∪G0 ⊆ F++ and F−− ∪ F0 ⊆ G−−, or F++ ∪ F0 ⊆ G++

and G−− ∪G0 ⊆ F−−. It follows that for all f, g ∈ F0 (and all f, g ∈ G0), λ ∈ [0, 1],

λ f + (1− λ) g � g ∼ f or g ∼ f � λ f + (1− λ) g.

Moreover, for all f, g ∈ F++ ∩G−− (and all f, g ∈ F−− ∩G++), λ ∈ [0, 1], if f � g then

f � λ f + (1− λ) g � g.

Proposition 1 says that while a preference relation � can satisfy Property 3 on more than one partition of

F , there is a “natural partition,” which can be constructed as follows: let H++ (H−−) be the biggest set of

diversification (concentration) favoring acts among all existing partitions and set F++ = H++ \ (H++∩H−−),

F−− = H−− and F0 = F \ (F++ ∪ F−−).

2.2 Risk measures and representation of aspirational preferences

We now show how to represent aspirational preferences in terms of a more classical definition of a “risk

measure.” Risk measures are motivated from the perspective of “minimal capital requirements” to make

positions acceptable. We clarify below how this can be interpreted in our framework. Given the fairly specific

motivation for risk measures, it is intriguing that they link so closely to the seemingly more general choice

model discussed above.

Following Föllmer and Schied [21], we first formally define the concept of a risk measure.
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Definition 2. A function µ : F → R is a risk measure over F if it satisfies the following for all f, g ∈ F :

1. Monotonicity: If f ≥ g, then µ(f) ≤ µ(g).

2. Translation invariance: If x ∈ F is a constant act, then µ(f + x) = µ(f)− x.

A risk measure µ(f) may be interpreted as the constant act to be added to f in order to make f acceptable

by some standard. Namely, µ(f + µ(f)) = µ(f)− µ(f) = 0, i.e., adding the individual consequence x = µ(f)

to the act f , one obtains a new act g = f +x with “zero risk” (i.e., µ(g) = 0), and acts with non-positive risk

can be considered as acceptable. In other words, an act is acceptable if it does not require any additional,

guaranteed money. One can formalize the concept of acceptable acts as follows.

Definition 3. Let µ : F → R be a risk measure. The subset Aµ of F defined by

Aµ = {f ∈ F : µ(f) ≤ 0}

is called the acceptance set associated to the risk measure µ and f ∈ Aµ is an acceptable act.

The two properties of risk measures have clear implications for the acceptance set: if one act state-wise

dominates an acceptable act, then it must be acceptable as well. In addition, if we add a constant act

to another act, then the additional money required in order to make the second act acceptable is reduced

accordingly. We refer the reader to Föllmer and Schied [22] and the many references therein for more on risk

measures and the properties of the corresponding acceptance sets.

The class of convex risk measures has garnered much attention. Formally, we say a risk measure is convex

if, for any f, g ∈ F , λ ∈ [0, 1],

µ(λf + (1− λ)g) ≤ max{µ(f), µ(g)} (1)

and concave if

µ(λf + (1− λ)g) ≥ min{µ(f), µ(g)}. (2)

Notice that the preference relation �µ induced by a risk measure µ will follow f �µ g if and only if µ(f) ≤
µ(g). It is not hard to see that (1) is equivalent to the preference relation �µ being diversification favoring

(i.e., convex preferences), and (2) is equivalent to �µ being concentration favoring. Historically, convex risk

measures are defined with µ satisfying convexity directly, not quasi-convexity as in (1); this is equivalent.

Proposition 2. A risk measure µ that is diversification favoring is equivalent to the function µ being convex,

i.e., for all f, g ∈ F , λ ∈ [0, 1], µ(λf + (1− λ)g) ≤ λµ(f) + (1− λ)µ(g). Likewise, concentration favoring is

equivalent to the function µ being concave.

Proposition 2 is also shown in Cerreia-Vioglio et al. [10], who argue that quasi-convexity, rather than

convexity, of the risk measure function is the natural way to describe a preference for diversification.

We are now ready for the representation result. In what follows, we use the convention sup ∅ = −∞.
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Theorem 1. A preference relation � is aspirational on F with partition F++, F−−, F0 if and only if there

exists a corresponding functional representation ρ : F → R ∪ {−∞,∞} and k̂ ∈ R ∪ {−∞,∞} such that ρ

is upper semi-continuous, nondecreasing, quasi-concave on F++, quasi-convex on F−−, and ρ(g) = k̂ for all

g ∈ F0, ρ(f) > k̂ > ρ(h) for all f ∈ F++, h ∈ F−−. Moreover, ρ has representation

ρ(f) = sup {k ∈ R : µk(f) ≤ 0} , (3)

where {µk} is a family of risk measures, nondecreasing in k, convex if k > k̂, concave if k < k̂, and with

closed acceptance sets Aµk . Conversely, given aspirational preferences represented by ρ, the underlying risk

measure family is given by

µk(f) = inf{a ∈ R : ρ(f + a) ≥ k}. (4)

We call the function ρ from Theorem 1 an aspiration measure (AM). Note that ρ is unique up to a

nondecreasing transformation.6 Inspection of the proof of Theorem 1 shows that the acceptance set of the

risk measure µk corresponds to Aµk = {f ∈ F : ρ(f) ≥ k}.
If the risk measure µ(f) is to be interpreted as the constant act to be added to f in order to have zero

risk, it is natural to require µ(0) = 0. A risk measure satisfying this is said to be normalized. In the general

representation above, no such requirement is made on the family µk. The adjusted family of risk measures

µ̃k(f) = µk(f)− µk(0) is, however, normalized.7 While the risk measures µ̃k inherit convexity and concavity

properties from µk, the family {µ̃k} is not necessarily nondecreasing in k.

Noting this, we can equivalently express choice under aspirational preferences in dual form as

ρ(f) = sup {k ∈ R : µ̃k(f − τ(k)) ≤ 0} , (5)

where µ̃k is normalized and τ(k) = µk(0) is a constant act for all k. We call τ(k) a target act and the function

τ : R → F, k → τ(k) is the target function. Clearly, τ is nondecreasing.

The representation (5) provides an interpretation of choice under aspirational preferences. Such choice

can be interpreted as searching over index levels k, such that at k, the risk µ̃k associated with f − τ(k) is

acceptable. The AM ρ(f) then represents the maximal level at which the risk of f beating the target act at

that level is acceptable. When the sup is attained, we have the fixed point relationship for ρ:

µ̃ρ(f)(f − τ(ρ(f))) = 0.

Since the family {µ̃k} is not necessarily nondecreasing, one must exercise some care in interpreting choice

intuitively here. For k? > k, τ(k?) ≥ τ(k) and thus f − τ(k?) ≤ f − τ(k). An AM, therefore, assigns higher

value to acts whose risk associated with falling short of the target remain acceptable when measured against
6This can be seen as follows. Let ρ and ρ̃ be two functional representations for an aspirational preference relation �. Define

T : ρ(F )→ R as T (ρ(f)) = ρ̃(f) for all f ∈ F . For f, g ∈ F we have: ρ(f) ≥ ρ(g)⇒ f � g ⇒ ρ̃(f) ≥ ρ̃(g)⇒ T (ρ(f)) ≥ T (ρ(g)).

Therefore, T is a nondecreasing transformation.
7µ̃k is clearly a risk measure: For f, g ∈ F , f ≥ g, we have µ̃k(f) = µk(f) − µk(0) ≤ µk(g) − µk(0) = µ̃k(g); for f ∈ F and

x ∈ X, µ̃k(f + x) = µk(f + x)− µk(0) = µk(f)− x− µk(0) = µk(f)− µk(0)− x = µ̃k(f)− x.

8



higher targets. In some cases, µ̃ may be a single normalized risk measure, in which case only the target

increases with k (we will see this is true for CARA utility maximizers). On the flip side (which will be the

case in our applications of aspirational preferences in Sections 4 and 5), the target function may be a constant

τ and the risk measure family {µk} may already be normalized. In this case, the target remains constant but

the risk increases in k. In general, the overall risk according to µk(f) = µ̃k(f − τ(k)) is nondecreasing in k,

as is τ(k), even if µ̃k is not.

This dual interpretation applies to a number of choice models. We now provide some examples. When

not stated explicitly, we will assume that (S,Σ) is endowed with a probability measure P and expectations

are taken with respect to P.

Example 1. Expected utility theory

Let u : R → R be a continuous, nondecreasing, concave utility function satisfying u(0) = 0. The choice

function ρ(f) = E [u(f)] is an AM. Here, the diversification favoring set F−− and the neutral set F0 can

be assumed to be empty, i.e., we can take F++ = F as diversification is always (weakly) preferred. The

representing risk family is expressed as

µk(f) = inf {a : E [u(f + a)] ≥ k}

= − sup {a : E [u(f − a)] ≥ k} .

Here, −µk(f) represents a maximum purchase price one would pay to assume the position f while still

attaining a level k in expected utility. When u is invertible, we have τ(k) = µk(0) = u−1(k), i.e., the target

act is the constant act with utility k. Föllmer and Schied [22] study the class of shortfall risk measures induced

by convex, increasing loss functions l : R → R:

µshort
v (f) = inf {a : E [l(−f − a)] ≤ v} .

This is clearly the same object as µk here, with l(y) = −u(−y) and v = −k.

For CARA utility, u(y) = 1− exp(−y/R) for some R > 0, and we have

µk(f) = inf {a : E [1− exp (−(f + a)/R)] ≥ k}

= R log E
[
e−

f
R

]
︸ ︷︷ ︸

µ̃k(f)

−R log(1− k)︸ ︷︷ ︸
τ(k)

,

on k ∈ (−∞, 1). For this choice function, note that the normalized family µ̃k is independent of the index

(utility) level k: all variation over the index is embedded within the target function τ(k).

Example 2. Maxmin EUT, Choquet utility, and variational preferences

Maxmin expected utility (MEU), developed by Gilboa and Schmeidler [27], has a similar dual representa-

tion. Here, we have

µk(f) = inf
a∈R

{
a : inf

Q∈Q
EQ [u(f + a)] ≥ k

}
,
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where Q ⊆ P is a set of probability measures on (S,Σ), and we consider the case when u is nondecreasing

and concave. In this case, F = F++ again. It is known (Gilboa and Schmeidler [27]) that Choquet expected

utility (CEU) axiomatized by Gilboa [26] and Schmeidler [47] falls into the class of MEU in the important

case when the decision maker is ambiguity averse.

Generalizing the MEU model, Maccheroni et al. [33] axiomatized a model of variational preferences. Here,

choice is represented by the function

ρ(f) = inf
Q∈P
{EQ [u(f)] + c(Q)} ,

where u is a differentiable, nondecreasing utility function, and c is a nonnegative convex function on P with

infQ∈P α(Q) = 0. In the case of risk aversion, i.e., u concave, this falls into our setup with F++ = F .

The generating family of convex risk measures is

µk(f) = inf
a∈R

{
a : inf

Q∈P
{EQ [u(f + a)] + c(Q)} ≥ k

}
.

For both MEU and variational preferences, assuming u is invertible, the target function is τ(k) = u−1(k).

Example 3. Acceptability, satisficing, and riskiness indices

Several recent papers have attempted to formalize definitions of risk and related measures of performance.

Aumann and Serrano [4] axiomatize a definition of risk. Their axioms lead to an index of riskiness r(f) defined

as

r(f) = inf
{
a > 0 : E

[
e−f/a

]
≤ 1
}
,

and has the interpretation of being the smallest risk tolerance level for a CARA decision maker such that at

that level the decision maker would accept the act f (i.e., the expected utility of f is nonnegative). It is not

hard to see that 1/r(f) yields the function

ρ(f) = sup
{
k > 0 : k−1 log E

[
e−k f

]
≤ 0
}
,

where k−1 log E [exp(−k f)] is the entropic risk measure at level k > 0. This is a convex risk measure (e.g.,

[22]) and therefore such a ρ is an AM. Foster and Hart [23] derive an “operational” definition of risk that has

a similar representation with logarithmic utility replacing the exponential.

Both of these definitions of risk fall into the class of satisficing measures introduced by Brown and Sim

[8], which take the form of a function:

ρ(f) = sup {k > 0 : µk(f − τ) ≤ 0} ,

where {µk}k>0 is a family of normalized convex risk measures and τ ∈ L0(S,Σ) is a competing benchmark.

