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Abstract 

We propose a new approach for measuring mutual fund style and constructing 

characteristic-matched performance benchmarks that requires only portfolio holdings and 

two reference portfolios in each style dimension. The characteristic-matched performance 

benchmark literature typically follows a bottom-up approach by first matching individual 

stocks with benchmarks and then obtaining a portfolio’s excess return as a weighted average 

of the excess returns on each of its constituent stocks. Our approach is fundamentally 

different in that it matches portfolios and benchmarks directly. We illustrate our approach 

using portfolio holdings of 1183 fund managers over the period 2002-2009. We characterize 

the cross-section of fund manager styles and show how average style changes over time. The 

tracking error volatilities of our characteristic-matched benchmarks compare favorably with 

those of existing methods. Using our benchmarks we explore the link between activity and 

performance. 
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1. Introduction

The measurement of style and performance of managed portfolios is of fundamental im-

portance to the investment industry. Accurate measurement of style allows investors to

obtain their desired exposures to particular investment styles.1 It also is a prerequisite to

reliable performance measurement, since the performance of a fund manager should be

judged relative to an appropriate style benchmark. For example, a manager focusing on

small-cap stocks should be evaluated against a small-cap benchmark, while a manager

that follows a growth investing style should have performance compared to a growth

benchmark.

Matching of funds and benchmarks based on declared style (as is done for example by

Morningstar) can be problematic since declared style does not necessarily match observed

style (see Sharpe, 1988, 1992, Carhart, 1997, Brown and Goetzmann, 1997, diBartolomeo

and Witkowski, 1997, Chan, Chen and Lakonishok, 2002).

Two main approaches have been used in the literature for ensuring that funds are

matched with appropriate benchmarks. The first approach is regression based using past

returns. Its point of departure is the capital asset pricing model (CAPM). A tailored bench-

mark is obtained by taking a linear combination of the risk-free and market benchmark

rate of returns, with the weight for each fund determined by its value of beta. The dif-

ference between a portfolio’s actual performance and its tailored benchmark is referred

to as Jensen’s alpha (see Jensen, 1967, 1969). Jensen’s alpha is calculated as the intercept

of an excess return regression. This basic model can be extended by including additional

1A pension plan, for example, has to consider the coherence of its overall strategy. It may wish to follow
a blend strategy, and try and achieve this goal by giving half the managers value mandates and the other
half growth mandates. To achieve the overall desired strategy, it is important to monitor the managers’
observed style relative to their assigned mandates. Alternatively, a firm may hope that by hiring a number
of managers it is diversifying its overall portfolio. In this case, the objective is to ensure that the styles of the
managers are sufficiently diversified. The more accurately a firm can measure what its managers are doing,
the better able it will be to achieve its desired overall strategy.
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non-CAPM factors such as size, valuation and momentum (see Fama and French, 1992,

1996, and Carhart, 1997). Sharpe (1988, 1992) proposes an alternative regression model

based on asset class factors. He uses this to determine the effective mix of a portfolio in

terms of the underlying asset classes. A tailored benchmark can then be constructed as a

weighted average of these asset class benchmarks, with the weights determined from the

regression equation.

Regression-based methods only require data on fund performance, and factors such

as size and the price-to-book ratio. To estimate the regression equation, however, a fairly

long time series of observations is required. This can be problematic since the style of a

fund and the factor parameters could change over time.

The second approach requires portfolio holdings data, but has the advantage that it re-

quires only short time horizons. Expositors of this approach include Daniel, Grinblatt, Tit-

man and Wermers (1997), henceforth DGTW, Chan, Chen and Lakonishok (2002), hence-

forth CCL, and Chan, Dimmock and Lakonishok (2009), henceforth CDL, (see also Kothari

and Warner, 2001). These authors match characteristics at the level of individual stocks.

Stocks are first sorted in each style dimension, and then divided into quintile blocks. In

two dimensions (say size and value-growth), this generates a total of 25 blocks. CDL

show that the resulting benchmarks can be quite sensitive to the way these sorts are done

(e.g., whether or not growth is sorted independently of size). DGTW construct a market-

cap-weighted benchmark portfolio from each block, while CCL construct equal-weighted

portfolios from each block. CDL also show that the choice between market-cap and equal

weighting can significantly affect the results. Each stock in a portfolio is matched with the

benchmark portfolio with the most similar style characteristics. The excess return on each

stock is measured by the difference between its return and its benchmark’s return. An

overall performance benchmark for a portfolio is then obtained by taking the weighted

mean of these excess returns, where each stock is weighted by its dollar share of the port-
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folio. Each fund, therefore, has its own distinct performance benchmark.

In this paper we develop a new variant on this second approach that differs from

DGTW, CCL and CDL in a number of respects. First, our matching of characteristics

is done at the level of portfolios, rather than at the level of individual stocks. Second, our

benchmarks are defined in a continuous style space, and hence we achieve a direct match

between portfolios and benchmarks. By contrast, the DGTW-CCL-CDL approach matches

stocks with one of a finite number of benchmark portfolios, and hence these matches are

more approximate. Finally, our method is computationally simple and intuitive. For each

dimension our method requires only two reference portfolios, which can often be taken

off the shelf from index providers. For example, the Russell 3000 Value and Russell 3000

Growth indices could be used in the value-growth dimension.2

Our approach begins by determining a portfolio’s location in style space. We propose

a new formula for doing this which can be applied in each dimension.3 Our new style

measures are of interest in their own right. However, we then show how they can be used

to construct performance benchmarks that are tailored specifically to the style of each

fund in each style dimension. Our approach has further extensions. First, it can be used

to disentangle the effects of different style dimensions on performance. For example, we

can assess the impact of changes in size holding the value-growth style fixed. Second, it

generates new measures of activity of funds relative to their tailored benchmarks.4

We apply our methodology to a US mutual fund data set consisting of 1183 manager

portfolios over the period 2002-2009. In the size and value-growth style dimensions, we

2By assets benchmarked, Russell’s style indices account for more than 98 percent of market share for
US equity growth and value oriented products (see Russell Investments, 2008). For illustrative purposes
therefore we construct our off-the-shelf portfolios from Russell indices.

3CCL also propose a method for locating portfolios in style space. However, their style-space is not
continuous. Also, they do not use it to construct performance benchmarks.

4There is some ambiguity in the literature regarding the use of the term ’activity’. It is sometimes used to
refer to turnover. Here, however, by ‘activity’ we mean departures from passive tracking of a benchmark.
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illustrate the cross-section diversity of styles across managers and the gradual shift in

style towards growth stocks from 2002 to 2009. We also show how the size profiles of the

Russell 1000 Growth and Russell 1000 Value indices, and the growth profile of the Russell

1000 and index, change over time. We then compute tracking error volatilities for a few

variants on our basic characteristic-matched benchmarking method and for the preferred

method in CDL. At least some of our benchmarks are competitive in terms of tracking

error volatility with CDL’s preferred benchmark. Using our new benchmarks, we also

explore the link between activity and performance. Our main findings are summarized in

the conclusion.

2. Style Profiles and One-Dimensional Tailored Performance Benchmarks

2.1. Style profiles

Portfolios can be classified by style in a number of dimensions. Two of the most commonly

considered styles are size and value-growth. We define a style profile P(w) as a function

that maps an N-dimensional portfolio w into one style dimension to generate an ordinal

ranking of portfolios according to that particular style. For example, suppose P(w1) >

P(w2). It follows that in this style dimension, portfolio w1 attains a higher score than

portfolio w2.

Let lg and sm denote two reference portfolios in a given style dimension, such that

P(sm) < P(lg) (i.e., lg and sm are abbreviations for reference large and small portfolios in

this dimension). For example, in the size dimension lg could be the Russell 3000 portfolio,

and sm an equally weighted variant on the Russell 3000 portfolio.5 In the value-growth

dimension, lg could be the Russell 3000 Growth portfolio, and sm the Russell 3000 Value

portfolio, etc.

5Henceforth although we will frequently refer to the Russell 3000 Equal-Weighted index, it should be
noted that the Russell Investment Group does not actually publish such an index. However, this index and
its underlying portfolio can easily be constructed.
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We propose here a new class of style profiles for a portfolio w that take the following

form:

P(w) =

∑N
n=1[(lgn − smn)(wn − smn)]∑N

n=1(lgn − smn)2
, (1)

where wn, lgn and smn denote, respectively, the value shares of stock n in portfolios w, lg

and sm, and N denotes the total number of stocks in the universe under consideration. It

follows that by construction
∑N

n=1 wn =
∑N

n=1 lgn =
∑N

n=1 smn = 1.

