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Abstract

Empirical evidence suggests a sharp volatility decline of the growth in U.S. gross domestic

product (GDP) in the mid-1980s. Using Bayesian methods, we analyze whether a volatility reduc-

tion can also be detected for the German GDP. Since statistical inference for volatility processes

critically depends on the specification of the conditional mean we assume for our volatility analy-

sis different time series models for GDP growth. We find across all specifications evidence for

an output stabilization around 1993, after the downturn following the boom associated with the

German reunification. However, the different GDP models lead to alternative characterizations

of this stabilization: In a linear AR model it shows up as smaller shocks hitting the economy,

while regime switching models reveal as further sources for a stabilization, a narrowing gap be-

tween growth rates during booms and recessions or flatter trajectories characterizing the GDP

growth rates. Furthermore, it appears that the reunification interrupted an output stabilization

emerging already around 1987.

Keywords: business cycle models; Gibbs sampling; Markov Chain Monte Carlo; regime switching

models; structural breaks

∗Corresponding author. Tel.: +49-431-8803399; fax: +49-431-8807605. E-mail address: christian.assmann@stat-
econ.uni-kiel.de (C. Aßmann)



1. Introduction

Recent empirical literature documents strong evidence for a sharp volatility reduction of the growth

in post-war U.S.-output. While the matter of increased output stability was already risen by Burns

(1960), Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) were the first to present

explicit empirical evidence for a sharp reduction of output volatility manifested as a structural break

occurring in the mid-1980s. Confirmed by numerous empirical studies, including those of Chauvet

and Potter (2001), Stock and Watson (2002) and Kim et al. (2004), this phenomenon now rates

as a stylized fact. Possible explanations for the volatility decline discussed in the literature are

improvements of macroeconomic and monetary policy, a better inventory management or simply

a reduction in size of the random shocks hitting the economy; see Stock and Watson (2002) for

a comprehensive review of this literature. In the meantime, the matter of output stabilization has

been widened to an international context and the corresponding empirical evidence suggests that the

volatility reduction is not a U.S.-specific phenomenon. In particular, the output volatility in most

industrialized countries declined over the post-war period, even though the timing of the reduction

differs across countries (see, e.g., van Dijk et al., 2002, Mills and Wang, 2003 and Stock and Watson,

2003).

In contrast to the U.S., the volatility reduction of the German output has not attracted a lot

of research so far. Exceptions are the cross-country comparisons of Mills and Wang (2003) and

Stock and Watson (2003), analyzing the German output within a panel of G-7 countries, as well

as the studies of Buch et al. (2004) and Fritsche and Kuzin (2005), focussing exclusively on the

German output. Moreover, the empirical results of these studies regarding timing and stochastic

characterization of the volatility reduction in the German output are mixed. Using a Markov-

switching framework for the German GDP growth rate, Mills and Wang (2003) find a structural

break around 1974 in form of a reduced conditional variance. In contrast, Buch et al. (2004) report

a reduction of the conditional variance since the early-1990s, an empirical result which is based upon

a linear autoregressive (AR) representation for the output gap (measuring the cycle component of

output). This result is in accordance with those of Stock and Watson (2003), which are obtained

under an AR model with random coefficients and stochastic volatility, indicating that the conditional

variance of GDP growth experienced a sharp decline towards more stabilization around 1993. Buch

et al. (2004) link their results with the German reunification and argue that the implied adjustment

processes led to less clear cut evidence for a break in output volatility compared with the U.S.

Finally, the results of Fritsche and Kuzin (2005), which are somewhat at odds with those of Buch et
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al. and Stock and Watson, suggest that the output stabilization is due to a change in the persistence

predicted under an AR model, leading to a lower unconditional variance of GDP growth. The

corresponding reported change occurred during the mid-1970s.

In this paper, we revisit the volatility reduction in the German GDP and focus on the robustness

of the evidence for such a reduction as well as on the identification of its timing. For this purpose,

we consider different alternative time series models, that are used in the literature to characterize

the conditional mean of GDP growth rates since, as argued, for example, by Kim and Nelson (1999),

the inference with respect to the (in)stability of the volatility critically depends on the assumed

specification of the conditional mean for the growth rate. Furthermore, they point out that an

observed volatility reduction might be due to a (structural) change in the conditional mean or in the

variance of the innovations. Accordingly, they study the U.S. volatility reduction using a flexible

Markov-switching (MS) model of GDP growth and allow for a structural break in the variance of

innovations as well as in the gap between average growth rates during booms and recessions.