The acceptability indices of Cherny and Madan [13] fall into this framework with τ = 0 when the risk measures

µk are also positive homogeneous (or “coherent” according to the definition of Artzner et al. [3]).
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In all of these cases, note that one has convex preferences for any act, so F−− = ∅. Note also that these

indices may be attempting to provide an explicit quantity (e.g., a risk value) rather than being used directly

as a choice function. However, a nonnegative combination of an AM with the expected value function remains

an AM, so a “risk-reward” tradeoff in this sense still represents choice under an AM. Alternatively, one may

imagine that the set F represents a set of available acts meeting certain conditions (e.g., sufficiently high

expected return in a portfolio choice setting). In this case, one of these indices could plausibly be used as a

choice function.

2.3 An ambiguity interpretation

The dual representation of this choice model in terms of convex (and concave) risk measures leads to an

interpretation of choice that explicitly accounts for ambiguity. Indeed, it is known (Föllmer and Schied [22])

that any convex risk measure µ in such a setting can be represented as

µ(f) = sup
Q∈P
{−EQ [f ]− α(Q)} , (6)

where P is the set of all probability measures on (S,Σ) and α : P → R is a convex function, α(Q) =

supf∈Aµ EQ [−f ]. It is easy to see that if µ is normalized, i.e., µ(0) = 0, then infQ∈P α(Q) = 0.

We can now express choice above using this form. Specifically, if f ∈ F++, then we have

ρ(f) = sup
{
k > k̂ : µk(f) ≤ 0

}
= sup

{
k > k̂ : sup

Q∈P
{−EQ [f ]− αk(Q)} ≤ 0

}

= sup
{
k > k̂ : inf

Q∈P
{EQ [f − τ(k)] + α̃k(Q)} ≥ 0

}
,

where we are using the normalized representation for the family of generating risk measures: τ(k) is the target

function and α̃k is a convex function corresponding to the normalized convex risk measure µ̃k according to

the representation (6).

This perspective implies a robustness interpretation of choice over acts in the diversification favoring set.

Namely, the decision maker with preferences represented by ρ ranks acts in F++ according to an index level.

At a particular index level k, the decision maker looks at the expected value of the act in excess of the

target, where the probability measure is chosen by a malicious adversary. This adversary wishes to make the

expected value of f − τ(k) as small as possible, but has to pay a penalty α̃k(Q) ≥ 0 for choosing measure Q

and therefore selects a distribution that minimizes the expected value plus the penalty.

As the index level grows, both the target and the combined effect of τ(k) and α̃k increase. Therefore,

robustly satisfying the (penalized) expected value constraint becomes more difficult, as the adversary’s power

grows. The choice function ρ(f) thus represents the maximum index level k such that the condition

EQ [f − τ(k)] + α̃k(Q) ≥ 0
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holds for all probability measures Q ∈ P. In this sense, ρ over the diversification favoring set corresponds to

a notion of robustness or security : acts with larger ρ can beat a higher target in expectation in a more robust

sense.

This robustness interpretation holds even if the choice function ρ uses an explicit probability measure in

its “primal” form. For instance, consider EUT as described earlier with utility function u and probability

measure P as in Example 1. Here, F++ = F and the choice function is ρ(f) = EP [u(f)]. Following the

representation of shortfall risk due to Föllmer and Schied [22], we can express this choice in the “robust”

form:

ρ(f) = sup
{
k : inf

Q∈P
{EQ [f ] + αuk(Q)} ≥ 0

}
,

where αuk is the penalty function:

αuk(Q) = inf
λ>0

1
λ

{
−k + EP

[
l∗
(
λ
dQ
dP

)]}
if Q is absolutely continuous to P and +∞ otherwise. Here, l∗ is the conjugate of −u(−y), i.e., l∗(z) =

supy∈R{zy + u(−y)}.
Notice that αuk is nonincreasing in k. Thus, we can interpret an EUT maximizer as a decision maker who

prefers acts to the extent to which they have nonnegative expectation in a robust sense. Here, the notion

of robustness is tilted somehow according to the “subjective prior” P, embedded within αuk . In the case of a

CARA utility function, for example, one obtains l∗(z) = z log z − z + 1, which leads to a penalty αuk(Q) that

depends on the relative entropy from P to Q.

In this sense, robustness is thus a hidden feature of choice under the diversification favoring part of

aspirational preferences. Drapeau and Kupper [18] study more generally similar robust representations.

When there are acts for which concentration is preferred, the dual representation is over concave risk

measures and has a somewhat different interpretation. Noting that if µ̂ is a convex risk measure, then

µ(f) = −µ̂(−f) is a concave risk measure, we can equivalently express choice over acts in F−− as

ρ(f) = sup
{
k < k̂ : µk(−f) ≥ 0

}
,

where µk is a nonincreasing family of convex risk measures on k < k̂. Using the dual representation of convex

risk measures and normalizing as above, we thus obtain the representation

ρ(f) = sup

{
k < k̂ : sup

Q∈P
{EQ [f − τ(k)]− α̃k(Q)} ≥ 0

}
,

where τ(k) is nondecreasing in k and α̃k is nonnegative. Here, since f ∈ F−−, the decision maker is risk

seeking and cannot hope to be robust: they are simply looking for some probability measure such that the

act beats the target in (penalized) expectation. Probability measures are not chosen by an adversary, but

rather an ally who has to pay penalty α̃k(Q) for choosing probability Q.
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As k grows, the target gets larger and the overall effect of target and penalty grow, so the ally is weaker.

In this setting, ρ then represents a smallest level of “assistance” the decision maker needs to provide to the

ally, such that at that level, there exists a probability measure Q such that

EQ [f − τ(k)]− α̃k(Q) ≥ 0

holds. Thus, for acts f ∈ F−−, we can interpret in this way ρ(f) to be a measure of vulnerability.

2.4 Stochastic dominance properties

In this section, we briefly characterize some stochastic dominance properties for aspiration measures when the

decision maker has an underlying probability measure P to which stochastic orders can be defined. We show

that aspiration measures share the stochastic dominance properties of their underlying risk family. Moreover,

we show that under the mild assumption that the aspiration measure is indifferent to all acts with the same

distribution under P, then the aspiration measure preserves first-order stochastic dominance (FSD) for all

acts, second-order stochastic dominance (SSD) for all acts in the diversification favoring set, and risk-seeking

stochastic dominance (RSSD) for all acts in the concentration favoring set.

We first recall the definition of the stochastic orders just mentioned. Note that in this section, if not

specified explicitly, expectations are taken with respect to the probability measure P. We say that f dominates

g by FSD if and only if E [u(g)] ≥ E [u(g)] for all nondecreasing functions u; in this case we write f ≥(1) g.

Similarly, f dominates g by SSD (respectively RSSD) if and only if E [u(f)] ≥ E [u(g)] for all u nondecreasing

and concave (respectively convex); in this case we write f ≥(2) g (respectively f ≥(−2) g). Equivalent

definitions of first order, second order and risk-seeking stochastic dominance can be found in Levy [32].

We first note the following.

Proposition 3. Let µ be a risk measure and suppose that µ preserves FSD, i.e., if f ≥(1) g then µ(f) ≤ µ(g).

Then the risk measure µ̄(f) = −µ(−f) also preserves FSD. Moreover, if µ preserves SSD, then µ̄ preserves

RSSD.

Since we can always express a concave risk measure µ̄(f) equivalently as −µ(−f), this proposition shows

that the property of FSD carries over from convex risk measures to concave risk measures, and SSD of a

convex risk measure implies RSSD of its concave counterpart. Given that convex risk measures are well-

studied, Proposition 3 will allow us to use known results on stochastic dominance of convex risk measures to

establish analogous such results for aspiration measures.

For this step, we first need to show that stochastic dominance properties for aspiration measures are

implied by those of the associated family of risk measures. We now show this.

Proposition 4. Let {µk : k ∈ R} be a nondecreasing family of risk measures and let ρ be the associated

aspiration measure. Suppose that µk preserves FSD for all k. Then ρ preserves FSD, i.e.,

f ≥(1) g ⇒ ρ(f) ≥ ρ(g).
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Moreover, if µk preserves SSD for k > k̂ and RSSD for k < k̂, then

∀f ∈ F, g ∈ F++ such that f ≥(2) g ⇒ ρ(f) ≥ ρ(g)

∀f ∈ F, g ∈ F−− such that f ≥(−2) g ⇒ ρ(f) ≥ ρ(g).

In general, convex risk measures do not preserve FSD or SSD, as shown by De Giorgi [16] for the case of

coherent risk measures. Therefore, Proposition 4 is of little help if we do not specify conditions on the family

of risk measures µk such that stochastic dominance is preserved. It is well known that stochastic dominance

orders are fully characterized by an act’s cumulative distribution function under the specified probability

measure P (see Levy [32]). When a risk measure µ does not only depend on the distribution function of the

act, we can find two acts f and g that only differ on zero-probability events, but possess different values for

the risk measure, e.g., µ(f) > µ(g). In this case, we can define a third act h = f + ε, 0 < ε < µ(f) − µ(g),

which obviously dominates f by FSD (and thus also dominates g by FSD), but µ(f) > µ(f)− ε = µ(h) and

µ(h) = µ(f)− ε > µ(g). This shows that a necessary property on risk measures in order to have preservation

of stochastic dominance orders is that they only depend on the probability distribution of the act. We thus

introduce the following.

Definition 4. Let P be a probability measure on (S,Σ). A function r : F → R is called law-invariant (with

respect to P) if and only if r(f) = r(g) whenever f and g have the same cumulative distribution function

under P, i.e., P ({s ∈ S : f(s) ≤ x}) = P ({s ∈ S : g(s) ≤ x}) for all x ∈ R.

Law-invariance8 means the underlying mapping between the event space and the consequence space is

irrelevant; all that matters is the distribution of the acts under P. It also means that zero-probability events

do not matter, i.e., it might be that two acts differ on events A ∈ Σ, but as long as P (A) = 0, this does

not have any impact on the function r. This seems like an eminently reasonable property, common to many

models of decision making under uncertainty.

In our context, law-invariance is useful because it has strong implications for stochastic dominance.

Proposition 5. Let (S,Σ,P) be an atomless probability space9. If ρ is a law-invariant aspiration measure,

then ρ preserves FSD on F , SSD on F++ and RSSD on F−−.

3 Strongly aspirational preferences

The representation of Theorem 1 provides an interpretation of aspirational preferences in terms of risk of

beating a target function. Motivated by the strong empirical support on the importance of aspiration levels

in risky choice, we now consider a special case of these preferences when the decision maker is especially

fixated on the target. In particular, we consider a bounded target function. The bounds can be interpreted

as decision maker aspiration levels: a minimal (reservation) aspiration level and a maximal (satiation) level.
8Law-invariance is also referred to as “probabilistic sophistication”; see, for instance, Machina and Schmeidler [35].
9Note that the assumption of an atomless probability space is quite weak; even random variables with discrete outcomes may

be generated (as piecewise constant functions) by atomless probability spaces.
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To place this in the context of the general framework, note that an aspiration measure ρ : F → R ∪
{−∞,∞} naturally defines two target acts.10 Let τu = inf{a ∈ R : ρ(a) = ∞} and τl = inf{a ∈ R : ρ(a) >

−∞}, with inf ∅ =∞, and consider the case when both are finite. We denote by τu and τl the constant acts

corresponding to individual consequences with these values. Since ρ is nondecreasing, τl ≤ τu. Moreover, for

all f ∈ F with f ≥ τu, we have ρ(f) =∞, and for all f ∈ F with f < τl, we have ρ(f) = −∞. Consequently, all

acts in {f ∈ F : f ≥ τu} are “fully satisfactory,” while all acts in {f ∈ F : f < τl} are “fully unsatisfactory.”

When τl = τu = τ for some finite τ , the target function corresponds to a single aspiration level.

This leads to the following definition.

Definition 5. An aspiration measure ρ : F → R ∪ {−∞,∞} is called a strong aspiration measure (SAM) if

τu = inf{a ∈ R : ρ(a) = ∞} and τl = inf{a ∈ R : ρ(a) > −∞} are finite. In this case, we say the decision

maker has strongly aspirational preferences.

Analogously, we say when τl and τu are not both finite, as in some of the examples discussed earlier, that

the decision maker has weakly aspirational preferences and the choice function is a weak aspiration measure

(WAM). We will primarily focus on SAM for the remainder of the paper.

First, note that the acts τl and τu are fully characterized by the underlying family of risk measures.

Lemma 1. Let ρ : F → R ∪ {−∞,∞} be an aspiration measure and {µk} be the corresponding family of risk

measures as defined in Equation (4). Then τu = supk∈R µk(0) and τl = infk∈R µk(0).