From inspection of (1) it can be seen that P(sm) = 0 and P(lg) = 1. The style profile

of a portfolio w is measured relative to these two points of reference. For example, in the

size dimension if sm=the Russell 3000 Equal-Weighted portfolio and lg=the Russell 3000

portfolio, then P(w) < 0 implies that smaller cap stocks have the largest holdings in w.

Our class of style profiles, therefore, evaluate the style of each portfolio w without ever

needing to provide a formal measure of style. Where desired, however, such foundations

can be provided. For example, in the size dimension a natural absolute measure of style

might be the following:

S∗(w) =
N∑

n=1

wnmcwn, (2)

where mcwn denotes the market cap share of stock n, and wn its value share in portfolio

w as noted above. If we make the substitution lgn = mcwn and smn = ewn (where ewn =

1/N are the value shares of an equal-weighted portfolio) in (1), then it can be shown that

P(w) is a monotonic increasing function of S∗(w) (see Appendix A).

In the value-growth dimension, one possible absolute measure of style might be the

following:

G∗(w) =
N∏

n=1

(pn/bn)
wn , (3)

where pn and bn denote stock n’s price and book value per share respectively.6 Here we

6One attractive feature of this formula is that its reciprocal is the market-cap-weighted geometric mean
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focus exclusively on price-to-book ratios as a measure of value. Broader measures of value

that incorporate earnings, dividends or sales are considered by CDL. Our methodology

can be used to construct such broader measures. We return to this issue later.

Making the substitution smn = ewn = 1/N and lgn = gwn in (1), where

gwn =
ln(pn/bn)∑N

m=1 ln(pm/bm)
, (4)

we obtain a growth profile that is a monotonic function of G∗(w) and hence has a firm

absolute foundation (again see Appendix A).

2.2. One-dimensional tailored benchmark portfolios

We can now construct a new portfolio ŵ that is a linear combination of the two reference

portfolios lg and sm with respective weights derived directly from w’s style profile as

follows:

ŵn = P(w)× lgn + (1− P(w))× smn, for n = 1, . . . , N, (5)

where ŵn denotes the value share of stock n.

The portfolio ŵ has the important property that it has the same style profile as w itself.

That is, P(w) = P(ŵ). This can be verified by substituting (5) into (1). The portfolio ŵ

can therefore be interpreted as a tailored benchmark portfolio for w. It is a benchmark

because it is itself a linear combination of the two reference portfolios. It is tailored since

by construction it has the same style profile as w.

of the book-to-price ratios. That is 1/G∗(w) =
∏N

n=1(bn/pn)wn . Hence the ranking of portfolios does not
depend on whether we focus on price-to-book or book-to-price ratios. In this latter case, the growth profile
rises as one moves to the left along the growth line. This property is useful since price-to-book and book-to-
price ratios contain the same information.
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2.3. Tailored benchmark portfolios as distance minimizers

P(w) as defined in (1) and ŵ as defined in (5) can also be derived as the solutions to a

least squares minimization problem. Let w̃ denote a portfolio formed by taking linear

combinations of the reference portfolios lg and sm as follows:

w̃n = λ× lgn + (1− λ)× smn for n = 1, . . . , N. (6)

We can measure the distance between portfolio w and w̃ as follows:

D =

√√√√ N∑
n=1

(wn − w̃n)2. (7)

This distance measure is analogous to Euclidean distance.

Substituting (6) into (7), the following expression is obtained:

D =

√√√√ N∑
n=1

[wn − (λ× lgn + (1− λ)× smn)]2. (8)

Minimizing D with respect to λ yields the following first order condition:

∂D
∂λ

=

∑N
n=1[(−mcwn + ewn)(wn − λmcwn − (1− λ)ewn]√∑N

n=1[wn − (λ× lgn + (1− λ)× smn)2]
= 0. (9)

Solving (9) we obtain that λ̂ = P(w) as defined in (1). Hence it follows that ŵ is the

linear combination of the reference portfolios lg and sm that most closely approximates in

a least squares sense the portfolio w. Again this indicates that it is an appropriate tailored

benchmark portfolio for assessing the performance of w.
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2.4. Distance as a measure of activity

Returning to the distance measure in (7), if we replace w̃ with ŵ, we obtain a measure D̂

of the distance between a portfolio w and its tailored benchmark ŵ as follows:

D̂ =

√√√√ N∑
n=1

(wn − ŵn)2. (10)

We interpret D̂ as a measure of a fund manager’s activity. A variant on this index

(without the square-root sign) has been used previously by Kacperczyk, Sialm and Zheng

(2005), henceforth KSZ, and Brands, Brown and Gallagher (2005), henceforth BBG, in a

different context.7 Their variant replaces ŵ with the market portfolio. They then compare

each portfolio with the market portfolio proxy (e.g., the Russell 3000), and interpret D as

a measure of concentration. That is, a portfolio is deemed to have zero concentration if

it is identical to the market portfolio. The more it differs from the market portfolio, the

more concentrated it is deemed to be relative to the market. KSZ only consider concentra-

tion over 10 industry classes, while BBG also calculate it at the level of individual stocks.

Both, however, only compare portfolios with the market portfolio, and not with tailored

benchmark portfolios.

In our context, D̂ is better interpreted as a measure of the activity of a portfolio in a

particular style dimension. An active portfolio can be distinguished by its deviation from

its passive tailored style benchmark. Funds with a low value of D̂ are almost style passive

in that dimension in the sense that all the fund manager is effectively doing is allocating

money across two passive reference portfolios. Our activity measure D̂ is in spirit proba-

bly closest to the active share measure of Cremers and Petajisto (2009), henceforth CP. The

7The inclusion of the square-root sign in the distance measure allows activity to be compared across
portfolios with varying values of N (the stock universe). Otherwise, D̂ will tend to systematically fall as N
rises.
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CP activity measure differs from ours, however, in two important respects. First, it takes

19 reference portfolios (such as the S&P500, Russell 3000, Wilshire 5000), using each in

turn as the benchmark and selects for a particular portfolio whichever has the lowest ac-

tivity measure. In contrast, we construct benchmarks that are specifically tailored to have

the same style characteristics as each portfolio, and which minimize the activity measure

over a continuous K dimensional style space. Second, the CP activity measure optimizes

using mean absolute deviation, while we use least squares.

Later in the paper, we explore the relationship between activity as we have defined it

and performance.

2.5. One-Dimensional tailored performance benchmarks

A tailored performance benchmark Z(w) for w in a particular style dimension is obtained

from the reference portfolios as follows:

Z(w) = P(w)× R(lg) + [1− P(w)]× R(sm), (11)

where R(lg) and R(sm) denote respectively the return on holding the lg and sm reference

portfolios in that period (e.g., R(lg) = 1.15 implies a 15 percent rise in the value of the

lg portfolio). The excess return XR of w is then obtained by subtracting the benchmark

return Z from the actual return R as follows:

XR(w) = R(w)− Z(w).

An interesting implication of (11) is that the tailored performance benchmark can be

derived directly from the reference indices (which when judiciously chosen should be

publicly available) and the portfolio’s style profile P(w). It follows that the calculation of

11



excess returns is computationally quite simple.

3. Two-Dimensional Tailored Performance Benchmarks

3.1. Using three reference portfolios

Although the focus here is on two dimensions, the methodology that follows generalizes

in a straightforward way to higher dimensions. We distinguish between two style dimen-

sions S and G (e.g., size and value-growth). The style profile of a portfolio w in style

dimension S is now denoted by S(w), and in dimension G by G(w).

Three reference portfolios are all that are required to construct tailored benchmark

portfolios in S-G space (as long as these portfolios span the space). If we have two ref-

erence portfolios in each dimension, the system is overdetermined and hence we can

drop one of the portfolios. The resulting tailored benchmark, however, is not invariant

to the choice of which portfolio is dropped. One solution to this problem is always to use

an equal-weighted portfolio in each dimension as one of the reference portfolios. In the

empirical analysis in the next section we experiment with two alternative sets of three ref-

erence portfolios. The first set consists of the Russell 3000, Russell 3000 Equal-Weighted,

and Russell 3000 Growth portfolios. The second set consists of the Russell 3000, Russell

3000 Equal-Weighted and gwn portfolios, where the latter is defined in (4). This second set

of reference portfolios is of particular interest since it generates benchmark portfolios ŵ

such that S∗(ŵ) = S∗(w) and G∗(ŵ) = G∗(w), where S∗ and G∗ denote absolute measures

of size and growth as defined in (2) and (3) respectively.