Here we analyze the volatility reduction using a linear AR model for GDP growth (as it is assumed

in the studies of McConnell and Perez-Quiros, 2000, Stock and Watson, 2002 and Kim et al., 2004)

as well as more flexible non-linear regime-switching specifications. In particular, we consider a MS

model a là Hamilton (1989) and, in addition, a modified version of the regime-switching model

recently introduced by DeJong et al. (2006a) (DLR model hereafter). The MS model (as it is used

by Kim and Nelson, 1999) characterizes booms and recessions as switches in the growth rate between

high and low states, governed by a latent Markov process. In contrast, under the DLR model of

DeJong et al., where GDP growth follows trajectories that fluctuates stochastically between periods

of acceleration and deceleration, switches are triggered by an observable ‘tension index’. A further

important feature of the DLR model is that the trajectories are allowed to differ across regimes.

Following the above cited literature, we investigate structural breaks in the error variance of the

GDP growth rate equations under the considered business cycle models. As additional sources of a

volatility reduction, we consider a narrowing gap between growth rates during booms and recessions

(under the MS model) and lower slopes for the growth trajectories (under the DLR model). The

volatility analysis is carried out using a Bayesian model comparison framework as proposed in Kim

and Nelson (1999) and Kim et al. (2004). Such a Bayesian analysis has the following advantages

over classical approaches for evaluating structural breaks. In contrast to classical test procedures,

a Bayesian approach delivers as an immediate byproduct estimates for the (posterior) distribution

of the unknown break date. Furthermore, a Bayesian analysis of a structural break based on a
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comparison of marginal likelihoods explicitly incorporates in a coherent way sample information

about the unknown timing of the structural break. This information is typically ignored in a classical

test framework.

The outline of the paper is as follows. In Section 2 we describe the data. The stochastic models

for the GDP growth rate are introduced in Section 3. This section also provides a description of

the corresponding Bayesian inference. The estimation results are given in Section 4 and Section 5

concludes.

2. Data

Data used is quarterly, seasonally adjusted German real GDP spanning 1970:I trough 2003:IV. 1 The

data were obtained from the data base of the International Monetary Fund. We compute the output

growth, denoted by gt, as differences of log real GDP, annualized by multiplying the differences

by 400. In order to account for the German reunification, we use up to 1991 growth rates of the

West German GDP and after 1991 the corresponding growth rates for reunified Germany, while

the rate at the matching point (1991:II) is set equal to the average growth rate of the surrounding

ten observations. The resulting time-series is illustrated in the top panel of Figure 1. It suggests

that output volatility is lower towards the end of the sample period than during the first half of

the sample. This is confirmed by the fact that prior to 1994:I, which is the break date identified

using the break test procedures described below, the standard deviation of the growth rates is 4.59,

whereas after 1994:I the standard deviation decreases to 2.07.

Table 1 reports results of standard classical structural break tests for unknown break dates. The

results are based upon an AR(4) model of the form (more parsimonious specifications yield similar

results):

gt = µ + φ1gt−1 + · · ·+ φ4gt−4 + εt, E(εt) = 0, E(ε2t ) = σ2, t : 1 → T. (1)

In order to test stability in the mean and variance parameters given by µ, φ1, .., φ4 and σ2, respec-

tively, we compute the Wald form of the Quandt (1960) statistic with a heteroscedasticity consistent

covariance matrix. In particular, we use the largest Wald statistic (sup-Wald statistic) for a struc-

tural break test over all potential break dates ` between T1 = [0.2T ] and T2 = [0.8T ]. Asymptotic

critical values for the sup-Wald statistic are provided by Andrews (1993), and asymptotic p-values
1GDP data are available from 1960 onwards. However, in order to avoid problems that may occur due to the change

in the German national accounting standards in 1968, we do not include data of the period before 1970.
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by Hansen (1997). In addition to the sup-Wald statistic we also use the exp-Wald statistic proposed

by Andrews and Ploberger (1994) which is given by expW = ln[1/(T2−T1+1)]
∑T2

`=T1
exp{W (`)/2},

where W (`) is the Wald test statistic for a potential break date `.

According to the results given in Table 1, the tests yield no evidence of a break in the mean

parameters except for φ4. While the p-values for φ4 are given by 0.03 (sup-Wald) and 0.07 (exp-

Wald), indicating slight evidence of a break, the p-values of the remaining mean parameters are all

above 0.34. In contrast to the mean parameters, the tests yield very strong evidence of a structural

break in the error variance σ2 and the estimate of the break date, based on the largest Wald statistic,

is 1994:I. The sequence of Wald statistics for the break test of σ2 together with the time series of the

AR(4) residuals are plotted in Figure 1. The sequence of Wald statistics reveals that, despite the

strong evidence of the occurrence of a structural break, there is some uncertainty associated with

the exact date of the break. In particular, the Wald statistic becomes significant at the 5 percent

level as early as 1987 and reaches its maximum 1994, while it is fairly flat at a high level between

1993 and 1996.

