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Abstract 

The study derives a theoretically and empirically founded procedure for volatility 
estimation and forecasting of daily financial return series for use in value-at-risk 
model frameworks. GARCH modelling is applied to account for time varying 
heteroskedastic conditional variances and covariances. Through univariate 
estimation, the historical conditional variance models are specified within a group 
of twelve markka-denominated exchange rates, a group of thirteen short-term 
interest rates, the long-term interest rate and Finland's general stock market index. 
Within these groups, the. method of principal components is used to detect 
common short-term factors driving the high frequency stochastic processes. 
Spectral analysis is applied to identify the length and regularity in the cyclical 
behaviour of the estimated conditional variances and their principal components. 
Since there turned out to be a great similarity in the univariate estimation results 
within groups of rates, GARCH estimation on pooled data was performed to force 
the rates within groups into the same model. The estimated models on pooled data 
were found to be integrated in variance with closely similar parameter values for 
both exchange rates and interest rates. 

Since a general multivariate framework is not possible to apply to the amount 
of series in this study due to the huge number of parameters to be identified, the 
covariances were calculated in two step-wise ways from the univariately estimated 
variances. First, assuming dependence between the autocorrelation structure of the 
conditional variances and covariances, univariately estimated parameters of the 
conditional variance models were used in identifying the pairs of conditional 
covariances. Second, assuming constant correlations, conditional covariances were 
estimated using joint information on the correlation coefficients of the GARCH 
standardized residuals and the univariate conditional variances. The first method is 
only applicable in estimating covariances within groups, the second is also applied 
in estimating the covariances between groups. 

Although the magnitude or direction of the expected changes in rates cannot 
be forecast, the estimated GARCH structure makes it possible to forecast the 
expected future variances. By developing the parameter structure estimated on 
pooled data, a theoretically and empirically founded procedure is suggested to 
replace the usual ad hoc decision process of selecting the sample period and the 
weight structure for estimating variances and covariances. 

Keywords: Time-dependent volatility, GARCH estimation, value-at-risk models 
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Tiivistelma 

Selvityksessa johdetaan teoreettisesti ja empiirisesti perusteltu jarjestelma talou
dellisten tuottosarjojen paivahavaintojen volatiliteetin estimoimiseksi ja ennusta
miseksi kaytettavaksi value-at-risk malleissa. GARCH analyysia kaytetaan ajassa 
muuttuvien heteroskedastisten ehdollisten varianssien ja kovarianssien mallittami
seen. Yksiulotteisella estimoinnilla maaritellaan historialliset ehdolliset varianssi
mallit kaksitoista markkakurssia sisaItavaIle valuuttakurssiryhmaIle, kolmentoista 
lyhyen koron ryhmaIle, pitkaIle korolle ja osakemarkkina indeksille. Ryhmien si
saisessa tarkastelussa kaytetaan paakomponenttianalyysia korkeafrekvenssisten 
stokastisten prosessien taustalla olevien yhteisten faktoreiden tunnistamiseksi. 
Spektrianalyysia kaytetaan estimoitujen ehdollisten varianssien ja niiden paakom
ponenttien syklien pituuksien ja saannonmukaisuuksien arvioimisessa. Yksiulot
teisissa ryhmien sisaisissa estimointituloksissa saavutetun korkean asteen yhden
mukaisuuden perusteella GARCH estimointi suoritettiin myos poolatulle aineistol
le, jossa ryhman sisaiset yksittaiset tuottosarjat pakotettiin noudattamaan samaa 
mallia. Poolatussa aineistossa identifioidut mallit osoittautuivat varianssi-integ
roiduiksi ja estimoinnin tuloksena saadut parametriarvot olivat liki pitaen samat 
seka valuuttakursseille etta koroille. 

Koska yleista moniuloitteista mallia ei suuren parametrimaaran vuoksi voitu 
soveltaa nain kattavaan muuttujamaaraan, estimoitiin kovarianssit kahdella vai
heittaisella mentelmaIla. Ensiksi, havainto varianssien ja kovarianssien autokorre
laatiorakenteen riippuvuudesta mahdollistaa yksiulotteisten ehdollisten varianssien 
estimointitulosten kayton parittaisten ehdollisten kovarianssien identifioinnissa. 
Toiseksi, periodien sisaisten korrelaatioiden vakioisuusoletus mahdollistaa ehdol
listen kovarianssien maarittelemisen yhdistamaIIa standardisoitujen jaannostermi
en estimoidut korrelatiokertoimet ja yksiulotteisen estimoinnin ehdolliset varians
sit. Ensimrnainen menetelma soveltui ryhmien sisaisten kovarianssien estimoin
tiin, toista menetelmaa sovellettiin myos ryhmien vaIisten kovarianssien estimoin
tiin. 

Vaikkakin tuottosarjojen odotettujen muutosten suuruutta tai merkkia ei voi 
ennustaa, estimoitu GARCH rakenne mahdollistaa varianssin ennustamisen. So
veltamalla poolatussa aineistossa estimoidun mallin parametrirakennetta paady
taan teoreettisesti ja empiirisesti perusteltuun menettelyyn, jolla voidaan korvata 
yleensa ad hoc perusteinen estimointiperiodin pituuden ja painorakenteen valinta 
odotettujen varianssien ja kovarianssien ennustamisessa. 

Asiasanat: Aikariippuvainen volatiliteetti, GARCH estimointi, value-at-risk mall it 
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1 The objectives of the study 

Evaluation of risk, measured by the variance of a given probability function, is a 
central issue in financial economics. Important areas where an appropriate 
estimation of variance is crucial are option pricing, hedging strategies and risk 
premium identification. Along with these and other financial applications, value
at-risk (VAR) models have recently become popular among financial institutions 
and supervisory bodies. 

In this study theoretical and empirical models for the measurement and 
estimation of volatility in financial time series are presented. The estimated results 
can be utilized in the value-at-risk model developed at the Bank of Finland 
(Ahlstedt 1990). 

The value-at-risk framework is a statistical procedure which measures, at a 
certain confidence interval, the amount of value that can be lost or gained in a 
portfolio due to changes in market prices of the underlying assets (Simons 1996). 
Although value-at-risk models can be used in assessing credit risk and liquidity 
risk the main area of application is evaluating market risk. Thus, estimates for 
expected changes in exchange rates, interest rates and stock prices are needed. The 
efficient market hypothesis states that the magnitude and direction of the expected 
changes in these rates cannot be forecast. This fact has also been confirmed in 
empirical work that shows the mean of the probability distributions to be zero. In 
the value-at-risk applications, therefore, the measure of the variance, rather than 
the mean, of probability distributions is estimated. Through this estimate, the 
historical variances of changes in market rates can be used as forecasts of the 
future behaviour of the rates. 

As there is no generally accepted way to calculate the variance of the value of 
a portfolio, there are a number of value-at-risk models in use. Each yields results 
that mirror the underlying assumptions and methodological approach. There are 
three main approaches represented in the commercial packages distributed in the 
markets: the historical, the analytical and the simulation approach.l The internal 
applications developed within financial institutions are essentially variations on 
these main approaches. Each approach has its. strengths and weaknesses, which 
thus have to be weighted against the purpose of the use of the model. These 
models are characterized by unrealistic or simplifying assumptions, mostly about 
the probability functions, which are sometimes in contradiction with the empirical 
realizations of the financial time series. In particular the normality assumption of 
the return series, the selection of sample time horizon and weight structure in 
variance estimation and forecasting are issues where no common agreement exists. 
In this study, generalized autoregressive heteroskedastic (GARCH) methodology 
is used to solve these problems. Through GARCH parametrization of financial 
rates, we end up with standardized stochastic processes, which, by definition, are 
normal or at least much closer to normal than the raw data on which random walk 
processes usually are applied. GARCH interpretation also makes it possible to 
forecast expected future variances. Based on the parameter structure of the 
estimated conditional variances, a theoretically and empirically founded formula 

IJ.p. Morgan's Riskmetrics, Bankers Trust's RAROC2020 and Chase's RISK$. 
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for selecting the sample period and the decay factors giving the weight vector for 
estimation of the future conditional variances and covariances can be derived. 

Financial time series of high frequency data are known to have clustering as a 
typical feature. This feature can bee seen in the statistical properties of the 
unconditional frequency function as skewness, fatter tails and a higher peak 
around the mean (leptokurtosis) than in the stable normal distribution. In VAR 
model applications, the main assumption of the stochastic process in first 
differences of financial rates, is that of a random walk generating a normal 
distribution with a constant unconditional variance, although we know that the 
random walk model does not fit observed data. There is strong empirical evidence 
that the Autoregressive Conditional Heteroskedasticity models are adequate to 
capture the volatility clustering and the thicker tails in the unconditional 
distribution (Nerlove et al. 1988). The family of Autoregressive Conditional 
Heteroscedasticity, ARCH, models was introduced by Engle (1982) and later 
generalized by Bollerslev (1986) to GARCH. Further applications as the IGARCH 
and EGARCH have been developed to capture both linear and nonlinear 
dependencies in the second and higher moments. 

The body of research on ARCH has grown extensively since the seminal 
paper of Engle (see Bollerslew et al. 1992 for an extensive survey). Although the 
implementation of ARCH means a huge methodological step forwards, there have 
been some doubts about its ability to capture all the nonlinearity within time series. 
Hsieh (1988), for example, concludes that time-varying means and variances are 
not sufficient to account fully for the leptokurtosis in exchange rates, but that a 
flexible stochastic GARCH model with time varying parameters explains the 
nonlinearity of the data (Hsieh 1991). 

There is a possibility that even the ARCH modelling is too simple to capture 
the true nature of the stochastic process driving financial markets. More 
complicated nonlinearities could lead to the methodology of complexity and 
chaos, which has been applied in a number of scientific fields. 

In particular, the abrupt huge changes in financial time series as the stock 
market crash of 19 October 1987 have fostered the idea of extending the 
methodology of explaining time-dependence in volatility in financial data to 
deterministic chaotic dynamics. In time-series models as Box-Jenkins and the 
family of GARCH, the economy has a stable momentary equilibrium but is 
constantly being perturbed by external shocks. The behaviour of economic time 
series comes about as a result of these external chocks. In chaotic models, the time 
series follow non-linear dynamics, which are self-generating and never die out. 
The fact that the fluctuation in financial time series can be internally generated is 
highly appealing, especially since it has been very difficult to find the theoretical 
framework in economics for explaining the GARCH approach in modelling non
linearity. 

Chaos can be searched for using the method of correlation dimension 
proposed by Grassberger and Procaccia (1983). Unfortunately, this method 
requires large data sets, which are available in natural sciences but not in 
economics and finance. It also lacks a statistical theory for hypothesis testing 
(Hsieh 1991). Brock, Dechert and Scheinkman (1987) have developed a related 
method from the correlation dimension called the BDS statistic. It tests the null 
hypothesis that a time series is lID against an unspecified alternative using a 
nonparametric technique. This statistics has been shown to have good asymptotic 
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and finite sample properties and good power against chaotic behaviour and most 
nonlinear structures. Thus, the BDS test is applied in this study to test the 
adequacy of fit of the estimated models. 

The outline of the study is the following. Section 3 deals with twelve markka
denominated exchange rates, section 4 with thirteen short-term interest rates, 
section 5 with the long-term interest rate and section 6 with the general stock 
market index. The same estimation procedure is carried through for all rates. 
Pooling is used to force the individual rates within groups into the same process, 
which then is used in forecasting. In section 8 covariances within groups and 
between groups of rates are calculated in two ways: first by assuming dependence 
between the autocorrelation functions of conditional variances and covariances 
and second by assuming constant conditional correlation within periods. Based on 
the estimation results on pooled data, conditional forecast formulas are developed 
in section 9 for variances and covariances both within groups and between groups. 
The ad hoc based selection of the sample period and the weight structure for 
historical estimation of variance commonly used in value-at-risk model 
applications, is herewith replaced by a theoretically and empirically founded 
formula. 
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2 Methodology 

The usual underlying assumption in V AR model applications is that financial 
return series follow a random walk data generating process with a normal 
frequency distribution and a constant variance. It is, however, known that changes 
in financial time series exhibit clustering, meaning that the unconditional 
frequency distribution differs from the normal in having fatter tails and a higher 
peak around the mean. These statistical features are interpreted as signs of a time
varying variance. In this study the stylized facts empirically found in the rates are 
modelled using the GARCH methodology of Engle (1982) and Bollerslev (1986). 
The model identification allows the construction of new time series in the form of 
GARCH standardized residuals, which should be normal, or at least much closer 
to normal than the random walk residuals. The normality of the transformed 
residuals also justifies and allows the making of probability statements on 
confidence intervals of expected future variances. 

This study covers a group of twelve markka denominated exchange rates, a 
group of thirteen money market interest rates, the long-term interest rate and the 
general stock market index. The risks in a portfolio are not only measured by the 
variances of the individual rates, but also of covariances of pairs of variables. The 
variances of these twenty-seven rates should therefore be estimated in a 
multivariate framework. The multivariate GARCH model is developed in 
Bollerslev, Engle and Wooldridge (1988) and can, in principle, be estimated 
efficiently by maximum likelihood. However, the number of parameters in the 
general form may be very large. Although more or less plausible restrictions, such 
as assuming the parameter matrices to be diagonal, can be imposed to reduce the 
dimensionality of the parameter space, a complete multivariate GARCH for the 
amounts of rates in this study is too big to be elaborated. We, therefore, first apply 
the univaraite GARCH model to the individual rates, and thereafter estimate the 
covariances in two ways. First, by assuming equality between the autocorrelation 
structure of the conditional variances and covariances, the univariately estimated 
parameters of the conditional variance models are used in identifying the 
conditional covariances. Second, by assuming constant conditional correlations as 
proposed in Bollerslev (1990), the conditional covariances are estimated using the 
joint information on the correlation coefficients of the standardized GARCH 
residuals and the univariate conditional variances. The first method is applied in 
estimating the covariances within groups, while the second is also applied in 
estimating the covariances between groups. 

In the univariate estimation the same methodology is applied to daily changes 
in all rates. The estimation period, I January 1987 - 31 December 1995 was 
divided into three non-overlapping subperiods to account for structural changes 
trigged by realignments in the Finnish markka. Pre-whitening of the data was 
applied when found necessary to remove linear dependence. Prior to model 
specification, unit root tests were applied to grant stationarity in mean. Next the 
mean equation identification was performed and the parsimonious GARCH(l, 1) 
model was estimated for all rates. The goodness of fit is evaluated using the BDS 
statistics along with the usual statistical tests. Pooled data within periods is used to 
force individual rates within periods into the same process. The method of 
principal components is used to detect common factors driving the high-frequency 
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stochastic processis. Spectral analysis is performed to identify the lenght and 
regularity in the cyclical behaviour of the estimated conditional variances and their 
principal components. Since there turned out to be a great likeness in the 
univariate estimation results within groups of rates, GARCH estimation on pooled 
data was applied to force the rates within groups into the same model. 
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3 Exchange rates 

3.1 Markka-denominated rates 

Most studies dealing with modelling the probability distribution of· foreign 
exchange rates concentrate on the behaviour of dollar-denominated rates. This 
study deals with the markka-denominated exchange rates which measure the 
exchange rates as the domestic price of foreign currency. Results from rates 
denominated in other currencies are not necessary appIlcable to markka
denominated rates due to a different institutional structure affecting the rate 
generating process and also due to the Finnish market which is small in scale and 
scope. Three studies, to our knowledge, deal with markka-denominated rates 
(Ahlstedt 1990 and 1995, Sulamaa 1995). Some of these earlier results (Ahlstedt 
1995), not repeated here, are referred to in the sections covering the empirical 
work. 

3.2 Frequency 

It is a well documented empirical result that certain distributional properties of 
financial time series, such as heteroscedasticity and leptokurtosis, decrease with 
frequency. Under temporal aggregation, convergence to unconditional normality 
occurs (Nerlove et al. 1988), so that one-month changes display less time-varying 
volatility and are closer to normality than one-week changes (on a monthly level), 
which, in turn, are closer to normality than daily observations. For exchange rates, 
even intra-day prices are quoted. In the intra-day quotations, the volumes and 
prices of exchange rates are determined at points where supply and demand are in 
balance. These momentary equilibrium points are reached at numerous discrete 
points in time during on-going trading. The quoted prices on the way towards the 
long-term eqUilibrium mirror the traders reaction to news coming into the markets. 
An attempt to explain these stylized facts in foreign exchange rate movements has 
been sought in common factors. For low frequency data, international economic 
variables have been tested and for high frequency data, the source of the pattern of 
variability has been sought in the news arrival process in the form of either meteor 
showers or heat waves (Engle, Ito and Lin 1990). 

The purpose of this study, however, is to quantify, using time series 
techniques to model time-varying conditional variances, the inherent riskiness of 
short-term changes in the values of the banks' portfolios, which are marked to 
market on a daily bases, and therefore, the daily frequency is selected for the data. 
High frequency common factors will be tested for using principal components 
analysis on estimated daily variances. 