We use the notation mcw to denote a market-cap-weighted portfolio such as the Russell

3000, ew an equal-weighted portfolio such as the Russell 3000 Equal-Weighted, and gw a

growth-weighted portfolio such as the Russell 3000 Growth. Substituting mcw = lg and

ew = sm into (1), by construction, we obtain that S(mcw) = 1 and S(ew) = 0. Similarly,
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substituting gw = lg and ew = sm in (1), we obtain that G(gw) = 1 and G(ew) = 0. It is

necessary, however, to compute the values of G(mcw) and S(gw). An empirical example

for 2008Q4 of the locations of the mcw =Russell 3000, ew =Russell 3000 Equal-Weighted,

and gw =Russell 3000 Growth portfolios in S-G space over the Russell 3000 stock universe

is provided in Figure 1(a).

Insert Figure 1 Here

To determine the proportions in which our three reference portfolios must be combined

to generate a portfolio with the same S and G profiles as w, it is necessary to solve the

following system of two simultaneous equations:

 S(ew)

G(ew)

+ µ̂1

 S(mcw)− S(ew)

G(mcw)− G(ew)

+ µ̂2

 S(gw)− S(ew)

G(gw)− G(ew)

 =

 S(w)

G(w)

 .

(12)

The only unknowns in (12) are µ̂1 and µ̂2. The terms S(w) and G(w) on the righthand side

of (12) denote the S and G profiles of the portfolio w calculated from (1).

Making the substitutions S(mcw) = G(gw) = 1 and S(ew) = G(ew) = 0, (12) simpli-

fies to the following:

µ̂1 + µ̂2S(gw) = S(w), (13)

µ̂1G(mcw) + µ̂2 = G(w). (14)

These equations yield the following solutions for µ̂1 and µ̂2:

µ̂1 =
S(w)− S(gw)G(w)

1− S(gw)G(mcw)
, (15)

µ̂2 =
G(w)− G(mcw)S(w)

1− S(gw)G(mcw)
. (16)
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A tailored benchmark portfolio ŵ that has the same S and G profile as the portfolio w

can now be derived as follows:

ŵn = µ̂1mcwn + µ̂2gwn + (1− µ̂1 − µ̂2)ewn, for n = 1, . . . , N, (17)

with µ̂1 and µ̂2 derived from (15) and (16). That S(ŵ) = S(w) can be verified as follows:

S(ŵ) = µ̂1S(mcw) + µ̂2S(gw) + (1− µ̂1 − µ̂2)S(ew) = µ̂1 + µ̂2S(gw),

since S(mcw) = 1 and S(ew) = 0. Now substituting for µ̂1 and µ̂2 from (15) and (16), we

obtain that:

S(ŵ) =

[
S(w)− S(gw)G(w)

1− S(gw)G(mcw)

]
+

[
G(w)− G(mcw)S(w)

1− S(gw)G(mcw)

]
S(gw) = S(w).

In the same way it can be shown that G(ŵ) = G(w).8

The one-dimensional least-squares optimization result for ŵ generalizes to higher di-

mensions. In two dimensions, we define the distance D between the portfolio w and a

portfolio w̃ formed by taking linear combinations of the three reference portfolios as fol-

lows:

D =

√√√√ N∑
n=1

(wn − w̃n)2,

where now

w̃n = µ1 mcwn +µ2 gwn + (1−µ1 −µ2)ewn. (18)

8Although we do not do it here, this approach could also be used to construct a growth style benchmark
that is matched to multiple dimensions of a portfolio’s value-growth characteristics, such as book value,
earnings, dividends, sales, etc as recommended by CDL.
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Hence we can rewrite D as follows:

D =

√√√√ N∑
n=1

[wn −µ1 mcwn −µ2 gwn − (1−µ1 −µ2)ewn]2. (19)

Differentiating with respect to µ1 and µ2, we obtain first order conditions which on re-

arrangement are identical to (13) and (14) (see Appendix B). Hence the solutions for µ1

and µ2 in this least-squares minimization problem are the same as those given in (15) and

(16) above. It follows that w̃ = ŵ, and hence that ŵ is the linear combination of the three

reference portfolios that in a least-squares sense most closely approximates the portfolio

w, as well as having the same S and G profile as w.

3.2. Using four reference portfolios

Suppose now we have four reference portfolios. The first issue is to ensure that these ref-

erence portfolios are mutually compatible. A good example of incompatible portfolios is

provided by the Russell 3000, Russell 3000 Value and Russell 300 Growth portfolios. Since

these portfolios are not linearly independent (the Russell 3000 portfolio equals the sum

of the Russell 3000 Growth and Russell 3000 Value portfolios), this combination of refer-

ence portfolios will generate a singular matrix in the system of simultaneous equations

below. In the empirical comparisons in the next section, therefore, we use mcw =Russell

1000, ew =Russell 3000 Equal-Weighted, vw =Russell 3000 Value and gw =Russell 3000

Growth as our reference portfolios, where our S profiles are obtained by setting mcw = lg

and ew = sm in (1) and our G profiles by setting gw = lg and vw = sm in (1). An em-

pirical example of the locations of mcw =Russell 1000, ew =Russell 3000 Equal-Weighted,

vw =Russell 3000 Value and gw =Russell 3000 Growth portfolios in S-G space is provided

in Figure 1(b).

As it stands, the system for constructing tailored benchmark portfolios is overdeter-
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mined when there are four reference portfolios. This means that we can generate an

infinite number of benchmark portfolios that will be tailored to have the same S and G

profiles as a portfolio w.

To choose between them, we can again use least squares optimization. A linear combi-

nation of the four reference portfolios takes the following form:

w̃n = µ1mcwn +µ2gwn +µ3vwn + (1−µ1 −µ2 −µ3)ewn, for n = 1, . . . , N (20)

We now define the distance D between the portfolio w and w̃ as follows:

D =

√√√√ N∑
n=1

[wn −µ1 mcwn −µ2 gwn −µ3 vw− (1−µ1 −µ2 −µ3)ewn]2. (21)

Differentiating with respect to µ1, µ2 and µ3, the first-order conditions yield a system of

three simultaneous equations in three unknowns (see Appendix C). The solutions for µ1,

µ2 and µ3 are obtained as follows:9


µ1

µ2

µ3

 =


1 S(gw) S(vw)

SG(mcw) 1 SG(vw)

SV(mcw) SV(gw) 1


−1

S(w)

SG(w)

SV(w)

 . (22)

Substituting the solutions for µ1, µ2 and µ3 obtained from (22) into (20), we obtain the

portfolio ŵ formed from linear combinations of the four reference portfolios mcw, ew, gw

and vw that most closely approximates in a least-squares sense the portfolio w.

It is shown in Appendix D that the size and growth profiles of ŵ are the same as those

of w (i.e., that S(ŵ) = S(w) and G(ŵ) = G(w)).

9The terms SG(mcw), SG(vw), SV(mcw) and SV(gw) in (22) are defined in Appendix C.
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4. Disentangling Size and Growth Effects

Changing the parameter λ in (6) may change the style profile in other dimensions as well

as the one on we are focusing. For example, the Russell 3000 and Russell 3000 Equal-

Weighted portfolios differ in both their S and G profiles in Figure 1(a). To obtain a pure

measure of the impact of changes in S on performance holding G fixed, we need to take

linear combinations of two reference portfolios with the same G profile. Such reference

portfolios can easily be constructed using a variant on our basic method.

Returning to the three reference-portfolio setting, we seek two portfolios w̃0 and w̃1

that are linear combinations of our three reference portfolios and have the following prop-

erties:

S(w̃0) = 0, G(w̃0) = Ğ, S(w̃1) = 1, G(w̃1) = Ğ.

The coordinates of w̃0 and w̃1 in size-growth space are illustrated in Figure 2.

Insert Figure 2 Here

Setting S(w̃0) = 0 and G(w̃0) = Ğ in (15) and (16), the portfolio w̃0 can be calculated

as follows:

µ0
1 =

−S(gw)Ğ
1− S(gw)G(mcw)

,

µ0
2 =

Ğ
1− S(gw)G(mcw)

.

Using these weights, we obtain that

w̃0
n = ewn +µ0

1(mcwn − ewn) +µ0
2(gwn − ewn), for n = 1, . . . , N.
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Similarly, setting S(w̃1) = 1 and G(w̃1) = Ğ in (15) and (16), it follows that

µ1
1 =

1− S(gw)Ğ
1− S(gw)G(mcw)

,

µ1
2 =

Ğ− G(mcw)

1− S(gw)G(mcw)
,

and hence

w̃1
n = ewn +µ1

1(mcwn − ewn) +µ1
2(gwn − ewn), for n = 1, . . . , N.

