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Non-technical summary

The purpose of this paper is to explore the behavioural background for an asym-
metric pass-through of input prices at a power spot market. G. Zachmann and
C. von Hirschhausen report empirical evidence for such an asymmetric e�ect
of EU CO2 emission allowance prices on German electricity spot prices at the
European Energy Exchange in Leipzig (EEX). Increasing carbon prices were
followed by signi�cant increases in power spot prices. Decreasing carbon prices,
however, showed smaller and less signi�cant inverse e�ects on power prices. The
empirical study of Zachmann et al. provides no explanation for the reason of
such an asymmetric reaction. The following article attempts to shed light on
this open question.

Usual results of microeconomic theory suggest that a cost shock should
be passed through symmetrically, no matter if the market is monopolistic,
oligopolistic or in perfect competition. Theoretical explanations for asymmetric
price responses to external shocks in various markets mostly considered speci�c
circumstances, such as search costs, menu costs or speci�c stock adjustment poli-
cies. At power spot markets, however, there are no stocks, no search or menu
costs or any other relevant frictions. Firms compete by submitting supply func-
tions and the price is �xed by the auctioneer. Thus, asymmetric price reactions
must be due to asymmetric adjustments of the submitted functions. At EEX,
these individual bids are not reported and strictly con�dential. My argument to
explain the asymmetric pass-through of emission allowance prices is that �rms
use the price signal as a coordinating mechanism. Through coordinated action,
�rms might increase their joint pro�ts, but since cooperation among �rms is
illegal, coordination should work tacitly. An asymmetric transmission of input
prices permits to jointly tighten the o�er and thus to increase prices slightly and
stepwise over time. Speci�c features of carbon prices qualify them best as an
instrument for collusion: carbon prices are �uctuating and exactly determined
every day. Moreover, emission allowances are an input to all fossil fuel �red
plants (gas or coal), who typically determine the electricity spot price as the
marginal plant. Another important point is about timing: emissions trading
started in 2005. This gives a natural focal point for �rms at what date the
coordination of bids should start, and thus reduces the need for communication.

The following article explores the incentive structure of such a coordinating
mechanism in a stylised model of a spot market where two symmetric �rms
compete in supply functions. The results show, that �rms under this setting
always have an incentive to collude by asymmetrically submitting input cost
shocks when they start from non-cooperation.



Das Wichtigste in Kürze

Die vorliegende Arbeit sucht nach einer Erklärung für eine asymmetrische Kos-
tenweitergabe von Input-Preisen an einer Strombörse. G. Zachmann und C. v.
Hirschhausen [2008], konnten zeigen, dass EU-Emissionszerti�katspreise einen
asymmetrischen Ein�uss auf die Stromspotpreise an der European Energy Ex-
change (EEX) in Leipzig hatten. Steigende Preise für CO2 Emissionszerti�kate
führten zu einem signi�kanten Anstieg der Strompreise im Spotmarkt, während
sinkende CO2 Preise einen geringeren und weniger signi�kanten Ein�uss zeigten.
Die empirische Studie zeigt jedoch keinerlei Erklärung für dieses Phänomen auf.

In gängigen mikroökonomischen Marktmodellen erzeugen Kosten�uktuatio-
nen eine symmetrische Preisreaktion, so dass nach einer Auf- und einer gleich-
groÿen Abwärtsbewegung der Ausgangszustand wieder erreicht wird. Modelle die
eine asymmetrische Preisreaktion ergeben, stützen sich meist auf spezielle Um-
stände, wie Suchkosten für Konsumenten, Preisanpassungskosten oder spezielle
Lagerhaltung. Keiner dieser Ein�üsse ist an einer Strombörse wie der EEX ge-
geben. Gebote werden hier als Preis-Mengen-Kombinationen abgegeben welche
eine individuelle Angebotsfunktion beschreiben. Der Preis wird vom Auktiona-
tor bestimmt, daher muss sich eine asymmetrische Kostenweitergabe bereits in
den Gebotsfunktionen niederschlagen. Diese Gebotsfunktionen unterliegen an
der EEX strikter Geheimhaltung. Der folgende Artikel sieht den Grund für die
asymmetrische Preisweitergabe darin, dass die Anbieter im Strommarkt mithil-
fe des externen Preissignals vom CO2 Markt ihre Gebote koordinieren. Durch
ein koordiniertes Bietverhalten könnten alle Firmen ihre Pro�te vergröÿern. Um
dem Kartellverbot zu entgehen, müsste die Abstimmung der Gebote schweigend
vor sich gehen. Eine asymmetrische Einpreisung von Kosten�uktuationen ermög-
licht es, dass alle Firmen gleichzeitig ihre Mengengebote verknappen, und damit
über die Zeit gestreckt schrittweise höhere Preise erzielen. CO2 Preise weisen für
diese Form der Koordination einige wichtige Eigenschaften auf: das Preissignal
ist eindeutig und täglich bestimmt. CO2 Emissionszerti�kate sind für alle fos-
sil befeuerten Kraftwerke ein Kostenfaktor, und die preissetzenden Kraftwerke
im Spotmarkt sind meist Kohle oder Gaskraftwerke. Der Emissionshandel hat
einen eindeutigen Startpunkt in 2005. Der Beginn des Emissionshandels bietet
damit einen klar de�nierten Startzeitpunkt für die asymmetrische Weitergabe
der Kosten�uktuationen.

Der folgende Artikel untersucht die Anreizstruktur einer solchen Form der
Koordination im Rahmen eines stilisierten Stromspotmarktes auf dem Gebote
als Angebotsfunktionen abgegeben werden. Das Ergebnis im Rahmen des Models
zeigt, dass die beteiligten Firmen es im Ausgangsgleichgewicht immer vorziehen
zu kooperieren.
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1 Introduction

Following its deregulation in 1998, the German market for electricity generation
has seen a wave of mergers leading to a four-�rm oligopoly with two dominant
�rms [Bundeskartellamt, 2006]. In 2001, a wholesale spot market for power was
established at the European Energy Exchange (EEX) in Leipzig. The mar-
ket operates as a daily one-shot auction, in which electricity generators have
to submit stepwise linear and non-decreasing supply functions, specifying the
quantities they are willing to supply at each price, while buyers have to submit
stepwise linear and non-increasing demand functions which specify the quanti-
ties they are willing to buy at each price. Aggregating the submitted demand
and supply functions, the auctioneer chooses a market clearing equilibrium price
at which trades are executed according to the submitted bids.

In 2005, the European Union introduced the EU Emission Trading Scheme
(EU ETS) which caps the total amount of CO2 emissions for several industries
but allows to trade the (freely distributed) emission allowances (EUA) among
regulated �rms. Since then, the prices of EUA re�ect an opportunity cost for the
generation of electricity with fossil fuel �red plants. The price for electricity in
the power spot market is determined by the marginal plant, and these plants are
mostly gas or coal-�red. Hence, according to economic theory one would expect
that an increase in the price of EUA would lead to an increase in the wholesale
prices of electricity, while a decrease in the price of EUA would lead to a decrease
in the wholesale prices of electricity. Indeed, following the introduction of the EU
ETS, both the spot and future wholesale prices for power quite closely followed
the increase in EUA prices, which peaked in April 2006. In May 2006, the carbon
market crashed and EUA prices dropped from almost e30 per ton of CO2 to
less than e10 per ton and continued to decrease to e0.80 per ton in February
2007. However, this steep price decline has not yet led to a corresponding
drop in the wholesale price of electricity at EEX. Zachman and Hirschhausen
[Zachmann and von Hirschhausen, 2008] �nd strong empirical evidence of an
asymmetric e�ect of EUA prices on power prices at EEX, but they do not
provide a theoretical explanation. This is where my paper attempts to shed
light on.