12 



3.3 Structural changes 

Since this study also deals with the interaction between exchange rates and interest 
rates, the data used is extended backwards to cover the longest possible common 
interval for these rates in the data base at the Bank of Finland. This period is 1 Jan. 
1987 - 31 Dec. 1995. The period (Figure 1) includes a 4 % revaluation of the 
Finnish markka basket 17 Mar. 1989, a 12.30 % devaluation on 15 Nov. 1991 and 
the transition into a floating regime from 8 Sep. 1992 onwards. At the beginning of 
the floating, there is a period of large followed by a period of depreciation 
strengthening of the Finnish markka. To account for possible structural shifts 
generated by the the sample period change in the exchange-rate regime, is divided 
into two main periods: one covering the pegged regime, 1 Jan. 1987 - 5 Sep. 
1992, and the other covering the floating regime, 8 Sep. 1992 - 31 Dec. 1995 
(Figure 1). As our goal is not to explain the effects or the transmission mechanism 
of structural shocks or to forecast turning points, pre and post data around shifts in 
exchange rate regimes are excluded. 

Figure 1. External value of the markka 

144 7,1 

136 6,7 

128 6,3 

120 5,9 

112 5,5 

104 5,1 

96 4,7 

88 4,3 

80 3,9 
77 79 81 83 85 87 89 91 93 95 97 

1 The Bank of Finland currency index (left scale) 
2 Markka value of the Eeu from 7 June 1991 (right scale) 

The data consists of daily observations on log changes of closing rate bid-ask 
midpoint. Weekends and holidays were omitted. Monday is taken as the next day 
after Friday. Weekend or weekday effects have not been found (Ahlstedt 1990) in 
the exchange rates or interest rates. First differences are used referring to 
numerical studies on dollar rates, which show that higher order differencing is not 
necessary to reach stationarity (Chappell and Padmore 1995). For the markka's 
pegged period this is most certainly true, since the goal of the intervention 
mechanism is the stability of the currency. 
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Exchange rates included in this study are the twelve major currencies USD, 
GBP, SEK, NOK, DKK, DEM, NLG, BEF, CHF, FRF, ITL and JPY, whose 
markka-values display the following special features during the period under 
consideration which may well have affected the final variance-covariance 
estimates to be presented in this study. 

Rates Special volatility features 

ALL All series have huge peaks at 15 Nov. 1991 devaluation and 8 Sep. 1992 shift to the 
floating regime 

USD the magnitude of the changes in the USD exchange rate is bigger compared to the 
changes in the ERM currencies 

GPB peaks at joining the ERM 8 Oct. 1990 and turbulence and excess volatility at exit 
from the system 16 Sep. 1992 

SEK increased volatility at the time preceding transition to the floating regime in 
September 1992 

NOK increased volatility at the time preceding transition to the floating regime in 
September 1992 

DKK high volatility in connection with the turbulence among the crises in the ERM and the 
other Nordic currencies in September 1992 but staying in the ERM band 

DEM 3 % revaluation 12 Jan. 1987 

NLG 3 % revaluation 12 Jan. 1987, high volatility in connection with the ERM crises in 
September 1992 

BEF 2 % revaluation 12 Jan. 1987; increased volatility in September 1992 

CHF turbulence in September 1992 

FRF turbulence in September 1992 as for the other ERM currencies DKK, BEF, NLG and 
CHF 

IlL the lira's band was narrowed from 6 % to 2.25 % 5 Jan. 1990, the effects of which can 
clearly bee seen in reduced volatility; 3.5 % devaluation 14 Sep. 1992 and excit from 
the system 16 Sep. 1992 and left floating 

JPY increased volatility at the time of unstability in the Nordic currencies and the ERM 
system early autumn 1992 but for a longer period 

As expected, currencies within the ERM system tend to have lower variances than 
USD and JPY, which float freely. 

Preliminary statistical analysis to test the hypothesis of a normal distribution 
with zero mean and a constant variance for the twelve exchange rates covering was 
conducted both main periods. Since the test values are extremely sensitive to even 
a single outlier, the observations of the revaluation and devaluation trading days 
within this period strongly affect the descriptive statistics. 

For the first main period, 1 Jan. 1987 - 5 Sep. 1992, the hypothesis of zero 
mean could not be rejected on a 95 % confidence level. The skewness and 
leptokurtosis measures are high. To control for the possible effects of structural 
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breaks, the pegged period is further divided into two subperiods where the 
dividing date is the revaluation date 17 Mar. 1989. 

The full series were accordingly split into three non-overlapping sub-series 

the pegged period 

the floating period 

Han. 1987 - 16 Mar. 1989 
21 Mar. 1989 - 5 Sep. 1992 

8 Sep. 1992 - 31 Dec. 1995 

The re alignments are treated in two alternative ways, they are either used to divide 
the data into three periods or their effects are captured by dummy variables, that is, 
within the second pegged period. The skewness figures are neglible in all periods 
except the second pegged period, which includes the realignment. 

3.4 The pegged period 

3.4.1 First subperiod 1 Jan. 1987 - 16 Mar. 1989 

Summary statistics for the two subperiods 1 Jan. 1987 - 16 Mar. 1989 and 21 Mar. 
1989 - 5 Sep. 1992 show that the data for the first period is much closer to a 
normal distribution than the data for the latter. In most cases, the skewness 
measure does not significantly differ from that of the theoretical distribution. 
Mean percentage change of spot exchange rates is significantly different from zero 
only for SEK, NOK and ITL. 

While the magnitude of the excess kurtosis for the first subperiod is only a 
fraction of the measures for that latter subperiod, it is nevertheless significant for 
all currencies. Kurtosis in the unconditional distribution may be seen as indication 
of conditionality in the second and higher moments. 

The later subperiod for the first main period 21 Mar. 1989 - 5 Sep. 1992 
includes the devaluation of 15 Nov. 1991. Although the actual day and nearby 
devaluation days are excluded from the data, spill over effects from the devaluation 
remain. The subperiod ends with the volatile markets preceding the switch from a 
pegged basket regime to the floating regime for FIM, SEK and ITL. It also covers 
the GBP joining the ERM system and the period preceding its exit from the 
system. This turbulence can be seen in the higher figures for variances in all 
currencies, except for the FRF and ITL. The skewness measures differ 
significantly from zero for all currencies but the JPY. This means that during this 
period extreme values have occurred more often than they do in the theoretical 
distribution. The figures for excess kurtosis are, as a rule, very high in this set of 
the data. USD and JPY display less kurtosis, although it remains statistically 
significant. 

For floating period, 8 Sep. 1992 - 31 Dec. 1995, the hypothesis of a zero 
mean rate of depreciation is rejected only for the ITL. The skewness measures 
differ significantly from zero for all currencies except DKK, NLG and BEF. All 
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excess kurtosis measures differ significantly from zero. Thus, most of the 
empirical unconditional distributions appear to display assymetries and have fat 
tails relative to the normal. 

The magnitude of the variances are, as expected, largest for the floating 
regime period. 

Next we proceed to the modelling the conditional variance. Estimation of the 
ARCH process depends on the specification of the conditional mean equation. 
Since first differencing produces stationarity, log changes of the exchange rates 
could be initially expressed as 

(13) 

where Rt = In(Xt) denotes the natural log of the original series, Xt, ex is a constant 
and Et is a zero mean error term. Under a serially uncorrelated and homoscedastic 
error process, Rt follows a random walk, possible with a drift. The results for each 
series Rt reveal the constant to be insignificantly different from zero, confirming 
the absence of a deterministic trend or drift. There is no evidence of serial 
correlation in the residuals with the exception of the ITL. The ITL Ljung-Box test 
statistics of linear serial correlation for lags up to five are highly significant. The 
Jarque-Bera normality test statistics is significant for all currencies except CHF, 
which lends support to earlier results showing deviation from normality in the 
form of leptokurtosis and skewness. 

These deviations from normal errors may be evidence that the Et'S are not 
independently distributed across time, although they as such these non-normalities 
do not run counter to the assumption of a martingale process for exchange rates. 
The graphs of the logarithmic differences show clustering, which, on balance of 
the evidence is typical for high frequency dollar-denominated exchange rate data. 
Thus, there is a tendency for daily exchange rate changes to be followed by large 
residuals and small changes by small ones, but of unpredictable sign. This type of 
behaviour, as well as various other sources of heteroscedastic behaviour, can be 
modelled using ARCH(q) and GARCH(p,q) processes developed by Engle (1982) 
and Bollerslev (1986, 1987), which explicitly allow for this type of temporal 
dependence by parameterizing the conditional variance as a function of the past 
squared residuals and the past conditional variances themselves. 

Bollerslev et al. (1992) suggests that the inclusion of one period lag for the 
squared innovations E~ and conditional variance ht respectively, in the variance 
functions, ie GARCH(I,I) model, is usually sufficient to capture most of the 
conditional heteroscedasticity in financial market returns data. This is also 
confirmed by previous results for the markka-denominated exchange rates and 
interest rates (Ahlstedt 1990, 1995). Consequently a GARCH(1,I) structure is 
assumed 

(14) 
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If the value of the parameter ~l is insignificantly different from zero then the 
process is an ARCH-model. If (Xl is zero we have a process that only depends on 
its past history. If both (Xl and ~l are zero, E j is simply white noise. 

The GARCH model was estimated by the method of maximum likelihood 
assuming conditional normality. The Jarque-Bera normality test statistics, 
however, strongly rejects the null hypothesis of normal errors. Conditional 
normality is not, however, necessary for the consistency and asymptotic normality 
of the estimators (West and Cho, 1995). Most usefully, then, the MLE based on 
normal density in equation (14) may be given a quasi-likelihood interpretation. 

The results of the GARCH-estimationare shown in Table 1. The models were 
hard to iterate to convergence. A large amount of iterations were necessary. Based 
on the Ljung-Box test statistics for the ITL, the lagged endogenous variable is 
included in the mean equation for this currency. The drift parameter in the 
variance equation (Xo is statistically significant for all currencies. Both the ARCH
parameter (Xl and the GARCH parameter ~l are significant in all equations. 

Table 1. GARCH-estimation of the volatility of foreign exchange 
rates 1 Jan. 1987 - 16 Mar. 1989 (t-statistics in 
parenthesis) 

USD 0.1341·E- 5 0.0883 
(2.47) (3.29) 

GBP 0.1764·E-6 0.0305 
(2.04) (2.97) 

SEK 0.3315·E-7 0.0733 
(2.23) (4.35) 

NOK 0.1363·E-6 0.0757 
(2.64) (3.51) 

DKK 0.5654·E-6 0.1271 
(3.17) (3.11) 

DEM 0.2490·E-6 0.1468 
(4.04) (4.67) 

NLG 0.2207·E-6 0.1479 
(3.16) (4.50) 

BEF 0.1489·E-6 0.0914 
(2.62) (3.84) 

CHF 0.3854·E-6 0.0756 
(1.62) (2.85) 

FRF 0.1630·E-6 0.1054 
(2.62) (3.99) 

ITL 0.4655·E-5 0.2284 
(9.82) (4.30) 

JPY 0.1208·E-5 0.0925 
(2.62) (3.18) 

131 ARCH(1 ,1) 

0.8661 
(23.37) 

0.9473 
(52.78) 

0.9011 
(43.49) 

0.8868 
(27.81) 

0.7070 
(9.89) 

0.7896 
(23.86) 

0.7967 
(21.78) 

0.8601 
(26.25) 

0.8659 
(17.33) 

0.8355 
(20.95) 

0.3007 
(4.69) 

0.8094 
(14.12) 

test 

2.20 

5.46 

8.75 

2.30 

11.32 

30.83 

25.77 

32.51 

21.96 

18.30 

47.95 

2.62 

Ljung-Box test statistics 

LAG(1) LAG(2) LAG(3) LAG(4) LAG(5) 

1.72 1.83 1.83 2.83 3.98 

1.01 2.45 4.24 4.33 4.68 

6.97 7.70 8.83 9.03 12.80 

2.87 6.86 8.63 8.69 8.71 

0.10 2.79 4.35 4.40 4.41 

0.92 2.96 3.37 4.19 5.27 

0.57 1.64 1.64 2.12 3.89 

0.48 4.57 4.99 6.63 9.75 

0.41 4.61 4.90 5.41 5.45 

0.41 0.54 0.87 4.29 5.34 

57.44 59.95 64.02 64.41 66.54 

0.51 2.81 3.44 3.56 3.72 

17 



The effect of the squared surprises, or shocks, on the variance is measured by the 
parameter al' The magnitude of the impact is very similar for the freely floating 
currencies USD and lPY and the European currencies besides the ITL, which has a 
pattern of its own. The sum of the parameters a1 and PI is close to one, thus 
indicating a GARCH process integrated in variance or a GARCH process with 
persistance in the sense of Engle and Bollerslev (1986).1 In such an persistent 
variance model, the current information remains important for the forecasts of the 
conditional variance for all horizons. 

An extension of the GARCH model to the regression framework is the 
GARCH-in-Mean (GARCH-M) model proposed by Engle, Lilien and Robbins 
(1987). Applications in finance of the GARCH-M model is employed to capture a 
linear relationship between return and variance, ie risk according to the 
intertemporal capital asset pricing model of Merton (1973) (Mills 1993, p. 137) 

Rt-Rt_1 =Yo+Y lA +Et 

2 
ht=ao + a 1Et_1 + Pl~-1 

(15) 

The conditional standard deviation (or variance) is included as an explanatory 
variable in the mean equation. The impact of the standard deviation on returns is 
interpreted as a time-varying risk premium. 

To test for the existence of time-varying risk premia in the foreign exchange 
market and to ensure the selection of the right model, a GARCH(1, 1), a 
GARCH(I,I)-M model was also tested for comparison. The results showed that 
the parameter values Y1 for the risk-premium term are not statistically significant. 
These results coincide with the outcome of other studies dealing with other than 
markka-denominated exchange rates (for example Chappel and Padmore 1995) 
where no risk premium was found when modelling the return over riskless yield. 

According to portfolio theory, or the Capital Asset Pricing Theory, the risks in 
the portfolio are not only captured by the variance of the individual currencies but 
also by their covariances. One way to estimate the covariances would be to move 
from the univariate framework to multivariate modelling. Theoretically, the 
multivariate case is a direct generalization of the univariate model with the 
exception that an entire variance-covariance matrix is modelled. The problem is 
that a the number of parameters in the general form may be too large for the 
approach to be practically feasible. Although various restrictions can be imposed 
to reduce the dimensionality of the parameter space, a multivariate GARCH for a 
system of twelve exchange rates is considered too large to be elaborated. 

An alternative method to the multivariate GARCH for investigating the 
simultaneous dependence between rates is to use principal component techniques 
to test for common factors driving the individual exchange rate variances hit. The 
underlying assumption is that exchange rate movements depend on a common set 
of international variables observable only at certain frequencies (Bollerslev 1990). 
If the common factors are macroeconomic variables, they are relevant only at high 
frequencies. If the common factors are to be found in the news arrival process, 

ISee Nelson (1990a) for a general analysis of persistance and convergence in GARCH(1,l) 
models. 
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they are relevant only on high frequencies. Through the GARCH model, then, we 
can predict how the exchange rates react to shocks or news, with the principal 
component method we try to identify the shocks. 

The principal components were calculated for the conditional variances hi,! for 
the twelve rates. The eigenvalues and the cumulative fractions of variance 
explained are shown in Table 2. When the variables are highly correlated and form 
a homogenous group, the first principal component explains more than 90 % of the 
total variation. This is usually the case for a set of macroeconomic variables. The 
results presented in Table 5 indicate that the variances within the group of 
exchange rates are more heterogenous, and the total variance cannot be 
concentrated into a few common factors as for macroeconomic variables. The 
fraction of explained variance for the exchange rates starts from 50 % for the first 
principal component and grows then approximately 10 % for every additional 
component. The factor loading values of the individual variances show that the 
variance of USD dominates the first principal component with a value of 0.815. 
The GARCH estimation results of the exceptional behaviour of the ITL are 
confirmed also in the principal component calculations. The factor loading values 
of ITL are only 0.152 and 0.036, thus showing practically no correlation with any 
of the two first principal components. The removal of this currency would increase 
the fraction explaned by the first components. 

Table 2. Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
Foreign exchange rates 1 Jan. 1987 - 16 Mar. 1989. 

Component Eigenvalue Cumulative R-Squared 

1 5.5140 0.4595 
2 1.5249 0.5865 
3 1.3212 0.6966 
4 0.9697 0.7775 
5 0.8193 0.8457 
6 0.5164 0.8888 
7 0.4753 0.9284 
8 0.0118 0.9294 
9 0.0767 0.9358 
10 0.1658 0.9496 
11 0.2974 0.9744 
12 0.3068 1.0000 

Using spectral analysis on both the individual conditional variances and the 
principal components, we can decompose the observed time-variability of the 
conditional variances or of the principal components into contributions from 
periodic cycles at different angular frequencies (and, hence, of different cycle 
lengths). Furthermore, visual inspection of the power spectra provides us with 
potentially a powerful tool for identifying the autocorrelation structure of the 
underlying process generating the observed time variability of the conditional 
variances, and ultimately the process itself. Finally, spectral analysis may prove 
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useful in constructing optimal filters to remove specific cycles of a given length 
from the data. 

Now, the overall shape of the power spectrum of the first principal component 
(Figure 2) of the conditional variances gives us evidence of persistence in the 
component, ie the general shape of the spectrum resembles that of a positively 
autocorrelated process. FurtherIilore, additional contributions to the time
variability of the conditional variances come from cycles with frequencies in the 
range 0,0224-0,0561 radians or 0,0036-0,0089 cycles per day (corresponding to 
wavelengths between 112 and 280 days). Given the shape of the spectrum, 
however, cycles within this range need not be all that regular. 