Lemma 1 also implies that for the target function τ : k → τ(k) = µk(0) we defined in the previous section,

we have τl ≤ τ(k) ≤ τu.

Strongly aspirational preferences in this way capture the focus of target-driven decision-making: namely,

achieving aspiration levels is a central goal, and acts that always attain the satiation level (never attain the

reservation level) do so should be most (least) highly valued.

Since the aim of this section is also to characterize F++ and F−− in case of SAM, we assume that F++ 6= ∅
and F−− 6= ∅. Then we can, without loss of generality, assume k̂ = 0 in Theorem 1 and make the following

identifications:11

F0 = {f ∈ F : ρ(f) = 0}
F++ = {f ∈ F : ρ(f) > 0}
F−− = {f ∈ F : ρ(f) < 0} .

(7)

Therefore, in what follows, the sign of ρ(f) denotes whether f is in the diversification favoring set or concen-

tration favoring set.
10In what follows, we assume without loss of generality that supf∈F ρ(f) =∞ and inff∈F ρ(f) = −∞. Indeed, if supf∈F ρ(f) =

ρu and inff∈F ρ(f) = ρl, where ρu, ρl ∈ R, then one can easily define a strictly increasing and continuous transformation T such

that T ◦ ρ satisfy the above conditions. Since T is strictly increasing and continuous, T ◦ ρ describes the same preference relation

as ρ and also maintains all its properties as given in Theorem 1.
11Since F++ 6= ∅ and F−− 6= ∅, then k̂ in Theorem 1 is finite and we can shift ρ by the constant k̂.
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3.1 Symmetric SAM

Though convex risk measures are well-studied, concave risk measures are not. We can, however, easily

construct families of concave risk measures from convex families. We now discuss this.

Proposition 6. Consider a family of convex risk measures {µk : k ∈ (0,∞)} that is nondecreasing on k ∈
(0,∞), with infk>0 µk(0) ≥ 0 and supk>0 µk(0) < ∞. Let µ̄k(f) = −µ−k(−f) + infk>0 µk(0) for all f ∈ F
and k ∈ (−∞, 0). Then, the family of risk measures {µ̄k : k ∈ (−∞, 0)} is concave and nondecreasing on

k ∈ (−∞, 0). Moreover,

µ̄s(f) ≤ µt(f) ∀s < 0, t > 0.

Proposition 6 implies that a family of convex risk measures {µk} on k > 0 with infk>0 µk(0) ≥ 0 and

supk>0 µk(0) <∞ can fully generate a SAM by reflecting the risk measures to generate the required concave

family on k < 0. We additionally define µ0(f) = infk>0 µk(f) (≥ supk<0 µk(f)) and call the family of risk

measures {µk : k ∈ R} a symmetric family. The corresponding SAM is also said to be symmetric. One can

easily show that for a symmetric SAM, we have τl = infk>0 µk(0)− τu.

3.2 Examples of strong aspiration measures

We now provide some examples of SAMs. In Examples 4-6, we focus on the case of symmetric SAM with

τu = τl = τ , which will be also considered in our applications of SAM in Section 4. In these examples we set

τ = 0 which is without loss simply by shifting acts by a constant; f then represents value in excess of the

target τ and µk(0) = 0 for all k. Finally, in Examples 4-6 we assume that (S,Σ) is endowed with a probability

measure P and expectations are taken with respect to P.

Example 4. Entropic SAM (ESAM) The family

µk(f) =
1
k

ln E [exp(−kf)] k 6= 0,

is a symmetric family of nondecreasing risk measures that are convex for k > 0. The associated symmetric

SAM is given by

ρ(f) = sup
{
k :

1
k

ln E [exp(−kf)] ≤ 0
}
,

which we call the entropic strong aspiration measure (ESAM). If f is normally distributed under P, then we

have µ̄k(f) = −E [f ] + k σ2(f)/2, where σ2(f) = E
[
f2
]
− E [f ]2 is the variance of f . Therefore, µk rewards

(i.e., has less “risk”) greater variance. In this case, we have ρ(f) = 2 E [f ] /σ2(f). Here, the diversification

favoring set are those acts with positive expected value, and the concentration favoring set are those with

negative expected value. For a fixed, positive expected value, one prefers smaller variance (risk aversion). For

acts with a fixed, negative expected value, however, one prefers larger variance: the intuition is that larger

variance gives one better hopes of attaining the target.

The positive part of the above representation yields the entropic satisficing measure of Brown and Sim [8],

which is also the reciprocal of the riskiness index of Aumann and Serrano [4].
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Example 5. Conditional value-at-risk (CVaR) SAM

The family

µk(f) =

 CVaRe−k (f) if k > 0

−CVaRek (−f) if k < 0

where

CVaRε (f) = inf
ν∈R

{
ν +

1
ε

E
[
(−f − ν)+

]}
is a symmetric family of nondecreasing risk measures that are coherent (convex and positive homogeneous;

see Artzner et al. [3]) on k > 0. The SAM given by this symmetric family is

ρ(f) =

sup {k > 0 : CVaRe−k (f) ≤ 0} if E [f ] ≥ 0,

sup {k < 0 : CVaRek (−f) ≥ 0} otherwise,

which we call the CVaR SAM. A variant of this measure (without the risk seeking part and scaled to be on

(0, 1]) is defined in Brown and Sim [8]. When f is normally distributed under P, we have

ρ(f) =

sup
{
k > 0 : φ(Φ−1(e−k))

e−k
σ(f) ≤ E [f ]

}
if E [f ] ≥ 0,

sup
{
k < 0 : φ(Φ−1(ek))

ek
σ(f) ≤ −E [f ]

}
otherwise,

where φ and Φ are the standard normal density and cumulative distribution functions, respectively. The SAM

in this case is a monotonic transformation of the ratio E [f ] /σ(f), called the Sharpe ratio.

Example 6. Homogenized entropic SAM (HESAM)

The family

µk(f) =


inf
a>0
{a ln (E [exp(−f/a)]) + ak} if k > 0

sup
a<0
{a ln (E [exp(−f/a)])− ak} if k < 0

is a symmetric family of nondecreasing, coherent risk measures on k > 0. The associated SAM is

ρ(f) =


sup

{
k > 0 : inf

a>0
{a ln E [exp(−f/a)] + ak} ≤ 0

}
if E [f ] ≥ 0,

sup
{
k < 0 : sup

a<0
{a ln E [exp(−f/a)]− ak} ≤ 0

}
otherwise.

If f is normally distributed under P, then

ρ(f) =
sign(E [f ])

2

(
E [f ]
σ(f)

)2

,

which is again a monotonic transformation of the Sharpe ratio.
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Example 7. General symmetric family

Let {αk}k∈R be a family of functions on the space P of probability measures on (S,Σ), such that αk
is convex for k > 0, αk(Q) is non-increasing in k, and αk(Q) = −α−k(Q) for all Q ∈ P. Additionally,

supk>0 infQ∈P αk(Q) = 0 and τl = −τu = infk>0 infQ∈P αk(Q) ∈ R. As discussed, the family of risk measures

defined by

µk(f) = sup
Q∈P
{−EQ [f ]− αk(Q)} = − inf

Q∈P
{EQ [f ] + αk(Q)} , (8)

for k > 0 is a family of convex risk measures. This family in turn generates the concave family

µ̄k(f) = − sup
Q∈P
{EQ [f ]− α−k(Q)}

= − sup
Q∈P
{EQ [f ] + αk(Q)}

for k < 0, which can be interpreted as the (negative of the) best case penalized expected value over all

probability measures. The corresponding symmetric SAM can be expressed as

ρ(f) = max

{
sup

{
k > 0 : inf

Q∈P
{EQ [f ] + αk(Q)} ≥ 0

}
, sup

{
k < 0 : sup

Q∈P
{EQ [f ] + αk(Q)} ≥ 0

}}
.

3.3 Properties and interpretation of the partition

In this section we again consider the case where (S,Σ) is endowed with a probability measure P. Stochastic

dominance properties are with respect to P and expectations are taken with respect to P, when not stated

explicitly.

As choice with SAM is a special case of choice under an aspiration measure, it follows that all results

on stochastic dominance discussed in Section 2.4 apply to choice under SAM: namely, SAM will inherit the

stochastic dominance properties of the underlying family of risk measures. For symmetric SAM, if {µk} on

k > 0 satisfies FSD, then so will the SAM, and, if the family satisfies SSD, then the SAM satisfies SSD

on the diversification favoring set and RSSD on the concentration favoring set. Finally, choice under a law-

invariant SAM automatically satisfies FSD everywhere, SSD on the diversification favoring set, and RSSD on

the concentration favoring set when the probability space is atomless.

On atomless probability spaces, law-invariant risk measures also display important boundedness properties.

We say that a convex (concave) risk measure µ̃ is bounded from below (above) by the expectation when

µ̃(f) ≥ E [−f ] (µ̃(f) ≤ E [−f ]) for all f ∈ F . Föllmer and Schied [22] show that law-invariant convex

risk measures are bounded from below by the expectation on atomless probability spaces. This implies that

concave risk measures are bounded from above by the expectation. Namely, if µ̃ is law-invariant and concave

then µ̃(f) = −µ̃(−f) is law-invariant and convex, thus µ̃(f) ≥ E [−f ], or equivalently, µ̃(f) ≤ E [−f ]. We now

show that these boundedness properties have important implications for the structure of the diversification

favoring and concentration favoring sets.
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Theorem 2. Let {µk} be a nondecreasing family of risk measures inducing SAM ρ. If, for k > 0, µ̃k =

µk − µk(0) is bounded from below by the expectation and for k < 0, µ̃k = µk − µk(0) is bounded from above by

the expectation, then

E [f ] < τl ⇒ ρ(f) ≤ 0

E [f ] ≥ τu ⇒ ρ(f) ≥ 0.

If the probability space is not atomless, then it is generally not true that a convex (concave) risk measure

is bounded from below (above).12 In many cases, however, convex (concave) risk measures are bounded from

below (above) even if the probability space is not atomless. This is the case for the convex risk measures of

Examples 4-6, as shown in the following proposition. Recall that in these examples, we had a single target

τl = τu = τ , and took, without loss, τ = µk(0) = 0 for all k.

Proposition 7. The underlying families of risk measures in ESAM, CVaR SAM and HESAM are bounded

by the expectation, i.e., µk(f) ≥ E [−f ] for k > 0 and µk(f) ≤ E [−f ] for k < 0.

We emphasize the generality of Theorem 2, which applies not only to any law-invariant SAM on an

atomless probability space, but also to several SAMs on non-atomless spaces as seen in Proposition 7.

The result has a number of noteworthy implications. First, this provides a characterization of the “parti-

tion” describing where diversification and concentration are preferred in terms of expected values. Acts that

fail to attain τl on average cannot be in the diversification favoring set, whereas acts that attain at least τu on

average cannot be in the concentration favoring set. Conversely, acts that are in the diversification favoring

set must satisfy E [f ] ≥ τl, and acts in the concentration favoring set must satisfy E [f ] < τu. Note that this

structure relating risk attitudes to expected values is purely a consequence of the SAM model.

Second, Theorem 2 also has an implication for choice under SAM. In particular, consider f, g ∈ F with

E [f ] > τu ≥ τl > E [g]. Note that in order to compute these expected values nothing about the structure of

the underlying risk measures is required. Theorem 2 implies that any decision maker using SAM (with the

underlying risk family satisfying the boundedness properties) will either prefer f to g or be indifferent between

the two. Thus, f can be taken as the (weakly) preferred act in all cases. For expected utility maximizers, by

contrast, all rankings are possible: the ranking will depend on the specific structure of the decision maker’s

utility function, which must therefore first be specified. In such settings, therefore, the decision maker using

a SAM can simplify their decision problem by disregarding acts with expected payoffs lower than τl.

Finally, this insight into the partition also provides some prescriptive grounds for favoring concentration

in the case of a target-oriented model, as we now explain. Indeed, consider a similar model of choice that

favors diversification everywhere, i.e., represented by the function ρ̃, with

ρ̃(f) = sup {k : µk(f) ≤ 0} ,

where {µk} is a family of convex risk measures bounded below by the expectation such that τu = τl = 0

(the single-target assumption is not needed but made to simplify the discussion). It is not hard to see that
12Rockafellar et al. [44] add boundedness as an additional property on convex risk measures for their class of deviation measures.
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E [f ] < 0 implies that f � g for all g ∈ F . Indeed, since µk(f) ≥ −E [f ] > 0 for all k, and ρ̃(f) = −∞ by

convention, such acts are minimally preferred over F .