Having constructed these two portfolios w̃0 and w̃1 that have the same G profiles, if

we now take linear combinations of w̃0 and w̃1, we can vary the S profile while holding

the G profile fixed at Ğ, and hence observe the pure effect of size on our performance

benchmarks. This is achieved by varying the parameter θ in the expression below:

w̆n = θw̃0
n + (1−θ)w̃1

n, for n = 1, . . . , N.

When θ = 1 we are at the coordinates (0, Ğ) in Figure 2. As θ falls, we move along the

horizontal line connecting w̃0 and w̃1, until at θ = 0 we arrive at (1, Ğ).

In an analogous manner we can likewise construct portfolios that allow us to vary the

G profile while holding the S profile fixed. This methodology again generalizes to higher

dimensions.

5. Conditional Version of Our Methods

CDL demonstrate how characteristic-matched benchmarks constructed by sorting stocks

by growth conditional on size tend to generate lower tracking error volatilities than in-

dependent sorts on size and growth. Our methods thus far described treat each style
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dimension independently. Conditional variants, however, could be constructed by elimi-

nating from the reference portfolios in the value-growth dimension (e.g., the Russell 3000

Value and Growth portfolios) all stocks not held in the portfolio w. The remaining stocks

in the reference portfolios would then be rescaled so that their shares sum to 1. For exam-

ple, the growth profile of a small-cap manager would then be calculated from reference

portfolios in the value-growth dimension that are themselves by construction also small

cap. The reference portfolios in the value-growth dimension therefore would themselves

be tailored to each particular portfolio w. This conditional approach should tend to reduce

the tracking error volatilities of our methods.

Brands, Brown and Gallagher (2005) (BBG) draw a distinction between two aspects of

active management. A manager must first decide which stocks to include in a portfolio,

and, second, in what proportions to hold these stocks. BBG refer to these activities as

‘stock picking’ and ‘portfolio construction’. One feature of the conditional version of our

method is that it constructs benchmarks that focus exclusively on the latter activity (i.e.,

portfolio construction). In this sense, our conditional method could provide a useful com-

plement to our unconditional method and existing methods for benchmark construction.

6. An Application to Fund Managers and Indices

6.1. The data set

Our data set consists of a sample of 1183 US institutional fund manager from the Russell

database covering the period 2002Q2 to 2009Q3. We select funds for which at least 80

percent of the provided security IDs were matched to the Russell 3000 universe of stocks.

Some of the unmatched security IDs contain cash or bond holdings and others are not

included in the Russell 3000 listing of stocks. When calculating tracking error volatilities,

we only consider managers for which we have at least 12 consecutive quarters of data.
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This reduces our sample of managers to 275.10

6.2. The cross-section of index and fund style

A scatter plot of fund manager size and growth style profiles provides a useful indication

of the range and variability of fund manager behavior. One such example is provided in

Figure 3 for the 464 fund managers present in our data set in 2008Q4 (this was the quarter

with the most fund managers). The reference portfolios in Figure 3 are sm=Russell 3000

Equal-Weighted and lg=Russell 1000 in the size dimension, while sm=Russell 3000 Value

and lg=Russell 3000 Growth in the value-growth dimension.

Insert Figure 3 Here

From Figure 3 we can see that not a single fund manager holds a portfolio with a size

profile smaller than the Russell 3000 Equal-Weighted index, 40 out of 464 portfolios have

larger size profiles than the Russell 1000 index, 2 have smaller growth profiles than the

Russell 3000 Value index and 13 have larger growth profiles than the Russell 3000 Growth

index. It is also striking how the range of growth profiles fans out as the size profile rises

from 0 to 0.8, after which the growth profile range starts to fall again. The variation of

growth styles across funds therefore reaches a maximum when the size profile is about

0.8.

Figure 4 provides an equivalent scatter plot for some of the main Russell indices. The

reference portfolios in Figure 4 are the same as in Figure 3. Hence by construction, the

Russell 3000 Value and Growth indices have growth profile of 0 and 1 respectively, while

the Russell 3000 Equal-Weighted and Russell 1000 indices have size profiles of 0 and 1.

10The choice of the number of consecutive quarters required for inclusion is somewhat subjective. CDL
for example require 16 consecutive quarters. We prefer 12 since the gains in sample size (275 instead of 164
funds) in our opinion outweighs the disadvantages of having a shorter time horizon for some managers. As
a robustness check we also calculate results based on the requirement of 16, 20 and 24 consecutive quarters
respectively. We find that the results for these alternatives differ only marginally from those obtained for 12
consecutive quarters.
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Figure 4 illustrates the problem of distinguishing between small cap value and growth

portfolios in a universe that includes large cap stocks. The R2000, R2000V, R2000G, R2500,

R2500G, R2500V, RMidcap and RMidcapG are all clustered in the range -0.06 to 0.04 on

size and 0.62 to 0.69 on growth.

Insert Figure 4 Here

6.3. The evolution of fund and index style

The evolution of fund style in the size and value-growth dimensions over time is depicted

in Figure 5. In panel A it can be seen that the average size profile stays reasonably constant

over the period 2002 to 2009, with the suggestion of a slight dip in size from 2007 onwards.

Panel B shows a clear upward trend in the growth profile (measured with Russell 3000

Growth and Value as the reference portfolios) over time that reverses slightly starting in

2008.

Insert Figure 5 Here

Figure 6-Panel A shows the evolution of the size profiles of the Russell 1000 Growth

and Value indices over the period 1999 to 2009 (measured with the Russell 3000 and Rus-

sell 3000 Equal-Weighted indices as the reference portfolios). Over the subperiod 1999Q1

to 2004Q4 the Russell 1000 Growth index has a larger size profile than the Russell 1000

Value index. After 2004Q1 this pattern is reversed. Right at the very end of our sample

(2009Q3) there is the indication that another reversal might be about to take place.

Similarly, Figure 6-Panel B shows the evolution of the growth profiles of the Russell

1000 and 2000 indices (measured with the Russell 3000 Growth and Value indices as the

reference portfolios). Over the subperiod 1999Q1 to 2004Q4 the Russell 1000 index (which

is large cap) has a larger growth profile than the Russell 2000 index (which is small cap).

After 2004Q4 this pattern reverses, with the Russell 2000 index now having the larger
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growth profile. The gap again narrows at the end of the sample.

These findings qualify a standard perception in the literature that large cap stocks tend

to have a growth tilt (see for example CDL who discuss this point in the process of ex-

plaining why conditional sorts on size should be preferred to independent sorts). While

this is true for the first half of our sample, this pattern reverses after 2004.

Insert Figure 6 Here

6.4. Tracking error volatilities of tailored performance benchmarks and excess returns
of funds

The tracking error of a benchmark is calculated as the difference between the performance

of the portfolio and the performance of its benchmark. Tracking error volatility measured

by the annualized standard deviation of tracking error over a sample of quarters is often

used in the literature to judge the appropriateness of benchmarks (see for example CDL

and CP). A lower tracking error volatility implies that the performance differential be-

tween a portfolio and its benchmark has a larger systematic component, thus increasing

the usefulness of the benchmark.

Average tracking error volatilities of our tailored performance benchmarks and ex-

cess returns of funds are provided in Table 1. In the first column of Table 1 we replicate

the value-weight conditional sort (i.e., quarterly size, within-size, BM) method used by

CDL. This is their preferred method since it outperforms benchmarks constructed from

attribute-matched independent sorts of portfolios, the three-factor time-series model and

cross-sectional regressions of returns on stock characteristics.11 Hence we use the CDL

value-weight conditional sort method as a point of reference with which to assess the

performance of our tailored benchmarks.

11CDL argue also for the use of composite value-growth measures. Our method can be easily extended
in this direction by defining more than one dimension in the value-growth domain, and then matching
portfolios and benchmarks by style in each dimension. We do not pursue this idea here, however, and
hence to improve comparability likewise do not consider CDL’s composite value-growth measures either.
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Insert Table 1 Here

Seven of our tailored benchmarks are compared with the CDL tailored benchmark and

a Russell 3000 benchmark in Table 1. Our seven benchmarks are described below. The first

three are absolute benchmarks in the sense that their underlying size and growth profiles

are monotonic functions of absolute measures of size (Sast) and growth (Gast) (see section

2.1 and Appendix A). The remaining four benchmarks are relative in the sense that their

underlying size and growth profiles are defined relative to two reference portfolios in each

style dimension.