Figure 2. Spectral density function of the first principal 
component of conditional variances of foreign exchange 
rates 1 Jan. 1987 - 16 Mar. 1989 
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3.4.2 Second subperiod 21 Mar. 1989 - 5 Sep. 1992 

The results of the GARCH(I,I) estimation for the second subperiod, 21 Mar. 1989 
- 5 Sep. 1992, of the pegged regime are shown in Table 3. This period includes a 
12.3 % devaluation of the Finnish markka on 15 Nov. 1991. The effects of this 
realignment of the markka are modelled by three dummy variables, which take the 
value one for the actual devaluation day and the two supsequent days, respectively . 

. The estimated coefficients for the dummy variables show a devaluation effect of 
13 % for the actual devaluation day, a strengthening of 4 % on the following day 
and a weakening of 1 % on the third day. The cumulative effects of the three days 
amount to a 10 % strengthening of the other currencies against the markka. 

The ARCH coefficient is significant for all currencies. The GARCH 
parameter is not significant for GBP and CHE The change in the pattern of the 
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Table 3. GARCH-estimates of the volatility of foreign exchange rates 21 Mar. 1989 - 5 Sep.1992 (t-statistics in parenthesis) 
Estimation with 3 dummy variables 

0 0 0 1 ~1 D1 D2 D3 ARCH(1,1) test Ljung-Box test statistics 

LAG(1) LAG(2) LAG(3) LAG(4) LAG(5) 

USD 0.7865·E-6 0.0679 0.9187 0.1299 -0.0495 0.9870·E-2 0.66 2.48 3.45 7.02 7.09 7.80 
(2.21) (5.02) (59.2) (18.93) (7.21) (1.44) 

GBP 0.9137·E-5 0.2004 o . 0.1280 -0.0364 0.8440·E-2 12.77 0.18 3.99 4.39 10.57 12.38 
(5.02) (38.31) (10.91 ) (2.52) 

SEK 0.5207·E-7 0.0506 0.9280 0.1285 -0.0346 0.0131 6.88 6.07 6.07 8.69 9.49 9.57 
(5.16) (6.53) (100.68) (83.22) (22.39) (8.48) 

NOK 0.263H-7 0.0619 0.9286 0.1291 -0.0357 0.0113 9.66 8.36 8.40 14.55 29.14 30.77 
(6.78) (120.12) (86.40) (23.86) (7.57) 

DKK 0.1645·E-6 0.0590 0.8975 0.1302 -0.0361 0.0116 7.52 3.64 4.64 6.23 6.23 6.24 
(4.40) (5.83) (57.18) (66.06) (18.34) (5.90) 

DEM 0.6303·E-7 0.0615 0.9229 0.1303 -0.0348 0.0102 4.23 0.89 1.20 2.95 6.19 8.42 
(3.00) (7.34) (91.51 ) (66.16) (17.67) (5.18) 

NLG 0.8201·E-7 0.0701 0.9095 0.1303 -0.0348 0.0103 10.65 2.13 3.12 4.10 9.60 12.84 
(3.71) (7.22) (81.73) (65.95) (17.63) (5.22) 

BEF 0.1212·E-5 0.1023 0.5968 0.1300 -0.035 0.0114 68.48 8.02 9.64 10.10 11.24 12.11 
(5.07) (5.40) (8.64) (63.63) (17.30) (5.59) 

CHF 0.1113·E-4 0.1061 0 0.1310 -0.0342 0.9660·E-2 2.55 0.21 4.57 8.10 8.56 9.40 
(24.61) (5.33) (37.16) (9.71 ) (2.74) 

FRF 0.1139·E-6 0.0585 0.9050 0.1299 -0.0352 0.1173 3.03 1.26 2.79 4.20 5.04 5.38 
(4.52) (5.94) (66.03) (72.98) (19.76) (6.59) 

ITL 0.9295·E-6 0.1101 0.7120 0.1297 -0.0358 0.0111 7.48 33.03 33.73 33.93 34.51 35.12 
(2.95) (4.26) (9.18) (56.39) (15.55) (4.84) 

JPY 0.7420·E-6 0.0790 0.9009 0.1288 -0.0428 0.5930·E-2 0.03 0.74 0.74 0.80 1.66 1.67 
(2.49) (3.96) (39.09) (23.10) (7.68) (1.06) 



variance of the GBP is explained by the fact that the period includes the entry and 
exit from the ERM of the GBP. The sum of (Xl and ~l is, strictly speaking, less than 
one suggesting that the underlying variance processes are weakly stationary. In 
most cases, however, the sum of the parameters is very close to one. 

The values of the estimated principal components appear in Table 4. The 
fractions explained are almost identical to the previous subperiod of the pegged 
regime. The dominant currency is, however, not USD but DEM (and DEK and 
NLG because of their strong correlation with DEM). 

The spectral density functions of the individual conditional variances peak at 
180,430 and 860 days. This is also confirmed in the spectral density function of 
the first principal component (Figure 3). At this period, the second and third peak 
frequency seem to be harmonics of the first one. 

Table 4. 
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Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
Foreign exchange rates 21 Mar. 1989 - 5 Sep. 1992. 

Component Eigenvalue Cumulative R-Squared 

1 5.5139 0.4594 
2 1.6188 0.5944 
3 1.2500 0.6985 
4 0.9555 0.7781 
5 0.8184 0.8464 
6 0.5995 0.8963 
7 0.4758 0.9360 
8 0.5208 0.9794 
9 0.1007 0.9878 
10 0.0200 0.9894 
11 0.0717 0.9954 
12 0.0543 1.0000 



Figure 3. Spectral density function of the first principal 
component of conditional variances of foreign exchange 
rates 21 Mar. 1989 - 5 Sep. 1992 
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3.5 The floating period 

The floating regime of the markka is analyzed here more thoroughly, because 
forecasting will be based on the estimates of the conditional variances for this 
period. The estimates for the pegged period are used' for comparing the volatility 
estimates across regimes. These comparisons may prove useful, since formally 
markka's free float come to an end on 14 Oct. 1996, when it entered the ERM. The 
institutional circumstances cind obligations of the membership of ERM are 
presently closer to those of the floating period than to the earlier pegged periods, 
however. 

Statistical stationarity tests were performed for the floating period 8 Sep. 
1992 - 31 Dec. 1995. The Weighted Symmetric "t test, the augmented Dickey
Fuller "t test and the Phillips-Perron Z-test were employed both for the logs of 
exchange rates and the log differences. The estimated test statistics for the levels 
imply that the hypothesis of a unit root cannot be rejected, not even at a 1 % level 
of significance. The only value close to the 1 % critical value is the Dickey- Fuller 
t test for the USD; the other two statistics for this currency do not sustain 
rejection. Pantula (1985) has shown that the asymptotic distribution of the Dickey
Fuller statistics is invariant to ARCH, meaning that the test is asymptotically 
robust to autoregressive conditional heteroskedasticity. The Phillips-Perron test, 
on the other hand, was good finite sample properties and may thus be more reliable 
here. Based on all the test statistics for the first differences, the hypothesis of a unit 
root can thus be rejected. The presence of a trend, which is detected for the levels, 
cannot be found in the differences any longer. The tests support the presence of 
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one, and only one, unit root in the levels of the series. Thus, each series is 
appropriately made stationary by taking first differences. 

The results of the GARCH(1,l) estimation are presented in Table 5. The first 
turbulent days of the floating regime are omitted and the estimation period begins 
from 14 Sep. 1992. The ARCH-parameter (Xl is zero for DEM and IPY and 1 for 
BEE These values are set in the iteration process when the estimated values are 
reaching the boundaries of 0 and + 1 for the parameters. The constant (xo is 
significant for all currencies, but very small in magnitude. The sum (Xl + ~1 is close 
to one for most currencies; through the forcing of the (Xl parameter to its boundary 
value in the iteration, the sum of the coefficients is much higher than one for the 
BEE The parameter values for ITL indicate nonstationarity in variance. 

Table 5. GARCH-estimation of the volatility of foreign exchange 
rates 14 Sep. 1992 - 31 Dec. 1995 (t-statistics in 
parenthesis) 

USD 0.3189·E-5 0.0792 
(4.57) (4.87) 

GBP 0.1134·E-5 0.0393 
(3.53) (4.20) 

SEK 0.4929·E-8 0.0549 
(4.27) (5.03) 

NOK 0.2793·E-8 0.0670 
(4.43) (7.42) 

DEK 0.3186·E-5 0.4586 
(4.03) (14.77) 

DEM 0.1653·E-6 0 
(7.78) 

NLG 0.6442·E-7 0.1025 
(7.59) 

BEF 0.1568·E-6 
(6.20) 

CHF 0.4272·E-5 0.5814 

FRF 

ITL 

JPV 
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(7.72) (24.93) 

0.2884·E-5 0.2109 
(5.61) (6.91) 

0.8532·E-7 0.4615 
(17.41) (17.60) 

0.9024·E-9 0 
(11.98) 

[31 

0.8608 
(39.79) 

0.9225 
(59.51) 

0.9196 
(58.09) 

0.9292 
(139.94) 

0.5686 
(13.24) 

0.9859 
(699.75) 

0.8623 
(77.52) 

0.4677 
(36.17) 

0.3996 
(12.87) 

0.6612 
(14.86) 

0.6914 
(55.29) 

0.9898 
(1563.21) 

ARCH(1,1) Ljung-Box test statistics 

LAG(1) LAG(2) LAG(3) LAG(4) LAG(5) 

63.71 0.84 1.12 1.61 2.03 2.03 

64.60 0.51 2.20 18.04 20.16 22.65 

22.55 22.45 23.32 36.55 41.28 47.71 

30.06 8.12 8.40 9.35 11.54 22.94 

0.02 0.93 5.50 12.05 14.17 14.20 

26.20 4.85 4.87 14.68 14.93 14.94 

18.76 8.53 11.93 12.41 15.64 66.44 

6.93 10.79 26.02 43.04 44.87 52.81 

70.94 4.29 4.62 6.71 7.21 7.33 

74.82 0.14 3.54 7.18 7.35 7.60 

41.70 17.26 85.97 86.29 97.85 98.02 

26.51 1.32 4.54 9.57 9.58 14.10 



The principal components are presented in Table 6. Compared to the pegged 
period, the fraction explained is 10 % higher for the three first components. This 
indicates a greater homogeneity in the variance structures. The dominant 
currencies seem to be GBP and DEM. Visual inspection of the spectrum of the 
first principal component of the conditional variances (Figure 4) once again 
strongly suggests the variance processes are persistent. The spectrum decreases 
almost monotonically from its value at the lowest frequence of 0.00754 (radians 
per day, or 0.0012 cycles per day corresponding to a wavelength of 834 days) to its 
value at the Nyqvist frequency (n radians or V2 cycles per day, wavelength 2 days). 

Table 6. Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
Foreign exchange rates 14 Sep. 1992 - 31 Dec. 1995. 

Component Eigenvalue Cumulative R-Squared 

6.5713 0.5476 
2 1.5919 0.6802 
3 1.3205 0.7903 
4 0.9224 0.8671 
5 0.5081 0.9095 
6 0.4612 0.9479 
7 0.2909 0.9722 
8 0.1673 0.9861 
9 0.0773 0.9926 
10 0.0463 0.9964 
11 0.0381 0.9996 
12 0.0043 1.0000 
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Figure 4. Spectral density function of the first principal 
component of conditional variances of foreign exchange 
rates 14 Sep. 1992 - 31 Dec. 1995 
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3.6 Pooled data 

The main purpose of this study is to find a formula for the variance as a risk 
measure, which could be applied to all currencies. The results of the GARCH 
estimation for the individual currencies during both the pegged and the floating 
period show that there is a great similarity in the estimated parameter values of the 
variance process within periods. To evaluate the similarity between the individual 
conditional variance models, the sum <XI + PI for the variances in two periods were 
plotted against each other. In the first Figure in 5, the sum for the first floating 
period is plotted against the second pegged period. In the lower figure, the second 
pegged period is plotted against the floating period. The figures show clear 
clustering, which is interpreted as similarity between the individual parameter 
structures thus justifying pooling of the data. 
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Figure 5. The sum UI + PI for different periods plotted against 
each other 
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Next step then was to force the conditional variances for all the currencies into the 
same model by identifying a GARCH model on pooled data. In the estimation, the 
log differences for the individual twelve currencies were pooled separately for 
each period and a GARCH( 1,1) model was estimated on this data. The pooled data 
within periods was constructed by simply connecting the data on the individual 
currencies together. While this implies incorrectness in the data at the connecting 
points, given the huge amount of data, the impact of so few data points is 
considered to be negligible. 

GARCH(1,l) estimates the first pegged period 1 Jan. 1987 - 16 Mar. 1989 
are 

2 
ht=0.2692 *E-7 +0.0567£:t_1 +0.9406ht_1 

(7.69) (37.73) (953.01) 
(16) 
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To compare the goodness of fit of the pooled model to the individual models 
maximum values of the likelihood functions were calculated. The sum of the 
individual maximum likelihood functions is 31794, whereas the value for the 
pooled model is 31582 and the corresponding test statistics X744) statistics for the 
null of the same GARCH(1,I) model is 420. This is highly significant thus 
confirming the expectation of forcing leading to an inferior model. 

The impact of news given by the parameter a l = 0.0567 is not very strong. 
The persistence parameter, however, is ~l = 0.9406. The estimated mean lag of the 
variance expression, 1I(1-~1) equals 16,7 meaning that it takes more than 3 weeks 
for the shocks to come through in the model. The sum a l + ~l = 0.9973 indicates 
an integrated process. One way to measure how long the impact of the shocks 
stays in the process, that is the persistence, is to use the half-life figure A, which 
gives the number of days over which a shock to volatility diminishes to half its 
original size (Lamoureux and Lastrapes 1990). The half-life figure depends only 
on the sum of a l + ~l and is given by 

(17) 

For an integrated process, log( a l + ~l) approaches zero from below and the A 
value will be 00. This is an other way to express the typical feature in an integrated 
process that the impacts of the shocks into the variance will never die out but 
remain for ever. For the pooled data the sum a l + ~l gives a half-life value A = 257 
days. 

For the second subperiod 21 Mar. 1989 - 5 Sep. 1992 of the pegged regime 
the GARCH(I,l) estimates on pooled data were 

2 
ht =0.3813 *E-7 +0.1295D1-0.0361D2+0.0109D3+0.0621Et_1 +0.9353ht_1 (18) 

(13.41) (71.22) (32.37) (9.17) (32.19) (532.95) 

The estimated values of the ARCH and GARCH parameters are almost the same 
as for the previous subperiod. The models indicate a rather weak reaction of the 
conditional variance to shocks but a strong persistence. Even the values of the 
variance drift parameters are very close to one another. It is then reasonable to 
conclude that the behaviour of the exchange rates is homogenous all through the 
pegged period when the effects of the re alignments are eliminated. 

The sum of the values of the individual maximum likelihood functions was 
48089 and the value for the pooled data model was 47969. The X~79) was 240. 
Although this test statistics is also highly significant it is clear that the violence 
made to the data by forcing the same model to the individual exchange rates is 
much less during this period than during the others. 

The GARCH( 1,1) estimation on the pooled data for the floating period 
14 Sep. 1992 - 31 Dec. 1995 gave the following results 

2 h t =0.2642 *E-5 +0.1883et_1 +0.7556ht_1 
(24.79) (71.53) (169.51) (19) 
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The sum of the maximum likelihood functions for the individually estimated 
currencies is 47249 and for the pooled data 38013. The test statistic X~44) 18471 is 
highly significant, which rates the forced model estimated from the pooled data 
more inferior to the freely estimated individual models for this period than for the 
pegged period. 

The value of the aI' 0.1883, shows that the impact of news on the variance is 
much greater than during the pegged period. The impact of the lagged conditional 
variance dies considerably faster in this period than during the pegged period. The 
estimated mean lag of the variance expression, 1/(1- ~l)' equals 4.17 or about four 
days. The sum a l + ~l is 0.9439, which means that the model is highly persistent 
but strictly speaking not integrated. The half-life figure A. equals 13 days. The 
value of the estimated parameter of the drift in variance, ao, is much higher for the 
floating period than for the pegged period. 

If we look at the figure of the currency index (Figure 1) there is a clear turning 
point in the middle of March 1993. From the beginning of the floating regime, 
8 September 1992, there is a strong positive trend in the level of the index up to 10 
March 1993. From that date on a similarly strong negative trend can be seen. This 
kind of changes in the trend may have implications on the estimation results worth 
to be considered. Perron (1989) has suggested that the widespread evidence of unit 
root in the univariate representation of time series may be due to the presence of 
important structural changes in the trend function. The changes can occur in the 
intercept, in the slope or in both. Similarly, ARCH effects may occur due to 
misspecification of the mean of the process, or, to be more precise, of the 
markka's trend during floating. The trend reversal itself may be an indication of 
the markka overshooting its long-term value or of a shift in the intervention policy 
pursued by the central bank. In any case, the observed point of the trend reversal is 
taken as exogenously given, and to account for its possible effects on estimated 
volatility, the sample is split into two sub samples around this observed point. 