Similar phenomena have been observed in various markets. Peltzman
[Peltzman, 2000] reports asymmetric transmission of input prices for a large
number of products mainly in the food sector, and states that this "points to
a serious gap in a fundamental area of economic theory". The most prominent
example of asymmetric price responses is the US gasoline market of the early
1990s. Increasing crude oil prices caused sky-rocketing gasoline prices, but the
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inverse relation did not hold true1. The pattern can be very well explained by
search costs, preventing consumers to search further when they observe falling
prices (see e.g. [Lewis, 2001]). Suppliers then pro�t from less elastic demand
and keep prices relatively high. In a power spot market, however, there are no
search costs, neither are there any menu costs, inventories or institutions which
might relate to downward rigidity. The reason for the asymmetry must be the
strategic behaviour of market participants. However, a theoretical analysis of
the actors interest in asymmetric rigidity is missing.

The following article argues that EUA prices are used as a coordinating signal
for collusively bidding generators. The argument can intuitively explain why the
asymmetry shows up for carbon price e�ects only. A stylised theoretical analysis
shows that collusion is always preferred to non-cooperation. The outline is as
follows: In section 2, I will introduce a stylised model of competition in supply
functions. Section 3 explores the interest of �rms to coordinate and interprets
carbon prices as an appropriate instrument to do so tacitly. Section 4 studies
the incentive structure of the repeated game and section 5 concludes.

2 The Model

Competition in supply functions is quite di�cult to analyse due to mathematical
complexity and a possible multitude of equilibria. The seminal work on the
subject is due to Klemperer and Meyer [Klemperer and Meyer, 1989]. However,
power spot market designs often impose supply function bidding, because it
provides the necessary �exibility to meet �uctuating demand. Applications of
the theory therefore focused on electricity markets.

To model competition in supply functions, the linear approach has proven to
be quite useful in providing a unique equilibrium and nevertheless being an in-
teresting representation for empirically motivated studies [Baldick et al., 2004].
Advancements have been made with numerical implementations, introducing
asymmetric �rms or allowing supply functions to be stepwise linear, e.g. by
[Green, 1996] or [Baldick et al., 2004]. I will restrict my analysis to the symmet-
ric linear duopoly case which has already been solved by Turnbull [Turnbull, 1983],
and which is the only one to provide a unique and analytically solvable equi-
librium. In detail, linearity assumptions are made for demand, supply, and
marginal costs. The following subsection introduces the simple model based
on Turnbull, subsequent parts will extend the analysis to cooperation and the
repeated game.

1The literature refers to `rockets and feathers' because the downward adjustment reminded
more of the decline of a dwindling feather, see e.g. [Borenstein et al., 1997].
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A basic model of supply function equilibrium

Let i and j be two symmetric �rms, producing quantities qi, qj at cost C(q).

C(q) =
c

2
q2 c > 0

The cost parameter c can be seen as an aggregate of carbon prices and other
production costs: for instance let pe be the price for emission allowances needed
for the �rst produced quantity of output q. Assume emission intensity to in-
crease along the expansion path, such that the e�ect can be approximated by a
quadratic relation. The costs of emissions are then given by pe · q2. In this sce-
nario, carbon price �uctuations have a linear e�ect on the general cost parameter
c.

Firms compete by submitting linear supply functions q(p) = β ·p. A strategy
of �rm i is a supply function qi(p) which is completely identi�ed by the slope
parameter βi > 0. The auctioneer determines the equilibrium price p∗ > 0 such
that aggregate produced quantity qi(p

∗) + qj(p
∗) equals demand D(p∗). The

functional forms of demand, the market clearing equilibrium price and Πi, the
pro�t of �rm i, are as follows:

D(p) = Ñ − γp Ñ, γ ≥ 0

p∗ =
Ñ

γ + βi + βj

Πi = pqi − C(qi)

Πi(βi, βj) =

(
Ñ

γ + βj + βi

)2

(βi −
c

2
β2
i ) (1)

Demand �uctuations are covered by Ñ , a positive random variable whose real-
isation is not known in advance2. Firm i then maximises its pro�t for each N
over its residual demand qi = D(p)− qj(p).

max[Πi] = p · [D(p)− qj(p)] − C([D(p)− qj(p)])
2This model can fully represent the more general model with a�ne supply functions s(p) =

α + βp and costs K(q) = c0 + c1p + c2p
2 as has been shown, for instance, by Baldick et al.

[Baldick et al., 2004]: �rms will always choose the intercept of the inverse supply function to
equal the intercept of marginal cost. When �rms are symmetric, arguing in prices net of the
marginal cost intercept therefore allows to reduce the model without loss of generality to the
linear version as it is presented here.
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The �rst order condition is

∂Πi

∂p
= [D(p)− qj(p)] + [D′(p)− q′j(p)] · [p− C ′] = 0

= qi − (γ + βj)(p− cqi) = 0

⇒ βi = (γ + βj)− cβi(γ + βj)

The last equation imposes a general condition on the strategic parameters βi and
βj, which does not depend on price or the random variable Ñ . This illustrates
a central feature of SFE models; �rms choose an optimal supply schedule for
every possible realisation of demand [Klemperer and Meyer, 1989]. Solving for
βi yields a candidate for the best response function, which I will denote BR(βj).

βi = BR(βj) ≡
(γ + βj)

1 + c(γ + βj)
(2)

The second order condition for pro�t maximisation holds for βi = BR(βj)
and is checked in appendix A.1. This establishes BR(βj) as the best response
function for �rm i. Indeed, the necessary and su�cient conditions are ful�lled
at one and only one point given by the best response de�ned in (2). Therefore,
Πi(βi, βj) increases with βi for all βi ∈ [0, BR(βj)] and decreases for all βi >
BR(βj). This property is needed for further discussion.

Property 1.

∂Πi(βi, βj)

∂βi
=


> 0 if βi ∈ [0, BR(βj)[
= 0 if βi = BR(βj)
< 0 if β > BR(βj).

Considering BR(.), one can check for a Nash equilibrium. The best response
function has some interesting features which are given below.

lim
βj→∞

BR(βj) =
1

c

lim
βj→0

BR(βj) =
1

1
γ

+ c

0 < BR′(βj) =
1

(1 + c(γ + βj))
2 < 1.