In summary, the classical test results suggest that under a linear AR model the conditional vari-

ance of the GDP growth underwent a structural break, while there is only slight evidence for a change

in the conditional mean. However, while the implemented classical test procedures are effective in

detecting structural breaks, they are not very precise for identifying the timing of breaks in variance

parameters (see, DeJong et al., 2006b). Furthermore, the underlying linear model ignores the asym-

metric nature of business cycles which could bias the inference results. In order to address these

issues, we perform a Bayesian analysis typically improving the precision of the inference regarding

the timing of a volatility break and consider non-linear business cycle models in order to reach more

robust conclusions.

3. Model Specifications and Bayesian Inference

Our further investigation of the possible volatility reduction in the German GDP growth rate and

its timing is based on a Bayesian analysis of three alternative times series specifications that are

used in the literature to characterize GDP growth rates. In addition to a simple linear AR model of

the form given in Equation 1, we consider a MS model and the DLR model with stochastic switches

between periods of acceleration and deceleration. These alternative models are chosen in order to

account for possible sensitivity of the results for the volatility to the specification of the conditional

mean.
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3.1 Linear Autoregressive Model

The employed AR(k) model with a structural break in the error variance is given by

gt = µ +
k∑

`=1

φ`gt−` + εt, εt ∼ N (0, σ2
dt

) (2)

with

σ2
dt

= σ2
0(1− dt) + σ2

1dt, dt =





0, t ≤ t∗

1, t > t∗
. (3)

The variable dt represents a latent state variable that governs the unknown date of the structural

break in the error variance t∗. Following Kim and Nelson (1999), dt is assumed to follow a restricted

two-state Markov chain characterized by the probabilities

P (dt+1 = 0|dt = 0) = υ, P (dt+1 = 1|dt = 1) = 1, υ ∈ (0, 1). (4)

Note that this specification allows for only one break with a break probability in period t given by

P (dt+1 = 1|dt = 0) = 1 − υ. After a break has occurred, say in t = t∗, the state variable remains

in state dt = 1 with probability one. In order to test for a structural change in the error variance,

this AR specification with a break is compared with the restricted specification without a break,

obtained by setting σ2
0 = σ2

1.
2

A Bayesian analysis of these models requires appropriate prior distributions for the parameter

vector Θ = (µ, φ1, ..., φk, σ
2
0, σ

2
1, υ) and relies upon the corresponding posterior distributions given

the data GT = (g1, ..., gT )′. To implement the Bayesian analysis, the parameter vector Θ is aug-

mented to include the latent state variables DT = (d1, ..., dT )′. Then the Gibbs sampling technique

is used to sample from the joint posterior distribution f(Θ, DT |GT ). This technique is based upon

appropriate conditional posterior distributions in order to construct a Markov Chain whose equilib-

rium distribution is the joint posterior f(Θ, DT |GT ) (see, e.g., Koop, 2003). The parameters in Θ

are estimated by reporting appropriate statistics for their simulated values.

In our application below we assume natural conjugate priors leading to conditional posteriors from

the same family as the prior distributions from which draws can be easily generated. In particular,

we use for (µ, φ1, ..., φk) a multivariate Normal prior, for 1/σ2
0 and 1/σ2

1 Gamma priors and for υ

a Beta prior, leading to conditional posteriors given by a multivariate normal distribution, Gamma

distributions and a Beta distribution, respectively. The particular selection of the hyper-parameters
2Since the preliminary results for the AR model in Section 2 indicate only slight evidence for a break in the mean

parameters, we do not consider this possibility within the following Bayesian analysis of the AR model.
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in the priors will be discussed below. The full conditional posterior distribution for the state variable

DT is implicitly given by the conditional posterior of the break date, which has the form:

P (t∗ = τ |GT , Θ) ∝ (1− υ)υτ−T1−1f(GT |Θ, t∗ = τ), T1 < τ < T2, (5)

where f(GT |Θ, t∗ = τ) denotes the conditional likelihood given a break date t∗ in period τ , while T1

and T2 define the range of possible break dates. In our application below, we use T1 = [0.1T ] and

T2 = [0.9T ].