1. Abs S: one-dimensional size benchmark: lg=Russell 3000, sm=Russell 3000 Equal-

Weighted

2. Abs G: one-dimensional growth benchmark: lg = gw (where gw is defined in (4)),

sm=Russell 3000 Equal-Weighted

3. Abs SG: two-dimensional size-growth benchmark: lgS=Russell 3000, smS=Russell 3000

Equal-Weighted, lgG = gw, smG=Russell 3000 Equal-Weighted

4. Rel S: one-dimensional size benchmark: lg=Russell 1000, sm=Russell 3000 Equal-

Weighted

5. Rel G: one-dimensional growth benchmark lg=Russell 3000 Growth, sm=Russell 3000

Value

6. Rel SG(3): two-dimensional size-growth benchmark: lgS=Russell 1000, smS=Russell

3000 Equal-Weighted, lgG=Russell 3000 Growth, smG=Russell 3000 Equal-Weighted

7. Rel SG(4): two-dimensional size-growth benchmark: lgS=Russell 1000, smS=Russell

3000 Equal-Weighted, lgG=Russell 3000 Growth, smG=Russell 3000 Value.

Based on median tracking error volatility, the best performer is Rel G, followed in or-
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der by CDL, Abs SG, Rel SG(3), Russell 3000, Rel SG(4), Abs S, Rel S and lastly Abs G.

The mean tracking error volatility ranking differs only in that the order of Rel G and

CDL is reversed.12 We have a number of observations on the results presented in Table 1.

First, it is perhaps surprising that Rel G has a lower tracking error volatility than both

Rel SG(3) and Rel SG(4) given that the Rel SG(3) and Rel SG(4) benchmarks are more

closely tailored to the individual funds. The lower tracking error volatility of Rel G sug-

gests that its tailored benchmarks adjust over time in a way that matches more closely

shifts in portfolio holdings, and hence that value/growth orientation is a major driver of

shifts in funds’ approaches to stock picking. Second, the fact that Rel SG(3) has a lower

tracking error volatility than Rel SG(4) is also interesting given that by construction the

Rel SG(4) benchmark portfolio must be closer to the underlying portfolio (i.e., it must

have a lower distance measure as defined in (10)) than the Rel SG(3) benchmark portfo-

lio. Again the explanation is probably that the optimization method used by Rel SG(4)

causes the benchmark portfolio to adjust more over time than the portfolio itself. Hence a

better fit in each specific period may act to increase tracking error volatility. Third, while

Rel G significantly outperforms Abs G, we find that Abs SG has a lower tracking error

volatility than either Rel SG(3) or Rel SG(4). It is therefore not clear which out of relative

and absolute versions of our method should be preferred. Finally, the results in Table 1

demonstrate that at least some of our methods are competitive in terms of tracking error

volatility with the best of the methods considered by CDL, while at the same time being

conceptually simpler and easier to compute. Furthermore, the fact that the CDL method

uses conditional sorts on size in the value-growth dimension while our methods do not,

in some sense biases the comparison against our methods. Conditional versions of our

methods, constructed in the manner outlined above, may perform even better.

12Exactly the same median and mean rankings of methods are obtained when the comparison is restricted
to funds present for at least 16 consecutive quarters.
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6.5. Activity and performance

A large literature exists on the topic of whether active fund managers on average outper-

form passive managers (see for example (see for example Wermers, 2000). Cremers and

Petajisto (2009), again henceforth CP, go further and consider whether more active man-

agers outperform less active managers. CP distinguish between two notions of activity,

which they refer to as stock selection and factor timing. Stock selection is a cross-section

concept, which measures the deviation of a portfolio from its benchmark in a particular

period. Factor timing can be measured by the tracking error volatility of managers rel-

ative to their benchmarks. CP find a positive relationship between stock selection and

performance but no clear relationship between factor timing activity and performance.

Here we revisit this issue in a cross-section context using our measure of activity as

defined in (10).13 Activity quintiles and their corresponding average excess returns cal-

culated using three of our tailored benchmarks – Rel S, Rel G and Rel SG(4) – and the

Russell 3000 as benchmark are shown in Table 2.

Insert Table 2 Here

The results in Table 2 are striking in that we observe the opposite result to that obtained

by CP. That is, we find that more active funds perform worse than less active funds.

There are a number of differences between our study and that of CP that may explain

our finding. First, there is very little overlap in our time horizons. Our data set covers the

period 2002Q2 to 2009Q3, while the CP’s covers the period 1990 to 2003. Second, our time

horizon is shorter and includes the financial crisis that started in 2007. Third, our data

set consists of institutional fund managers as opposed to mutual fund managers. Hence

the lack of overlap in our samples applies to fund managers as well as the time horizon.

13We could in principle also use our approach to investigate the link between tracking error volatility and
performance.
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Fourth, our performance benchmarks are matched in terms of style to each fund manager,

while CP only achieve an approximate match by searching over 19 well-known indices

to find the one that minimizes their measure of activity and assigning this as the bench-

mark for that particular manager in that particular period. Finally, our activity measure is

least squares based while CP’s minimizes the absolute deviation between portfolios and

benchmarks.

To determine whether the financial crisis is influencing our results, we try restricting

the time span of our data set to 2002Q2-2007Q1. As shown in Table 2, excluding the fi-

nancial crisis makes the inverse relationship between performance and activity if anything

even stronger than before. To assess the impact of better matching of managers and perfor-

mance benchmarks on the observed link between activity and performance we recalculate

activity and excess return for each manager using the Russell 3000 as the benchmark. The

use of a common benchmark likewise acts to further accentuate the inverse relationship

between activity and performance observed in Table 2. Put another way, the failure to

use tailored benchmarks seems to cause the link between activity and performance to be

overstated.

Our finding therefore suggests that the relationship between activity and performance

may be dependent on the time horizon or sample of fund managers and hence perhaps

more complex than previously thought.

6.6. Disentangled Size and Growth Effects

We illustrate the impact on performance of changes in size holding the growth profile

fixed in a three-reference-portfolio context. The Russell 3000 Equal-Weighted, Russell 3000

and Russell 3000 Growth indices are used as the reference portfolios. Figure 7 contrasts

the impact of varying size by taking linear combinations of our three reference portfo-

lios on total return for each of the four quarters in 2008. The dashed line in each case is
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obtained by taking linear combinations of the Russell 3000 Equal-Weighted and Russell

3000 reference portfolios. As one moves along this dashed line, both the growth and size

profiles change. These effects are disentangled by the three parallel lines in each caption

of Figure 7. Each of these lines fixes the growth profile G at a particular value (0, 0.5 or

1), and then allows size to vary. By construction, the slope of these lines is independent of

the value of Ḡ.

Insert Figure 7 Here

The most striking feature of Figure 7 is how holding growth fixed can reverse the sign

of the slope of the total return line. Over our whole data set of 44 quarters covering the

period 1999Q1 to 2009Q4 (our time horizon for the indices is larger than for the fund

manager data set) we find that holding growth fixed acts to change the sign of the slope

of the total return line for 29 of 44 quarters. By implication, when determining the impact

of changes in size on performance it is important to control for changes in style in other

dimensions.

A second feature of Figure 7 worth noting is the sensitivity of total return for any given

size profile to the reference growth profile. In 2008Q3, total return for any given size pro-

file varies by more than 9 percentage points as the reference growth profile varies between

0 and 1. By contrast, in 2008Q1 and 2008Q4 this difference is less than 2 percentage points,

which while much smaller is still not trivial.

7. Conclusion

Characteristic-matched performance benchmarks obtained from portfolio holdings data

are typically constructed using a bottom-up approach which first matches individual

stocks to one of a number of discrete portfolios with similar style characteristics. The

overall benchmark is then calculated by taking a weighted average of the excess returns
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on each of the individual stocks. We have proposed here an alternative methodology

that avoids this bottom-up approach and generates direct matches between portfolios and

benchmarks.

Our method also has the advantage of conceptual and computational simplicity. Our

tailored performance benchmarks can be easily calculated by taking linear combinations

of off-the-shelf indices such as the Russell 3000, Russell 3000 Growth and Russell 3000

Value. It can be applied in multiple style dimensions, and generates tracking error volatil-

ities that are comparable with the best existing methods. In addition, our method provides

new measures of style that are of interest in their own right and which shed new light on

both the cross-section of index and fund manager style, and the evolution over time of

index and fund manager style. It also leads naturally to new measures of activity that

focus on deviations of a portfolio’s holdings from those of its matched style benchmark,

and perhaps a new perspective on the link between performance and activity.