In particular, target-oriented choice under a model that favors diversification everywhere cannot distinguish

between acts expected to fall short of the target: the preference relation is indifferent to all such acts. Thus,

in order to be useful for decision makers with aggressive targets, it is crucial to allow for some concentration-

favoring preferences. It does not seem unreasonable for decision makers to “roll the dice” and concentrate

resources, rather than diversify them, when their ambitions are high relative to available choices.

4 Strongly aspirational preferences and some paradoxes

In this section, we apply choice under strong aspirational preferences to several paradoxes of decision theory.

We first look at some problems that fall into the domain of Allais [1] and Ellsberg [19], then move on to a

discussion of gain-loss separability, which is an issue in prospect theory.

In what follows, we exclusively consider the case of symmetric SAM with a single target (τl = τu = τ).

Recall that this is a special case of strongly aspirational preferences; application of the model with τl < τu

may further enhance the model’s descriptive relevance.

4.1 Application to Allais

Consider the following two pairs of gambles:

Gamble A: Wins $500,000 for sure.

Gamble B: 1% chance of 0, 10% chance of winning $2,500,000 and 89% chance of winning $500,000,

along with

Gamble C: 90% chance of 0, 10% chance of winning $2,500,000.

Gamble D: 89% chance of 0, 11% chance of winning $500,000.

The most typical pattern of preferences observed among actual decision makers is to choose A over B and C

over D. It is not hard to see that this is inconsistent with traditional expected utility theory with any utility

function.

In contrast, these choice pairs can in fact be consistent with choice under SAM over a specific range of a

fixed target. For instance, let ρ be any law-invariant SAM and let τ be the target. We further assume that the

corresponding family of risk measures satisfies the boundedness properties of Theorem 2. Denoting gamble

A by fA, we have, for τ ≤ $500,000, ρ(fA − τ) = ∞, so fA − τ � fB − τ . On the other hand, the expected

value of gamble C is $250,000 and the expected value of gamble D is $55,000; therefore, using Theorem 2, for

τ > $55,000, τ < $250,000, we have ρ(fC − τ) ≥ 0 ≥ ρ(fD − τ), so the observed pattern above is (weakly)

resolved over τ ∈ ($55, 000, $250, 000).
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In fact, for several SAM, this pattern of preferences will be observed over an even larger range of targets.

This is shown in Table 2.

In all three cases, gamble A is strictly preferred to gamble B for τ ≤ $500,000, and gamble C is strictly

preferred to gamble D for τ ∈ (τ , $2, 000, 000), for some 0 < τ < $55, 000. The intuition in the first pair is

that gamble A is guaranteed to hit the $500,000 target; for the second case, as long as the target is not very

small, the extra “upside” of $2,500,000 versus $500,000 outweighs the small difference in probabilities of zero

payoffs. It seems plausible that this type of intuition is being used by the decision makers who make such

choices.13

4.1.1 Common consequence effect

We now briefly generalize the above pattern over a pair of choices. The effect above, first pointed out by

Allais [1], is typically called the common consequence effect.

Formally, consider two positive payoffs x > y > 0 and two probabilities q ∈ (0, 1), p ∈ (0, 1), with q > p.

As before, we denote the first pair of gambles A and B. Gamble A is a sure payoff of y; B, on the other hand,

pays off x with probability p, y with probability 1− q, and 0 with probability q − p.
The second pair is a pair of all-or-nothing gambles, which we denote C and D. Gamble C pays off x with

probability p and 0 otherwise; D pays off y with probability q and 0 otherwise. We will assume gamble C

beats gamble D in expectation, i.e., px > qy, though we could remove this assumption in what follows.

In observed choices, particularly when x is considerably larger than y and q−p is small, real-world decision

makers often prefer the “safer” choice among the first two gambles (i.e., the sure payoff of A over the risky

payoff B) and the “riskier” choice among the second two gambles (i.e., C over D). The rationale, presumably,

is along the lines that A offers a sure payoff, whereas B can result in a zero payoff; for the second pair, though

C has a slightly higher chance of paying off nothing, this extra risk may well be worth bearing if the difference

x− y is large.

This is easily seen to be inconsistent with expected utility theory. Let u be any utility function, normalized

to u(0) = 0. Then strict preference of A over B implies u(y) > pu(x) + (1 − q)u(y) ⇒ qu(y) > pu(x); on

the other hand, strict preference of C over D implies pu(x) > qu(y), a contradiction. This fundamentally

occurs because of the independence axiom, which imposes the requirement that common components of any

two gambles be irrelevant to the direction of the preference.

The common consequence effect can be explained by SAM over an explicit range of targets; we show a

formal result for entropic SAM.

Proposition 8. Consider the two pairs of gambles, (A,B) and (C,D), as described above with px > qy

and let ρ denote the entropic strong aspiration measure and µk denote the entropic risk measure at level k.

Then for every (x, y, p, q) as above, there exists a target τ(x, y, p, q) = τ? < qy such that for all τ ∈ (τ?, y],
13It is worth mentioning that having some risk-seeking behavior is unnecessary to address the example of Allais; the resolution

would still hold without this, but over a smaller range of targets.
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ρ(fA − τ) > ρ(fB − τ) and ρ(fC − τ) > ρ(fD − τ). Moreover, we have

τ? = −µρ?(fD),

where ρ? is the unique ρ > 0 such that µρ(fC) = µρ(fD).

Notice that the entropic SAM is linked to an expected utility representation with an exponential function

(CARA utility). Despite this connection, however, the implications for choice may be drastically different

than those implied by the expected utility function.

4.1.2 Common ratio effect

The common ratio effect is a related well-known pattern of many observed preferences, again famously pointed

out by Allais [1], that cannot be captured by EUT. This phenomenon is again found in the preferences typically

observed over two pairs of gambles. Consider two positive real numbers x > y > 0 and two probabilities

q ∈ (0, 1), p ∈ (0, 1).

We denote the first pair of gambles by A and B. The first, A, involves a sure bet of y. The second, B,

pays off x with probability p and 0 with probability 1− p.
The second pair of gambles, C and D, involves two risky bets: C pays off x with probability p (1− q) and

0 otherwise; D pays off y < x with probability 1 − q and 0 otherwise. Note that we can view both of these

as a composition of two biased coin flips; first, a coin with probability 1− q of getting a head (i.e., a positive

payoff), then a coin with probability p of getting a head. C pays off x if both coins get heads; D pays off y

if the first coin gets a head regardless of the outcome of the second coin. Note that, conditional on the first

coin getting a head, C and D offer the exact same gambles as A and B.

In many settings, it is well-known that real-world decision makers prefer A over B while also preferring

C over D. For instance, consider p = .8, q = .75, x = 16, and y = 10. Many subjects prefer the sure payoff

of y = 10 over the 80% chance of x = 16 in the first case; in the second case, however, even though C offers

a lower chance of a positive payoff (20% vs. 25%), the extra upside of x = 16 vs. y = 10 is well worth the

extra 5% chance of zero payoff. Again, it is easy to see that such a pattern of preferences is inconsistent with

expected utility theory.

We now show that this effect can in general be captured by SAM over an explicit range of targets. As

with the common consequence effect, we prove the result for entropic SAM.

Proposition 9. Consider the two pairs of gambles, (A,B) and (C,D), as described above and let ρ denote

the entropic strong aspiration measure and µk denote the entropic risk measure at level k. Then for every

(x, y, p, q) as above, there exists a target τ(x, y, p, q) = τ? < y such that for all τ ∈ (τ?, y), ρ(fA−τ) > ρ(fB−τ)

and ρ(fC − τ) > ρ(fD − τ). Moreover, we have

τ? = −µρ?(fD)

ρ? = ρ(fB − y).
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Notice that when p x = y, i.e., both pairs of gambles are equal in expectation, we obtain ρ? = 0 and thus

τ? = E [fD] = (1 − q)y. When p x > y, the decision maker will prefer C over D for some targets strictly less

than (1 − q) y. When p x < y, there is still a range of targets for which C is preferred, but τ? > (1 − q) y;

in this case, the risk-seeking part of the aspiration measure is at work, and decision makers must have an

appreciably high target such that the extra upside provided by C is worth it.

4.2 Application to Ellsberg

In this section, we will show that strongly aspirational preferences can be consistent with behavioral choices

when the probability distributions of uncertain payoffs are unknown. Ellsberg’s [19] famous experiments

provide interesting insights that decisions made under ambiguity can be inconsistent with expected utility

theory. Again, we will show that the SAMs can be extended to handle ambiguity and illustrate that we can

resolve Ellsberg’s paradoxes across a fairly wide range of targets.

To encompass ambiguity in SAM, we now confine the probability measure to a family of distributions, Q.

Intuitively speaking, the greater the size of the family Q, the greater the level of ambiguity. In particular, if

the family is a singleton, i.e., Q = {P}, then the underlying probability measure is unambiguously specified.

Ambiguity has already been studied in convex risk measures (see Föllmer and Schied, [22]), which are

the building blocks of SAMs. Given a law-invariant family of risk measures, µP,k(f), evaluated under the

probability measure P, we can extend this to family of risk measures to encompass ambiguity. For k > 0, we

consider an ambiguity averse risk measure,

µk(f) = sup
Q∈Q

µQ,k(f),

which retains the convexity of the risk measure. For k < 0, the concave counterpart is given by

µ̄k(f) = inf
Q∈Q

µ̄Q,k(f),

which corresponds to an ambiguity favoring risk measure. For example, we can extend versions of the CVaR,

entropic, and homogenized entropic risk measures in this way to handle ambiguity.

We note the following about the structure of the partition with the corresponding SAM that explicitly

incorporates ambiguity.

Theorem 3. Given a nondecreasing family of risk measures, {µQ,k} (convex for k > 0, concave for k < 0)

with µQ,k(f)−µQ,k(0) ≥ EQ [−f ] if k > 0 and µQ,k(f)−µQ,k(0) ≤ EQ [−f ] if k < 0, and −∞ < τl ≤ µQ,k(0) ≤
τu <∞. Consider the SAM

ρ(f) = sup {k : µk(f) ≤ 0}

with

µk(f) =


sup
Q∈Q

µQ,k(f) if k > 0

inf
Q∈Q

µQ,k(f) if k < 0
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for some Q ⊆ P. Then the following implications hold:

∃Q ∈ Q : EQ [f ] < τl ⇒ ρ(f) ≤ 0

∃Q ∈ Q : EQ [f ] ≥ τu ⇒ ρ(f) ≥ 0.

Observe that if there exist Q1,Q2 ∈ Q such that EQ1 [f ] < τl and EQ2 [f ] ≥ τu, then f is in the neutral

set, i.e., ρ(f) = 0.

4.2.1 Ellsberg’s two-color experiment

The setup for Ellsberg’s two-color experiment is as follows. Box 1 contains 50 red balls and 50 blue balls.

Box 2 contains red and blue balls in unknown proportions. In the first test, subjects are given the following

two choices:

Gamble A: Win $100 if ball drawn from Box 1 is red.

Gamble B: Win $100 if ball drawn from Box 2 is red.

In the second test, subjects have to decide between the two choices:

Gamble C: Win $100 if ball drawn from Box 1 is blue.

Gamble D: Win $100 if ball drawn from Box 2 is blue.

In the experimental findings, the majority of subjects are ambiguity averse and strictly prefer gamble

A over gamble B and gamble C over gamble D, while a smaller portion are actually ambiguity favoring

and strictly prefer gamble B over gamble A and gamble D over gamble C. Ellsberg argues the experimental

findings are inconsistent with the subjective expected utility theory. The reasoning is as follows: individuals

who strictly prefer gamble A over gamble B may perceive that in Box 2, red balls are fewer in number than

blue ones. In doing so, they would prefer gamble D over gamble C, which is inconsistent with the experimental

findings.

Under Theorem 2, if the corresponding risk measures satisfy the boundedness properties, a SAM on

gambles A and C yields non-negative or non-positive values when the target is below or above $50, respectively.

Specific SAMs, such as those based on CVaR, entropic and homogenized entropic risk measures, are strictly

positive or negative when the target is below or above $50, respectively. In contrast, Theorem 3 implies that

for any target between $0 and $100, these SAMs on gambles B and D, which have unknown distributions, are

neutral and thus have a value of zero. Therefore, the preference induced by these SAMs are consistent with

the experimental observations.