For a Bayesian approach to hypotheses testing and model comparison one can use the ratio of the

marginal likelihoods (Bayes factor) for the hypotheses or models to be compared. For a comparison

of the AR model with a break (MAR,1) with the corresponding AR model without a break (MAR,0)

the Bayes factor is

BAR,10 =
f(GT |MAR,1)
f(GT |MAR,0)

, (6)

where f(GT |MAR,i), i = 0, 1 represents the marginal likelihood under the model MAR,i. The

marginal likelihood is obtained as the corresponding integrating constant of the posterior distribution

for Θ. Following Kim and Nelson (1999), we use the procedure of Chib (1995) in order to evaluate

that likelihood. This procedure is based on the following representation of the marginal likelihood

f(GT |MAR,i) =
fi(GT |Θ)πi(Θ)

fi(Θ|GT )
, i = 0, 1, (7)

where fi(GT |Θ), πi(Θ) and fi(Θ|GT ) denote the likelihood, the prior and the posterior density,

respectively. While for a given value of Θ (here we use its posterior mean), the likelihood and

the assumed prior densities can be evaluated directly, the computation of the joint posterior of Θ,

which is typically not available in an analytical closed-form solution, requires Monte Carlo tech-

niques. For this purpose, the joint posterior of the parameters f(Θ|GT ) is factorized as f(Θ|GT ) =

f(Θ1|GT )f(Θ1|Θ2, GT ) · · · f(ΘP |Θ1, ...,ΘP−1, GT ) according to an appropriate partitioning of the

parameter vector Θ = (Θ1, Θ2, ..., ΘP )′. Then the individual factors of the joint posterior are evalu-

ated by Monte Carlo integration based on Gibbs draws of the parameters (for details, see Kim and

Nelson, 1999).

For a comparison of the specifications based upon the Bayes factor we use the scale proposed

by Jeffreys (1961). According to this scale lnB ≤ 0 is interpreted as evidence for the specification

under H0, while 0 < lnB ≤ 1.15 indicates very slight evidence against H0, 1.15 < lnB ≤ 2.3 slight

evidence, 2.3 < ln B ≤ 4.6 strong to very strong evidence, and 4.6 < ln B decisive evidence against

the H0-specification.
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3.2 Markov Switching Model

It has long been recognized that successful modeling of GDP growth rates hinges critically on the

ability to account for the asymmetric and non-linear nature of business cycles. A popular class of

models which explicitly takes into account such features of business cycles are the MS models with

different behavior in economic contractions and expansions.

Following Kim and Nelson (1999), we consider a MS specification which allows in its most general

version for a structural break in the error variance as well as in the gap between average growth

rates during expansions and contractions. In particular, we specify the growth rates as3

gt = µ̄st +
k∑

`=1

φ`gt−` + εt, εt ∼ N (0, σ2
dt

), (8)

where the error variance σ2
dt

is specified as under the linear AR model by equations (3) and (4),

while the assumed specification of the intercept is

µ̄st = µ̄0dt(1− st) + µ̄1dtst, µ̄0dt < µ̄1dt (9)

µ̄0dt = µ00(1− dt) + µ01dt

µ̄1dt = µ10(1− dt) + µ11dt.

Here dt is the state variable indicating a structural break as defined in equations (3) and (4), while

st is a latent variable that indicates the recurrent business cycle phase (with intercepts during

expansions and contractions given by µ̄1dt and µ̄0dt). It is assumed that st follows a two-state

Markov process characterized by the transition probabilities

P (st+1 = 1|st = 1) = p, P (st+1 = 0|st = 0) = q, p, q ∈ (0, 1), (10)

P (st+1 = 0|st = 1) = 1− p, P (st+1 = 1|st = 0) = 1− q.

Note that under this MS model the error variance σ2
dt

and the two intercepts µ̄0dt and µ̄1dt are

allowed to undergo simultaneously a structural break with an unknown break date at t∗. Hence, it

allows for two sources of a volatility reduction: a decline in the error variance as well as a narrowing

gap between the mean growth rates during expansions and contractions.

In order to investigate the output stabilization, we compare the following three versions of the

MS model (8)-(10), (3), (4): The model without any structural break (MMS,0), the model with a
3In contrast to Kim and Nelson (1999), who use a specification with regime switches in the unconditional mean,

we assume a MS model with switches in the intercept, because preliminary experimentation indicates that the latter

specification provides a slightly better description of the German GDP.
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structural break just in the error variance (MMS,1), and the model with a break in both the intercept

and the error variance (MMS,2).4 These specifications are obtained as

MMS,0 : µ00 = µ01 and µ10 = µ11 and σ2
0 = σ2

1

MMS,1 : µ00 = µ01 and µ10 = µ11 and σ2
0 6= σ2

1

MMS,2 : µ00 6= µ01 and µ10 6= µ11 and σ2
0 6= σ2

1.