Note that the upper bound of the best response 1/c corresponds to the marginal
cost bid or Bertrand bid. Any strategy β < 1/c de�nes a less competitive bid.
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The lower bound γ/(1 + cγ) corresponds to the trace through all Cournot bids
in a market with the given demand and cost functions. A supply function equi-
librium (SFE) therefore lies in between these both. From the derivative of the
best response we can see that the slope parameters βi and βj are strategic com-
plements and that the nested best response function constitutes a contraction
map. In other words: an increase of βj also increases i's best response, but with
lower magnitude and vice versa. Thus, no matter what the initial level of βj is,
an iteration of mutual best responses necessarily converges to an equilibrium in
the interval between Cournot and Bertrand strategies.

Solving for the symmetric best response, such that β = BR(β), yields only
one positive solution, which is the unique supply function equilibrium in non-
cooperative strategies: (βSFE, βSFE).

βSFE ≡

√
γ2 + 4 γ

c
− γ

2
(3)

Joint pro�t maximisation

The Nash equilibrium established above is the solution to the non-cooperative
one-shot game. Assuming that cooperative strategies are feasible, �rms might
do better by coordinating their bids and thus maximising joint pro�ts. Coordi-
nation is of interest if joint pro�t maximisation outperforms the pro�ts of the
non-cooperative equilibrium. The cooperative programme for two symmetric
�rms is

max
β

[2Π(β, β)] .

FOC:

∂2Π(β, β)

∂β
= 2

[(
2 · −2N2

(γ + 2β)3

)
·
(
β − c

2
β2
)

+

(
N2

(γ + 2β)2

)
· (1− cβ)

]
= 0

⇔− 4
(
β − c

2
β2
)

+ (2 β + γ)(1− cβ) = 0

which solves to,

β = βcol ≡
γ

2 + cγ
. (4)

Joint pro�t maximisation over the same set of strategies (βi, βj)∈ lR2
+ yields a

di�erent optimal strategy compared to the non-cooperative equilibrium βcol <
βSFE. This implies that cooperation pays: Πi(βcol, βcol) ≥ Π(βSFE, βSFE). The
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local second order condition holds as well, and is checked in appendix A.2. As
there is a unique maximum, we can say that pro�ts increase for joint variation
of β in [0, βcol], and decrease beyond βcol.

Property 2.

∂Πi(β, β)

∂β
=


> 0 if β ∈ [0, βcol[
= 0 if β = βcol
< 0 if β > βcol.

Note that the level of βcol is even below the Cournot schedule given by γ
1+γ c

.
At this stage, it might be worthwhile discussing the relevance of such a quasi-
monopoly solution. To my knowledge, pro�t maximisation in supply function
equilibria has rarely been studied beyond the Cournot-solution3. This is cer-
tainly not due to ignorance on the part of the scienti�c community, but based
upon empirical �ndings: even Cournot models have been accused of exaggerat-
ing the exertion of market power due to the highly inelastic demand for electric-
ity [Baldick et al., 2004]. Perfectly collusive, say quasi-monopolistic strategies
would result in prices far above the Cournot outcome. My reason to discuss this
perfect cartel solution is twofold: �rst, the result gives a benchmark that shows
down to which point capacity withholding is theoretically pro�table. Second,
because the cooperative strategies exaggerate capacity withholding, it is evident
that these strategies are unlikely to describe the current situation and that their
implementation would arouse great public indignation. These conclusions are
particularly relevant to the study of the repeated game in the next section.

3 Coordination in the Repeated Game

Actual power spot markets typically work on a daily basis with the shortest
possible lag between market clearance and the time of delivery. While demand
might �uctuate, the rules and the participants of the market are quite stable.
This corresponds to the setting of a repeated oligopoly game, and should be
studied accordingly. For the duopoly case described in section 2, the objective
of �rm i in the repeated game is to maximise the present value of all future
pro�ts. First, de�ne Π̂i

t as the expected value of i's pro�t in period t with
respect to the random demand parameter Ñ . Time indices for the strategic

3An exception is an early paper on SFE in electricity markets by Bolle [Bolle, 1992].
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variables are ommitted for simplicity.

Π̂i
t(βi, βj) ≡ EÑt

[
Πi
]

=
E[Ñ2]

(γ + βi + βj)
2

(
βi −

ct
2
β2
i

)
(5)

This de�nition is symmetric to the de�nition of pro�ts in equation (1). Now, let
r represent the day-to-day interest rate to discount future pro�ts. The program
for intertemporal pro�t maximisation of �rm i in period t = 0 is

max

[
∞∑
t=0

(
1

1 + r

)t
Π̂i
t(βi, βj)

]
(6)

Evidently, the one-shot Nash equilibrium βi = βj = βSFE from section (2)
is also a solution for the repeated game. However, it is a well known result
from economic theory (generally phrased as `the folk theorem') that in repeated
oligopoly games a continuum of collusive outcomes beyond the one-shot Nash
strategies might as well be sustained as equilibria by a self-policing cartel. This
is because cooperative strategies can be enforced when �rms fear punishment
in future periods. This is shown for the case of price competition among oth-
ers by [Tirole, 1988], for Cournot competition by [Green and Porter, 1984]. A
comparable result for competition in supply functions will be proved in section
4. An oligopoly engaged in collusion typically earns signi�cantly higher pro�ts,
but has to agree on the equilibrium it wants to enforce. Thus, �rms have to
coordinate.

Let us see to what extent this applies to power spot markets: coordination
of strategies might work through overt communication, a tacit agreement or
signalling. Overt communication is generally ruled out by law. A natural focal
point for tacitly colluding �rms is the quasi-monopolistic solution which would
be chosen by a perfect cartel. However, as discussed above, the perfect cartel
solution for power spot markets is likely to exaggerate price increases far beyond
a sustainable level and would therefore immediately trigger governmental action.
A smaller level of collusion, however, might be less visible and already greatly
increase the �rms pro�ts. To realise these pro�ts, �rms have to overcome the
dilemma of multiple equilibria and uncertainty about the rivals' strategy. Note
that the individual bids of �rms are not reported. When the market has cleared,
each �rm learns the equilibrium price, the quantity it sold and the size of the
whole market. It therefore can deduce ex-post if the rest of the market bid
higher or lower quantities for the same price, but not the slope or shape of other
�rms supply functions [EEX, 2007]. The lack of visibility hinders coordination
of individual bids by direct signalling. Suppose a �rm tends to induce collusive
bidding through direct signalling: it would risk large losses before rivals could
perceive the collusive device. A coordinated simultaneous move of all �rms,
however, would increase pro�ts for each of the players.
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The role of asymmetric cost transmission

Suppose that initially all �rms bid their non-cooperative one-shot equilibrium
strategies βSFE. If the oligopoly aims at realising collusive pro�ts, suppliers
have to agree on `when? ' and `how much? ' they want to simultaneously tighten
their supply. Thus, they need a coordinating mechanism, which leads to a
simultaneous departure from the one-shot equilibrium. Such a coordination
mechanism for the withholding of generation capacity should (a) be tacit for
legal reasons, should (b) lead to small but repeated joint variation towards the
collusive strategies, should (c) be irregular enough not to be easily recognisable
by an outsider but (d) has to be precise and easily interpretable for each �rm.

An asymmetric pass-through of input prices might play this role. The slope of
the equilibrium supply function βSFE decreases in costs4. A not fully transmitted
downward cost shock will result in an ex-post less competitive bid, incorporating
`historical' or say `�ctive' costs. To describe this formally, let ct ∈ [c, c] be the
realisation of the �uctuating cost parameter c̃t in period t. Now, de�ne a measure
∆t of non-transmitted downward cost shocks for each t ∈ lR+.