Our new approach to constructing characteristic-matched performance benchmarks

provides market participants with a new set of tools for evaluating fund style and perfor-

mance, and opens up a new direction for research on the construction of characteristic-

matched performance benchmarks distinct from the bottom-up approach that has domi-

nated the literature in recent years.
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Appendix

A. Constructing Size/Growth Profiles that are Monotonic Functions of Absolute Mea-
sures of Size/Growth

Let mcw and ew denote respectively a market-cap-weighted and equal-weighted portfolio.

Setting lg = mcw and sm = ew in (1), we obtain that

P(w) =

∑N
n=1[(mcwn − ewn)(wn − ewn)]∑N

n=1(mcwn − ewn)2
, (A.1)

where

mcwn =
pnqn∑N

m=1 pmqm
, ewn =

1
N

, for n = 1, . . . , N. (A.2)

By construction,
∑N

n=1 mcwn =
∑N

n=1 ewn = 1. In what follows it is assumed that there

exist at least two stocks for which ewn 6= mcwn. Otherwise the style profile P(w) below is

not defined.

In this case P(w) is a monotonic (linear) function of the absolute size measure S∗(w) as

defined in (2). This can be demonstrated as follows:

P(w) =

∑N
n=1[(mcwn − ewn)(wn − ewn)]∑N

n=1(mcwn − ewn)2
=

∑N
n=1(wnmcwn)− 1/N∑N

n=1(mcw2
n)− 1/N

= αS +βSS∗(w),

(A.3)

where

αS = − 1/N∑N
n=1(mcw2

n)− 1/N
, βS =

1

(
∑N

n=1 pnqn)(
∑N

n=1(mcw2
n)− 1/N)

.
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As long as the same list of stocks is used when computing P(w) for all portfolios, the

termsαS and βS are constants since they do not depend on wn. The term
∑N

n=1(mcwn)2 in

the denominator of P(w) is the Herfindahl-Hirschman index. It must take a value greater

than or equal to 1/N. The term
∑N

n=1(mcwn)2 − 1/N can be interpreted as a normalized

version of the Herfindahl-Hirschman index, where its minimum value is rescaled to zero

rather than 1/N. In the special case where
∑N

n=1(mcwn)2 = 1/N, there is no size line

(since all portfolios have the same size) and P(w) is not defined. This special case aside, it

must be the case that αS < 0 and βS > 0. It follows that P(w) is an increasing linear (and

hence monotonic) function of S∗(w).

Setting lg = gw and sm = ew in (1), where gw is the growth weighted portfolio defined

in (3), and now assuming there exist at least two stocks for which ewn 6= gwn, we obtain

that

P(w) =

∑N
n=1[(gwn − ewn)(wn − ewn)]∑N

n=1(gwn − ewn)2
=

∑N
n=1(wngwn)− 1/N∑N

n=1(gw2
n)− 1/N

= αG +βG ln G∗,

(A.4)

where

gwn =
ln(pn/bn)∑N

m=1 ln(pm/bm)
, for n = 1, . . . , N, αG = − 1/N∑N

n=1(gw2
n)− 1/N

,

βG =
1

[
∑N

n=1 ln(pn/bn)](
∑N

n=1(gw2
n)− 1/N)

. (A.5)

Hence P(w) is now a monotonic (linear) function of the absolute growth measure

G∗(w) defined in (3).

For a stock with a relatively high price to book ratio, gwn > ewn. For a stock with a rel-

atively low price-to-book ratio this inequality is reversed. Again as long as the same list of

stocks is used when computing P(w) for all portfolios, the termsαG and βG are constants
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(i.e., they do not depend on wn). The growth variant of the Herfindahl-Hirschman index∑N
n=1(gwn)2 must be greater than 1/N, except in the special case where all stocks have

the same price-to-book ratio. In this case, all portfolios have the same growth profile and

hence there is no growth line. Also, the growth weights gwn will be negative for stocks

with a price-to-book value of less than one. The presence of negative weights, however,

does not create any problems here. The only complication it creates is that it is hence the-

oretically possible that βG may be negative. When this happens, P(w) is a monotonically

decreasing rather than increasing function of G∗.

B. Demonstration that ŵ is the Linear Combination of Three Reference Portfolios in
Two Style Dimensions that in a Least-Squares Sense Most Closely Approximates
the Portfolio w.

Differentiating (19) with respect to µ1 and µ2 generates the following first order condi-

tions:

∂D
∂µ1

=

∑N
n=1(ewn −mcwn)[wn − (1−µ1 −µ2)ewn −µ1mcwn −µ2gwn]∑N

n=1[wn −µ1 mcwn −µ2 gwn − (1−µ1 −µ2)ewn]2
= 0,

∂D
∂µ2

=

∑N
n=1(ewn − gwn)[wn − (1−µ1 −µ2)ewn −µ1mcwn −µ2gwn]∑N

n=1[wn −µ1 mcwn −µ2 gwn − (1−µ1 −µ2)ewn]2
= 0.

These first order conditions can be rearranged as follows:

N∑
n=1

(ewn −mcwn)(wn − ewn) +µ1

N∑
n=1

(ewn −mcwn)(ewn −mcwn)

+µ2

N∑
n=1

(ewn −mcwn)(ewn − gwn) = 0,

N∑
n=1

(ewn − gwn)(wn − ewn) +µ1

N∑
n=1

(ewn −mcwn)(ewn −mcwn)
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+µ2

N∑
n=1

(ewn −mcwn)(ewn − gwn) = 0.

Dividing through the first equation by
∑N

n=1(mcwn − ewn)2 and the second equation by∑N
n=1(gwn − ewn)2 we obtain that

S(w)−µ1 −µ2

∑N
n=1(mcwn − ewn)(gwn − ewn)∑N

n=1(gwn − ewn)2
= 0,

G(w)−µ1

∑N
n=1(mcwn − ewn)(gwn − ewn)∑N

n=1(gwn − ewn)2
−µ2 = 0.

Noticing now that
∑N

n=1(mcwn − ewn)(gwn − ewn)/
∑N

n=1(gwn − ewn)2 = S(gw) and∑N
n=1(mcwn − ewn)(gwn − ewn)/

∑N
n=1(gwn − ewn)2 = G(mcw), the first order condi-

tions reduce to the following:

S(w)−µ1 −µ2S(gw) = 0, (B.1)

G(w)−µ1G(mcw)−µ2 = 0. (B.2)

On closer inspection (B.1) is identical to (13) while (B.2) is identical to (14). Hence the

solutions for µ1 and µ2 in this least-squares minimization problem are the same as those

given in (15) and (16) above. It follows that D is minimized when w̃ equals ŵ.14 Hence

ŵ is the linear combination of the three reference portfolios that in a least-squares sense

most closely approximates the portfolio w, as well as having the same S and G profile as

w.

14D is defined in (7), w̃ in (18) and ŵ in (17).
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C. Derivation of the 4-reference portfolio simultaneous equation system

Differentiating (D.3) with respect to µ1, µ2 and µ3, after rearrangement we obtain the

following first order conditions:

∑N
n=1(mcwn − ewn)(wn − ewn)∑N

n=1(mcwn − ewn)2
−µ1 −µ2

∑N
n=1(mcwn − ewn)(gwn − ewn)∑N

n=1(mcwn − ewn)2

−µ3

∑N
n=1(mcwn − ewn)(vwn − ewn)∑N

n=1(mcwn − ewn)2
= 0, (C.1)

∑N
n=1(gwn − ewn)(wn − ewn)∑N

n=1(gwn − ewn)2
−µ1

∑N
n=1(gwn − ewn)(mcwn − ewn)∑N

n=1(gwn − ewn)2
−µ2

−µ3

∑N
n=1(gwn − ewn)(vwn − ewn)∑N

n=1(gwn − ewn)2
= 0, (C.2)

∑N
n=1(vwn − ewn)(wn − ewn)∑N

n=1(vwn − ewn)2
−µ1

∑N
n=1(vwn − ewn)(mcwn − ewn)∑N

n=1(vwn − ewn)2

−µ2

∑N
n=1(vwn − ewn)(gwn − ewn)∑N

n=1(vwn − ewn)2
−µ3 = 0. (C.3)

These equations can in turn be rewritten as follows:

S(w)−µ1 −µ2S(gw)−µ3S(vw) = 0, (C.4)

S(w)−µ1SG(mcw)−µ2 −µ3SG(vw) = 0, (C.5)

SV(w)−µ1SV(mcw)−µ2SV(gw)−µ3 = 0, (C.6)
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where

SG(w) =

∑N
n=1(gwn − ewn)(wn − ewn)∑N

n=1(gwn − ewn)2
,

SG(mcw) =

∑N
n=1(gwn − ewn)(mcwn − ewn)∑N

n=1(gwn − ewn)2
,

SG(vw) =

∑N
n=1(gwn − ewn)(vwn − ewn)∑N

n=1(gwn − ewn)2
,

SV(w) =

∑N
n=1(vwn − ewn)(wn − ewn)∑N

n=1(vwn − ewn)2
,

SV(mcw) =

∑N
n=1(vwn − ewn)(mcwn − ewn)∑N

n=1(vwn − ewn)2
,

SV(gw) =

∑N
n=1(vwn − ewn)(gwn − ewn)∑N

n=1(vwn − ewn)2
.