In the case of the currency index the hypothesis of an exogenously chosen 
break point is preferable especially when the turning of the slope occurred not 
slowly but after reaching a certain probably "overshooting" level, which may have 
trigged the intervention activity at the central bank (see Hung 1995 for a clearance 
of the effects of intervention strategies on exchange rate volatilities in US). There 
is a clear break point in the data found ex post, that can be interpreted as a sign of 
nonstationarity eg an unpredictable regime change. To account for this change in 
the regime the floating period was divided into two and new pooled estimations 
were made: one covering the upwards sloping period of the currency index and the 
other covering the downwards sloping period. 

GARCH(I,I) estimation for pooled data covering the period of the markka's 
trend depreciation, 14 September 1992 - 10 March 1993 gave the following 
results 

2 ht =0.2958 *E-2+0.3176et_1 +0.4455ht_1 
(8.54) (7.88) (7.30) 

(20) 

The results of the GARCH(1, 1) estimation on pooled data for the period starting 
with the break date 10 March 1993 and ending at 31 December 1995 are 
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2 ht=0.9189 *E-6+0.080get_1 +0.8847~_1 
(14.87) (18.16) (152.92) 

(21) 

The maximum value of the log-likelihood function for the whole floating period 
based on pooled data is 38013. The sum of the maximum values of the log
likelihood function for the subsamples is 38303. The value of the test statistics X2, 
which is strongly significant, indicates that the splitting of the floating period 
results in a superior model. The nonstationarity within the original full floating 
period is embedded in (xo. When accounting for the trend beak by allowing the 
constant to be freely estimated in the subperiods, we get considerably different 
values for (Xo' Also the values of (Xl and PI differ between subsets. The identified 
model for the upwards sloping period is far from integrated with (Xl + PI = 0.773l. 
For the downwards sloping period the sum is 0.9656 and the half-life figure A = 21 
days. 

The pooled model for the first pegged period 1 Jan. 1987 - 16 Mar. 1989 

2 ht=O.2692*E-7 +0.0567et_1 +0.9406~_1 
(7.69) (37.73) (953.01) 

and for the second pegged period 21 Mar. 1989 - 5 Sep. 1992 

2 ht =0.3813 *E-7 +0.1295D1-O.0361D2 +0.0109D3 +0.0621et_i 
(13.41) (71.22) (32.37) (9.17) (32.19) 

+0.9353ht_1 
(532.95) 

(22) 

(23) 

have very similar (Xl and PI parameter values and we therefore conclude that the 
same model is applicable for the whole pegged period. The estimated model for 
the downwards sloping floating period 

2 
ht =0.9189*E-6+0.080get_1 +0.8847~_1 

(14.87) (18.16) (152.92) 
(24) 

is also very close to the model identified for the pegged period. The F-test of 
equality of the coefficients estimated for different periods was calculated and 
turned out be highly significant thus rejecting the null hypothesis. Given the large 
number of observations in the pooled data, however, this formal rejection of the 
null is perhaps not surprising. We therefore have to lean on pure common sense 
judgement to justify the conclusion that the conditional volatility of exchange rates 
can be modelled as the same integrated process regardless of the exchange rate 
regime. The assumption of equality simplyfies the multivariate analysis 
considerably. 
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3.7 BDS-statistics 

The abrupt huge changes in financial time series especially in the stock market 
prices has fostered the idea that even GARCH modelling is too simple to capture 
the dynamics of the stochastic process driving the financial markets. This has led 
to attempt to apply the method of complexity and chaos to financial market data. 

Most applied studies on chaotic behaviour of financial time series deal with 
stock returns. The results are mixed. Chaos is found in some papers in US stock 
returns, while others dispute the claim. Chaos as a general model of German stock 
returns is also rejected (Booth et al. 1992). In an extensive study, Hsieh (1991) 
rejects the hypothesis that the weekly stock returns are llD. He tests various 
explanations for the rejection: linear dependence, nonstationarity, chaos and 
nonlinear stochastic processes. The cause can not be found either in regime 
changes or chaotic dynamics but rather to be conditional heteroscedasticity. 
Similar results are reported in a study by Booth et al. (1992) on Finnish stock 
returns. The paper concludes that the stock returns exhibit nonlinear dependence 
but that the form of dependence is not chaotic. The nonlinear behaviour in their 
data is best explained by a GARCH model. 

Although evidence for presence of deterministic chaotic generators in 
economic and financial time series has found not so far been very strong, the 
search for such generators has led to the development of new statistical tests 
(Brock et al. 1991) of which the most used one is the Brock, Dechart and 
Scheinkman BDS-test (Brock et al. 1987). 

The BDS statistics is a general test for model misspecification. It is a 
diagnostic test where a rejection of the null hypothesis of llD innovations is 
consistent with some type of dependence in the data. They may result from a linear 
stochastic system, a non-linear stochastic system, or a non-linear deterministic 
system, ie. chaos. Additional diagnostic tests are therefore needed to determine the 
source of the rejection (Mills 1993, p. 125). 

The asymptotic distribution of the BDS statistics, N(O,I), can approximate the 
finite sample distribution for 500 or more observations. The approximation 
appears uneffected by skewness or heavy tails. Simulations made by Hsieh (1991) 
confirm that neither the asymptotic nor the finite sample distribution of the BDS 
test is altered by using residuals instead of raw data linear models. This is not the 
case, however, when the test is applied to residuals from GARCH and EGARCH 
models. For these conditional variance models, the BDS test may reject too 
infrequently. Hsieh (1991) gives simulated critical values of the BDS statistic, to 
be used at 2,5 % and 97.5 % confidence levels for GARCH and EGARCH 
residuals. 

BDS-statistics figures for the standardized residuals of the mean equation of 
the log differences are reported in Table 7 for the entire floating period. For this 
data, the N(O,I) assumption of the distribution of the test statistics is applicable. 
There is strong evidence against the null hypothesis of llD for all series. 
Simulations made by Hsieh (1991) show that the BDS test has good power to 
detect at least four types of non-llD features: linear dependence, nonstationarity, 
nonlinear stochastic processis and low dimensional chaos. In our case, prefiltering 
of the data rules out linear dependence. Nonstationarity caused by structural 
changes are accounted for by division of the estimation period into three intervals. 
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What is left then is nonlinearity in mean and variance. To capture nonlinearity in 
mean, the GARCH-M(l,l) model was tested. The results showed that the MEAN 
parameter is not statistically significant for any currency. The GARCH(l,l) was 
postulated to capture nonlinearity in variance. If the GARCH model is correctly 
specified, the standardized residuals should be lID in large samples. To determine 
whether any remaining non-linear structure is present in the model the BDS test 
was applied to the standardized GARCH(l,l) residuals (Table 7). For five 
currencies, the null of lID cannot be rejected when we use the simulated critical 
value of Hsieh, which is 2.11 for m=2 and E/a = 0.5. For SEK, DKK, DEM, NLG, 
BEF, CHF and ITL the test finds. evidence of remaining non-linearity or 
deterministic chaos. These findings are much in line with results reported in the 
literature for dollar-denominated exchange rates. 

Table 7. BDS-statistics for exchange rates 
9 Sep. 1992 - 31 Dec. 1995, ID = 2, €I0 = 0.5 

USD 
GBP 
SEK 
NOK 
DKK 
DEM 
NlG 
BEF 
CHF 
FRF 
JPY 
ITl 

Standardized 
residuals 

5.32 
4.66 
9.55 
9.16 
7.22 
7.32 

13.92 
15.19 
8.19 
6.85 

16.26 
7.79 

GARCH
residuals 

0.88 
0.64 
7.99 
1.52 
2.79 
5.49 
2.90 
4.29 
3.13 
1.23 
1.00 
6.34 

3.8 Summing up for exchange rates 

So far we have shown that the stylized facts found in the FIM bilateral exchange 
rates can be modelled with a GARCH(1,I) process. Log-changes in the spot 
exchange rates are martingales, since conditional means are zero and there is no 
serial correlation. 

The ARCH and GARCH parameters are significant for all exchange rates. 
The sum of the estimated parameters in the conditional equation for the individual 
currencies is close to one thus indicating an integrated variance process. This is 
also seen in the model estimated on pooled data, which turned out to be integrated 
for all periods. The principal component analysis applied to the estimated 
conditional variances was used as a method to detect a common set of variables 
generating exchange rate movements. Spectral analysis was performed on the 
estimated principal components to assess and measure common cyclical behaviour 
for the variances. There is a peak in the spectral density functions of the individual 
variances hi,l and the first principal components at 180 days for both pegged 
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periods. The spectral density function of the first principal component for the 
floating period shows a peak at 420 days, but the overall interpretation of the 
density function is that of an at least persistent conditional variance process, 
perhaps even an integrated one. 

In VAR model applications, the most used assumption of the stochastic 
process in first differences of financial rates is that of a random walk generating a 
normal distribution with a constant unconditional variance. Although we know 
that the random walk model does not fit observed data as well as autoregressive 
conditional variance models, it does not necessarily mean that its average 
performance is inferior to the time varying models. The estimated integrated 
conditional model for exchange rates derived in this study indicates that a constant 
variance forecast may be a good approximation of the time varying model. The 
random walk model can be considered as a benchmark against which the more 
sophisticated changing volatility models can be compared (Heynen and Kat 1994). 

The alternative measures of the conditional, unconditional and sample 
variance of movements in the individual exchange rates can be summed up in a 
performance evaluation. The alternatives are 

GARCH(1,l) model conditional variance hi,t. (KUHl in Figure 6) 
GARCH(1,I) unconditional variance cxJ(1-(cx1 + ~l))' which also is the 
convergence limit for the conditional variance ht. (KU837 in Figure 6) 
sample variance constant for the peak frequency evaluated on the cyclical 
behaviour of the individual conditional variances ht and their principal 
components; 180 days for the pegged periods and 420 days for the floating 
period. (KU420 in Figure 6) 
sample variance calculated on quarterly data; the frequency selection is based 
on previous results (Ahlstedt 1990) where a subsample of 70 observations 
was found to be large enough to yield reasonable statistical efficiency, but still 
small enough to make it likely that the sample variance remains constant. 
(KU70 in Figure 6) 
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Figure 6. 
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Figure 6 shows the comparison between these four methods for the USD and the 
floating period. The GARCH unconditional variance seems to be a good mean 
approximation of the conditional variance. The dominant frequency for the 
floating period, 420 days, appears twice in the sample size. This two-step function 
also gives a good visual approximation of the mean of the conditional variance. 
The step-function formed by the 70-day sample period, ie. quarterly frequency, 
smooths out the huge swings in the conditional variance and seems to capture the 
basic pattern in the fluctuation of the variance. 

The corresponding variance measures are displayed in Figure 7 for GBP and 
the same floating period. 
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Figure 7. Conditional, unconditional and sample variance 
comparison: GBP, floating period 
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4 Conditional variance modelling of interest rate 
data 

4.1 The statistical distribution of interest rates 

ARCH has mainly been applied to interest rate data to explain relationships 
between long and short-term interest rates and to model the time-varying risk 
premium in future interest rates. The time-series variable to be modelled in these 
studies has been a measure of excess return of long-term yields over short-term 
yields or yields on corporate bonds over yields on credit risk-free Treasury bonds. 

Especially ARCH-M and GARCH-M models have been applied, where a 
function of the conditional variance is ,included as a regressor in the mean equation 
to measure the risk premium. These models have not, however, been very 
successful. The inclusion of a MEAN term usually makes variables which have 
previously been found significant, no longer so. As a result, the usefulness of the 
model has also been challenged both on theoretical grounds by Backus, Gregory 
and Zin (1989) and on empirical grounds by Mehra and Prescott (1985), who 
showed that ARCH effects are more closely related to forecast errors than to risk 
premium. 

Since most studies involving interest rates have, nevertheless, adopted 
GARCH(p,q) or GARCH-M(p,q) specifications, these models are selected also 
here. Usually the studies concentrate on yields, which are measured separately for 
individual bonds. The aim of this study, however, is to find a measure for interest 
rate risk in banks' portfolios without knowing the individual bond holdings. Thus, 
the statistical data for interest rates are used instead of yields. 

To include the entire term structure of interest rates for all currencies in the 
study is not feasible. One way of diminishing the number of variables to be 
considered, but at the same time allow, however, the inclusion of the behaviour of 
the entire term structure, would be to use the method of principal components. 
Through this method, the variances of all interest rates for one currency are 
transformed into three main variables describing changes, respectively, in the 
general level of the term structure and changes in the slope and curvature of the 
term structure (Karki and Reyes 1994). If the principal component method is used, 
then forecasting should accordingly concentrate on these changes in the behaviour 
of the curve. Since the objective of this study is to construct an estimate for the 
future behaviour of the rates themselves, we decided not to use the principal 
component method in this context. Instead, the solution to the problem with term 
structure coverage is sought by selecting one rate to represent all short rates up to 
one year. The correlation matrix for I-month, 3-month, 6-month and 12-month 
rates was therefore calculated. The 3-month rate was tested as to have the highest 
correlation with the other short-term rates and was consequently selected to 
represent the term structure of the interest rates up to one year. The domestic 3-
year rate was selected to represent the longer rates. 

The same main time periods as for the exchange rates were chosen. Although 
the structural changes on which the division is based is not as clear as for the 
exchange rates but it is however defendable (Figure 8). The daily changes in 
interest rates are expressed as differences proportional to the levels. The order of 
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differencing is dictated by the requirement of stationarity. To this end Weighted 
Symmetric 't" test, Phillips-Perron Z-test and the augmented Dickey-Fuller test 
were employed to levels and differences both for the pegged period 1 Jan. 1987 -
5 Sep. 1992 and the floating period 9 Sep. 1992 - 31 Dec. 1995. The hypothesis of 
a unit root in levels was not rejected, but was strongly rejected In first differences 
by all three tests for both periods and for all interest rates. The estimated p-values 
in differences for Type I error is zero for the pegged period. The largest p-value for 
the floating period is 0.005 % for ERGDP. Based on the results of the augmented 
Dickey-Fuller test we conclude that there is no trend or constant in the unit root 
process generating observed of interest rates. 

Figure 8. Key interest rates 

15 

5 r---+---~---r---r---+--~----~~+-~~--~ 

87 88 89 90 91 92 93 94 95 96 

1 Long-term bond rate (close to ten year) 
2 3-month Helibor 
3 I-month Helibor 

The interest rate differentials reveal, unlike the exchange rates, strong linear serial 
correlation measured by the Ljung-Box test statistics. The ARCH(1) test statistics, 
calculated from a regression of the squared residuals on the lagged squared 
residuals, were also significant for most series for all three periods. 

Prior to specifying GARCH-models for the interest rate series they had to be 
filtered from linear dependence. AR(p) models, p~5, were identified. The 
selection of the order p (Table 16) is based on the 1 % probability level for the 
Jung-Box test statistics. It would have been very convenient to use the same order 
of AR-filtering for all series. It was, however, found that over-filtering for some 
interest rates removed the significant GARCH effects in the data under lower order 
filtered data. To avoid the harmful effects on the data of over-filtering, therefore, 
the order of the linear autoregressive filtering models were chosen individually for 
all thirteen series. The test values for the residuals of these pre-filtered models 
show that the filtering process produced linearly independent data for all interest 
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rates with the exception of ERGBP. For ERGBP, even using 12 lags is insufficient 
to remove serial correlation during the first pegged period. 

Table 16. Selected order of pre-filtering. 3-month interest rates. 

Lags up to order AR(p) 

1.1.87 -16.3.89 21.3.89-5.9.92 8.9.92-31.12.95 

ERUSD AR(1) AR(1) AR(3) 
ERGBP AR(12)* AR(2) AR(3) 
ERSEK AR(2) AR(2) AR(5)* 
ERNOK AR(1) AR(3) AR(5) 
ERDKK AR(2) AR(1) AR(3) 
ERDEM AR(1) AR(2) AR(3) 
ERNLG AR(1) AR(1) AR(1) 
ERBEF AR(4) AR(1) AR(1) 
ERCHF AR(1) AR(2) AR(3) 
ERFRF AR(5) AR(4) 
ERITL AR(2) AR(2) AR(5)* 
ERJPY AR(1) AR(1) AR(1) 
ERFIM AR(1) AR(2) AR(4) 

* Linear dependence remaining in the pre-filtered data. 

Next step was to estimate A GARCH-M(I,l) model for both the pegged and the 
floating period. Based on the test results no constant term was included in the 
mean equation. For the floating period, the MEAN variable for only ERUSD was 
statistically significant. The inclusion of the MEAN, however, makes the 
GARCH-parameter insignificant, thus confrrming the results from other studies. 