Clearly, Ellsberg’s paradox can also be resolved by several models of weakly aspirational preferences

(convex or concave risk measures or by worst-case or best-case expected utility under ambiguity depending

on whether the individuals are ambiguity averse or favoring (see, e.g., Föllmer and Schied [22] or Gilboa and

Schmeidler [27])). The difference here, however, is that SAMs suggest that the ambiguity preferences depend

heavily on the aspiration levels of the subjects. This allows the model to be consistent with some other
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plausible choice patterns for variations of the Ellsberg experiment. For instance, if the number of red balls

in Box 1 were known to be much smaller, we expect decision makers would largely prefer gambles B and C.

This remains consistent with SAM.

4.2.2 Ellsberg’s three-color experiment

In the three color experiment, a box contains 30 red balls and 60 black and yellow balls with unknown

proportions. In the first test, subjects choose between the following gambles:

Gamble A: Win $300 if ball drawn from the box is black or yellow.

Gamble B: Win $300 if ball drawn from the box is red or yellow.

In the second test, they have to decide between the two choices:

Gamble C: Win $300 if ball drawn from the box is black.

Gamble D: Win $300 if ball drawn from the box is red.

In gamble A, the probability of winning the $300 prize is 2/3 and the expected payoff is $200. In contrast,

the probability of winning the same prize in gamble B ranges from 1/3 to 1. In gamble C, the probability of

winning the prize ranges from 0 to 2/3. On the other hand, the probability of winning in gamble D is exactly

1/3 and the expected payoff is $100.

Subjective expected utility theory postulates that individuals who prefer gamble A over gamble B should

also prefer gamble C over gamble D. Ellsberg’s experiment reveals, however, that individuals who prefer gamble

A over gamble B also tended to prefer gamble D over gamble C; likewise, Ellsberg found that individuals who

preferred gamble B over gamble A also tended to prefer gamble C over gamble D.

We present in Table 3 the SAM values for all the gambles evaluated using the ambiguity version of the

SAMs based on entropic, homogenized entropic and CVaR risk measures. The preferences induced on these

gambles by these SAMs are the same. Gamble A is preferred over gamble B if the target is less than $200

and a reversal of preference occurs when the target exceeds $200. On the other hand, gamble D is preferred

over gamble C if the target falls below $100 and a reversal of preference occurs when the target exceeds $100.

Thus, choice under these SAMs is consistent with the experimental findings of Ellsberg over the target ranges

τ ≤ $100 and τ ≥ $200.

4.2.3 Another Ellsberg-like example

Machina [34] recently pointed out the following Ellsberg-like example, shown in Table 1. In this example,

there are are 101 balls in an urn, and it is known that 50 balls are labeled 1 or 2, and 51 balls are labeled 3

or 4. The exact number of balls with each label is, however, unknown. The decision maker is then offered the

two separate bets listed in Table 1.

Although Choquet expected utility can successfully address the classical Ellsberg examples from above,

Machina [34] shows that with CEU, f1 is preferred to f2 if and only if f3 is preferred to f4, then argues why
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First pair of bets

50 balls 51 balls

E1 E2 E3 E4

f1 $8k $8k $4k $4k

f2 $8k $4k $8k $4k

Second pair of bets

50 balls 51 balls

E1 E2 E3 E4

f3 $12k $8k $4k $0

f4 $12k $4k $8k $0

Table 1: Example from Machina [34].

such a pattern may not be observed with decision makers who have some ambiguity aversion. The reason CEU

requires this is due to a comonotonicity principle that says that order-preserving shifts of acts by common

amounts on identical events cannot reverse rankings. Here, one can see that (f3, f4) are obtained by a common

tail shift of (f1, f2) (adding $4k in E1 and subtracting $4k in E4), which means that a CEU maximizer must

satisfy f1 � f2 if and only if f3 � f4. Baillon et al. [5] show that Machina’s example is also problematic for

maxmin expected utility and variational preferences.

We apply choice under ESAM over the range of targets τ ∈ (0, $12k] to this example, and the results

are shown in Table 4. Across a wide range of τ we see (nonstrict) violations of the comonotonicity principle

just mentioned. In fact, the only ranges for which it is not violated are quite small: τ ∈ [infQ EQ [f3] , $4k] ≈
[$3.96k, $4k], τ ∈ [supQ EQ [f3] , $8k] ≈ [$7.96k, $8k], as well as precisely at the single target τ = E [f1] ≈
$5.98k. Though no studies were performed, Machina [34] conjectured many decision makers may prefer

f1 and f4, and this pattern is (nonstrictly) satisfied by choice with ESAM over the middle target range

τ ∈ [$3.96k, $5.98k] and also for τ > $8k.

4.3 Gain-loss separability

It is known that both prospect theory (Kahneman and Tversky [30]) and cumulative prospect theory (Tversky

and Kahneman [49]) require a strong condition of gain-loss separability : namely, if both the gain and the loss

portion of one gamble are favored over another one, then the same direction of preference must hold for the full

(“mixed”) gambles themselves. Wu and Markle [50] have shown systematic violations of gain-loss separability

in experimental studies. As choice under SAM has both risk aversion and risk seeking, it is interesting to

examine implications for gain-loss separability under SAM.

Specifically, Wu and Markle [50] consider two gambles, High and Low, each with some probability of

a positive payoff and some probability of a negative payoff. For gamble High (Low), the payoffs are G or
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L with probability p and 1 − p (G′ or L′ with probability p′ and 1 − p′). In all trials, it is assumed that

G > G′ > 0 > L > L′.

In “act” notation, we denote the two gambles by fHigh and fLow. For act f , the notation f+ denotes the

act f+(s) = max(f(s), 0) for all s ∈ S, i.e., the gain part of the act, and the notation f− denotes the act

f−(s) = min(f(s), 0) for all s ∈ S, i.e., the loss part of the act.

Wu and Markle [50] show violations of gain-loss separability by finding experimental violations of double

matching. Double matching is the requirement

f+
High ∼ f

+
Low and f−High ∼ f

−
Low =⇒ fHigh ∼ fLow,

and is a necessary requirement for gain-loss separability (thus violations of double matching are even stronger

than violations of gain-loss separability).

It is not hard to see that choice under SAM need not satisfy double matching. As one example, consider

ESAM with a target of zero. Since f+
High ≥ 0 and f+

Low ≥ 0, then ρ(f+
High) = ρ(f+

Low) =∞, so f+
High ∼ f

+
Low. In

addition, for the entropic risk measure, f ≤ 0 with f(s) < 0 for some state with nonzero probability implies

µ̄k(f) > 0 for all k < 0. This in turn implies that ρ(f−High) = ρ(f−Low) = −∞, so f−High ∼ f−Low. On the other

hand, the gambles High and Low are different, so, in general, it will not be the case that ρ(fHigh) = ρ(fLow),

and therefore double matching is violated.

Table 5 shows application of ESAM with zero target to a set of experiments from Wu and Markle [50].

ESAM violates double matching in every trial. What is perhaps more interesting is that the ESAM seems

to match well the preferences of the subject majority over the mixed gambles: namely, the High gamble is

preferred in 29 of the 34 trials, whereas a majority of the subjects preferred the High gamble in 27 of the 34

trials. Moreover, of the 5 cases in which we found ρ(fLow) > ρ(fHigh), 3 corresponded to cases in which a

strong majority preferred Low over High (trials 1, 2, and 3; for trial 6, the subjects were nearly evenly split,

and ESAM slightly favored Low over High). All told, simple application of ESAM with zero target matched

the majority of subjects in 28 of the 34 cases.

While choice under ESAM seems to match the subject behavior well here, more experimentation and study

is required. The important feature that we want to emphasize is that SAM does not treat decompositions of

gambles into losses and gains at all the same way that prospect theory does.

5 Optimization of aspiration measures

In this section we discuss the issue of optimization of the AM choice function. The model is amenable to large-

scale optimization, which is important for use in applications with many decision variables. An immediate one

that comes to mind is portfolio optimization. We will provide an example of this here. While this example is

by no means intended to be a completely realistic model of portfolio choice, it serves the purpose of illustrating

the relevant computational issues at hand.

Specifically, given a AM ρ, we consider the problem

z∗ = sup{ρ(f) : f ∈ F}, (9)
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where F is the convex hull {
∑n

i=1wi fi :
∑n

i=1wi = 1, wi ≥ 0, ∀i = 1, . . . , n} of n available assets. Here, the

“act” fi corresponds to the uncertain return, in excess of a desired target return τ , for asset i.

From a computational perspective, finding a feasible solution in a convex set is relatively easy compared

to finding a feasible solution in a non-convex one. Observe that for k > k̂, the acceptance set

Aµk = {f ∈ F : ρ(f) ≥ k},

which can be empty, is convex. If the diversification favoring set is nonempty, i.e., F++ 6= ∅, we can efficiently

obtain the optimal solution to Problem (9) using the binary search procedure of Brown and Sim [8]. Otherwise,

if this set is empty (which only happens if the target τ is sufficiently large), we have z∗ ≤ k̂. In this case, each

of the extreme points fi must either be in F0 or F−−. If one of them, say fj , is in F0, then if the diversification

favoring set is empty, ρ(fj) = k̂ attains the highest AM value over F .

Otherwise, all n available assets are in the concentration favoring set. Then, by quasi-convexity of ρ in

this set, there exists an extreme point that is optimal. Hence,

z∗ = max
i=1...,n

{ρ(fi)},

and we can simply enumerate the AM values for the n assets and choose the largest one in this case.

We now demonstrate this concretely on an asset allocation problem in which the underlying marginal

distributions of assets’ returns are not known exactly, while assets’ returns are assumed to be independent.

Here, independence is assumed for sake of simplicity, but we can easily extend the results to also incorporate

dependence; see for instance Hall et al. [29]. We thus consider n assets with independent returns fi, i =

1, . . . , n. The exact marginal distribution of fi is unknown but can be characterized by its support [f
i
, f i], i.e.,

the probability that fi belongs to [f
i
, f i] is one. Also, the mean of fi is unknown and lies in [µ

i
, µi] ⊆ [f

i
, f i].

We then consider the problem

sup

{
ρ

(
n∑
i=1

wi fi − τ

)
:

n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

}
,

where τ is a given target return. The decision variables are the n weights wi for each available asset.

We consider the case of ρ as ESAM. Since the returns are independently distributed, the underlying risk

measure is given by

µk

(
n∑
i=1

wi fi − τ

)
=

1
k

ln sup
Q∈Q

EP

[
exp

(
−k

(
n∑
i=1

wi fi − τ

))]

=
n∑
i=1

1
k

ln sup
Q∈Q

EP [exp (−kwi fi)] + τ

for k > 0 and k < 0, and Q is the set of probability measures such that for each asset i fi possesses a feasible

distribution (with the given support [f
i
, f i] and mean in the corresponding interval [µ

i
, µi] ) and returns are

independent.
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Proposition 10. Let f be an act (random variable) and Q be the set of all probability measures such that f

has distribution with support [f, f ] and its mean lies in [µ, µ] ⊆ [f, f ]. Then

sup
Q∈Q

EQ [exp(−af)] =

 p exp(af) + q exp(af) if a ≥ 0

p exp(af) + q exp(af) otherwise,

where p = (f − µ)/(f − f), q = 1− p, p = (f − µ)/(f − f) and q = 1− p.

Given a target τ , Proposition 10 enables us to compute the ESAM for this problem. Here, there is

ambiguity in the return distribution. Observe that

ρ

(
n∑
i=1

wi fi − τ

)
= ρ

(
n∑
i=1

wi (fi − τ)

)
.

Hence, if ρ(fi− τ) < 0 for all i, then all assets are in the concentration favoring set, and it is optimal to invest

in the asset with the highest value of ρ(fi − τ). Otherwise, we solve the following optimization problem

sup

{
k :

n∑
i=1

1
k

ln(p
i
exp(−wi k f i) + q

i
exp(−wi k f i)) + τ ≤ 0,

n∑
i=1

wi = 1, k > 0, wi ≥ 0, i = 1, . . . , n

}
,

where p
i

= (f i − µi)/(f i − f i), qi = 1 − p
i
. The decision variables are the ESAM level k and weights wi.

By replacing k with its reciprocal, we can essentially obtain the optimal portfolio allocation by solving the

following tractable convex optimization problem

inf

{
a :

n∑
i=1

a ln(p
i
exp(−wi f i/a) + q

i
exp(−wi f i/a)) + τ ≤ 0,

n∑
i=1

wi = 1, a > 0, wi ≥ 0, i = 1, . . . , n

}
,

which can be solved, in high dimension, efficiently using interior point methods.14

We now present a numerical example based on the information presented in Table 6. Note that the asset

returns are defined such that asset 1 is a risk-free asset that pays 2% in all states. Assets 2 to 6 are risky

assets, with asset 2 being the one with lowest downside and upside and asset 6 being the one the highest

downside and upside. We solve the optimal asset allocation for various targets as shown in Table 7. The

lowest target corresponds to the risk-free rate. Here, the investor can reach the target for sure by investing

in asset 1. As the target increases, the risk-free asset becomes less attractive, as it fails to attain the target

with certainty. The investor puts some wealth into the risky assets. If the target becomes very high, i.e., the

investor is ambitious, then they only hold asset 6, the asset with the highest upside potential and a positive

probability of beating the target.