A Bayesian analysis of the MS specifications can be performed analogously to that for the AR

model discussed above. In particular, the parameters summarized in the vector Θ = (µ00, µ01, µ10, µ11,

φ1, ..., φk, σ
2
0, σ

2
1, υ, p, q) are augmented to include the sequences of latent state variables DT and

ST = (s1, ..., sT )′ and then the Gibbs sampling procedure is used to simulate from the joint posterior

f(Θ, DT , ST |GT ). As for the AR model, we assume natural conjugate priors for the parameters

in Θ. Accordingly, we employ for the additional set of parameters in the MS model, given by

(µ00, µ01, µ10, µ11) and (p, q), Normal and Beta priors, respectively. Furthermore, to simulate the

state variables ST from their full conditional posterior distribution, we utilize the fact that it has

the form of a multinomial Bernoulli distribution characterized by (see, Albert and Chib, 1993a)

f(st|GT , DT , ST\t, Θ) ∝ f(st|st−1)f(st+1|st)f(gt|Gt−1, st, Dt, Θ), (11)

where f(st|st−1) and f(st|st−1) denote the probability density functions associated with the transi-

tion probabilities in equation (10), while f(gt|Gt−1, st, Dt,Θ) is the corresponding conditional density

of gt, and ST\t denotes ST minus its tth element. The full conditional posterior for the variance

states DT has the same form as under the AR model (see, Equation 5). Finally, in order to evaluate

the marginal likelihoods for the MS models to be compared, the Chib (1995) procedure, implemented

for the AR-models and described above is adapted. For a detailed description of the implementation

of the Gibbs sampler and of the computation of the marginal likelihoods for the MS specifications,

see also Kim and Nelson (1999).

3.3 Switching Trend Model

An alternative non-linear regime-change model for GDP growth rates is the DLR model of DeJong

et al. (2006a), which is designed to account for the observed heterogeneity in the behavior of growth

rates across the business cycles. Under this model, growth rates follow trajectories that fluctuate
4Results for a specification with a break in intercepts only are not reported here. Preliminary analysis showed that

such a specification cannot be favored against the specification without a break.
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stochastically between alternative periods of general acceleration and deceleration. Furthermore, the

trajectories are allowed to differ across regimes. Regime changes are triggered stochastically by an

observable “tension index” constructed as the geometric sum of deviations of observed GDP growth

from a corresponding “sustainable” growth rate interpreted as the growth of potential GDP. Let g∗t
denote the sustainable rate and yt the deviations yt = (gt − g∗t ), the tension index is given by

ht =
∞∑

`=1

δ`yt−`, (12)

where the parameter δ ∈ (0, 1) governs the persistence of past deviations on current ht. Here we

specify g∗t as the sample mean of gt and set δ equal to 0.575, but the estimation results presented

below are robust to alternative specifications of g∗t (like, e.g., a Hodrick-Prescott filtered trend fitted

to gt) as well as to alternative values of δ between 0.5 and 0.95.

The resulting tension index is plotted in the top panel of Figure 2 together with the business cycle

peaks and troughs as identified by Artis et al. (2004) using a business cycle dating procedure based

on absolute declines and rises of Hodrick-Prescott filtered GDP. Observe that the ht series tends to

pass between phases of general expansions and general contractions in which gt tends to outstrip

and fall short of g∗t , respectively. Moreover, peaks in ht typically precede the marked business cycle

peaks, and troughs tend to precede or coincide with business cycle troughs.

Under the interpretation of the DLR model neither accelerating nor decelerating phases are

sustainable and both produce tension buildups that lead to corresponding regime changes. These

are characterized by the following probit specification

P (rt+1 = −rt|rt, ht) = Φ(β0 + β1rtht), (13)

with

rt =





1, if t is in an accelerating regime

−1, if t is in a decelerating regime
,

where Φ denotes a N (0, 1)-distribution function. The switching process is restricted to allow only

for switches from accelerating to decelerating regimes and vice versa. With respect to the length

of a regime, we assume a-priori a regime to prevail at least three periods. The specification of the

growth rates in terms of their deviations from g∗t , allowing for a break in the error variance is given