The terms SG(w), SG(mcw), SG(vw), SV(w), SV(mcw) and SV(gw) in (C.5) and (C.6)

require some explanation. SG(w) measures the location of the portfolio w in the one

dimensional space with the ew portfolio located at zero and the gw portfolio located at 1.

At first glance this seems to be simply the growth profile of w. However, this is not correct

since in this relative context the points of reference in growth space are now the gw and

vw portfolios rather than the gw and ew portfolios. SV(w) similarly measures the location

of the portfolio w in the one dimensional space with the ew portfolio located at zero and

the vw portfolio located at 1. SG(mcw) measures the location of the mcw portfolio in the

one dimensional space with the ew portfolio located at zero and the gw portfolio located

at 1. The other terms can be explained in analogous ways.

The equations (C.4), (C.5) and (C.6) can now be written in matrix notation as stated in

(22).
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D. Derivation of the Size and Growth Profiles of ŵ

To verify that S(ŵ) = S(w), starting from (20) and using the fact that S(mcw) = 1 and

S(ew) = 0, we obtain that

S(ŵ) = µ1 +µ2S(gw) +µ3S(vw). (D.1)

The result now follows directly from a comparison of (C.4) and (D.1).

The fact that G(ŵ) = G(w) is less obvious. This requirement is subsumed in (C.5) and

(C.6). The easiest way to see that this must be true is to reparameterize the w̃ portfolio as

follows:

w̃n = µ1gwn +µ2mcwn +µ3ewn + (1−µ1 −µ2 −µ3)vwn, for n = 1, . . . , N, (D.2)

which in turn implies that the distance between w and w̃ is also reparameterized:

D =

√√√√ N∑
n=1

[wn −µ1 gwn −µ2 mcwn −µ3 ew− (1−µ1 −µ2 −µ3)vwn]2. (D.3)

Given this reparameterization, one of the first order conditions now reduces to

G(w)−µ1 −µ2S(mcw)−µ3S(ew) = 0. (D.4)

Now starting from (D.2), and using the fact that G(gw) = 1 and G(vw) = 0, we obtain

that

G(ŵ) = µ1 +µ2S(mcw) +µ3S(ew). (D.5)

The result now follows directly from a comparison of (D.4) and (D.5).
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     Table 1: Benchmark Tracking Error Volatilities, Excess Returns
       and Activity for Funds (2002Q2-2009Q3)

TE Volatility CDL Abs_S Abs_G Abs_SG Rel_S Rel_G Rel_SG(3) Rel_SG(4) R3000
Mean 4.8588 5.7604 7.7792 5.0986 5.7921 4.9016 5.2546 5.5443 5.2965
Median 4.4690 5.5101 7.5945 4.8505 5.5578 4.4663 4.8972 5.1926 4.9538
Stdev. 1.7807 2.1238 1.5361 1.7152 2.1464 1.9764 1.8477 1.9899 2.0942
Min 1.2717 2.1075 4.4849 2.1481 2.0808 1.3451 2.1106 2.1119 1.2159
Max 11.9272 14.6077 13.5771 11.2385 14.6735 12.5606 12.3842 14.3982 12.2965

Excess Return CDL Abs_S Abs_G Abs_SG Rel_S Rel_G Rel_SG(3) Rel_SG(4) R3000
Mean 1.1951 0.0543 -0.4050 0.3926 0.0160 0.7795 -0.1667 -0.3311 1.0611
Median 1.4247 0.3795 -0.2436 0.7309 0.3146 0.8499 -0.0764 -0.2201 1.3077
Stdev. 2.4661 2.5644 2.6829 2.5288 2.5580 2.5497 2.3973 2.4354 2.7175
Min -7.5056 -9.7014 -9.8622 -11.1001 -9.7231 -10.9438 -10.5787 -10.7257 -9.4097
Max 9.4969 6.4551 6.9226 7.7626 6.3988 7.4485 5.6279 6.4810 9.0072

Activity CDL Abs_S Abs_G Abs_SG Rel_S Rel_G Rel_SG(3) Rel_SG(4) R3000
Mean 0.0976 0.1353 0.1454 0.1352 0.1353 0.1360 0.1326 0.1324 0.1457
Median 0.0949 0.1302 0.1423 0.1302 0.1302 0.1306 0.1278 0.1277 0.1424
Stdev. 0.0300 0.0334 0.0335 0.0333 0.0334 0.0313 0.0323 0.0324 0.0335
Min 0.0469 0.0791 0.0833 0.0789 0.0790 0.0912 0.0788 0.0781 0.0834
Max 0.2944 0.3223 0.3229 0.3222 0.3223 0.3275 0.3219 0.3218 0.3230

Only funds that were present for at least 12 consecutive quarters are included. At the beginning of each
quarter each fund is matched with a tailored performance benchmark portfolio calculated in various ways.
A fund’s tracking error volatility is the annualized standard deviation of the time series of quarterly 
diff b t th f d’ t d it b h k’ t A f d’ t i th diffdifferences between the fund’s return and its benchmark’s return. A fund’s excess return is the difference
between the annualized return on a fund and its benchmark. A fund’s activity is measured by the Euclidean
distance between its portfolio holdings and the portfolio holdings of its benchmark. For each method of
constructing performance benchmarks, the arithmetic mean, median, standard deviation, maximum and
minimum of the tracking error volatilities, excess returns and activity across the 264 funds in the sample
are provided. The CDL method replicates a method used by CDL which constructs tailored benchmark 
portfolios from 28 control portfolios from sorts first by size, and then within each size category, by 
book-to-market ratio. The next seven methods are all variants on our basic method. Abs_S, Abs_G, 
Rel_S, and Rel_G construct tailored benchmark portfolios from linear combinations of two reference 
portfolios that have either the same size or growth profile as a fund. Abs_S and Rel_S are matched on 
size, while Abs_G and Rel_G are matched on growth style. The ‘Abs’ benchmarks use reference portfolios 
that are defined specifically to capture variations in that particular style space. The ‘Rel’ reference 
portfolios are taken off-the-shelf. For example, the Rel_G method uses the Russell 3000 Value and 
Russell 3000 Growth as the reference portfolios in the growth dimension.  Abs_SG, Rel_SG(3) and 
Rel_SG(4) match funds with benchmark portfolios that are tailored to have the same size and growth 
profiles as each fund. Abs_SG and Rel_SG(3) achieve this by taking linear combinations of three 
reference portfolios, while Rel_SG(4) uses four reference portfolios. Rel_SG(4) searches over all 
possible benchmark portfolios with exactly the same size and growth profiles as a fund and selects the 
one with the lowest activity measure. Finally, tracking error volatilities, excess returns and activity 
measures are also provided for the case where the Russell 3000 index is used as the benchmark portfolio 
against which each fund manager is evaluated. 