This example demonstrates the intuitive idea that if the investor possesses a high target return, then they

will be willing to take more risk. This pattern is similar to that observed in mutual fund managers during the

technology bubble of the 1990’s (Dass et al. [14]). Managers with high contractual incentives to rank at the

top (i.e., those with a high target) adopted the aggressive and risky strategy to not invest in bubble stocks,

as avoiding the herd was the only way to highly outperform the market.
14For this example, it is convenient to use a solver that can explicitly handle the “exponential cone”; here we use the software

package ROME [28] to solve our example problem.
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We are not aware of other models that can accommodate differing attitudes towards both risk and ambi-

guity in a computationally tractable way. Maximizing the probability of beating a target is a highly difficult

optimization problem in general (Nemirovksi and Shaprio [39], for instance, show that even computing the

distribution of a sum of uniform random variables is NP-hard15). Prospect theory is also quite difficult to

use - Chen et al. [12] show that optimization of the expected value of an “S-shaped” value function over

box constraints is NP-hard. The α-maxmin model (Ghirardato et al. [25]) allows for ambiguity seeking and

aversion but results in a choice function that is neither convex nor concave.

While all these models have important implications both theoretically and descriptively, they are difficult

to use in optimization settings, and computing globally optimal solutions in general can only be done with

enumeration across grid-based approximations. On a grid with 1% resolution, this approach on this six-asset

example would require computation and comparison of 1012 values. By contrast, on a standard desktop

machine, optimization of ESAM here takes about one second.

6 Discussion

We have considered the problem of risky choice over monetary acts (random variables) and examined the case

of a fairly generic preference structure over such acts. In addition to the usual properties of a weak order

and a mild continuity property, the preference relation obeys state-wise monotonicity and convex preferences,

except perhaps on a set of unfavorable acts for which concentration is preferred. We have shown a dual

representation of these aspirational preferences. This states that we can express aspirational preferences in

terms of a maximum index level at which a measure of risk of beating a target function is acceptable.

This result provides a dual interpretation of a number of models in this context, including expected utility

theory and several generalizations, and perhaps opens the door to new models of choice. One that we then

considered here is the special case when the target function is bounded. These strongly aspirational preferences

are partly motivated from the perspective of bounded rationality and, though more research is required, seem

to have empirical potential. This corroborates a body of work that suggests that aspiration levels play a key

role in individual decision-making.

An application like portfolio choice, where performance is often adjusted relative to a benchmark, may

be a natural fit for the SAM model. One important feature of this model is that it is relatively amenable

to large-scale optimization. In addition to considering new classes of choice models in this framework and

investigating in more depth the empirical implications of strongly aspirational preferences, exploring use of

the model in applications like this is of interest.
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Appendix

Proofs

Proof of Proposition 1

First, suppose that F++ 6= G++. Then either F++ ∩ (G0 ∪G−−) 6= ∅ or G++ ∩ (F0 ∪ F−−) 6= ∅. Without loss

of generality we assume that F++ ∩ (G0 ∪G−−) 6= ∅. Let f ∈ F++ ∩ (G0 ∪G−−).

If G++ ∪G0 = ∅, then G−− = F . Obviously,

G++ ∪G0 = ∅ ⊆ F++

and

F−− ∪ F0 ⊆ F = G−−.

If G++∪G0 6= ∅, then take g ∈ G++∪G0. Since f ∈ G0∪G−− then g � f . Since f ∈ F++, then g ∈ F++.

Therefore,

G++ ∪G0 ⊆ F++

and

F−− ∪ F0 = F++ ⊆ G−−.
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Since G0 ⊆ F++ and F++ ∩ F0 = ∅, then F0 ∩ G0 = ∅. It is clear that from G0 ⊆ F++ (F0 ⊆ G−−) it

follows that for all f, g ∈ G0 (resp. f, g ∈ F0)

λ f + (1− λ) g � g ∼ f (resp. g ∼ f � λ f + (1− λ) g)

for all λ ∈ [0, 1].

Clearly for f, g ∈ F++ ∩G−− with f � g,

f � λ f + (1− λ) g � g

for all λ ∈ [0, 1].

We now suppose that F++ = G++, but F0 6= G0. Since F0 ∪ F−− = G0 ∪ G−−, then also F−− 6= G−−.

Moreover, either F0 ∩G−− 6= ∅ or G0 ∩ F−− 6= ∅
Note that if F0 ∩G−− 6= ∅ and G0 ∩ F−− 6= ∅, then for f ∈ F0 ∩G−− and g ∈ G0 ∩ F−− it follows f � g

and g � f . A contradiction.

Assume without loss of generality that F0 ∩G−− 6= ∅ and G0 ∩ F−− = ∅. Let f ∈ F0 ∩G−−. Let g ∈ G0,

then g � f since f ∈ G−−. Moreover, since f ∈ F0, the g ∈ F++. It follows G0 ⊆ F++. A contradiction,

since F++ = G++ and G++ ∩ G0 = ∅. Therefore, either G0 = ∅ or F0 ∩ G−− = ∅. In the former case,

F0 ∪ F−− = G−− and we obtain the same result as for the case F++ 6= G++. In the latter case F0 = G0, i.e.,

the two partitions must be identical.

Proof of Proposition 2

Clearly, all convex functions are also quasi-convex. It suffices to show that a quasi-convex function that

satisfies translation invariance is always convex. For all f, g ∈ F we have:

µ(λf + (1− λ)g)− (λµ(f) + (1− λ)µ(g))

= µ(λ(f + µ(f)) + (1− λ)(g + µ(g))

≤ max{µ(f + µ(f)), µ(g + µ(g))}
= max{0, 0} = 0.

Hence,

µ(λf + (1− λ)g) ≤ λµ(f) + (1− λ)µ(g).

That a quasi-concave function that satisfies translation invariance is always concave follows by a an analogous

argument.

Proof of Theorem 1

First, we show that an aspirational preference relation has functional representation ρ and that ρ satisfies the

properties listed in the theorem.

34



Let � be a aspiration preference relation with partition F++, F−−, F0. Property 1 implies the existence of

an upper semi-continuous function ρ : F → R such that f � g if and only if ρ(f) ≥ ρ(g) (Theorem 4, Bosi and

Mehta [7]). That ρ is nondecreasing follows directly from Property 2 (that is, monotonicity of �). Property

3(i) implies quasi-concavity for ρ on F++. Indeed, let f, g ∈ F++ and assume without loss of generality that

f � g, then λf+(1−λ)g � g, so ρ(λg+(1−λ)g) ≥ ρ(g) = min(ρ(f), ρ(g)). An analogous argument follows for

quasi-convexity on F−−. Moreover, strict ordering of the diversification favoring, neutral, and concentration

favoring sets implies ρ(f) > ρ(g) > ρ(h) for all f ∈ F++, g ∈ F0, and h ∈ F−−. Finally, let g ∈ F0 and

k̂ = ρ(g). Since � is indifferent among acts in F0, k̂ does not depend on the choice of g ∈ F0.

On the other hand, let ρ : F → R ∩ {−∞,∞} be upper semi-continuous and increasing function

and F++, F−−, F0 be a partition of F . Assume ρ is quasi-concave on F++, quasi-convex on F−−, and

ρ(g) = k̂ ∈ R ∪ {−∞,∞} for all g ∈ F0, ρ(f) > k̂ > ρ(h) for all f ∈ F++, h ∈ F−−. Define a prefer-

ence relation � with f � g if and only if ρ(f) ≥ ρ(g). Since ρ is upper semi-continuous, then it follows from

Bosi and Mehta [7] that � satisfies (i) and (ii) in Property 1. It is straightforward to show that � also satisfies

Properties 2 and 3 with the partition F++, F−−, F0. Thus � is an aspirational preference relation.

Now suppose ρ takes the form (3), where {µk} is the family of risk measures as described. Let F++ =

{f ∈ F : ρ(f) > k̂}, F−− = {f ∈ F : ρ(f) < k̂} and F0 = {f ∈ F : ρ(f) = k̂}. We show that ρ defines an

aspirational preference relation with partition F++, F−−, F0.

1. Upper semi-continuity of ρ:

Upper semi-continuity for ρ is equivalent to {f ∈ F : ρ(f) ≥ k} being closed for all k. Let k ∈ R and

take a sequence (fn)n in {f ∈ F : ρ(f) ≥ k} such that fn → f as n→∞. Since ρ(fn) ≥ k, then µk(fn) ≤ 0.

Therefore, the sequence (fn)n belongs to the acceptance set Aµk . Since Aµk is closed, than f ∈ Aµk , i.e.,

µk(f) ≤ 0. This implies ρ(f) ≥ k, i.e., f ∈ {f ∈ F : ρ(f) ≥ k}. This proves that {f ∈ F : ρ(f) ≥ k} is closed

for all k, and thus ρ is upper semi-continuous.

2. ρ nondecreasing : Follows clearly from monotonicity of the underlying risk measures.

3. Mixing : First, by definition of F++, F−− and F0 given above, acts in F++ are strictly preferred to acts in

F0, which are strictly preferred to acts in F−−.

a. Quasi-concavity over diversification favoring acts: Let f, g ∈ F++ and k∗ = min {ρ(f), ρ(g)} > k̂. Note
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that µk(f) ≤ 0 and µk(f) ≤ 0 for all k ∈ (k̂, k∗). Then, using convexity of µk on k > k̂, we have

ρ(λf + (1− λ)g) = sup {k ∈ R : µk(λf + (1− λ)g) ≤ 0}

≥ sup
{
k ∈ (k̂,∞) : µk(λf + (1− λ)g) ≤ 0

}
≥ sup

{
k ∈ (k̂,∞) : λµk(f) + (1− λ)µk(g) ≤ 0

}
≥ k∗

= min {ρ(X), ρ(Y )} .

b. Quasi-convexity over concentration favoring acts: Let f, g ∈ F−− and k∗ = max {ρ(f), ρ(g)} < k̂. Note

that µk(f) > 0 and µk(g) > 0 for all k > k∗. Hence, for all k ∈ (k∗, k̂),

µk(λf + (1− λ)g) ≥ λµk(f) + (1− λ)µk(g) > 0.

Since µk is nondecreasing in k, the above inequality also holds for k > k∗. Therefore, we have

ρ(λf + (1− λ)g) = sup {k ∈ R : µk(λf + (1− λ)g) ≤ 0}

= sup {k ∈ (−∞, k∗] : µk(λf + (1− λ)g) ≤ 0}

≤ k∗

= max {ρ(f), ρ(g)} .

We now show that the functional representation ρ of an aspirational preference relation takes the form

(3) where the family of risk measures {µk} is defined in Equation (4). Since ρ is nondecreasing, µk is nonde-

creasing in k. To verify that µk is a risk measure with a closed acceptance set, we note the following:

1. Closed acceptance set :

We show that µk(f) ≤ 0 is equivalent to ρ(f) ≥ k. One direction is trivial, i.e., when ρ(f) ≥ k then

µk(f) ≤ 0. For the other direction, we note that upper semi-continuity for ρ implies upper semi-continuity for

a→ ρ(f + a), for all f ∈ F . Moreover, since a→ ρ(a+ f) is also increasing due to ρ being increasing, then it

is also right-continuous and the limit of Problem (4) is achievable. It follows that when µk(f) ≤ 0, then there

exists an a ≤ 0 such that ρ(a+ f) ≥ k. Due ρ being increasing we also have ρ(f) ≥ k. We have thus showed:

Aµk = {f ∈ F : µk(f) ≤ 0} = {f ∈ F : ρ(f) ≥ k}.

Since ρ is upper semi-continuous, {f ∈ F : ρ(f) ≥ k} is closed and thus so is Aµk .

2. Monotonicity :

Clear.
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3. Translation invariance:

For all constant acts x ∈ F ,

µk(f + x) = inf{a : ρ(f + x+ a) ≥ k}

= inf{a− x : ρ(f + a) ≥ k}

= µk(f)− x.