by

yt = mt + νht−1 + γyt−1 + εt, εt ∼ N (0, σ2
dt

), (14)
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where σ2
dt

is specified by Equations (3) and (4). The variable mt represents a regime drift charac-

terized by linear (local) trends of the form5

mt = aj + bjrt[t− t(j − 1)− 1], bj > 0, t : [t(j − 1) + 1] → t(j), (15)

where the index j (j : 1 → J) denotes the regime prevailing in period t, and t(j) is the regime change

period from regime j to regime j + 1 (i.e. the last period under regime j), with t(0) ≡ 0. The first

component aj represents the value of the regime drift in the first period of regime j, while the second

part bjrt[t − t(j − 1) − 1] directs the slope of the linear mt-trajectory during regime j. In order to

account for the fact that no two business cycles are alike, the ajs and bjs are allowed two vary across

regimes, leading to a corresponding variation in the properties of the drift mt across the J regimes.

In particular, we treat the intercept and slope parameters aj and bj as unknown parameters.6 The

heterogeneity across business cycles captured by the resulting regime drift component is illustrated

by the time series plot of the mt series computed at the estimates of the drift parameters and the

regime change periods (see bottom panel of Figure 2).

Under this DLR model (12)-(15), (3), (4), a volatility reduction can be generated by a decline

in the error variance σ2
dt

and/or by decreasing slopes of the trend component characterized by low

values of the slope parameters bj . Accordingly, in order to investigate the output stabilization under

the DLR model, we compare the specification with a break in the error variance (MDLR,1) and

that without a break (MDLR,0), and compare the estimated slopes of successive regimes. Note that

while lower slopes under the DLR model and a narrowing gap between mean growth rates during

expansions and contractions under a MS model have similar effects, they have slightly different

interpretations: Lower slopes are part of the structure of the DLR model whereas a narrowing gap

presents a change in the structure of the MS model.

For a Bayesian analysis of the DLR model the parameter vector Θ = (ν, γ, a1, b1, ..., aJ , bJ , σ2
0, σ

2
1,

β0, β1)′ is augmented to include the variance states DT and the regime indicators RT = (r1, ..., rT )′.

Observe that given RT and DT , the growth rates follow a standard linear regression model. As

for the previous models we assume natural conjugate priors for the parameters, with multivariate

Normals for (ν, γ) and (β0, β1), truncated multivariate Normals for (aj , bj > 0), and Gamma priors

5The linear trend specification assumed here represents a special case of the specification used by DeJong et

al. (2006a) for the post-war US GDP growth, allowing for non-linear trends.
6In contrast to the “fixed-effects” specification assumed here, DeJong et al. (2006a) specify aj and bj as latent

random variables leading to a more parsimonious “random-effects” version. Preliminary experimentations with both

specification showed that there is no significant difference in the goodness of fit. However, the fixed effect model is

much easier to analyze.
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for 1/σ2
0 and 1/σ2

1. The corresponding Gibbs sampling algorithm which we employ to simulate from

the joint posterior f(Θ, DT , RT |GT ), given a fixed number of regime changes J = J̄ has the following

structure:

(i) Simulate from f(ν, γ|Θ\ν,γ , DT , RT , GT ), which is a bivariate normal distribution;

(ii) Simulate from f(aj , bj |Θ\aj ,bj
, DT , RT , GT ), (j : 1 → J̄) which are truncated bivariate normal

distributions with the truncation bj > 0;

(iii) Simulate from f(1/σ2
k|Θ\σ2

k
, DT , RT , GT ), (k : 1, 2) which are Gamma distributions;

(iv) Simulate from f(β0, β1|Θ\β0,β1
, DT , RT , GT ) based on an augmentation step including the la-

tent variables underlying the probit specification, say {r∗t }. They are simulated from the

appropriately truncated N(0, 1)-distribution (see, Albert and Chib, 1993b). Given {r∗t }, the

corresponding conditional posterior of (β0, β1) to be simulated is a bivariate normal distribu-

tion;

(v) Simulate the variance state variables DT according to the conditional posterior of the break

date P (t∗ = τ |GT , RT ,Θ) which has the form as under the AR model (see Equation 5);

(vi) Simulate the regime indicators RT by drawing the J̄ regime change dates TJ̄ = {t(1), ..., t(J̄)}
based on the Gibbs sequence characterized by the conditional posteriors of the individual

regime-change periods t(j) given the remaining regime change dates TJ̄\t(j). These conditional

posteriors are multinomial distributions of the form

P (t(j) = τ |TJ̄\t(j), GT , DT ,Θ) ∝ f(GT , t(j) = τ |Θ, DT , TJ̄\t(j)), j : 1 → J̄ .