∆t ≡


0 if t = 0
∆t−1 if t > 0, ct ≥ ct−1

∆t−1 + x · (ct−1 − ct), with x ∈ [0, 1] if t > 0, ct < ct−1

(7)

Firms bidding according to �ctive costs ct + ∆t transmit costs asymmetrically,
where the parameter x determines the degree of downward rigidity. x = 0
implies perfect transmission of all costs shocks, while x = 1 represents total
downward rigidity. In the linear case, such a downward rigid strategy is fully
described by the following slope parameter:

βAPT (∆t) ≡

√
γ2 + 4γ

ct+∆t
− γ

2
(8)

Given a starting date t = 0, the value of ∆t measures precisely the distance from
the non-cooperative equilibrium in each period. No further coordination apart
from an initial agreement on t0 and x is needed to implement this mechanism.
When all �rms incorporate the same value of ∆t, no �rm has to bear the loss
of a unilateral departure from its best response. Therefore, the quality of the
external signal c̃t is essential for the e�ciency of this mechanism. ct has to �uc-
tuate continuously with small amplitude and an easily and precisely observable
outcome. Emission allowances exactly ful�l this property: they are auctioned
daily at EEX just before the power auction takes place, they show continuous

4See the de�nition in (3) and its derivative with respect to c
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price �uctuations, and they are an input to all fossil fuel �red plants, as opposed
to gas or coal �red plants each separately. However, the most important point is
in the question of initial timing. The coordinating signal is de�ned in time, and
there must be an unambiguous date t = 0 when the game starts to obtain the
symmetry of bids. The commencement of EU ETS provides a natural focal point
for the start of the collusive game. No other input but EUA has this property,
and this leads to a central argument of my article: the introduction of emissions
trading in 2005 provided an unprecedented opportunity for the installed power
oligopoly to collude tacitly by an asymmetric pass-through of EUA prices. If
this is true, the discreetness of the mechanism has been witnessed by reality. It
took two years and an immense crash in the carbon market 2006 to reveal the
asymmetry.

The incentive constraint in the repeated game

If the coordination mechanism described above is to be implemented, one has to
study incentive feasibility. From a joint perspective, it is clear that lowering o�er
curves only pays until the optimal collusive solution βcol is reached. From there
on �rms will have an interest in transmitting costs symmetrically (x = 0), and
the oligopoly then acts like a perfect cartel. De�ne ∆max to be the maximum
value for ∆t, such that the collusive bid is reached.

∆max ≡ arg[∆ ∈ lR+, βAPT (∆) = βcol]

=
4 + cγ

γ(3 + cγ)
(9)

As I mentioned above, it is questionable if this level of ∆t is politically feasible.
Here it only gives an upper bound on capacity withholding in the repeated game.

The greater concern is individual incentive feasibility. In short, expected fu-
ture pro�ts resulting from sustained collusion must exceed pro�ts from cheating
and playing the individual best response. De�ne the deviating strategy as

βdev(∆t) = BR(βAPT (∆t)) (10)

Once cheated, a tricked �rm will seek to play its individual best response as
well since the collusive agreement has been broken. By repeated anticipation of
each other's best responses, both �rms will go straight back to their one-shot
equilibrium strategies βSFE. Lacking a new starting point for coordination,
�rms cannot do better than playing the one-shot equilibrium for all following
periods. This results in what is usually called a grim strategy. So the structure
of the repeated game is as follows: starting at t = 0,∆t = 0, �rms bid the
asymmetrically adjusting strategies βAPT . When a �rm deviates, it plays its
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best response according to (10). After collusion has broken, both �rms are back
at the non-cooperative equilibrium for all following periods. If the perfect cartel
situation with ∆t = ∆max is reached before collusion breaks, �rms will jointly
bid like a perfect cartel.

The resulting incentive constraint for sustained collusion in period τ is

Ec̃t

[
∞∑
t=τ

Π̂APT (∆t)

(1 + r)t−τ

]
≥ Ec̃t

[
Π̂dev(∆τ )

]
+ Ec̃t

 ∞∑
t=(τ+1)

Π̂SFE

(1 + r)t−τ

 (11)

with Π̂APT representing pro�ts from sustained collusion at the level ∆τ , Π̂dev

being deviative pro�ts and Π̂SFE the pro�ts at the non-cooperative equilibrium.

Π̂APT (∆τ ) = Π̂i(βAPT (∆τ ), βAPT (∆τ ))

Π̂dev(∆τ ) = Π̂i(βdev(∆τ ), βAPT (∆τ ))

Π̂SFE = Π̂i(βSFE, βSFE)

 (12)

I am interested in ∆τ as the critical variable for sustained collusion and will
treat r as a parameter. Note that it is su�cient to analyse the constraint with
respect to one critical value of ∆τ for the current period τ and ∆t = ∆τ for all
future periods t ≥ τ . Let ∆IC denote this critical value, such that the constraint
(11) still holds. See (11) and note that only the left hand side of the inequality
is a�ected by future increases of ∆t. So when ∆τ > ∆IC , (11) is not veri�ed,
and considering future increases of ∆t is meaningless because collusion already
broke. When (11) is slack, considering ∆t > ∆τ does not harm the constraint for
all ∆τ ≤ ∆max, because this would only increase the left hand side. To resume
this argument: assuming no future changes in ∆t is the most critical scenario
for the incentive constraint which implies that the constraint holds for all other
scenarios as well. It is tempting to derive an analytical solution for this critical
value ∆IC . Unfortunately, it seems impossible to solve the constraint explicitly.
Nevertheless, the following section will show some analytical results from the
overall behaviour of the inequality.

4 Solving the Repeated Game

The complexity of the incentive constraint lies not only in its functional form,
but in the presence of two random variables. To gain analytical insights, I have
to make some assumptions about the stochastic properties of cost and demand
shocks.
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Assumption 1 The anticipated probability distribution of Ñt is independent
of cost shocks and of time.

Assumption 2 The anticipated probability distribution function f(ct) is the
same for all t and E[c̃t] = cτ for all t ≥ τ .

Assumption 1 is the less critical assumption: Independence of cost and de-
mand shocks seems reasonable for the case of emission allowance prices and
electricity consumption. The assumption of constant expected demand over
time might as well be replaced by assuming a linear time trend, which would
simply translate into a di�erent discount factor. For the sake of simplicity, I did
not consider a time trend here.

Assumption 2 is quite restrictive but inevitable in order to obtain analytical
results. Numerical implementations might overcome this drawback in the future,
but this is clearly beyond the scope of this paper.

The assumptions permit to treat constraint (11) in a much more convenient
form. Expected pro�ts with respect to demand shocks can be expressed as in (5);
the expectation of pro�ts with respect to cost shocks is obtained by integrating
over all possible values of ct ∈ [c, c]. Independence of time allows to sum up
equivalent terms for future expected pro�ts, which form a geometric sequence.
The incentive constraint can now be speci�ed as follows.