4.2 The pegged period 

4.2.1 First subperiod 1 Jan. 1987 - 16 Mar. 1989 

Table 17 shows the results of GARCH(I,I) estimation for the first pegged period, 
1 Jan. 1987 - 16 Mar. 1989, on the prefiltered interest rate differentials of 
ERUSD, ERGBP, ERSEK, ERNOK, ERDKK, ERDEM, ERNLG, ERBEF, 
ERCHF, ERFRF, ERITL, ERJPY and ERFlM. In the iterative estimation, the 
ARCH parameter was set to its lower boundary value zero for ERDKK, which 
means that there is no impact of news on the variance process. The GARCH 
parameter for ERGBP and ERCHF were also set to the lower boundary value zero. 
For these two interest rates, then, past conditional variance does not help 
forecasting future conditional variances. 
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Table 17. GARCH (1,1) estimation of the volatility of 3-month 
interest rates 1 Jan. 1987 - 16 Mar. 1989 (t-statistics in 
parenthesis) (data multiplied by 100) 

ao a 1 13 

ERUSD 0.4374E-2 0.2885 0.1442 
(6.12) (4.53) (1.27) 

ERGBP 0.0294 0.1105 0 
(73.42) (2.55) 

ERSEK 0.1371E-2 0.2400 0.7390 
(4.37) (6.47) (25.79) 

ERNOK 0.1177E-2 0.1253 0.8481 
(2.49) (8.25) (41.37) 

ERDKK 0.8462E-5 0 0.9957 
(0.31) (1200.28) 

ERDEM 0.1516E-3 0.0927 0.8871 
(2.70) (3.85) (31.55) 

ERNLG 0.7243E-4 0.0947 0.8888 
(2.92) (4.68) (40.72) 

ERBEF 0.4927E-3 0.0930 0.8359 
(4.99) (5.60) (41.33) 

ERCHF 0.8482E-2 0.0892 0 
(19.93) (1.59) 

ERFRF 0.1237E-2 0.1766 0.7299 
(3.77) (4.39) (15.32) 

ERITL 0.5298E-2 0.2976 0.5605 
(5.07) (6.42) (9.56) 

ERJPY 0.1143E-3 0.0583 0.9080 
(2.14) (3.20) (38.19) 

ERFIM 0.6582E-4 0.2949 0.7559 
(4.83) (10.33) (38.97) 

The estimated models are (weakly) stationary in variance with the exception of 
ERFIM for which the sum at + Pt is 1.0508. This value is probably not 
significantly different from one, but the Finnish interest rate was anyhow excluded 
from the pooled data. In forecasting experiment, the domestic interest rate will be 
forced to follow the model which is estimated on the pooled data. 

In order to detect common factors driving the conditional variances of interest 
rates, principal components were estimated for the pegged periods. The 
eigenvalues and cumulative fraction explained by the components for the first 
pegged period are shown in Table 18. The fractions explained by the first 
components is overall, relatively small compared to macroeconomic data. The 
conditional variance of ERBEF has the strongest factor loading on the first 
principal component followed by ERITL and ERJPY The factor loading of US 
interest rate is practically neglible. Graphical analysisis of the principal 
components indicate, however, that it is not possible through this method to 
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identify strong common factors, which could have been used as substitutes for 
latent factors found through multivariate GARCH estimation (Diebold and 
Nerlove 1989). 

, Table 18. Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
3-month interest rates 1 Jan. 1987 - 16 Mar. 1989. 

Component Eigenvalue Cumulative R-Squared 

1 4.2484 0.3268 
2 1.9312 0.4753 
3 1.4134 0.5840 
4 0.9874 0.6600 
5 1.0417 0.7401 
6 0.6315 0.7687 
7 0.8260 0.8523 
6 0.7940 0.9133 
9 0.4775 0.9501 
10 0.3746 0.9789 
11 0.1327 0.9891 
12 0.1082 0.9974 
13 0.0328 1.0000 

Spectral analysis of the individual variances, ht, and of the first principal 
component (Figure 10) once again strongly suggest persistence in the underlying 
factors affecting the time variability of the conditional variances. Moreover, a 
cycle corresponding to a period of 281 days (second harmonic and 0.0224 radians 
or 0.0036 cycles per day). 

40 



Figure 10. Spectral density function of the first principal 
component of conditional variances of 3-month interest 
rates 1 Jan. 1987 - 16 Mar. 1989 
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Hamming weights:,0357 ,2411 ,4464 ,2411 ,0357 
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As for exchange rates the use of pooled data would impose the same structure on 
all the interest rates. In the same way as for exchange rates, the similarity between 
the estimated individual interest rate models was graphically tested by plotting the 
sum of the ARCH and GARCH coeffients for the three main periods against each 
other. Figure 13 displays strong clustering and in this sense sustain analysis on 
pooled data. 
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Figure 11. The sum a l + ~l for different periods plotted against 
each other 

Interest rates 
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The following GARCH(1,l) model was estimated on the pooled data for the first 
subset of the pegged period 

2 ht =0.3770 *E-6+0.066get_1 +0.9418ht_1 
(6.36) (49.08) (1526.19) 

(25) 

The sum of the estimated ARCH and GARCH parameters is 1.0087, which makes 
conditional variance process of the interest rates integrates. The mean lag 1/(1- ~l) 
equals 17 days. The half-life frequency A for an integrated process is infinite. 

Prior to GARCH estimation the data for the second pegged period 21 Mar. 
1989 - 5 Sep. 1992 was pre-filtered. The selected order p based on Box-Ljung 
statistics are presented in Table 16. 
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4.2.2 Second subperiod 21 Mar. 1989 - 5 Sep. 1992 

Table 19 presents the results from GARCH(1,I) estimation for the second pegged 
period 21 Mar. 1989 - 5 Sep. 1992. Both ARCH and GARCH parameters are 
significant for all interest rates. With exception of ERFIM, all interest rates are 
stationary in variance. For the first pegged period, the sum (Xl + PI was 1.0508 for 
the ERFIM and 1.0476 for this second period. Both sums do not significantly 
differ from one, and we can conclude that there is a unit root in the conditional 
variance process for both pegged periods for the Finnish interest rate. This second 
part of the pegged period includes a 12.3 % devaluation ofthe Finnish currency on 
15 Nov. 1991. This realignment is accounted for in estimation of GARCH models 
for the foreign exchange rates for the corresponding period by using dummy 
variables. In the Finnish interest rate data, there is a huge peak at the devaluation 
date. An alternative model was tested for ERFIM including a dummy variable for 
the crucial date. There was no change in the estimated ARCH and GARCH 
parameter values compared to the model estimated without the dummy variable. 

Results for principal components analysis for finding common factors in the 
second pegged period are shown in Table 20. The cumulative fraction explained 
by the components grows very slowly with the number of components included. 
There is an even stronger heterogenity in this the group of conditional variances 
than in the previous period. The same dominant interest rates in the factor loadings 
of the first principal component as in the first pegged period are found also for this 
period. Whereas the spectral density function of the first principal component also 
in this subperiod clearly gives evidence of persistent factors underlying the 
conditional variance processes, contributions from higher frequencies, most 
notably from those corresponding to cycle lengths of 62-174 days (0.0362-0.1014 
radians or 0.0058-0.0161 cycles per day, ie 5.-14. harmonics), are visible in the 
figure. 
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Table 19. GARCH(l,l) estimation of the volatility of 3-month 
interest rates 21 Mar. 1989 - 5 Sep. 1992. 
(t-statistics in parenthesis) (data multiplied by 100) 

a o a, p, 

ERUSD 0.2160E-3 0.0878 0.8772 
(4.39) (5.80) (44.77) 

ERGBP 0.6923E-2 0.4098 0.0983 
(15.50) (6.40) (1.81 ) 

ERSEK 0.8382E-2 0.2768 0.4710 
(14.39) (11.03) (13.26) 

ERNOK 0.3710E-2 0.2058 0.6001 
(10.97) (5.94) (17.60) 

ERDKK 0.1520E-2 0.2788 0.6092 
(9.23) (8.77) (21.71 ) 

ERDEM 0.1387E-2 0.1862 0.5381 
(4.68) (5.74) (6.67) 

ERNLG 0.1504E-3 0.1037 0.8551 
(3.52) (5.68) (33.57) 

ERBEF 0.9879E-3 0.0743 0.7244 
(3.24) (3.51 ) (9.81 ) 

ERCHF 0.8691E-3 0.1359 0.7958 
(2.98) (7.02) (22.55) 

ERFRF 0.8490E-4 0.0565 0.9258 
(3.44) (5.26) (80.28) 

ERITL 0.7565E-3 0.2001 0.7874 
(6.32) (10.72) (45.44) 

ERJPY 0.4072E-3 0.1881 0.7140 
(10.37) (7.36) (37.19) 

ERFIM O.1788E-2 0.5929 0.5547 
(10.05) (19.10) (45.05) 
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Table 20. 

Figure 12. 

Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
3-month interest rates 21 Mar. 1989 - 5 Sep. 1992. 

Component 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Eigenvalue 

2.8366 
2.0931 
0.2627 
0.3257 
0.4213 
1.1914 
0.6008 
0.6849 
0.7879 
0.8417 
0.9601 
1.0010 
0.9923 

Cumulative R-Squared 

0.2182 
0.3792 
0.3994 
0.4244 
0.4568 
0.5485 
0.5947 
0.6474 
0.7080 
0.7728 
0.8466 
0.9236 
1.0000 

Spectral density function of the first principal 
component of conditional variances of 3-month interest 
rates 21 Mar. 1989 - 5 Sep. 1992 

Spectral analysis: VAR 1 

No. of cases: 868 

Hamming weights:,0357 ,2411 ,4464 ,2411 ,0357 
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The GARCH(l, 1) model for the pooled data for the second pegged period is 

2 
h t =0.1497 * E-5 +0.0958et_1 +0.9005ht_1 

(58.15) (61.76) (1444.69) 
(26) 

The sum of the ARCH and GARCH coefficients is 0.9963 which indicates an 
integrated variance process even for this second pegged period. Although the sum 
of the coefficients is the same for both parts of the pegged period, the estimated 
values differ between the individual coefficients. The impact of news, (Xl' is bigger 
for the second period and, consequently, that of the past conditional variance 
smaller. Since the value of ~l determines the mean lag of shocks, this lag measure 
will also differ between the two periods. The mean lag for the first period is 17 
days and for the second period 10 days. The half-life statistics A. is 188 days for the 
second period. 

4.3 The floating period 

Prefiltering of order p shown in Table 16 was performed. Despite prefiltering, 
ERSEK and ERITL still showed linear dependence measured by the Ljung-Box 
test statistics. 

The results for the GARCH(l,l) estimation for the floating period, 9 Sep. 
1992 - 31 Dec. 1995, are shown in Table 21. The GARCH coefficient is 
significant for all interest rates. For ERDEM and ERNLG, the ARCH parameter 
was set to its lower boundary value zero. For these interest rates, there is no impact 
of news on the interest rates. The sum (Xl + ~l is less than one for most interest 
rates. The sum is exactly one for ERGBP, thus indicating an integrated model. The 
models for ERNOK, ERDKK, ERBEF and ERFRF are, however, non-stationary 
in variance. 

The graphs of the individual pre-filtered interest rate data display increasing 
volatility during the turbulen times at the beginning ofthe floating period; interest 
rates react strongly to the perceived uncertainty in the currencies while they are 
approaching equilibrium after the fierce attacks against the currencies. This period, 
however, must be regarded as exceptional on which forecasts should not be based. 
Thus, the turbulent period can be left out from the estimation period for those 
currencies where the sum of (Xl + ~l' exceeds one. For these currencies, the 
estimation period was chosen by the requirement that the conditional variance 
process be at most integrated. In the case of ERNOK, this was constructed by 
dropping the first 100 data points; for DKK, by dropping the first 250 
observations. The non-stationarity in ERBEF could not be eliminated by selection 
of a subperiod, since the non-stationary features in the variance are distributed 
over the entire period. ERFRF shows clear non-stationarity at the beginning and at 
the end of the period. The middle period is too short to be used for identification of 
the model. While several subperiods were tested, stationarity was not achieved. 

The GARCH-estimation results for stationary periods for ERNOK and 
ERDKK appear in Table 22. 
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Table 21. Garch (1,1) estimation of the volatility of the 3-month 
interest rates 8 Sep.1992 - 31 Dec. 1995 
(t-statistics in parenthesis) (data multiplied by 100) 

00 0 1 131 

ERUSD 0.4320·E-4 0.0460 0.9298 
(4.10) (5.01 ) (66.52) 

ERGBP 0.2766·E-4 0.0663 0.9289 
(4.52) (7.51 ) (144.17) 

ERSEK 0.4519·E-3 0.0610 0.9098 
(8.74) (7.48) (114.59) 

ERNOK 0.2272·E-2 0.9826 0.4215 
(6.06) (59.82) (17.69) 

ERDKK 0.8906·E-3 0.4743 0.6849 
(18.12) (18.75) (57.47) 

ERDEM 0.8772·E-5 0 0.9902 
(11.35) (1550.77) 

ERNLG 0.3544·E-5 0 0.9941 
(5.57) (1731.46) 

ERBEF 0.1576·E-2 0.8218 0.5428 
(14.36) (16.34) (40.95) 

ERCHF 0.5007·E-4 0.0393 0.9420 
(3.70) (5.17) (93.02) 

ERFRF 0.2938·E-4 0.1705 0.8687 
(6.90) (27.10) (361.04) 

ERITL 0.1029·E-6 0.0944 0.8501 
(8.24) (6.08) (52.53) 

ERJPY 0.1038·E-7 0.1447 0.8113 
(6.72) (10.30) (45.28) 

ERFIM 0.2387·E-3 0.0711 0.8768 
(14.87) (14.99) (131.87) 

Table 22. . GARCH (1,1) volatility estimation, interest rates; 
SUB-periods of 9 Sep. 1992 - 31 Dec. 1995 

00 0 1 131 

ERNOK 0.2520E-2 0.1319 0.6772 (-100) 
(3.49) (4.41 ) (8.83) 

ERDKK 0.1380E-2 0.4133 0.5829 ( -250) 
(12.92) (11.29) (22.77) 
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Principal components are presented in Table 23. The figures for the cumulative 
fraction explained by the principal components show a much higher degree of 
homogeneity for this period than for the pegged period. The same pattern is also 
present in the factor loadings of the first components. This time the power 
spectrum of the first principal component in Figure 13 nicely conforms to the 
spectrum of a highly persistant component process, although there is a peak at 420 
days and its harmonics 840 days. The overall interpretation of the power spectrum 
for interest rates during the floating regime is the same as for the exchange rates 
during the corresponding regime, ie the spectrum is typical for an integrated 
stochastic process. 

Table 23. 
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Principal components of conditional variances. 
Eigenvalues and cumulative fraction explained. 
3-month interest rates 8 Sep.1992 - 31 Dec. 1995. 

Component Name Eigenvalue Cumulative A-Squared 

P1 7.3626 0.5663 
2 P2 1.4651 0.6790 
3 P3 1.0793 0.7620 
4 P4 0.8284 0.8258 
5 P5 0.9202 0.8966 
6 P6 0.5711 0.9405 
7 P7 0.3500 0.9674 
8 P8 0.1778 0.9811 
9 P9 0.1012 0.9889 
10 P10 0.0674 0.9941 
11 P11 0.0516 0.9981 
12 P12 0.0205 0.9996 
13 P13 0.0041 1.0000 



Figure 13. Spectral density function of the first principal 
component of conditional variances of 3-month interest 
rates 9 Sep.1992 - 31 Dec. 1995 

Spectral analysis: VAR1 

No. of cases: 832 

Hamming weighl$:,0357 ,2411 ,4464 ,2411 ,0357 

Period 

A pooled series was fonned from the stationary estimation period for the 
individual interest rates which was the full period for ERUSD, ERGBP, ERSEK, 
ERDEM, ERNLG, ERCHF, ERlTL, ERJPY and ERFIM. Sub-periods was used 
for ERNOK and ERDKK. Due to the non-stationarity of its conditional variance 
process over the entire period, ERBEF is excluded from the pooled data. Since no 
stationary sub-period was found for ERFRF, this interest rate is also excluded 
from the pooled series. In forecasting, ERBEF and ERFRF will, along with the 
other interest rates, be forced to follow the process estimated from the pooled data. 

The estimated GARCH(1,1) model for the pooled data for this period is 

2 
ht=0.4223 *E-8+0.0881et_1 +0.9367~_1 

(173.49) (112.32) (2683.54) 
(27) 

The sum (XI + PI'is 1.0247 which can be interpreted as non-stationarity in variance. 
The null of an integrated variance model, (XI + PI = 1, should pass statistical 
testing. 

At the starting point of the empirical part of this study, the data was divided 
into three separate subperiods to account for exogenously identified structural 
changes in the exchange rate regime. Within the third period, there is a clear 
change in the trend of the levels of the exchange rates. Consequently this 
subperiod was divided into two parts: one covering the upwards sloping trend, the 
other covering the downwards sloping trend. The same partition was now made for 
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the interest rates and a GARCH(1,1) model was estimated on pooled data for the 
second half of the third period, 11 Mar. 1993 - 31 Dec. 1995, to detect the 
possible effects of the trend break. The results are very similar to the model 
covering the full period 

2 ht =0.1981 *E-9+0.0793et_1 +0.9399ht_1 
(136.96) (95.07) (2699.19) 

(28) 

As the sum of IXo + ~l = 1.0192 does not significantly differ from 1, we can 
conclude that the inclusion of a structural change has neglible impact on the 
estimated parameter values and that the resulting model is approximately 
IGARCH(1,I).1 The estimated mean lag for the floating period is about 17 days, 
the same lag as was estimated for the first pegged period. 