The l.h.s. represents the corresponding conditional joint likelihood for the growth rates GT

and the jth regime change date occurring at period τ . Note that the simulated regime change

dates lead to corresponding simulated regime indicators RT from the set of RT s associated

with J̄ regime changes SJ̄ = {RT (TJ) : J = J̄}.

The results presented below are based on J̄ + 1 = 8 different regimes, a number which was selected

using the Bayes factor to compare specifications under alternative Js.

In order to compare the DLR model with a break in the error variance (MDLR,1) and that

without a break (MDLR,0), we evaluate the Bayes factor based on marginal likelihoods computed

using (as for the AR and MS model) the procedure of Chib (1995). The unconditional likelihood
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fi(GT |Θ) for model i, (i = 0, 1), is obtained by integrating the regime indicators RT out of the

joint likelihood fi(GT , RT |Θ) using Monte Carlo integration. In particular, we use an importance-

sampling procedure, which utilizes the MCMC approximation to the posterior distribution of RT

(see, Richard, 1995 and Stern, 1997 for detailed descriptions of importance sampling techniques).

The importance sampler we use is given by a truncated multivariate Bernoulli distribution with a

probability density function

m(RT ) =

[
T∏

t=1

p̂rt
t (1− p̂t)1−rt

]
I{SJ̄}(RT )/P (RT ∈ SJ̄),

where p̂t represents the estimated probability for rt = 1 according to the simulations from the

conditional posterior of RT (see Step vi above), and I{SJ̄} is an indicator function of the set SJ̄ . The

corresponding MC approximation of the unconditional likelihood is

fi(GT |Θ) .=
1
K

K∑

k=1

fi(GT , R̃
(k)
T |Θ)

mi(R̃
(k)
T )

, i = 0, 1, (16)

where {R̃(k)
T }K

k=1 represents a sequence of K draws of the vector of regime indicators simulated using

the importance sampler mi(·).

4. Empirical Results

In this section, we present the empirical results obtained for the three alternative business cycle

models. All inferences are based on 10,000 Gibbs iterations, where the initial 2,000 Gibbs draws

were discarded in order to mitigate the effect of the initial conditions. For each of the three models,

the Bayesian analysis is performed under different sets of prior specifications, which allows to evaluate

the sensitivity of the results to prior believes. These sets are summarized in Table 2.

Tables 3 through 6 provide the Bayesian estimation results for the model specifications allowing

for a structural break in the conditional variance, i.e, the specifications MAR,1, MMS,1, MMS,2,

MDLR,1. The reported posterior moments and log-Bayes factors are obtained under the set (I) of

prior distributions specified in Table 2. The sensitivity of the marginal likelihoods to the alterna-

tive prior assumptions are summarized in Table 7. Furthermore, Figure 3 plots the corresponding

posterior distributions of the break date for the conditional variance.
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4.1 AR-model

The Bayesian results of the AR-modelMAR,1, provided in Table 3 indicate that the posterior mean of

the error variance decreases from σ2
0 to σ2

1 by 72%. This reduction is of the same order of magnitude

as that obtained by Kim et al. (2004) under an AR-model for the U.S. economy. Furthermore,

the log of the Bayes factor given by 3.08 indicates according to the scale of Jeffreys (1961) strong

evidence that this reduction is due to a structural break in the variance parameter. The posterior

mean of the break date is 1993:III, nearly a decade latter than the break point of 1984 estimated

by Kim et al. (2004) for the U.S. The top panel of Figure 3 shows that the posterior distribution of

the break date is tightly dispersed around two modes which are located closely to each other, one

in period 1993:I and the other in 1994:I. Under the alternative sets of prior distributions II and III

specified in Table 2, the posterior moments (not reported here) are almost identical. This robustness

with respect to the prior specification for the AR model shows also up in the fairly stable values of

the log marginal likelihood across the different prior specifications (see Table 7).

Hence, these results suggest an output stabilization after the downturn following the boom period

in the early-1990s associated with the German reunification. This finding confirms the result of Buch

et al. (2004) who report evidence for a structural break in the volatility of the German output gap

at the beginning of the 1990s – a result which is obtained using classical test procedures.