Π̂APT (∆τ ) +

∫ c

c

f(c)
(

1
r

)
Π̂APT (∆τ ) dc ≥ Π̂dev(∆τ ) +

∫ c

c

f(c)
(

1
r

)
Π̂SFE dc (13)

The left hand side denotes pro�ts from sustained collusion. The right hand
side represents a one-period pro�t from deviation plus the discounted pro�ts
from non-cooperation in the future. Both sides of the inequality show integrals
over c, which, however, do not include the whole term: for the current period τ
the realisation of costs is known, but demand is not. Firms therefore calculate
with the actual cost parameter and expected pro�ts with respect to demand.
Future pro�ts are uncertain with respect to cost and demand �uctuations. Ex-
pected pro�ts with respect to both variables are discounted at the interest rate
r. Note again that future changes in ∆t would only increase pro�ts from sus-
tained collusion. Thus, using the current value ∆τ for the evaluation of future
pro�ts does not a�ect the validity of the incentive constraint.

Still, the constraint is not solvable for a speci�c critical value ∆IC . (For the
interested reader: the explicit form of (11) can be obtained, using the de�nitions
in (12), (1), (8), (10) and (3).) Nevertheless, one can learn a lot from this
incentive constraint by analysing its overall behaviour. The results are summed
up in the following theorem, which is proved in three successive claims. Figure
1 might serve as an illustration.
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Theorem 1
For an arbitrary set of parameters {r, γ, cτ}, �rms always prefer to transmit
costs asymmetrically when they are at the one-shot equilibrium, for a continuous
interval ∆τ ∈ [0,∆IC ] with ∆IC > 0, but never beyond ∆IC.

Proof of Theorem 1.

Claim 1.
For a given pair of parameters (r, γ), there exists a unique value ∆IC ∈ lR+,
such that the incentive constraint (13) is veri�ed at ∆IC and not veri�ed for all
∆τ > ∆IC.

Proof. At ∆τ = 0, βAPT = βdev = βSFE, thus the inequality (13) becomes an
identity and the constraint is veri�ed. I will now analyse how the inequality
evolves when ∆τ increases.

First, consider the left hand side of (13), representing discounted pro�ts of
sustained collusion as a function of ∆τ . We know from Property 2 that start-
ing from the non-cooperative equilibrium βSFE, a joint decrease of β increases
pro�ts until β = βcol. Further decreases of β then decrease joint pro�ts. βAPT
is decreasing in ∆τ , therefore ΠAPT increases with ∆τ until ∆τ = ∆max and
then decreases with ∆τ . When ∆τ goes to in�nity, βAPT approaches zero. With
β → 0, there is no supply and therefore there are no pro�ts. Hence, ∆τ → ∞
implies Πi(βAPT (∆τ ), βAPT (∆τ )) → 0; in words: pro�ts from asymmetric price
transmission approach zero as well. The same property is true for expected
pro�ts with respect to demand or cost �uctuations. Considering the left hand
side of the inequality (13), we know that this is merely a sum of expected pro�ts
when both �rms play βAPT , hence this side of the inequality �rst increases, and
then decreases with ∆τ , �nally approaching zero.

Now consider the right hand side of the inequality (13). The only term
depending on ∆τ is the pro�t of deviation Πdev. Its derivative with respect to
∆τ is

∂Π̂i(βdev, βAPT )

∂∆τ

=
∂Π̂i

dev

∂βj︸ ︷︷ ︸
<0

∂βAPT
∂∆τ︸ ︷︷ ︸
<0

+
∂Π̂i

dev

∂βi︸ ︷︷ ︸
= 0

∂βdev
∂∆τ

The �rst summand is positive; pro�ts always increase the more the rival
withholds its capacity. The second summand is zero because the deviating �rm
plays its best response and due to Property 1, ∂Πi/∂βi = 0 at the best
response. Therefore, deviative pro�ts increase continuously with higher ∆τ .
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Finally, we know that (13) is veri�ed at ∆ = 0; that the left hand side of
the inequality �rst increases, then decreases in ∆, and that the right hand side
increases continuously. Therefore, there exists a maximum value ∆IC ≥ 0 where
both sides of the inequality coincide and never beyond. Q.E.D.

For an illustration, see �gure 1.

Claim 2.
All �rms weakly prefer coordination by asymmetric price transmission to the
non-cooperative equilibrium. Asymmetric price transmission is strictly preferred
in the neighbourhood of the non-cooperative equilibrium.

∃ ∆̌ > 0, such that (13) holds at ∆τ = ∆̌, and
[
∆τ = ∆̌

]
� [∆t = 0] .

Note that Claim 2 implies ∆IC > 0.

Proof. We know that (13) holds as an identity at ∆τ = 0. To hold for larger
values of ∆τ , the left hand side of the inequality has to follow a higher slope
than the right hand side. This condition can be phrased as the `Inequality of
Derivatives':

∂

∂∆τ

[
Π̂APT (∆τ ) +

∫ c

c

f(c)
(

1
r

)
Π̂APT (∆τ ) dc

]
>

∂

∂∆τ

Π̂dev(∆τ )

∣∣∣∣∆τ = 0.

(14)
A su�cient condition for (14) is

∂

∂∆τ

Π̂APT (∆τ ) =
∂

∂∆τ

Π̂dev(∆τ ) |∆τ = 0 (14.a)

and

∂

∂∆τ

∫ c

c

f(c)
(

1
r

)
Π̂APT (∆τ ) dc > 0 |∆τ = 0 (14.b)

These two conditions can be checked separately. Expressing (14.a) for �rm i
with respect to strategies of �rm i and j yields

∂Π̂i
APT

∂βi︸ ︷︷ ︸
= 0

∂βAPT
∂∆τ

+
∂Π̂i

APT

∂βj

∂βAPT
∂∆τ

=
∂Π̂i

dev

∂βi︸ ︷︷ ︸
= 0

∂βdev
∂∆τ

+
∂Π̂i

dev

∂βj

∂βAPT
∂∆τ

∣∣∣∣∣∣∣∣∣∆τ = 0
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At ∆t = 0, no �ctive costs are priced in and every �rm bids the equilibrium
strategy: βAPT (0) = βdev(0) = βSFE. Because βSFE is the best response, the
derivative of �rm i's pro�t with respect to its own strategy is zero, no matter if it
is willing to cooperate or not. As indicated above, the corresponding derivatives
cancel. Moreover, all �rms earn equilibrium pro�ts: ΠAPT (0) = Πdev(0) = ΠSFE.
What remains is an equation of the derivatives of �rm i's equilibrium pro�t with
respect to �rm j's strategy,

∂Π̂i
SFE

∂βj

∂βAPT
∂∆τ

=
∂Π̂i

SFE

∂βj

∂βAPT
∂∆τ

|∆τ = 0

which is evidently true.
Now consider (14.b). This condition requires discounted expected future

pro�ts to have a strictly positive slope in ∆τ . However, the very central aim
of collusion by asymmetric price transmission is increasing pro�ts by not trans-
mitting downward cost shocks. Consider the pro�t function Πi(βi, βj) at an
arbitrary realisation of c. We know that βAPT strictly decreases in ∆τ and from
Proposition 2 that pro�ts strictly increase for a joint decrease of (βi, βj) as
long as (βi, βj) > (βcol, βcol). Therefore ΠAPT strictly increases with ∆τ ≤ ∆max

and the same applies to the expected value of ΠAPT . Thus, (14.b) is true at
∆τ = 0, which implies that the inequality of derivatives holds. Q.E.D.