        Table 2: Activity versus Performance 

2002Q2-2009Q3 Activity Quintiles
Lowest 2nd 3rd 4th Highest Lowest - Highest

Rel_S Activity 0.0975 0.1167 0.1314 0.1458 0.1851
Excess Return 0.6843 0.2802 -0.0145 0.0543 -0.9242 1.6085
t-stat 2.4667 1.0636 -0.0403 0.1694 -2.0750

Rel_G Activity 0.1025 0.1184 0.1310 0.1445 0.1835
Excess Return 1.2289 1.5023 0.9000 0.3678 -0.1014 1.3303
t-stat 4.4879 5.0670 3.0549 1.1071 -0.2220

Rel_SG(4) Activity 0.0966 0.1147 0.1277 0.1420 0.1812
Excess Return 0.2647 -0.2380 -0.0884 -0.3409 -1.2531 1.5177
t-stat 0.8699 -0.9387 -0.3050 -1.0153 -3.0391

R3000 Activity 0.1062 0.1271 0.1421 0.1572 0.1960
Excess Return 1.7956 1.8184 1.0510 0.8411 -0.2004 1.9959
t-stat 6.2126 6.1721 2.9269 2.4237 -0.4366

2002Q2-2007Q1 Activity Quintiles
Lowest 2nd 3rd 4th Highest Lowest - Highest

Rel_S Activity 0.0972 0.1149 0.1290 0.1437 0.1880
Excess Return 1.2120 0.9556 0.3658 -0.1412 -1.7008 2.9128
t-stat 3.8259 2.4624 0.6720 -0.3132 -3.5788

Rel_G Activity 0.1019 0.1170 0.1284 0.1421 0.1870
Excess Return 3.0131 2.4941 2.0404 1.5564 0.7360 2.2771
t-stat 14.0569 6.0247 4.6350 3.8061 1.7128

Rel_SG(4) Activity 0.0966 0.1129 0.1252 0.1395 0.1841
Excess Return 0.9741 0.6105 0.4494 0.3519 -1.1080 2.0821
t-stat 2.9212 1.6984 1.0148 0.9449 -2.8661

R3000 Activity 0.1069 0.1256 0.1404 0.1560 0.1999
Excess Return 3.2847 3.1974 1.2576 1.2083 -0.6113 3.8960
t-stat 10.8802 7.7653 2.1924 2.3387 -1.1968

A fund's activity is measured as the Euclidean distance between its portfolio holdings and the 
portfolio holdings of its benchmark. Activity here is averaged across all quarters for each fund. The 
funds are then divided into quintile blocks based on their average activity. Four different ways of 
constructing benchmark portfolios are considered. Rel_S and Rel_G construct benchmark 
portfolios that are linear combinations of two reference portfolios (the Russell 3000 Equal-Weighted 
and Russell 1000 for Rel_S and the Russell 3000 Value and Russell 3000 Growth for Rel_G). 
The Rel_S benchmarks are tailored to have the same size profiles as funds, while the Rel_G 
benchmarks have the same growth profiles as funds. Rel_SG(4) takes linear combinations of the 
four reference portfolios above. The Rel_SG benchmarks are tailored to have the same size and 
growth profiles as funds. Activity measures are also calculated using the Russell 3000 as the 
benchmark. The benchmark in this latter case is not tailored to each individual fund. Excess
return is the difference between the annualized return on a fund and its benchmark, averaged 
across all funds in each quintile block. The t-stats refer to the Excess Returns. 
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Figure 1 - Panel B: Four Reference Portfolios: 2008Q4

In Panel A, the reference portfolios in the size dimension are provided by the Russell 3000 
Equal-Weighted and Russell 3000 indices. In the growth dimension the reference portfolios are 
provided by the Russell 3000 Equal-Weighted and Russell 3000 Growth indices. By 
construction it follows that the Russell 3000 Equal-Weighted and Russell 3000 indices have 
size profiles of 0 and 1, respectively, while the Russell 3000 Equal-Weighted and Russell 3000 
Growth indices have growth profiles fo 0 and 1. The issue of interest here is determining the 
size profile of the Russell 3000 Growth index and the growth profile of the Russell 3000 index. 
The interpretation of Panel B is similar, except now that the reference portfolios in the growth 
dimension are provided by the Russell 3000 Value and Russell 3000 Growth indices. The issue 
of interest now is determining the size profiles of the Russel 3000 Value and Growth indices 
and the growth profiles of teh Russell 3000 and Russell 3000 Equal-Weighted indices.

R3000EW

R3000

R3000G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ro

w
th

 p
ro

fil
e 

(R
30

00
EW

=0
, R

30
00

G
=1

)

Size profile (R3000EW=0, R3000=1)

Figure 1 - Panel A: Three Reference Portfolios: 2008Q4

R3000EW

R1000

R3000V

R3000G

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

G
ro

w
th

 p
ro

fil
e 

(R
30

00
V=

0,
 R

30
00

G
=1

)

Size profile (R3000EW=0, R1000=1)

Figure 1 - Panel B: Four Reference Portfolios: 2008Q4



R3000G

0 8

0.9

1

00
G

=1
)

Figure 2: Changing Size While Holding Growth Fixed

R3000

R3000G

w0 w1
0 3

0.4

0.5

0.6

0.7

0.8

0.9

1

fil
e 

(R
30

00
EW

=0
, R

30
00

G
=1

)
Figure 2: Changing Size While Holding Growth Fixed

Ğ

R3000EW

R3000

R3000G

w0 w1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

G
ro

w
th

 p
ro

fil
e 

(R
30

00
EW

=0
, R

30
00

G
=1

)
Figure 2: Changing Size While Holding Growth Fixed

Ğ

By taking linear combinations of the three reference portfolios (here provided by the Russell 3000
Equal‐Weighted, Russell 3000 and Russell 3000 Growth indices) it is possible to construct a portfolio
w0 that has a size profile of zero and growth profile of Ğ. Similarly a second portfolio w1 can be
constructed that has a size profile of 1 and growth profile of Ğ By now taking linear combinations
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constructed that has a size profile of 1 and growth profile of Ğ.  By now taking linear combinations
of w0 and w1 it is possible to vary the size profile while
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This figure depicts a cross‐section plot of size profiles and growth profiles for 464 fund managers
in 2008Q4. The reference portfolios in the size dimension are provided by the Russell 3000
Equal‐Weighted and Russell 1000 indices, and in the growth dimension by the Russell 3000 Value
and Russell 3000 Growth indices
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and Russell 3000 Growth indices. 
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and Russell 3000 Growth indices
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This figure shows how the average size profile of fund managers was reasonably stable 
over the period 2002Q2 to 2009Q3, while the average growth profile showed a clear 
upward trend.
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Figure 6 ‐ Panel A: The Evolution of the R1000G and R1000V 
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R1000

R2000

Panel A shows how the size profile of the R1000G index was larger than that of the R1000V index from
1999Q1 until 2004Q3 Thereafter this pattern reverses Similarly Panel B shows that the large cap

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
19

99
:Q

1

19
99

:Q
3

20
00

:Q
1

20
00

:Q
3

20
01

:Q
1

20
01

:Q
3

20
02

:Q
1

20
02

:Q
3

20
03

:Q
1

20
03

:Q
3

20
04

:Q
1

20
04

:Q
3

20
05

:Q
1

20
05

:Q
3

20
06

:Q
1

20
06

:Q
3

20
07

:Q
1

20
07

:Q
3

20
08

:Q
1

20
08

:Q
3

20
09

:Q
1

20
09

:Q
3

Si
ze

 P
ro

fil
e 

(w
ith

 R
10

00
an

d 
R

30
00

EW
 a

s 
re

fe
re

nc
e 
po

rt
fo
lio

s)
Figure 6 ‐ Panel A: The Evolution of the R1000G and R1000V 

Size Profiles

R1000G

R1000V

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

19
99

:Q
1

19
99

:Q
3

20
00

:Q
1

20
00

:Q
3

20
01

:Q
1

20
01

:Q
3

20
02

:Q
1

20
02

:Q
3

20
03

:Q
1

20
03

:Q
3

20
04

:Q
1

20
04

:Q
3

20
05

:Q
1

20
05

:Q
3

20
06

:Q
1

20
06

:Q
3

20
07

:Q
1

20
07

:Q
3

20
08

:Q
1

20
08

:Q
3

20
09

:Q
1

20
09

:Q
3

G
ro
w
th
 p
ro
fil
e 
(w

it
h 
R3

00
0 
V
al
ue

 a
nd

 R
30

00
 G
ro
w
th
. 

as
 r
ef
er
en

ce
 p
or
tf
ol
io
s)
  

Figure 6 ‐ Panel B: The Evolution of the R1000 and R2000 
Growth Profiles

R1000

R2000

1999Q1 until 2004Q3. Thereafter, this pattern reverses. Similarly, Panel B shows that the large cap
R1000 index has a higher growth profile than the small cap R2000 index from 1999Q1 until 2004Q3. 
Thereafter again the pattern reverses.  



Figure 7: The Impact of Size on Performance 
Holding Growth Fixed

The dashed line in each graph shows how total return changes as a function of size without controllingThe dashed line in each graph  shows  how total return changes as a function of  size without controlling 
for changes in the growth profile.  Size is varied here by taking different linear  combinations of the 
R3000EW and  R3000 indices.  The blue, green and red lines show how total  return varies with size, 
holding the growth profile fixed.  It is possible to vary size holding growth  fixed by taking linear 
combinations of the R3000EW, R3000 and R3000G using the approach outlined  in Figure 2. It is striking 
that in three of the four graphs the impact of increases  in size on total return is reversed once one controls
for changes in the growth  profile.
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