4. Convexity on k > k̂:

Given f, g ∈ F , since ρ is increasing and the definition of µk, we have for all ε > 0,

ρ(f + µk(f) + ε) ≥ k

and

ρ(g + µk(g) + ε) ≥ k.

Since k > k̂, we have f + µk(f) + ε, g + µk(g) + ε ∈ F++. For every λ ∈ [0, 1], define

aλ , λµk(f) + (1− λ)µk(g).

Then, for all ε > 0,

ρ(λf + (1− λ)g + aλ + ε) = ρ(λ(f + µk(f) + ε) + (1− λ)(g + µk(g) + ε))

≥ min {ρ(f + µk(f) + ε), ρ(g + µk(g) + ε)}

≥ k > k̂.

Then

µk(λf + (1− λ)g) = inf {a : ρ(λf + (1− λ)g + a) ≥ k}

≤ aλ

= λµk(f) + (1− λ)µk(g).

5. Concavity on k < k̂:

Since µk(f) = inf{a : ρ(f+a) ≥ k}, it follows that ρ(f+µk(f)+a) < k < k̂ and ρ(g+µk(g)+a) < k < k̂

for all a < 0. Therefore, for all a < 0, f + µk(f) + a ∈ F−−, and g + µk(g) + a ∈ F−−; hence,

ρ(λ(f + µk(f)) + (1− λ)(g + µk(g)) + a) ≤ max{ρ(f + µk(f) + a), ρ(g + µk(g) + a)} < k
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for all λ ∈ [0, 1]. Therefore,

µk(λ(f + µk(f)) + (1− λ)(g + µk(g)))

= inf{a : ρ(λ(f + µk(f) + (1− λ)(g + µk(g)) + a) ≥ k}
= inf{a : ρ(λ(f + µk(f)) + (1− λ)(g + µk(g)) + a) ≥ k, a ≥ 0}
≥ 0.

Concavity then follows from the translation invariance property of µk.

Finally, we need to show that

ρ(f) = sup {k ∈ R : µk(f) ≤ 0} .

We have seen in (i) above that the limit of Problem (4) is achievable. Therefore,

sup {k ∈ R : µk(f) ≤ 0} = sup {k ∈ R : ∃a ≤ 0 s.t. ρ(f + a) ≥ k}
= sup {ρ(f + a) : a ≤ 0}
= ρ(f),

which completes the proof.

Proof of Proposition 3

Suppose that f ≥(1) g. Then E [u(f)] ≥ E [u(g)] for all u nondecreasing. Since u(x) is nondecreasing if and only

if −u(−x) is also nondecreasing, we have −E [u(−f)] ≥ −E [u(−g)], or, equivalently, E [u(−f)] ≤ E [u(−g)]

for u nondecreasing. This implies that −g ≥(1) −f . Therefore,

µ̄(f) = −µ(−f) ≤ −µ(−g) = µ̄(g).

For SSD, we observe that a function u(x) is nondecreasing and concave if and only if −u(−x) is nondecreasing

and convex. Hence, f ≥(2) g if and only if −g ≥(−2) −g. Similarly to above, the result follows.

Proof of Proposition 4

Note that if f ≥(1) g, then µk(f) ≤ µk(g) for all k ∈ R since µk preserves FSD. By the definition of ρ, it

follows immediately that ρ(f) ≥ ρ(g), i.e., ρ also preserves FSD.

For the next claim, note that g ∈ F++ implies that ρ(g) > k̂. Since f ≥(2) g and µρ(g) preserves SSD, we

have

µρ(g)(f) ≤ µρ(g)(g) ≤ 0.

Therefore, ρ(f) ≥ ρ(g).

Likewise, g ∈ F−− implies that ρ(g) < k̂. Since f ≥(−2) g and µρ(g) preserves RSSD, we have

µρ(g)(f) ≤ µρ(g)(g) ≤ 0.

Therefore, ρ(f) ≥ ρ(g).
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Proof of Proposition 5

First, it is easy to see that law-invariance of the aspiration measure implies law-invariance of the underlying

family of risk measures (see Equation 4). Föllmer and Schied [22] show that on atomless probability spaces

any law-invariant risk measure preserves FSD, and any convex, law-invariant risk measure preserves SSD; the

claim now follows by Propositions 3 and 4.

Proof of Lemma 1

We have:

τu = inf{a ∈ R : ρ(a) =∞} = inf{a ∈ R : µk(a) ≤ 0, for all k ∈ R}

= inf{a ∈ R : µk(0) ≤ a, for all k ∈ R}

= sup
k∈R

µk(0).

Similarly,

τl = inf{a ∈ R : ρ(a) > −∞} = inf{a ∈ R : ∃k ∈ R withµk(a) ≤ 0}

= inf{a ∈ R : ∃k ∈ R withµk(0) ≤ a}

= inf
k∈R

µk(0).

Proof of Proposition 6

It is straightforward to verify the concavity and nondecreasing properties of µ̄k. Moreover, for all k > 0,

µk(f)− µ̄−k(f) = µk(f)−
(
−µk(−f) + inf

k>0
µk(0)

)
= µk(f) + µk(−f)− inf

k>0
µk(0)

= 2
(

1
2
µk(f) +

1
2
µk(−f)

)
− inf
k>0

µk(0) ≥ 2µk

(
1
2
f +

1
2

(−f)
)
− inf
k>0

µk(0)

= 2µk(0)− inf
k>0

µk(0) ≥ 2 inf
k>0

µk(0)− inf
k>0

µk(0) = inf
k>0

µk(0) ≥ 0.

Hence, µ̄−k(f) ≤ µk(f) for all k > 0. Therefore, for all s < 0, t > 0,

µ̄s(f) ≤ lim
k↑0

µ̄k(f) ≤ lim
k↓0

µk(f) ≤ µt(f).

Proof of Theorem 2

The boundedness properties for the family {µ̃k} imply µk(f)− µk(0) ≥ E [−f ] for k > 0 and µk(f)− µk(0) ≤
E [−f ] for k < 0. It follows that when E [f ] < τl, then for all k > 0

µk(f) ≥ E [−f ] + µk(0) ≥ E [−f ] + τl > 0.
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The second inequality follows from Lemma 1, since τl = infk∈R µk(0). Since µk(f) > 0 for all k > 0, it follows

from Theorem 1 that ρ(f) ≤ 0. Likewise, if E [f ] ≥ τu, then for all k < 0,

µk(f) ≤ E [−f ] + µk(0) ≤ E [−f ] + τu ≤ 0.

Again the second inequality follows from Lemma 1, since τu = supk∈R µk(0). Since µk(f) ≤ 0 for all k < 0,

from Theorem 1, we have ρ(f) ≥ 0.

Proof of Proposition 7

Since these are symmetric families of risk measures, it suffices to show that µk(f) ≥ E [−f ] for k > 0, which

implies that for k < 0

µk(f) = −µ−k(−f) ≤ E [−f ] .

Henceforth, we assume k > 0. For the entropic risk measure, we have, by Jensen’s inequality

µk(f) =
1
k

ln E [exp(−k f)] ≥ 1
k

ln exp(E [−kf ]) = −E [f ] .

For the CVaR risk measure, we have

µk(f) = inf
ν∈R

{
ν + ek E [(−f − ν)+]

}
≥ inf

ν∈R
{ν + E [(−f − ν)+]}

≥ inf
ν∈R
{ν + E [−f − ν]}

= E [−f ] .

Finally, for the homogenized entropic risk measure, we have

µk(f) = inf
a>0
{a ln (E [exp(−f/a)]) + ak}

≥ inf
a>0
{a ln (E [exp(−f/a)])}

≥ inf
a>0
{a ln (exp(−E [f ] /a))}

= E [−f ] .

Proof of Proposition 8

First, it is clear that ρ(fA − τ) =∞ and ρ(fB − τ) <∞ for any τ ∈ (0, y]. We thus focus on comparing C to

D over the range τ ∈ (0, y].

There is a one-to-one mapping between target levels and SAM levels. In particular, for a particular SAM

level ρ, let τ(fC , ρ) and τ(fD, ρ) be the corresponding target levels that induce the SAM level ρ for gambles

C and D, respectively. We have

τ(fC , ρ) = −1
ρ

log
[
1 + p(e−xρ − 1)

]
τ(fD, ρ) = −1

ρ
log
[
1 + q(e−yρ − 1)

]
.
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Note that τ(fC , ρ) and τ(fD, ρ) are both decreasing and continuous in ρ. We will compare these target

functions as ρ varies and will show that there exists a unique ρ? > 0 such that τ(fC , ρ?) = τ(fD, ρ?), and that

τ(fD, ρ) > τ(fC , ρ) for all ρ > ρ?, and τ(fD, ρ) < τ(fC , ρ) for all ρ < ρ?. This shows that ρ(fC−τ) > ρ(fD−τ)

if and only if τ > τ(fC , ρ?) = τ(fD, ρ?).

First, consider ρ < 0. Over this range, we have

τ(fC , ρ) > τ(fD, ρ) ⇔ −1
ρ

log
[
1 + p(e−xρ − 1)

]
> −1

ρ
log
[
1 + q(e−yρ − 1)

]
⇔ p(e−xρ − 1)− q(e−yρ − 1) > 0.

Let v(ρ) = p (e−xρ − 1)− q(e−yρ − 1), the left hand side of the latter inequality. Over ρ < 0, we have

v′(ρ) = −pxe−xρ + qye−yρ

< qy(e−yρ − e−xρ)

< 0,

where in the first line we use the fact that px > qy and in the second line we use ρ < 0 and y > x. In addition,

lim
ρ↑0

v(ρ) = 0

lim
ρ→−∞

v(ρ) = +∞.

In sum, v(ρ) is a strictly decreasing function from +∞ to 0 as ρ ↑ 0 and therefore must be strictly positive

over the range, which implies that v(ρ) > 0 over ρ < 0, and thus τ(fC , ρ) > τ(fD, ρ) over this range.

For ρ = 0, the target levels reduce to the expected values; thus, τ(fC , 0) = px > qy = τ(fD, 0).

Finally, consider ρ > 0. Similar to the first case, we have over this range

τ(fC , ρ) > τ(fD, ρ) ⇔ p (e−xρ − 1)− q(e−yρ − 1) < 0.

Let w(ρ) = p (e−xρ− 1)− q(e−yρ− 1), the left hand side of the latter inequality. We have limρ↓0w(ρ) = 0 and

limρ→∞w(ρ) = q − p > 0. Moreover, w′(ρ) = −pxe−xρ + qye−yρ, so

w′(ρ) ≤ 0 ⇔ ρ ≤
(

1
x− y

)
log
[
px

qy

]
= ρ̄ > 0.

Thus, w(ρ) over ρ ≥ 0 has a left limit of zero, a right limit of the positive value q− p, and is nonincreasing for

ρ ≤ ρ̄ and increasing otherwise. This implies that there exists a unique ρ? ≥ ρ̄ > 0 when w(ρ) crosses zero.

Note furthermore that w(ρ?) = 0 is equivalent to τ(fC , ρ?) = τ(fD, ρ?), i.e., µρ?(fC) = µρ?(fD). Also, since

ρ? > 0, we must have τ(fC , ρ?) = τ(fD, ρ?) < E [fD] = qy as claimed.

In summary, we have shown that there is a single target level τ? with the desired construction such that

the SAM levels of C and D coincide at τ?; below τ?, D is preferred to C and vice versa for above τ?. This

completes the proof.
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Proof of Proposition 9

First, notice that for any τ < y, ρ(fA − τ) = ∞ and ρ(fB − τ) < ∞, so ρ(fA − τ) > ρ(fB − τ). Now

consider C and D. For D, any target τ < y induces a corresponding value ρ̂(τ) = ρ(fD − τ), where using the

representation theorem for ρ, we find

1
ρ̂(τ)

log
[
(1− q)e−ρ̂(τ)y + q

]
= −τ ⇔ τ = −µρ̂(τ)(fD)

must hold. Notice that ρ̂(τ) is monotonically decreasing on τ ∈ (0, y). In order to have ρ(fC−τ) > ρ(fD−τ),

we must have µρ̂(τ)(fC − τ) < 0. Considering separately the two cases whether ρ̂(τ) > 0 or ρ̂(τ) ≤ 0, we find

that in either case, this is equivalent to the condition

1
ρ̂(τ)

log
[
pe−ρ̂(τ)x + (1− p)

]
< −y ⇔ µρ̂(τ)(fB − y) < 0.

Therefore, we can choose τ small enough such that ρ̂(τ) ≤ ρ(fB− y) holds, which leads to the threshold value

τ? in the result. Notice that x > y > 0 and p > 0 imply that ρ? = ρ(fB − y) > 0; this in conjunction with

q < 1 implies that τ? = −µρ?(fD) < y.