Claim 3.
The incentive constraint (13) is veri�ed for all ∆τ ∈ [0,∆IC ].

Establishing the proof ofClaim 3 requires some calculus, which can be found
in the appendix. The following reasoning uses the result from the appendix.

Proof. Consider both sides of the inequality as functions of ∆τ . One can estab-
lish Claim 3 by proving a single crossing property for pro�ts of deviation and
pro�ts of collusion if ∆τ > 0. Figure 1 might serve as an illustration.

We know from the proof of Claim 2 that both sides of the inequality coincide
at ∆ = 0, and that the left hand side starts with higher slope. We know from
Property 2, that the left hand side increases with ∆ until ∆max and then
decreases, �nally approaching zero. On the contrary, we know from the proof of
Claim 1 that the right hand side is continuously increasing in ∆.

First, suppose that no intersection took place in the interval ∆ ∈ [0,∆max].
Thus, the left hand side still exceeds the right hand side at ∆max. Because the
left hand side is monotonically decreasing for all ∆ > ∆max, and the right hand
side is monotonically increasing, they will intersect exactly once: at ∆IC .

Now suppose there is an intersection within the interval [0,∆max] at an ar-
bitrary ∆ > 0. Indeed, one can prove concavity of both functions over this
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interval (the proof of concavity is in the appendix), therefore they can intersect
maximally twice: one intersection is at 0 and one is at ∆. However, since no
further intersection is possible when both functions are concave, the right hand
side exceeds the left hand side at ∆max. From this point on, the left hand side
is decreasing, and the right hand side is increasing. Hence, no other intersection
is possible for all ∆ > ∆. Therefore, ∆ is unique, and corresponds exactly to
the de�nition of ∆IC in Claim 1. Q.E.D.

Claim 1, 2 and 3 together are equivalent to Theorem 1. The proof of
Theorem 1 therefore ends with the proof of Claim 3. Q.E.D.

The range of collusive equilibria in numerical examples

From a regulatory point of view, it would be interesting to know more about the
level of `�ctive costs' which can be priced in before collusion breaks. Numerical
examples show that these levels vary signi�cantly with the price sensitivity of
demand given by γ and less remarkably with the level of the interest rate r.
Higher values of each of the both parameters typically narrow the interval for
collusion. The interest rate, however, mainly determines another important
feature: whether optimal collusion will be reached or not. In terms of the model
developed throughout this paper, this corresponds to the order of ∆IC and ∆max.
If ∆IC < ∆max, collusion breaks before the perfect cartel solution is reached;
if ∆IC > ∆max, continued �uctuations of the cost parameter might lead to the
establishment of a quasi-monopoly of perfectly colluding �rms. Both cases are
possible and illustrated in the following �gures.

Figure 1 shows a numerical example with �xed values for cτ , E
[
Ñ2
]
, γ

and r. The horizontal axis gives values of �ctive costs ∆τ in proportion to c.
The solid line represents discounted pro�ts of sustained collusion (`left hand
side') as a function of ∆τ . It �rst coincides with, then exceeds the dashed line
which represents pro�ts of deviation (result of Claim 2), reaches its maximum
at ∆max, then decreases and intersects for the second and last time the pro�t
of deviation function at ∆IC (result of Claim 1). No intersection takes place
between 0 and ∆IC (result of Claim 3). In this case, the perfectly collusive
solution (∆ = ∆max) would be incentive feasible.

Figure 2 shows the same example as �gure 1, but with a signi�cantly higher
interest rate (10 times higher than before). One can see, that the order of ∆IC

and ∆max is now inverted.
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Figure 1: Both sides of the incentive constraint as functions of ∆, low interest
rate

Figure 2: Both sides of the incentive constraint as functions of ∆, high interest
rate
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5 Conclusion

In this paper I have studied the strategic background of an asymmetric trans-
mission of input prices at a power spot market. I discussed that joint pro�t
maximisation at such power spot markets would yield potentially large extra
pro�ts but is hindered by incomplete information about rivals strategies and
the lack of a focal point for collusive bidding. Asymmetric transmission of input
price shocks, however, can be used as a coordinating mechanism to overcome the
collusive dilemma of �rms. Interpreting the input price shocks as a coordinating
signal explains in an intuitive way why carbon prices qualify best as a collusive
device. They have the necessary signalling quality: unambiguity with respect
to time and level, continuous �uctuation and generality as a cost factor for each
�rm.

In the framework of a symmetric two-�rm linear supply function equilibrium
model, I established a theorem on the incentive feasibility of such coordination,
which shows that the incentive constraint holds continuously for an interval
of �ctive costs [0,∆IC ]. This implies that �rms always have an interest to de-
part jointly from the non-cooperative equilibrium when coordination is possible.
Numerical examples show that even the monopoly solution might be incentive-
feasible from the �rms point of view, depending on the set of parameters. If the
perfect cartel solution is reached without a break of collusion, we can assume
�rms to behave like a quasi-monopoly in the following. If tacit coordination
looses incentive feasibility before perfect collusion is implemented, the lack of
overt communication is likely to undermine the re-establishment of joint pro�t
maximisation. Whether a perfect cartel solution is politically feasible at all is
an open question.

The �ndings add to the literature on asymmetric price adjustment a model
which applies even to the setting of a spot market with supply function bid-
ding. This model provides the �rst attempt to explain the empirically proved
phenomenon that EUA prices had an asymmetric e�ect on German power spot
prices. It yields an explanation which is based on the informational structure
of the market: the introduction of emissions trading provided an instrument
for collusion which was lacking before. A �rst result for policy makers can
be phrased as follows: distorting e�ects of a policy measure (the installation
of emissions trading) might not only lie in the economic sphere of goods and
money, but also occur through the informational structure for oligopolistic ac-
tors in neighbouring markets. Introduction of such measures should regularly
be accompanied by enhanced anti-trust screening of industries involved.

Further research should to explore the theoretical �ndings of this article un-
der a more realistic speci�cation. Greater realism, however, requires a numerical
implementation to relax the relevant assumptions.
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A

A.1 Second order condition for the Best Response, and

Proof of Proposition 1

For the su�cient condition, consider the pro�t function given by (1). Its second
derivative is

∂2Πi(βi)

∂β2
i

=
6Ñ2

(
βi − c

2
β2
i

)
(βi + βj + γ)4

− 4Ñ2(1− cβi)
(βi + βj + γ)3

− cÑ2

(βi + βj + γ)2
.

Locally, at the best response the second derivative becomes

∂2Πi(BR(βj), βj)

∂BR(βj)2
=

6N2
(
− c(βj+γ)2

2(1+c(βj+γ))2
+

βj+γ

1+c(βj+γ)

)
(
βj + γ +

βj+γ

1+c(βj+γ)

)4

−

 4N2
(

1− c(βj+γ)

1+c(βj+γ)

)
(
βj + γ +

βj+γ

1+c(βj+γ)

)3 +
cN2(

βj + γ +
βj+γ

1+c(βj+γ)

)2



= − N2 (1 + c (βj + γ))4

(βj + γ)3 (2 + c (βj + γ))3
< 0.