The similarity between the estimated models on pooled data for the three 
main periods is not as strong as for the exchange rates. The estimated 
GARCH(1, 1) model on the pooled data for the first subperiod of the pegged period 
is 

2 ht =0.3770*E-6+0.066get_1 +0.9418ht_1 
(6.36) (49.08) (1526.19) 

The GARCH(1, 1) model for the pooled data for the second pegged period is 

2 ht =0.1497 * E-5 +0.0958et_1 +0.9005ht_1 
(58.15) (61.76) (1444.69) 

and for the second part of the floating period 

2 ht =0.1981 *E-9+0.0793et_1 +0.9399ht_1 
(136.96) (95.07) (2699.19) 

(29) 

(30) 

(31) 

Due to the large number of observations, the equality of the coefficients in a 
formal F-test is rejected; differences in the estimated parameter vectors are, 
however, fairly small so that the conditional variance of the interest rate process is 
assumed to be the same across exchange rate regime. 

ISee Lamourex and Lastrades (1990) on the effects of structural changes on the persistance 
parameters. 
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4.4 BDS-statistics 

The BDS-statistics figures for the standardized residuals of the prefiltered raw data 
are reported in Table 24 for the full period and for shorter periods. There is strong 
evidence against the null hypothesis of IID for all series. The value of the test 
statistics for ERNOK and ERDKK is reduced through shortening of the period, but 
remain significant. After controlling for linear dependence, nonstationarity due to 
possible structural changes, deviations from the null of IID residuals could be 
either due to nonlinearity in mean or in variance. To capture nonlinearity in mean 
the GARCH-M(1,I) model was tested. The results showed that the MEAN
parameter is not statistically significant for most interest rates. In a single case 
where it is significant, it makes the GARCH parameter insignificant. The 
GARCH(I,I) was postulated to capture nonlinearity in variance. If the GARCH 
model is correctly specified, the standardized residuals should be IID in large' 
samples. To determine whether any remaining non-linear structure is present in the 
model, the BDS test was applied to the standardized GARCH(I,I) residuals (Table 
24). Although the figures are smaller than those of the prefiltered raw data, small 
amounts of nonlinearity still appear in most of the residual processes. 

Table 24. BDS-statistics for filtered interest rates 
9 Sep. 1992 - 31 Dec. 1995, m = 2, e/o = 0.5 

ERUSD 
ERGBP 
ERSEK 
ERNOK 
ERDKK 
ERDEM 
ERNLG 
ERBEF 
ERCHF 
ERFRF 
ERJPY 
ERITL 
ERFIM 

Long period 

9.97 
7.71 

11.94 
14.90 
17.89 
8.32 
4.17 

12.66 
4.74 

18.07 
8.40 

10.75 
11.55 

Shortened GARCH-
period residuals 

1.96 
11.62 

7.84 
3.74 
8.39 

-0.98 
2.66 
7.66 
2.70 
2.99 

7.46 
6.07 

10.10 

4.5 Summing up for short interest rates 

For the thirteen three-month interest rates, GARCH(1,l) models were estimated 
for three intervals selected to account for possible structural changes trigged by 
realignments of the domestic currency. The interest rates differed from the foreign 
exchange rates in that they reveal strong linear dependence in the raw data, which 
called for pre-whitening of the data. Also, non-stationarity conditional variance 
tend to be more typical for the interest rates than for exchange rates. We were not 
able to identify the whole model for some interest rates since either the ARCH 
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parameter or the GARCH parameter was set to its lower boundary value in the 
iteration process regardless of the selection of initial values. The models estimated 
on pooled interest rate data turned out to be integrated in variance. The same 
parameter values are valid for all periods regardless of the current exchange rate 
regime. The same result was found for the exchange rates. 

Spectral analysis of the individual conditional variances and the first principal 
components also suggest that the conditional variance processes are highly 
persistent; large contributions to the time variability of the conditional variances or 
their first principal component also come from shorter cycles, especially during the 
later pegged period. A common cyclical period of 180 days for both pegged 
periods and 420 days for the floating period is traceable. Even in this feature the 
results coincide with the corresponding results for the exchange rates. 

Next we compare the alternative measures of interest rate volatility derived 
from the estimation results. The expressions for the conditional, unconditional and 
sample variance measures are the same as for the foreign exchange rates 
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GARCH(1,I) model conditional variance hi,t. (VAHl in Figure 14) 
GARCH(I,I) unconditional variance aol(I-(a1+Pl))' the convergence limit 
for the conditional variance ~. (VA837 in Figure 14) 
sample variance constant for the peak frequency evaluated on the cyclical 
behaviour of the individual conditional variances and their principal 
components; 180 days for the pegged period and 420 days for the floating 
period. (VA420 in Figure 14) 
sample variance calculated on quarterly data; the frequency selection is based 
on previous results (Ahlstedt 1990, 1995). A subsample of about 70 
observations was found to be large enough to yield reasonable statistical 
efficiency, yet small enough to make it likely that the sample variance 
remains constant. (V A 1 in Figure 14) 



Figure 14. Conditional, unconditional and sample variance 
measure comparison ERUSD floating period 
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The four alternative volatility measures are plotted in Figure 14 for the ERUSD 
and in Figure 15 for ERGBP for the floating period. The sample variances work as 
smooth mean values for the rough fluctuations in the daily conditional volatility 
hit· 
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Figure 15. 
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Conditional, unconditional and sample variance 
measure comparison ERGBP floating period 
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5 Long-term bond rate 

To capture the interest rate risk inherent in the bonds in the investment portfolio of 
the banks, we need an estimate of the variance of the long rate. The stock of bonds 
in that portfolio mainly consists of domestic currency nominated bonds, so we 
therefore concentrate on the three-year markka bond rate to be used as a proxy for 
the average interest rate term of the entire bond portfolio. Selection of the three
year term is based on the historical data on the average duration of the bonds in the 
trading portfolios of the individual Finnish banks. 

Figure 8 shows the long-term bond rate for the period under consideration. 
The data was once again divided into two periods: the pegged regime of the 
currency 1 Jan. 1990 - 5 Sep. 1992 and the floating regime 8 Sep. 1995 - 31 Dec. 
1995. 

Next we look at the stationarity of the long rate. The unit root test statistics of 
the Weighted symmetric l' test, the Dickey-Fuller l' test and the Phillips-Peron Z 
test on the differentiated series are all statistically significant, which means that the 
hypothesis of a unit root is rejected. Differencing once produces a mean stationary 
series. 

To detect linear dependency, Ljung-Box test was performed on the 
differences. The test statistics reviel strong autocorrelation. AR-filtering of order 
one for the first period and of order three for the second period is sufficient to 
remove linear dependence in mean. ARCH effects are detected for both periods. 

The GARCH(1, 1) model was estimated for both periods. The results are 
shown in Table 25. All estimated parameter values are statistically significant. For 
both periods, the process is not integrated: the sum (Xl + PI is 0.8870 for the 
pegged period and the mean lag 1.1 days and for the floating period the sum is 
0.6183 and the mean lag 1.2 days. Low persistence is also measured by the half
life statistics A, which is 7 days for the pegged period and 2.5 days for the floating 
period. The low persistence also means a strong mean reverting process in the time 
path of the conditional variance, ie the effects of shocks to the current conditional 
variance of the forecast of the future variance dies out relatively quickly. 

Table 25. Long Rate, Differences 

GARCH(1,1) estimation of the volatility (t-values in parenthesis) 

0 0 0 1 131 

1 Jan. 90 - 5 Sep. 92 AR(1) 0.9206E-7 0.7800 0.1070 
(19.50) (10.50) (3.84) 

8 Sep. 92 - 31 Dec. 95 AR(3) 0.2030E-6 0.4420 0.1763 
(14.93) (7.02) (3.19) 

BDS statistics to detect remammg nonlinearity are presented in Table 26. 
Conditional variance modelling reduced the values of the test statistics to half of 
the value for the filtered raw data but they were still high enough to reject the null 
ofIID. 
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Table 26. BDS-statistics of the standardized residuals for the 
3-year interest rate and the general stock market index 

Pegged period 

Long rate 
Stock index 

Floating period 

Long rate 
Stock index 

Residuals from 
AR-fiItered data 

8.71 
1.74 

8.57 
4.97 

GARCH(1,1) 
residuals 

4.17 
1.14 

4.22 
1.71 

To test the hypothesis of a time-varying risk premium in the long rate, the 
GARCH-M(1,l) model was estimated for both periods. For the pegged period, the 
inclusion of the standard deviation with a coefficient of Y 1 in the mean equation 
resulted in a statistically significant Y 1 parameter but at the same time ~l lost its 
significance. For the floating period, the estimated Y 1 parameter was set to its 
boundary value zero in the iteration process. 
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6 Statistical measures of general stock market 
index 

Market risk includes also uncertainty about the future values of traded shares in 
the portfolios. To measure this risk, we need an estimate of volatility in stock 
prices. Assuming that banks behave as enlightened traders, diversifying their 
portfolios to remove non-systematic risk, the variance of the general stock market 
index can be used as an estimate of the remaining systemic risk in the equity 
portfolio. 

The data employed are daily log changes of the general HEX index of the 
Helsinki Stock Exchange's. This index transformation is used to measure 
compounded yield since both dividends and capital gains are included. Figure 16 
displays the general stock market index in levels. 

Figure 16. Helsinki stock exchange. Share prices by sector 

Hex-index 28.12.1990 = 1000 

2500 1---+--/---+-+--+---f----1--+---+--"1H1--.,.-Hf---l 

2000 1---+--/---+-I\~.d_+---f----1--+_____;;fl----HF-HH-I~ 

1500 1-----I--+-IdWVi'U---+---'IIIId!"r-+---II----f--l--A---+--_+_----1 

1000 I----I---...-f~-I---I--+-~V'l'i~r----\l-+-I--+--+-+---l 

85 86 87 88 89 90 91 92 93 94 95 96 

1 Metal industries 
2 Forest industries 
3 All-share index 
4 Banks and finance 

Latest observation October 1996 

Empirical studies have shown that index-series have one unit root, ie stationarity is 
achieved by transformation into first differences (Malkamaki 1993). To check if 
first differencing is enough to produce stationarity, unit root tests were performed 
on log differences of the stock market index for the pegged period, 1 Jan. 1987 -
5 Sep. 1992, and the floating period, 14 Sep. 1992 - 31 Dec. 1995, of the Finnish 
currency. Based on the results of the Weighted Symmetric 1: test, Dickey-Fuller 1: 

test and Phillips-Perron Z test, the hypothesis of a unit root was rejected. Thus, the 
logarithmic transformation of the general stock market index is integrated of order 
one. 
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Descriptive statistics of the stock market index were then calculated. The null 
hypothesis of zero mean cannot be rejected for the pegged period, but is rejected 
for the floating period. While skewness for the pegged period is huge, removal of 
the "black Monday" observation substantially reduces it. Again, we see that a 
single outlier can considerably affect the value of the test statistics. 

In empirical studies, skewness has been found to be a much stronger feature 
in stock prices than in exchange rates and interest rates. This is not, however, the 
case with the Finnish general stock market index. 

Most empirical implementations of GARCH(p,q) models to stock market 
indices have adopted low orders for the lag lengths p and q. Typically, 
GARCH(1,I), GARCH(1,2) or GARCH(2,1) models have been selected. A 
limitation in GARCH models is, however, the assumption that only the magnitude, 
and not the sign, of unanticipated returns determines volatility (Mills 1992, p. 
140). Nelson (1990) presented an alternative to the GARCH model, the 
exponential GARCH labelled EGARCH, which encompasses the observed feature 
that changes in stock return volatility are negatively correlated with the returns 
themselves, ie volatility tends to rise in response to "bad news" and fall in 
response to "good news". Hsieh (1990) has shown by applying the BDS test to the 
residuals from a EGARCH(I,I) model for stock market indices and portfolios that 
the EGARCH model typically cannot completely account for all deviation from 
DD in stock returns. 

In this study we hope to be able to use a GARCH model with the same order 
of p and q for all the market risks and therefore the GARCH(1,I) process, which 
was selected for exchange rates and interest rates, is selected for the Finnish stock 
market index as well. 

Prior to the GARCH identification, the data was pre-filtered to remove linear 
dependence. An AR(3) process was selected for the pegged period and AR(1) for 
the floating period. The selection was based on the Ljung-Box test statistics. 

The estimated parameter values of the GARCH(I,I) model for both periods 
are presented in Table 27. The values of the parameters a 1 and ~1 differ between 
periods, while the estimated ao parameters are very similar indeed. For the pegged 
period, the sum is 0.8584, the mean lag 7 days and the half-life frequency 6 days. 
For the floating period, the sum of the two parameters is 0.9475, the mean lag 7 
days and the half-life measure 14 days. 

Table 27. General stock market index, compounded yield, 
log differences 

GARCH(1, 1) estimation of the volatility ( t-values in parenthesis) 

0 0 0 1 ~1 

1 Jan. 87 - 5 Sep. 92 AR(3) 0.1208E-4 0.3275 0.5309 
(11.43) (10.99) (15.96) 

8 Sep. 92 - 31 Dec. 95 AR(1) 0.9196E-5 0.0966 0.8509 
(15 Nov. 92 included) (2.37) (4.31) (21.97) 
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BDS statistics for the standardized residuals prior to and aftger GARCH 
estimation are displayed in Table 26. The test statistics are significantly reduced 
after accounting for GARCH(1, 1) effects in the conditional variance and the 
hypothesis of lID residuals cannot be rejected for the resulting standardized returns 
to the general stock market index. 

The GARCH-M(1,l) was also estimated for the stock market index to detect a 
possible time-varying risk-return relationship in the mean equation. The Y 1 

parameter was not significant in the two data periods. 
Prior to selecting the maintained volatility models, the odds for the general 

idea of imposing the same GARCH structure on all the rates affecting banks' 
portfolio returns were perceived least favourable in the case of stock market 
returns, since evidence from other sources strongly favoured an EGARCH model 
these returns. Yet, the empirical estimation revealed that GARCH(1,l) was best
suited to capture heteroscedasticity in the stock market returns. For exchange rates 
and interest rates, the BDS test statistics still detects deviations from lID in the 
standardized GARCH residuals. 
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7 Summing up for all rates 

The objective of the study has been to model the time varying variances in twelve 
exchange rates, thirteen short-term interest rates, one long-term rate and the 
general stock market index. A GARCH structure was entertained to account for 
the observed heteroscedasticity in the rates, and GARCH(1,l) turned out to 
perform reasonably well for all the rates. In the end, evidence of significant 
GARCH-M effects remains inconclusive and the study argues against them. 
Hence, it is concluded that no significant time variability can be observed in the 
risk-return relationship in the selected data set. 

One of the strongest conclusion of the present study is that the conditional 
variance model of the individual exchange rates and short-term interest rates is at 
least approximately the same across exchange rate regimes. The model for long
term interest rate volatility, on the other hand, displays less persistence under 
floating than under fixed exchange rates, although the estimated conditional 
variance process appears (weakly) stationary under both regimes. 

Furthermore, results from the pooled data suggest that the changes in markka 
exchange rates and short interest rates have a time-varying conditional variance 
which can be modelled as an identical IGARCH process. Perhaps suprisingly, 
observed volatility of the general stock market index also seems to follow the 
same IGARCH(1,l) process, while the long term rate exhibits strong mean 
reverting behaviour. The finding of an IGARCH process is consistent with the 
common results that when the GARCH model is applied to high-frequency data, 
shocks to variance are strongly peristant; that is, the sum of the ARCH and 
GARCH parameters is very close to one. One possible explanation for integration 
in the conditional variance can be found in Nelson (1990b), who derives the 
stationary distribution of the GARCH conditional variance process in continuous 
time. This underlying diffusion model, which is close to IGARCH, provides 
accurate approximations to high frequency data. Furthermore, the distribution of 
the diffusion limit, and hence of the approximating process in high frequency data, 
displays some interesting properties; the GARCH innovation process is 
conditionally normal (ie given the conditional variance), but unconditionally its 
distribution is approximately Student t. Also, in the special case of the diffusion 
limit of the IGARCH(1,l) model, the Student t has an infinite variance. 
Lamoureux and Lastrapes (1990) give an other explanation suggesting that the 
persistence is overstated when the estimation is based on long series. The resulting 
IGARCH could as well be due to the existence and failure to take into account, of 
deterministic structural shifts in the model or to time-varying parameters. 
Structural shifts may result in instability of the drift parameter /xo over the sample 
period, ie nonstationarity of the conditional variance and high persistance in /Xl and 
PI' The reason for the division of the full data into subsets in this study was to 
account for the possibility of such structural shifts, due to changes in the exchange 
rate regime. In the GARCH estimation on the pooled data, the same model was 
forced on the individual rates and the individual drift parameters /xo were also 
imposed into a single constant in the estimation for each period. The drift 
parameters in the individual models are very small in magnitude, but differ 
between rates and then can be interpreted as structural shifts. This feature might 
have had the effect on the estimation results of the model identified on the pooled 
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data leading to the appearance of extremely strong persistence in variance. The 
average sum of the ARCH and GARCH parameters of the individual models, 
where the structural changes were accounted for, is, however, close to one, and 
thus supports the hypothesis of an integrated variance process. 