For y > τ > τ?, we have ρ̂(τ) < ρ?, so ρ(fC − τ) > ρ(fD − τ) and ρ(fA − τ) > ρ(fB − τ) over the range

(τ?, y), as required.

Proof of Theorem 3

Suppose there exists a Q∗ ∈ Q such that EQ∗ [f ] < τl. From Theorem 2, we have, for k > 0,

µk(f) = sup
Q∈Q

µQ,k(f) ≥ µQ∗,k(f) ≥ EQ∗ [−f ] + µQ∗,k(0) > 0,

where the strict inequality follows by EQ∗ [f ] < τl and Lemma 1. Hence, ρ(f) ≤ 0. Likewise, suppose there

exists a Q∗ ∈ Q such that EQ∗ [f ] ≥ τu; we have, for k < 0,

µk(f) = inf
Q∈Q

µQ,k(f) ≤ µQ∗,k(f) ≤ EQ∗ [−f ] + µQ∗,k(0) ≤ 0,

and again invoking the representation theorem for SAM, it must be that ρ(f) ≥ 0.

Proof of Proposition 10

The worst case expectation can be obtained by solving the following optimization problem:

sup
q

Eq [exp(−af)]

s.t. µ ≤ Eq [f ] ≤ µ,
Eq [1] = 1

q(y) ≥ 0, ∀y ∈ [f, f ].
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We can consider q to be an infinite dimensional vector indexed by y ∈ [f, f ]. By weak duality, the upper

bound to the above problem can be obtain by

inf
r,s,t

{
r + µs− µt : r + ys− yt ≥ exp(−ay) ∀y ∈ [f, f ], s, t ≥ 0

}
= inf

r,s,t

{
r + µs− µt : r ≥ max

y∈[f,f ]
{exp(ay)− ys+ yt}, s, t ≥ 0

}
= inf

r,s,t

{
r + µs− µt : r ≥ max{exp(−af)− fs+ ft, exp(−af)− fs+ ft}, s, t ≥ 0

}
= inf

s,t

{
max{exp(−af)− fs+ ft, exp(−af)− fs+ ft}+ µs− µt : s, t ≥ 0

}
.

By inspection, when a ≥ 0, strong duality is obtained by a two point distribution P with P(f = f) = p and

P(f = f) = q and dual variables s = 0, t = (exp(−af) − exp(−af))/(f − f) ≥ 0. Likewise, when a < 0,

strong duality is achieved by a two point distribution with P(f = f) = p and P(f = f) = q and dual variables

s = (exp(−af)− exp(−ax))/(f − f) ≥ 0, t = 0.
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Tables

ESAM

τ Gamble A Gamble B Gamble C Gamble D

55,000 ∞ 83.7× 10−6 1.90× 10−6 0

250,000 ∞ 18.4× 10−6 0 −8.36× 10−6

500,000 ∞ 4.80× 10−6 −0.60× 10−6 −∞
695,000 −∞ 0 −0.92× 10−6 −∞

2,000,000 −∞ −4.60× 10−6 −4.60× 10−6 −∞

HESAM

τ Gamble A Gamble B Gamble C Gamble D

55,000 ∞ 3.76490 0.04798 0.00000

250,000 ∞ 1.66770 0.00000 -0.46876

500,000 ∞ 0.08759 −0.04440 −∞
695,000 -∞ 0.00000 −0.12513 −∞

2,000,000 -∞ −1.19251 −1.36274 −∞

CVaR SAM

τ Gamble A Gamble B Gamble C Gamble D

55,000 ∞ 4.48864 0.08311 0.00000

250,000 ∞ 3.91202 0.00000 -1.51413

500,000 ∞ 0.10259 −0.69315 −∞
695,000 -∞ 0.00000 −1.02245 −∞

2,000,000 -∞ −2.01490 −2.07944 −∞

Table 2: Values attributed to gambles A, B, C, and D described in the main text, by various strong aspiration

measures for different values of the target τ . In bold are the preferred gambles in each pair for each target.
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ESAM HESAM CVaR SAM

τ Gamble A Gamble B Gamble A Gamble B Gamble A Gamble B

10 0.10986 0.04055 0.92936 0.28243 1.06471 0.37156

30 0.03662 0.01320 0.70421 0.14970 0.99325 0.30010

50 0.02192 0.00688 0.53253 0.07043 0.91629 0.22314

70 0.01542 0.00347 0.39361 0.02393 0.83291 0.13976

90 0.01153 0.00104 0.27980 0.00254 0.74194 0.04879

110 0.00876 0.00000 0.18730 0.00000 0.64185 0.00000

130 0.00655 0.00000 0.11402 0.00000 0.53063 0.00000

150 0.00462 0.00000 0.05889 0.00000 0.40547 0.00000

170 0.00281 0.00000 0.02160 0.00000 0.26236 0.00000

190 0.00097 0.00000 0.00246 0.00000 0.09531 0.00000

210 -0.00104 0.00000 -0.00254 0.00000 -0.04879 0.00000

230 -0.00347 0.00000 -0.02393 0.00000 -0.13976 0.00000

250 -0.00688 0.00000 -0.07043 0.00000 -0.22314 0.00000

270 -0.01320 0.00000 -0.14970 0.00000 -0.30010 0.00000

290 -0.04055 0.00000 -0.28243 0.00000 -0.37156 0.00000

τ Gamble C Gamble D Gamble C Gamble D Gamble C Gamble D

10 0.00000 0.04055 0.00000 0.28243 0.00000 0.37156

30 0.00000 0.01320 0.00000 0.14970 0.00000 0.30010

50 0.00000 0.00688 0.00000 0.07043 0.00000 0.22314

70 0.00000 0.00347 0.00000 0.02393 0.00000 0.13976

90 0.00000 0.00104 0.00000 0.00254 0.00000 0.04879

110 0.00000 -0.00097 0.00000 -0.00246 0.00000 -0.09531

130 0.00000 -0.00281 0.00000 -0.02160 0.00000 -0.26236

150 0.00000 -0.00462 0.00000 -0.05889 0.00000 -0.40547

170 0.00000 -0.00655 0.00000 -0.11402 0.00000 -0.53063

190 0.00000 -0.00876 0.00000 -0.18730 0.00000 -0.64185

210 −0.00104 -0.01153 −0.00254 -0.27980 −0.04879 -0.74194

230 −0.00347 -0.01542 −0.02393 -0.39361 −0.13976 -0.83291

250 −0.00688 -0.02192 −0.07043 -0.53253 −0.22314 -0.91629

270 −0.01320 -0.03662 −0.14970 -0.70421 −0.30010 -0.99325

290 −0.04055 -0.10986 −0.28243 -0.92936 −0.37156 -1.06471

Table 3: Values attributed to gambles A, B, C and D given in the main text by entropic (columns 1-2),

homogenous entropic (columns 3-4) and CVaR SAM (columns 5-6), as function of the target τ . In bold are

the preferred gambles in each pair for each target.
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τ ($k)

(0,3.96) [3.96,4] (4,5.98) [5.98] (5.98,7.96) [7.96,8] (8,12]

f1 vs. f2 = = f1 = f2 f2 =

f3 vs. f4 f3 = = = = f4 f4

Table 4: Preferences for Machina [34] example using ESAM (target ranges computed from various expected

values and are rounded to two digits).
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High gamble Low gamble ESAM results

Trial G p L G’ p’ L’ % High n ρ(fHigh) ρ(fLow) ESAM prefers?

1 150 0.3 -25 75 0.8 -60 22.20% 81 0.0123 0.0246 Low

2 1800 0.05 -200 600 0.3 -250 21.00% 81 -0.0007 0.0001 Low

3 1000 0.25 -500 600 0.5 -700 28.30% 60 -0.0005 -0.0002 Low

4 200 0.3 -25 75 0.8 -100 33.30% 72 0.0134 0.0122 High

5 1200 0.25 -500 600 0.5 -800 43.10% 72 -0.0003 -0.0004 High

6 750 0.4 -1000 500 0.6 -1500 51.40% 72 -0.0008 -0.0007 Low

7 4200 0.5 -3000 3000 0.75 -6000 51.90% 81 0.0001 0.0001 High

8 4500 0.5 -1500 3000 0.75 -3000 48.30% 60 0.0004 0.0004 High

9 4500 0.5 -3000 3000 0.75 -6000 58.30% 60 0.0001 0.0001 High

10 1000 0.3 -200 400 0.7 -500 51.30% 80 0.0014 0.0014 High

12 3000 0.01 -490 2000 0.02 -500 59.30% 81 -0.0013 -0.0017 High

11 4800 0.5 -1500 3000 0.75 -3000 54.20% 72 0.0004 0.0004 High

13 2200 0.4 -600 850 0.75 -1700 51.70% 60 0.0007 0.0003 High

14 2000 0.2 -1000 1700 0.25 -1100 57.60% 59 -0.0004 -0.0005 High

15 1500 0.25 -500 600 0.5 -900 51.30% 80 0 -0.0005 High

16 5000 0.5 -3000 3000 0.75 -6000 65.00% 80 0.0001 0.0001 High

17 1500 0.4 -1000 600 0.8 -3500 58.80% 80 0 -0.0002 High

18 2025 0.5 -875 1800 0.6 -1000 71.70% 60 0.0006 0.0007 Low

19 600 0.25 -100 125 0.75 -500 57.50% 80 0.0022 -0.0009 High

20 5000 0.1 -900 1400 0.3 -1700 40.00% 60 -0.0002 -0.0007 High

21 700 0.25 -100 125 0.75 -600 71.30% 80 0.0024 -0.0014 High

22 700 0.5 -150 350 0.75 -400 63.30% 60 0.0045 0.0025 High

23 1200 0.3 -200 400 0.7 -800 70.00% 80 0.0015 0.0003 High

24 5000 0.5 -2500 2500 0.75 -6000 78.80% 80 0.0002 0.0001 High

25 800 0.4 -1000 500 0.6 -1600 57.50% 80 -0.0007 -0.0008 High

26 5000 0.5 -3000 2500 0.75 -6500 71.30% 80 0.0001 0 High

27 700 0.25 -100 100 0.75 -800 72.50% 80 0.0024 -0.0025 High

28 1500 0.3 -200 400 0.7 -1000 75.00% 80 0.0017 -0.0001 High

29 1600 0.25 -500 600 0.5 -1100 72.50% 80 0.0001 -0.0007 High

30 2000 0.4 -800 600 0.8 -3500 65.00% 80 0.0004 -0.0002 High

31 2000 0.25 -400 600 0.5 -1100 80.00% 80 0.0005 -0.0007 High

32 1500 0.4 -700 300 0.8 -3500 77.50% 80 0.0003 -0.0007 High

33 900 0.4 -1000 500 0.6 -1800 70.00% 80 -0.0005 -0.0008 High

34 1000 0.4 -1000 500 0.6 -2000 77.50% 80 -0.0004 -0.0009 High

Table 5: ESAM applied to gambles High and Low in experiments from Wu and Markle [50] (ESAM values

rounded to four decimal points). 47



Asset vi vi νi νi

1 2.0 2.0 2.0 2.0

2 -30.0 6.0 4.0 5.0

3 -40.0 8.0 5.0 6.0

4 -50.0 10.0 8.0 9.0

5 -60.0 15.0 11.0 12.0

6 -100.0 20.0 15.0 16.0

Table 6: Supports [vi, vi] of the distributions of assets’ percentage returns Vi and the corresponding ranges

[νi, νi] for the expected returns for the portfolio choice example in Section 5.

Asset

τ 1 2 3 4 5 6 ρ

2.0 1.000 0.000 0.000 0.000 0.000 0.000 ∞
3.0 0.718 0.065 0.049 0.077 0.054 0.036 0.3220

4.0 0.435 0.130 0.099 0.155 0.109 0.073 0.1610

5.0 0.153 0.195 0.148 0.232 0.163 0.109 0.1073

6.0 0.000 0.192 0.164 0.292 0.210 0.142 0.0795

7.0 0.000 0.069 0.138 0.348 0.261 0.183 0.0585

9.0 0.000 0.000 0.000 0.350 0.361 0.289 0.0315

11.0 0.000 0.000 0.000 0.000 0.488 0.512 0.0146

14.0 0.000 0.000 0.000 0.000 0.000 1.000 0.0031

18.0 0.000 0.000 0.000 0.000 0.000 1.000 -0.0136

Table 7: Optimal asset allocation under the ESAM for various values of the target τ for the portfolio choice

example in Section 5.
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