Q.E.D.

A.2 Second order condition for joint pro�t maximisation

and proof of Proposition 2

The second order condition requires local concavity of joint pro�ts for joint
variations of β

∂22Π(βcol, βcol)

∂β2
col

= − 2cN2

(γ + 2βcol)
2 −

16N2 (1− cβcol)
(γ + 2βcol)

3 +
48N2

(
βcol − c

2
β2
col

)
(γ + 2βcol)

4

= − 2cN2(
γ + 2γ

2+cγ

)2 −
16N2

(
1− cγ

2+cγ

)
(
γ + 2γ

2+cγ

)3 +
48N2

(
γ

2+cγ
− cγ2

2(2+cγ)2

)
(
γ + 2γ

2+cγ

)4

= −2N2(2 + cγ)4

γ3(4 + cγ)3
< 0

Q.E.D.
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B Completion of the proof of Claim 3

To complete the proof of Claim 3, it is su�cient to show concavity, (a) of pro�ts
of sustained collusion, and (b) of pro�ts of deviation, each over the interval
∆ ∈ [0,∆max]. Showing this for an arbitrary value of c implies concavity of the
integral over all c, and therefore of the functions on either side of the incentive
constraint (4).

B.1 Proof of concavity of the 'left hand side'

The 'left hand side' of the incentive constraint (4) represents discounted pro�ts
of sustained collusion. Both �rms play the same strategy of asymmetric price
transmission which I will denote β for simplicity:

βi = βj = βAPT (∆) ≡ β

Π̂APT = Π̂(βAPT , βAPT ) = Π̂(β)

Note that β is monotone decreasing in ∆. One can therefore argue almost
equivalently with either variable. The second derivative of collusive pro�ts with
respect to ∆ is:

∂2Π̂(β)

∂∆2
=
∂Π̂

∂β

∂2βAPT
∂∆2

+
∂2Π̂

∂β2

(
∂βAPT
∂∆

)2

< 0 (B.1)

which I will have to prove negative. First, let us reduce the terms involved:

∂Π̂

∂β
=

(
−4E[Ñ2](β − c

2
β2)

(γ + 2β)3

)
+

(
E[Ñ2] (1− cβ)

(γ + 2β)2

)

=
E[Ñ2]

(γ + 2β)3

(
−4(β − c

2
β2) + (1− cβ) (γ + 2β)

)

=
E[Ñ2]

(γ + 2β)3
(γ − β(2 + cγ))
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∂2Π̂

∂β2
= − 6

E[Ñ2] (γ − β(2 + cγ))

(γ + 2β)4
− E[Ñ2] (2 + cγ)

(γ + 2β)3

=
E[Ñ2]

(γ + 2β)3

(
−6(γ − β(2 + cγ))

γ + 2β
− (2 + cγ)

)

=
E[Ñ2]

(γ + 2β)3

(
4β(2 + cγ)− cγ2 − 8γ

γ + 2β

)

β′ ≡ ∂βAPT
∂∆

= − γ

(c+ ∆)2

√
γ2 + 4γ

c+∆

< 0

(β′)2 ≡
(
∂βAPT
∂∆

)2

=
γ2

(c+ ∆)4
(
γ2 + 4γ

c+∆

) > 0 (B.2)

β′′ ≡ ∂2βAPT
∂∆2

= − 2γ2

(c+ ∆)4
(
γ2 + 4γ

c+∆

)3/2
+

2γ

(c+ ∆)3

√
γ2 + 4γ

c+∆

(β′)2

β′′
=

√
γ2 + 4γ

c+∆

2γ(c+ ∆) + 6
> 0 (B.3)

⇒ β′′ > 0

With the last result, one can equivalently express the convexity condition (B.1)
by

∂Π̂

∂β
+

(β′)2

β′′
∂2Π̂

∂β2
< 0

⇔
E[Ñ2]

(γ + 2β)3
(γ − β(2 + cγ)) +

(β′)2

β′′
E[Ñ2]

(γ + 2β)3

(
4β(2 + cγ)− cγ2 − 8γ

γ + 2β

)
< 0

⇔ γ − β(2 + cγ) +
(β′)2

β′′
4β(2 + cγ)− cγ2 − 8γ

γ + 2β
< 0
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where I cancelled the common positive factor E[Ñ2]/(γ + 2β)3. Using equation
(B.3) and the de�nition for β = βAPT in (8) yields

γ − β (2 + cγ) +
4β (2 + cγ)− cγ2 − 8γ

2γ(c+ ∆) + 6
< 0

⇔ γ − (2 + cγ) β

(
2γ(c+ ∆) + 2

2γ(c+ ∆) + 6

)
︸ ︷︷ ︸

<0

− cγ2 + 8γ

2γ(c+ ∆) + 6︸ ︷︷ ︸
<0 ;↗ in ∆

< 0 (B.4)

The �rst summand is positive and constant, the two latter are negative, the
last term is evidently negative and increasing in ∆. To learn more about the
behaviour of this condition, di�erentiate the second summand with respect to
∆:

∂

∂∆

[
− (2 + cγ) β

(
2γ(c+ ∆) + 2

2γ(c+ ∆) + 6

)]

=− (2 + cγ)

(
β′

2γ(c+ ∆) + 2

2γ(c+ ∆) + 6
+ β

8γ

(2γ(c+ ∆) + 6)2

)
Using the de�nitions in (8) and (B.2) gives

− (2 + cγ)

 −γ(2γ(c+ ∆) + 2)

(c+ ∆)2

√
γ2 + 4γ

c+∆
(2γ(c+ ∆) + 6)

+
4γ
(√

γ2 + 4γ
c+∆
− γ
)

(2γ(c+ ∆) + 6)2



= − 2 + cγ

2γ(c+ ∆) + 6

 −2γ2(c+ ∆) + 2γ

(c+ ∆)2

√
γ2 + 4γ

c+∆

+
4γ
(√

γ2 + 4γ
c+∆
− γ
)

2γ(c+ ∆) + 6



=
−γ(2 + cγ)

2γ(c+ ∆) + 6

 −12− 4γ(c+ ∆)2
√
γ2 + 4γ

c+∆

(6 + 2γ(c+ ∆))(c+ ∆)2

√
γ2 + 4γ

c+∆



=

γ(2 + cγ)(12 + 4γ(c+ ∆)2)
√
γ2 + 4γ

c+∆

(2γ(c+ ∆) + 6)2(c+ ∆)2

√
γ2 + 4γ

c+∆

 > 0
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This shows that the term in (B.4) is monotonically increasing in ∆. The term
is negative over the whole interval ∆ ∈ [0, ∆max] if and only if it is negative
at the upper bound ∆max. Recall that at ∆ = ∆max both �rms are at the
perfectly collusive equilibrium, so due to Property 2, one has ∂Π/∂β = 0 and
∂2Π/∂β2 < 0. Consider (B.1) and it becomes clear that the inequality holds at
this point, hence, it holds in its reduced form (B.4) and therefore for the whole
interval ∆ ∈ [0, ∆max].Q.E.D.