As a result of the GARCH estimation, it was possible to construct new 
variables by standardizing the raw data with the estimated standard deviations. 
Through this procedure we should, theoretically, end up with series which are 
normal or at least closer to normal than the raw data. Figure 17 and Table 28 
compare the skewness and kurtosis figures between the raw data and the GARCH 
residuals for USD, ERUSD, DEM, ERDEM, ERFIM, FIM long-term rate and the 
general stock market index HEX. Skewness is found in the raw data only in 
ERFIM. The kurtosis figures are also in most cases substantially reduced through 
the conditional variance modelling, with the ERLONG being the exception, 
whereas for the ERFIM substantial amount of kurtosis still remains after filtering 
with the estimated GARCH model. Hence, while the GARCH(1,I) model is able 
to track the own temporal dependencies, the assumption of conditionally normally 
distributed innovations may need further considerations in the present data. As a 
reference, under the null of no normally distributed standardized residuals, the 
sample skewness should be the realization of a normal distribution with a mean of 
o and a variance of 6/831 = 0.0852, while the sample kurtosis is asymptotically 
normally distributed with a mean of 3 and a variance of 24/831 = 0.172• 
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Table 28. 

62 

Skewness and Kurtosis statistics for raw data and 
GARCH(1,1) residuals for USD, ERUSD, DEM, 
ERDEM, ERFIM, FIM long-term rate and HEX stock 
market index for the floating period 
14 Sep. 1992 - 31 Dec. 1995 

Skewness figures 

Raw data GARCH( 1 ,1) residuals 

USD 0.34 -0.23 
ERUSD 0.60 0.75 

DEM 0.11 -0.52 
ERDEM -1.33 -0.78 

ERFIM -3.27 0.59 

ERLONG -0.45 -1.55 

HEX -0.07 0.04 

Kurtosis figures 

Raw data GARCH(1,1) residuals 

USD 78.11 2.40 
ERUSD 3.42 5.73 

DEM 240.28 3.17 
ERDEM 14.24 6.74 

ERFIM 42.74 16.02 

ERLONG 23.49 27.35 

HEX 2.36 0.71 



Figure 17. Raw data figures in the left column of USD, ERUSD, 
DEM, ERDEM, ERFIM, FIMlog and HEX. 
The figures for corresponding GARCH residuals 
are in the right column. 
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8 Covariances 

In this study, two applications will be suggested and used to measure the 
covariances. The first is based on the assumption of identical autocorrelation 
structures for variances and covariances between rates. The assumption allows us 
to extend the univariate estimation results the conditional variances to obtained for 
the conditional covariances. The other method follows Bollerslev (1990) and is 
based on the assumption of constant correlation between rates, which simplifies 
the estimation procedure by using the results for the individual conditional 
variances in calculation of the conditional covariances. The first method can be 
applied only for covariances within groups of rates. The other can be applied also 
for covariances between groups of rates. 

8.1 Conditional covariances: identical autocorrelation 
structure of variances and covariances 

In the first method for covariance estimation, we test for dependence between the 
autocorrelation structure of the variances and covariances. If dependence is found 
to exist, then the conditional covariances can be modelled with the same parameter 
structure as their conditional variances. 

By analogy to the conditional variance formula 

(32) 

the conditional covariances can be expressed as 

0 .. t= ao .. + a I .. ( e. tIe. t 1) + ~I .. 0 .. t 1 1J, ,IJ ,IJ 1, - J, - ,IJ 1J,- (33) 

Since the series 0ijt-l are not observable, the covariances cannot be estimated using 
an univariate GARCH method. 

The null hypothesis of independence is tested using the non-parametric 
Kendall coefficient of concordance W (Siegel 1956), which expresses the degree 
of association among a set of ranked variables. The variables to be ranked in this 
case are the autocorrelation functions of variances and covariances within the two 
groups of rates. 

In case of dependence between the autocorrelation structure in the univariate 
conditional variance 

2 
h. t= ao· + a l .ej t-l + ~l .ht_l 1, ,1 ,1, ,1 (34) 

and the conditional covariance 

0 .. t=ao .. +aI .. (e. tIe. t I)+~I··O .. I 1J, ,IJ ,IJ 1, - J, - ,IJ 1J,t- (35) 
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the parameter values for the ~l univariately estimated for the variances can also be 
used for covariances. Most conditional variances in interest rates in this study were 
estimated to follow an integrated process, whereby the ARCH parameter <Xl and 
the autocorrelation or GARCH parameter ~l sum up to one. If we can show that 
the autocorrelation structure measured by PI in not independent between variances 
and covariances, it then follows from the unit root proposition that there is 
dependence between <Xl parameters for variances and covariances. 

Through repeated substitutions, the conditional variance formula in (34) can 
be developed into the following expression 

(36) 

where the conditional variance is expressed in the form of a geometrically 
weighted average of past squared residuals so that the parameter PI gives the decay 
rate. 

For the IGARCH process, formula (36) gets the following form 

(37) 

The expression for the covariances corresponding to formula (37) for the variances 
is then 

<X 00 

a"t=~+<XIL(1-<Xly-le't e' t 1j, N 1, -S j,-S 
'""I s=1 

(38) 

In the empirical implementation of the derived formula for the conditional 
covariances, we consequently use the parameter estimates of <Xi'S and ~/s from the 
pooled data within groups and periods and for Ei'S and E/S the observations on the 
individual returns. 

8.2 Conditional covariances: constant correlation 

In the second method for covariance estimation, the assumption of time varying 
variances and covariances but constant conditional correlation between the N 
stochastic processes made in Bollerslev (1990) allows the univariate GARCH 
estimation to be extended into a multivariate framework through a simplified 
estimation and inference procedure. The GARCH(l,l) structure for the conditional 
variances and covariances is expressed as 
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112 
e. t=Z. tht I, I, 

h .. =cx.+cx·le~tl+A·lh··tl ll,t 1 11,- P111,-

h .. = g .. (h .. th .. t)ll2 
IJ,t IJ 11, Jj, 

(39) 

In the original application, the correlations coefficients Pij of the standardized 
residuals are estimated simultaneously with the conditional moments. In our 
application we use a two-step method: in the first stage we calculate the 
correlation coefficients on the univariate1y estimated standardized GARCH(I,I) 
residuals, in the second stage we calculate the covariances from the joint 
information on the correlation coefficients and the estimated conditional univariate 
variances. In our application we assume constant correlation within periods, but 
allow for time-variation between periods. 

8.3 Covariances between exchange rates 

Non-trivial covariation of the exchange rates and interest rates is most likely, not 
only because of new information coming into the markets affecting all the rates, 
but also because of the intervention policy of the central banks. 

In the first method of measuring the covariances between exchange rates, we 
test for the possibility to encompass the coherence between rates into the analysis 
by extending the estimated parameter structure from the conditional variances to 
the conditional covariances. In order to do so, we have to test for dependence 
between these conditional moments. 

The null hypothesis of independence was tested using the Kendal1 coefficient 
of concordance W (Siegel 1956), which expresses the degree of association among 
sets of ranked variables. The variables to be ranked is the sample autocorre1ation 
functions of variances and covariances. The test was performed separately for the 
group of twelve exchange rates and the group of thirteen interest rates. 

Autocorrelations in variances and covariances up to the fifth order were 
calculated from the exchange rate data separately for the pegged and floating 
period. The numerical autocorrelation values were then ranked. The test statistics 
W was calculated to test the null hypothesis that the rankings are unrelated. The 
numerical value of the coefficient of concordance W is 0.691 for the pegged 
period and 0.469 for the floating period. The coefficient W is in this case 
approximately distributed as X~4) and the corresponding test statistics are 215.59 
and 146.33. These test statistics are highly significant, which means that the null of 
independence can be rejected for both periods. Based on the outcome of the 
Kendall W test procedure showing that the variances and covariances are not 
independent, we thus apply the method of modelling the conditional covariances 
between exchange rates with the same parameter structure, ie the values of cxl,i and 
PI,i' as their conditional variances. 

The Kendall W test was performed on ranked autocorrelation values of 
variances and covariances. The numerical values of the autocorrelation function 
can also be used to approximate the similarity between the variances and 
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covariances. In Table 29, the mean of the numerical values of autocorrelation 
functions up to order five for variances and covariances are presented. For the 
exchange rates we can conclude that the structures are very close to each other. 

Table 29. Autocorrelation mean values of variances and 
covariances 

Exchange rates 

PI P2 P3 P4 Ps 

Pegged period 

Variances 0.1279 0.0202 0.0322 0.0214 -0.0050 
Covariances 0.0908 0.0421 0.0248 0.0057 0.0144 

Floating period 

Variances 0.1964 0.0830 0.0851 0.0301 0.0612 
Covariances 0.2190 0.1247 0.1165 0.0383 0.0687 

Interest rates 

PI P2 P3 P4 Ps 

Pegged period 

Variances 0.1863 0.0619 0.0874 0.0422 0.0273 
Covariances 0.0143 0.0534 0.0105 0.0013 0.0123 

Floating period 

Variances 0.1509 0.0987 0.1083 0.0926 0.1001 
Covariances 0.0049 0.0160 0.0009 0.0031 0.0185 

A third method of evaluating the dependence between conditional variances and 
covariances is based on principal components analysis. Principal components were 
calculated separately for the sample variances and covariances for the second 
pegged period, which in the estimation were found to be identical to the first 
pegged period and the floating period. Then the correlation coefficient R was then 
determined by regressing the first principal component of variances on the first 
principal component of covariances. The correlation coefficient is 0.54 for the 
pegged period and 0.87 for the floating period. A strong dependence can therefore 
be found in this way between variances and covariances. 

The outcome of the Kendall W test, the visual interpretation of the mean 
values of the autocorrelation functions and the high degree of correlation between 
principal components, all support the use of the same parameter structure for 
variances and covariances of exchange rates. 

The estimated conditional variance model of the pooled data can then be used 
as the basic model for the conditional covariances between exchange rates. The 
estimated pooled model for the pegged period is 
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2 
ht=0.3813 *E-7 +0.0621£t_l +0.9353ht_1 (40) 

and for the floating period 

(41) 

The sum "1 + PI does not significantly differ from one, so we may conclude that 
the conditional variance of exchange rates follows a GARCH process integrated in 
variance and that appears to apply across exchange rate regimes. 

Developing formula (37) we get the following weight structure for the 
floating period when a1 = 0.08 and PI = 1 - a1 

aD 0 2 0 0 0 ) 2 2 2 3 2 ht= 0.08 + .08£t_l + . 8( .92 £t_2+0.08(0.92) £t_3+ 0.08(0.92) £t-4 
(42) 

+ ... +0.08(0.92)n-le~n + ... 

The series of lagged squared residuals to be included in the formula is truncated at 
28, as the weights ofthe observations there after have less than 10 % of the weight 
for the first observation. 

Table 30 gives the numerical values of the weight series. 
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Table 30. Numerical values for weights of the truncated sequence 
of lagged squared innovations 

lag number weight 

1 0.089 
2 0.082 
3 0.075 
4 0.069 
5 0.063 
6 0.058 
7 0.054 
8 0.050 
9 0.045 

10 0.042 
11 0.038 
12 0.035 
13 0.033 
14 0.031 
15 0.028 
16 0.025 
17 0.023 
18 0.021 
19 0.020 
20 0.018 
21 0.017 
22 0.015 
23 0.014 
24 0.013 
25 0.012 
26 0.011 
27 0.010 
28 0.009 

The expression for the covariances corresponding to fonnula (34) for the variances 
is then 

ao 2 
(Jij,t= 0.08 +0.08ei,t_lej,t_l +0.08(O.92)ei,t_2ej,t_2 +0.08(0.92) ei,t_3ej,t_3 

(43) 

+0.08(O.92)3Ei,t-4Ej,t-4 + ... +0.08(O.92)n- \,t-nEj,t-n + ... 

In the empirical implementation of the derived fonnula for the conditional 
covariances, we consequently use the parameter estimates of a1 and PH from the 
pooled data within groups and periods. For ej's and ej's we use observations on the 
individual exchange rates. 

The plots of the conditional covariances calculated according to the fonnula 
(43) for USDIDEM, USD/GBP, DEMIFRF, and USD/JPY are displayed in Figure 
18. Visually, the variation of the covariances is often very similar to that of the 
corresponding variances. The excessive time variability of the USD/JPY 
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conditional covariance in the beginning of the period reflects increased volatility 
of the JPY during that time. 

Figure 18 .. 
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The alternative approach to calculating covariances is the Bollerslev method of 
constant conditional correlations. In applying this method, we assume the 
correlations to be constant within the three main periods, but allow them to change 
between periods. 

To evaluate the empirical correctness of the assumption of constant 
correlation in the Bollerslev method, a CUSUM test was applied to the 
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standardized residuals to test the stability of the regression parameter in an OLS 
estimation where the exchange rates were regressed one at a time on one of the 
other exchange rates. The test values did not allow rejection of the null hypothesis 
that the regression parameter remains constant for the second pegged period and 
the floating period. For the first pegged period, however, the constant correlation 
hypothesis between DEM and NLG and the other rates is rejected. 

The evidence during the second pegged period and the floating period in 
favour of the constant correlation assumption supports the use of the Bollerslev 
method. 

In applying the method, the conditional correlation coefficients of pairs of 
GARCH standardized residuals of the individual exchange rates in (41) were first 
calculated using sample data from the three subperiods. Theoretically. these 
correlation coefficients are approximately normally distributed under either the 
null of small or no correlation, if in the latter case, one uses the normal to 
approximate the exact student t -distribution. The big sample sizes make even low 
correlations statistically significant. For the first pegged period, the sample size is 
558 and the critical value at a 5 % confidence level for the correlation coefficient 
is 0.083. The corresponding figures for the second pegged period are 866 and 
0.067, and for the floating period, 819 and 0.068. 

The numerical values of within-group correlations are highest for the group of 
the exchange rates. This conforms with the theory that information coming into the 
market affects all markka rates instantaneously. 

In the Bollerslev method, we assume constant conditional applying 
correlations within periods, but allow for changing correlations between periods 
reflecting different regimes. A significant difference in the level of the coefficients 
is also to be seen in the sample estimates. 

During the first pegged period, 1 Jan. 1987 - 16 Mar. 1989, the highest 
covariances are found between the European currencies DKK, DEM, NLG, BEC, 
CHF and FRF. The ERM apparently underlies these correlations. For the USD, 
correlations are significant only with GBP, SEK, NOK and JPY. 

For the second pegged period, 21 Mar. 1989 - 5 Sep. 1992, the conditional 
correlations are significant for all pairs of exchange rates and much higher in value 
than during the first pegged period. An explanation of the phenomen could be 
intensified central bank intervention activity aiming at smoothing exchange rate 
movements during this turbulent period. 

During the floating period, 8 Sep. 1992 - 31 Dec. 1995, the covariances 
between ERM currencies are again significant, although much lower than for the 
first pegged period. The correlation between the other currencies are generally 
insignificant. Correlation between USD and GBP and the Nordic· countries is 
found in this period. 

Figure 19 shows the conditional covariances for the floating period for 
USDIDEM, USDIGBP, DEMlFRF and USD/JPY using the constant correlation 
method. These figures can be compared with the figures in the previous Figure 18 
showing the conditional covariances for the same pairs of exchange rates 
calculated by assuming an identical parameter structure for the variances and 
covariances. 
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Figure 19. Conditional covariances 9 Sep.1992 - 31 Dec. 1995 
USDIDEM, USD/GBP, DEMlFRF and USD/JPY 
(constant correlation) 
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8.4 Covariances between interest rates 

Similar calculations for determining covariances were then carried out for the 
group of thirteen interest rates as for the group of twelve exchange rates. 

In the first method, we test the null hypotheses of liner independence of 
autocorrelation structure of the variances and covariances. If the null hypothesis is 
rejected, dependence between the ul,i and U"ij parameters result from the 
assumption of IGARCH variance processes. 
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Ranking according to the numerical values of the autocorrelation functions of 
the sample variances and covariances of interest rates was performed. The value of 
the Kendall coefficient W was 0.1014 for the pegged period and 0.0264 for the 
floating period. The corresponding X~4) test statistics are 36.504 and 9.502. For the 
first period, the test statistics are significant even at a 0.1 % confidence level and 
for the second period at 5 %. confidence level. The null hypothesis of 
independence can thus be rejected. 

The test implies, both for interest rates and the exchange rates, that the 
parameter values estimated for the conditional variances can also be used to 
calculate the conditional covariances. 

As for exchange rates the mean values of the numerical autocorrelation 
functions up to the fifth order were calculated separately for variances and 
covariances. The figures presented in Table 29 confirm the results of the Kendall 
W in revealing a clearly weaker, or even non-existing, dependence between the 
conditional second moments for interest rates in comparison to exchange rates. 
The assumption of the same parameter structure has therefore less empirical 
support for interest rates. 

As a third test of dependence between variances and covariances, a principal 
component -based analysis was used as for the exchange rates. The correlation 
coefficient R between first principal components of variances and covariances for 
the first pegged period was estimated to be 0.88, for the second pegged period 0.83 
and for the floating period 0.58. The outcome of this calculation supports the 
assumption of dependence between variances and covariances. 

The estimated conditional variance of the pooled data was used as the basic 
expression for the conditional covariances between interest rates in the same way 
as for the exchange rates. The estimated pooled model for the pegged period for 
interest rates was 

(44) 

and for the floating period 

(45) 

For both periods, the sum (Xl + PI of both the pooled exchange rate model and the 
pooled interest rate model does not significantly differ from one. Therefore, we 
conclude that the conditional variances of the rates follow a GARCH process 
integrated in variance. 