B.2 Proof of concavity of the 'right hand side'

The 'right-hand-side' of the incentive constraint (4) represents discounted pro�ts
of deviation from collusion. Firm i plays the best response to �rm j's collusive
strategy of asymmetric price transmission:∣∣∣∣∣∣

βi = βdev ≡ BR(βj)
βj = βAPT (∆)

Π̂i = Π̂dev ≡ Π̂i(βdev, βAPT )

∣∣∣∣∣∣
Note that βAPT is monotone decreasing in ∆, and 0 < BR′ < 1. βi and βj
therefore vary with the same sign, but a di�erent magnitude in ∆. The second
derivative of a deviating �rm's pro�t with respect to ∆ is:

∂2Πi
dev(∆)

∂∆2
=
∂Π̂i

∂βj

∂2βj
∂∆2

+

(
∂2Π̂i

∂β2
j

+
∂2Π̂i

∂βj∂βi

∂BR

∂βj

) (
∂βj
∂∆

)2

< 0 (B.5)

which is to be proved negative.
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The involved terms have the following functional forms,

∂Π̂i

∂βj
= −

2E[Ñ2]
(
βi − cβ2

i

2

)
(βi + βj + γ)3

= − E[Ñ2]

(βi + βj + γ)3

(
2BR(βj)− cBR(βj)

2
)

= − E[Ñ2]

(βi + βj + γ)3

(
2

(γ + βj)

1 + c(γ + βj)
− c

(
(γ + βj)

1 + c(γ + βj)

)2
)

= − E[Ñ2]

(βi + βj + γ)3

(
(γ + βj)(2 + c (γ + βj))

(1 + c(γ + βj))2

)
< 0

∂2Π̂i

∂β2
j

=
6E[Ñ2]

(
βi − cβ2

i

2

)
(βi + βj + γ)4

=
E[Ñ2]

(βi + βj + γ)3

(
6BR(βj) − 3 cBR(βj)

2

BR(βj) + βj + γ

)

=
E[Ñ2]

(βi + βj + γ)3

6− 3 c
(γ+βj)

1+c (γ+βj)

2 + c (βj + γ)



=
E[Ñ2]

(βi + βj + γ)3

(
6 + 3 c (γ + βj)

(2 + c (βj + γ))(1 + c (γ + βj))

)

=
E[Ñ2]

(βi + βj + γ)3

(
3

1 + c (γ + βj)

)
> 0
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∂2Π̂i

∂βj∂βi
=

6E[Ñ2]
(
βi − cβ2

i

2

)
(βi + βj + γ)4

− 2E[Ñ2](1− cβi)
(βi + βj + γ)3

=
E[Ñ2]

(βi + βj + γ)3

(
6BR(βj) − 3 cBR(βj)

2

BR(βj) + βj + γ
− 2(1− cBR(βj))

)

=
E[Ñ2]

(βi + βj + γ)3

(
3

1 + c (γ + βj)
− 2

(
1− c (γ + βj)

1 + c (γ + βj)

))

=
E[Ñ2]

(βi + βj + γ)3

(
3

1 + c (γ + βj)
− 2

1 + c (γ + βj)

)

=
E[Ñ2]

(βi + βj + γ)3

(
1

1 + c (γ + βj)

)
> 0

So ∂2Π̂i/∂βj∂βi has a positive sign. Consider (B.5): since all factors multi-

plying ∂2Π̂i/∂βj∂βi are positive, assuming BR′ = 1 is a stricter condition than
the one in (B.5). To simplify calculations, I will assume BR′ = 1 throughout
the rest of this proof.

The stricter condition instead of (B.5) is

β′′APT

(
∂Π̂i

∂βj

)
+ (β′APT )2

(
∂2Π̂i

∂β2
j

+
∂2Π̂i

∂βj∂βi

)
< 0 (B.6)

which can be simpli�ed by cancelling some common positive factors.

(B.6)

⇔ β′′APT
(β′APT )2

(
−(γ + βj)(2 + c (γ + βj))

(1 + c(γ + βj))2

)
+

(
3 + 1

1 + c (γ + βj)

)
< 0

⇔ − β′′APT
(β′APT )2

(γ + βj)(2 + c (γ + βj)) + 4(1 + c(γ + βj)) < 0
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and �nally

−(2γ(c+ ∆) + 6)(γ + βj)(2 + c (γ + βj)) + 4(1 + c(γ + βj))
√
γ2 + 4γ

c+∆√
γ2 + 4γ

c+∆

< 0

Replacing βj by βAPT and cancelling the square root in the denominator
yields

− (γ(c+ ∆) + 3)

(
γ +

√
γ2 +

4γ

c+ ∆

)2 + c

γ +
√
γ2 + 4γ

c+∆

2


+ 4

1 + c

γ +
√
γ2 + 4γ

c+∆

2

√γ2 +
4γ

c+ ∆

= 2

√
γ2 +

4γ

c+ ∆

(
2 + c

(
γ +

√
γ2 +

4γ

c+ ∆

))

− 3

(
γ +

√
γ2 +

4γ

c+ ∆

)2 + c

γ +
√
γ2 + 4γ

c+∆

2


− γ(c+ ∆)

(
γ +

√
γ2 +

4γ

c+ ∆

)2 + c

γ +
√
γ2 + 4γ

c+∆

2


︸ ︷︷ ︸

≡K,K>0

= 2

√
γ2 +

4γ

c+ ∆

(
2 + c

(
γ +

√
γ2 +

4γ

c+ ∆

))

− 3

√
γ2 +

4γ

c+ ∆

2 + c

γ +
√
γ2 + 4γ

c+∆

2


− 3γ

2 + c

γ +
√
γ2 + 4γ

c+∆

2

−K
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=
1

2

√
γ2 +

4γ

(c+ ∆)
c

(
γ +

√
γ2 +

4γ

c+ ∆

)
− 2

√
γ2 +

4γ

(c+ ∆)

− 3γ

2 + c

γ +
√
γ2 + 4γ

c+∆

2

−K

=
1

2
c γ

√
γ2 +

4γ

(c+ ∆)
+

1

2
c

(
γ2 +

4γ

c+ ∆

)

− 2

√
γ2 +

4γ

(c+ ∆)
− 6γ − 3

2
c γ

(
γ +

√
γ2 +

4γ

c+ ∆

)
−K

=
1

2
c

(
4γ

c+ ∆

)
− 2

√
γ2 +

4γ

(c+ ∆)
− 6γ − c γ

(
γ +

√
γ2 +

4γ

c+ ∆

)
−K

= 2γ

 c

c+ ∆︸ ︷︷ ︸
≤1

−3


︸ ︷︷ ︸

<0

−2

√
γ2 +

4γ

(c+ ∆)
− c γ

(
γ +

√
γ2 +

4γ

c+ ∆

)
−K < 0

In the last term, all summands have a negative sign. However, this term is
only a reduced form of the one in condition (B.6), which implies (B.5). This
establishes concavity of deviative pro�ts in ∆ at an arbitrary level c > 0, and
therefore concavity of the right hand side of the incentive constraint (13). Q.E.D.
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