For the floating period, we end up with the same weighted formula (37) for 
interest rates as for exchange rates 

ht = 0~8 +0.08e~1 +0.08(0.92)e~2+0.08(0.92)2e~3+0.08(0.92)\:~4 

+ ... +0.08(O.92t-le~n + ... 
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and consequently the same values of weights as in Table 30. 
The expression for the covariances corresponding to formula (38) for the 

variances is then 

aO 2 
cr .. t=--+0.08E. t_1E. t-1 +0.08(0.92)E. t_2E. t_2+ 0.08(0.92) Ej t-3EJ' t-3 1J, 0.08 1, J, 1, J, , , 

(47) 

The conditional covariances of interest rates for the floating period are displayed 
in Figure 20 for ERUSDIERDEM, ERUSDIERGBP, ERDEMlERFRF and 
ERDEMlERFlM. 

The CUSUM test statistics on constant correlation in standardized residuals 
within periods, which is the simplifying assumption in the second method of 
estimation of covariances, had no power to reject the null of constant correlation 
for any pair of interest rates except FIM and ITL for the two pegged periods. For 
the floating period, the hypothesis was rejected only for the correlation between 
ITL and some other rates. We, therefore, assume that it is possible to use the 
Bollerslev method. 

In applying the Bollerslev method as a second method for covariance 
estimation, the conditional correlation coefficients on GARCH standardized 
residuals for all pairs of interest rates for the three periods into which the data was 
split to account for regime changes were calculated. 

For all periods, the numerical values of the correlations are much smaller 
within the group of interest rates than within the group of exchange rates. For the 
first pegged period, there is significant contemporaneous correlation between 
ERUSD and almost all the other interest rates. Within the group of ERM 
currencies, only a few occasional significant coefficients are found. 

The pattern in the calculated coefficients is to a large extent the same for the 
second pegged period. The only difference is found in greater dependence between 
ERGBP and the other interest rates. 

For the floating period, more of the correlations are significant compared to 
the pegged period, but they still remain low in comparison to the correlations 
within the group of exchange rates. Even ERJPY, which in the pegged periods 
appears to be completely uncorrelated with the other interest rates, shows under 
floating significant correlations with almost all the other interest rates. The change 
in the correlation between the interest rates may be attributed to a greater 
integration of financial markets both within and outside Europe. 

Covariances calculated according to the second method are displayed in 
Figure 21 for the floating period for the pairs of interest rates ERUSDIERDEM, 
ERUSDIERGBP, ERDEMlERFRF and ERDEMlERFIM. These figures are 
comparable to the outcome of the first method of covariance estimation based on 
identical parameter structure for variances and covariances for the same pairs of 
interest rates and the same period in Figure 20. 
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Figure 20. 
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Figure 21. Conditional covariances 9 Sep. 1992 - 31 Dec. 1995 
ERUSDIERDEM, ERUSDIERGBP, ERDEMlERFRF 
and ERDEMlERFIM (constant correlation) 
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8.5 Covariances between groups of rates 

Measurement of the coherence between rates in efficient multivariate covariance 
estimation is not feasible due to the huge number of parameters to be estimated 
both within the groups of rates and even more so for all rates taken together. 
Within the groups of exchange rates and interest rates, the encompassing of the 
conditional covariances is therefore solved by showing that the autocovariance 
structure in variances and covariances is not independent. Within groups, the 

77 



parameter estimates of the conditional variance processes in the pooled data are 
therefore used to model the conditional covariance processes. This method is not, 
however, applicable to covariances between groups. The other method developed 
by Bollerlev (1990) can be used also to measure coherence between groups. The 
validity of the working assumption of time-dependent conditional variances and 
covariances, but constant correlation, is, however, more disputable between 
groups than within groups. 

To measure the covariation between groups in the covariance estimation 
method of Bollerslev, the correlation matrix was calculated for all twenty seven 
rates. The correlation coefficients were calculated for the GARCH residuals of the 
individual rates, which are assumed to be normal and lID. In this context, we 
assume the correlations to be constant within periods but allow them to change 
between periods with different regimes. The correlations were consequently 
calculated from sample data for each of the three main periods. 

Correlations between exchange rates and interest rates are, as a rule, small 
compared to the correlations within groups. The statistically significant 
correlations between exchange rates and interest rates are found for ERFRF and 
ERITL. Although over half of the correlation coefficients between these two 
interest rates and the twelve exchange rates are significant, their numerical values 
are small compared to intra-group correlations. It is difficult to find a theoretical 
rationale for this particular pattern of correlation. Of cource, it could simply reflect 
data-specific features. 

Strong correlation are found, as expected, between the long-term interest rate 
and the short-term rates. The movements in the general stock market index are 
totally independent of the contemporaneous movements in all other rates. 

A strong correlation of p = 0.330 for the floating period is found between the 
Finnish long and short rate. The corresponding conditional covariance is displayed 
in Figure 22. 

The hypothesis of an impact from the US exchange rate and interest rate on 
the European financial rates finds no support in the contemporaneous correlation 
coefficient values. To visualize the comovements between the USD and the 
Finnish long rate, the conditional covariance calculated with the value p = 0.139 is 
presented in Figure 22. 

The negligible correlation values between exchange rates, short interest rates 
and the stock market index suggest that the covariances between these groups of 
rates do not have a significant contemporaneous impact on the cumulative risk of 
the portfolio. A stronger impact could be found if temporal adjustment processes 
are allowed for, or through temporal aggregation of the data. 
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Figure 22. Conditional covariances, constant correlation 
9 Sep.1992 - 31 Dec. 1995. 
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9 Forecasting conditional variances and 
covarlances 

The importance of the identification of the GARCH-models on exchange rates, 
interest rates and stock market indices is, that eventhough the magnitudes and 
directions of changes in the rates cannot be predicted, since the expected 
conditional mean is zero, variance is predictable. In forecasting the time
dependent variance, we can also calculate the time dependent confidence with 
which one can forecast variation about the mean (Diebold and Nerlove 1986). 

The aim of this study is to identify, for supervisory purposes, a measure of 
volatility for assessing the potential risks in bank portfolios using the value-at-risk 
model developed at the Bank of Finland (Ahlstedt 1990). Realized volatility 
should be measured on the reporting day but also a forecast of the expected future 
volatility is needed. 

If log differences of exchange rates, interest rates and stock market indices are 
unpredictable and follow a homoscedastic process (ie random walk), we can write 

(48) 

where E is nD(Jl,o) 
In this model, unconditional variance 0 is constant and equals conditional 

variance. An unbiased estimator for the variance from a sample of size N is given 
by 

1 N 
0 2= __ E(LlR)2 

N -1 t=1 t 
(49) 

Based on the assumption of identically and independently distributed errors Et 

(nD), the volatility over a longer horizon can be estimated by multiplying the one
day volatility by the number of days as a scaling factor. The forecast of the 
volatility over a period of T days ahead is simple 02T. 

For the financial time series, the assumption of nD of the disturbances is 
typically violated. The interpretation of a GARCH model is that the disturbances 
are uncorrelated, but not independent. Current conditional variance is a function of 
past conditioning information. This means that the time-dependent conditional 
volatility can be forecast. For the GARCH(1,1) model, the one-step-ahead forecast 
of the conditional variance is 

(50) 

and forecast of the conditional variance s step ahead can be written as 

(51) 
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Under the assumption of stationarity of the foreign exchange rates, interest rates 
and stock market index in GARCH(1,I) parametrization (exl + ~l less than 1), the 
conditional variance will be near its unconditional mean at a sufficiently long 
horizon. This can be seen from the evaluation of (1) into the following form 

(52) 

The forecast mean reverts to a constant volatility with a decay rate depending on 
(exl + ~l)· 

Through repeated substitutions in (51) we get an expression for the time t 
forecast of the variance over next s days expressed on a daily basis 

(53) 

where cl- is the unconditional constant variance, which can be shown to be 
exJ(I-(exl + ~l»· 

For the stationary GARCH( 1,1) process, the current information continues to 
be important even for large s, while the relevant importance decreases with the 
horizon. 

In the integrated process IGARCH exl and ~l sum to one and the model can be 
expressed as follows, after imposing exo=O 

(54) 

If (ex l + ~l) = 1 in (52) we can see from (53), by applying L'Hospital's rule, that the 
s step forecast for this model is 

(55) 

This means that the forecast for the conditional variance s steps in the future is the 
same as the conditional variance one step ahead for all horizons s ie the 
conditional variance follows a driftless random walk. Thus information today 
retains its importance in forecasting indefinitely into the future and the shocks to 
conditional variance are permanent. The forecast of the variance over the next s 
days is simply 

(56) 

The prediction error variance for the IGARCH process does not converge as the 
forecast horizon lengthens, but grows linearly with the length of the forecast 
horizon. 

In the IGARCH(I,l) model with a trend 
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(57) 

the forecast for time Hs is 

(58) 

and 

(59) 

While the formula (53) can be used for ex post forecasts when the model 
estimation period ends at time t, we also need a formula for ex ante forecasting for 
periods starting from points in time where the ~ is not known. For this purpose, 
the GARCH(1, 1) model can be rewritten as 

(60) 

where the conditional variance is expressed in the form of a geometric weighted 
average of past squared residuals so that the parameter PI gives the decay rate. 

For the IGARCH process expression (60) reduces to 

(61) 

The estimated conditional variance of the pooled data for the floating period will 
be used as the forecasting formula. The estimated model for the exchange rates is 

(62) 

and for the interest rates 

(63) 

The sum (Xl + ~l does not significantly differ from one and we therefore conclude 
that the conditional variance of both exchange rates and 3-month interest rates can 
be modelled as a GARCH process integrated in variance. Based on the outcome of 
the Kendall W test procedure, we also conclude that the conditional covariances 
between exchange rates and conditional covariances between interest rates can be 
modelled with the same parameter structure as their conditional variances. 

Expanding equation (61) we get the following weight structure for forecasting 
purposes when (Xl = 0.08 and ~l = 1 - (Xl 
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(Xo 2 2 0 2 2 0 8 92)3 2 ht= 0.08 +0.08Et_l +0.08(0.92)Et_2+O. 8(0.92) Et_3+ .0 (0. Et_4 

(64) 

+ ... +0.08(0.92)n-lE!n + ... 

and for the covariances 

(Xo 2 
(J .. t=--+0.08E. t_lE. t-I +0.08(0.92)E. t_2Ej' t_2+ 0.08(0.92) Ei t_3Ej' t-3 

Ij, 0.08 1, j, 1, ,. " 
(65) 

+0.08(0.92)3E. t-4E. t-4+ ... +0.08(0.92)n-lE. t- E· t_ + ... 
1, j, 1, n j, n 

The series of lagged squared residuals to be included in actual calculations is 
truncated at 28 past observations. The weight of the observation there after are less 
than 10 % of the weight of the first observation. Table 30 gives the numerical 
values of the weights. 

In VAR models, historical data on financial rates are used to estimate the 
expected variance to be implemented as a measure of risk in the portfolio. 
Applications differ from each other among other things in the ad hoc selection of 
the length of the sample period. In some applications a declining lag structure has 
been imposed on the historical observations in the sample without any well 
founded reason, although it is clear that different selected weight structures 
generate significant differences in resulting volatility estimates. J.P. Morgan's 
RiskMetrics uses a decay factor of 0.94 for all daily volatilities. Simons (1996) 
simulates the effects of a decay factor ranging between 0.94 and 0.97. These 
simulation, however, only give the sensitivity of the weight structure on the 
volatility measure, but not the in some sense correct solution. In the formula (64) 
for the variances and (65) for pairs of covariances, a theoretically and empirically 
derived solution to the problems of selecting the sample period and the weight 
structure for the estimation of the future conditional moments is presented. The 
sample period is truncated to 28 observations and the decay factor in the weight 
structure is (1 - (Xl) = 0.92. The short period of 28 observations means a rapid 
updating of the estimated volatility. It also means that in periods of growing 
volatility, the low weights on more distant observations give higher estimates on 
volatility compared to equally weighted observations and correspondingly lower 
values for periods of diminishing volatility. 

In the quarterly ex post VAR model evaluation of the market risks in the 
supervised banks' portfolios developed at the Bank of Finland, formulas (64) and 
(65) will be used to calculate the individual conditional variances and the pairs of 
covariances for twelve exchange rates, thirteen short interest rates and the general 
stock market index on a daily basis. Since the variance model for the long rate is 
not integrated, we have to use a different structure for the forecast of this volatility. 
The point in time t is then the reporting day of the portfolio's composition. In 
forecasting, the inherent risk over the banks' planning horizon, which is assumed 
to be one year, forecast measures of variances and covariances for lower 
frequencies are needed. The monthly, quarterly, half-year and annual volatility 
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forecasts are calculated using the formula (59) for the hij,t derived from the 
expressions (64) and (65). 
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10 Summary and conclusions 

The objective of this study has been to find ways to estimate the variances of the 
probability distribution of changes in financial time series which can be used as 
forecasts of the future behaviour of these series in a value-at-risk framework. The 
stylized facts found in markka bilateral exchange rates, short and long-term 
interest rates and stock market prices are modelled in a GARCH(I,I) process. The 
low parameter order specification was selected since it has proven to be an 
adequate representation for most financial time series. Prior to model 
identification, unit root tests for stationarity in mean were performed and also pre
whitening, where needed, to remove linear dependence. The full estimation period, 
1 Jan. 1987 - 31 Dec. 1995, was divided into three subperiods to account for 
nonstationarity, ie structural changes trigged by re alignments in the Finnish 
currency. 

Univariate GARCH models for twelve exchange rates, thirteen short-term 
interest rates, one long-term interest rate and the general stock market index were 
estimated. Principal component analysis on the estimated conditional variances for 
each period for both exchange rates and interest rates was performed to detect 
common factors driving the rates. The analysis showed that, compared to 
macroeconomic variables, the groups of conditional variances revieled a high 
degree of heterogeneity, but could be used in concentrating the fluctuations in the 
individual variances into common factors. Spectral analysis was then performed in 
order to measure cyclical regularity in the estimated conditional variances. In the 
spectral density figures, the highest values were on average found for the period of 
180 days and its harmonics for the pegged periods both for exchange rates and 
interest rates. The power spectrum for the floating period both for exchange rate 
and interest rates revealed an integrated process. 

The results of the univariate GARCH estimation for exchange rates and 
interest rates during both the pegged and the floating period showed that there was 
a great likeness in the estimated parameter values within groups of rates. Therefore 
GARCH models were estimated with pooled data to force the conditional 
variances within the group of currencies and within the group of interest rates, 
respectively, into the same model. The estimated models for the pooled data were 
found to be integrated in variance both for exchange rates and interest rates. The 
striking results are that the parameter structure is independent of the exchange rate 
regime and that the almost same parameter values were found in models estimated 
on pooled data both for exchange rates and interest rates. Also the variance model 
of the general stock market index was estimated to have this same parameter 
structure. 

BDS test statistics were applied to the standardized GARCH residuals to test 
for model misspecification. For all rates the applied GARCH(I,I) model produced 
decreasing test values compared to the raw data but as a rule evidence for some 
remaining nonlinearity was found. As a result of the GARCH estimation it was 
possible to construct standardized residuals as new variables. These variables are 
theoretically normal and empirically at least much closer to normal than the raw 
data. The standardization of the data thus makes the normality assumption on 
which VAR models typically are based more grounded. 
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The huge number of variables both within groups of rates and even more so 
for all rates taken together, did not allow the use of multivariate GARCH 
estimation to assess covariances in the system. The problem was handled in two 
ways. First, by assuming the same parameter structure for variances and 
covariances and second, by assuming constant correlation between standardized 
residuals. The dependence between of the autocorrelation structure of variances 
and covariances was tested using Kendalls W test. Based on the outcome of the 
test, the null of independence could be rejected both within the group of exchange 
rates and interest rates. The same estimated parameter values was therefore used in 
forecasting variances and covariances. 

In the second method, the Bollerslev method, the comovements within and 
between groups were measured with a correlation matrix including all twenty 
seven rates under discussion. Correlation between exchange rates and interest rates 
were as a rule small compared to the correlations within the groups. Strong 
correlation was found as expected between the long interest rate and the short rate. 
The movements in the general stock market index were totally independent of the 
contemporaneous movements in all other rates. Based of the results of a CUSUM 
test on constant correlation within periods the Bollerslev method was applicable 
for covariance estimation both within groups and between groups for pair of rates 
with significant correlations. 

Although the magnitude or the direction of expected changes in the rates 
cannot be forecasted the identification of a GARCH model means, however, that 
the conditional variances of the changes can be forecasted. The results derived in 
this study can be used to calculate the expected variance measures in VAR models. 
We end up with a forecasting formula for the conditional variances and 
covariances, which gives the solution to the problem of selecting the length of the 
sample period and the lagged weight structure in volatility forecasting. 
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List of variables 

Foreign exchange rates 

USD 
GBP 
SEK 
NOK 
DKK 
DEM 
NLG 
BEF 
CHF 
FRF 
ITL 
JPY 

US dollar 
Great Britain pound 
Swedish krona 
Norwegian krona 
Danish krona 
Deutsch mark 
Dutch guilder 
BelgianlLuxenbourg franc 
Swiss franc 
French franc 
Italian lira 
Japanese yen 

Domestic rates 

ERFIM 
ERlong 
HEX 

90 

three month interest rate 
three year long rate 
general stock market index 

Three month interest rates 

ERUSD 
ERGBP 
ERSEK 
ERNOK 
ERDKK 
ERDEM 
ERNLG 
ERBEC 
ERCHF 
ERFRF 
ERITL 
ERJPY 
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