4.2 Markov Switching Model

The results of the Bayesian estimates of the MS model with a structural break in the variance

parameter and that with a simultaneous break in the variance as well as in the shift parameters

are summarized in Tables 4 and 5, respectively. The values of the log Bayes factors suggest that

the specification without any structural break (MMS,0) is slightly dominated by the model with a

structural break in the variance parameter (MMS,1) and strongly dominated by the model with a

joint break in the variance and shift parameters (MMS,2). This preference in favor of specifications

allowing for a break also holds for the two alternative sets of prior assumptions (see Table 7). A

direct comparison of the models MMS,1 and MMS,2 indicates that the latter is strongly preferred

for the set of priors (I), while this preference is less pronounced under the sets (II) and (III).

According to the posterior means in Table 4 and 5, the variance parameter experienced after

the break a significant reduction of 84% for the model MMS,1 and of 69% for MMS,2. Under the

model MMS,2 this reduction is accompanied by a notable decrease in the gap between the average

growth rate during booms and recession from µ10 − µ00 to µ11 − µ01 by 43%. The posterior means
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of the break dates for the MMS,1 and MMS,2 model are close together and are given by 1993:II and

1993:I, respectively. The second and third panel of Figure 3 show that the corresponding posterior

distributions for the break date are very similar to that under the AR model.

Figure 4, which plots the posterior recession probabilities for all three MS specifications, illustrate

the effect of the structural break on the classification of booms and recessions. The plots show that

for the quarters after the estimated break point around 1993 the classifications of expansions and

contractions are much sharper for the specification with a break in the variance parameter than for

the model without a break. In contrast, for the periods before the break these classifications are

- though the difference is only marginal - less precise for the model with a break. Comparing the

model with a joint break in the variance and intercept parameters with that without a break shows

that the posterior probabilities for the former are sharper after the break and also, at least slightly,

more pronounced before the break. Hence, these results underscore that not only a reduction in

the conditional variance parameter but also a break in the intercepts seems to be relevant for the

description of the output stabilization.

In summary, the results for the MS models confirm the conclusion from the AR model that

there has been a structural break in the German economy around 1993, leading to less volatile

GDP growth rates. Furthermore, in addition to a decrease of the shocks hitting the economy, a

narrowing gap between growth during economic expansions and contractions, indicating changes in

the structure of the economy, seems to contribute to this output stabilization. Finally, we notice

that this characterization of the decline in German output volatility is similar to the results for the

U.S. economy reported by Kim and Nelson (1999), even though the decline in U.S. output volatility

emerged according to their results nearly a decade later.

4.3 Switching Trend Model

The estimates of the DLR model including a break in the conditional variance are given in Table

6. Estimates of the error variance indicate a reduction of 69%, with non overlapping 95% bands

of the posteriors. The corresponding mean of the break point posterior is 1990:III, which is about

three years earlier than in the AR and MS model. Furthermore, the posterior standard deviation

of the break date, given by 12 quarters, is notably larger than under the AR and MS specifications,

where the standard deviation ranges from 6 to 8 quarters. The bottom panel of Figure 3 shows the

posterior distribution of the break date under the DLR model. It indicates that the posterior mean

does not provide a sensible estimate for the location of the break. In fact, the posterior exhibits
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a pronounced bimodal behavior with modes (at 1987:I and 1992:I) which are fairly far away from

each other. Notice, that these modes coincide with the significant decrease of the GDP in the first

quarter of 1987, and the last quarter of the boom period associated with the German reunification

process with a large growth rate (see Figure 1 upper panel)7. Interestingly, the first mode at 1987:I

coincides with a rise of the Wald statistic above its critical value (see Figure 1 lower panel).

Despite the large reduction in the posterior mean of the error variance, the log Bayes factor

given by 0.53 indicates only very slight evidence in favor of a structural break in the variance

parameter. This low evidence for a break, which holds across all sets of priors (see Table 7), seems

to reflect the comparably large uncertainty concerning the possible timing of the break date discussed

above. Figure 5 illustrates the effect of the structural break in the error variance on the estimated

probabilities of expansions and contractions under the DLR model. For the period after the second

mode of the break date distribution (1992:I) the inference about the contraction probabilities are

sharper under the model with a break than under the one without a break. In contrast, for the

period before the first mode (1987:I) the probabilities of the model with a break are less pronounced

than those obtained without a break. However, the differences are only marginal, which is consistent

with the result that the marginal likelihood values of both specifications are close together.

As mentioned above, a further possible source of output stabilization within the DLR models is

a decrease in the slope coefficients bj of the local trends. A comparison of the estimates for the bjs

across the 8 identified regimes provided in Table 6 reveals that the local trends of GDP growth are

significantly flatter for the last two regimes than for the previous ones. In particular, the estimate

of b8 (given by 0.25) is the lowest value for all decelerating regimes and that of b7 (given by 0.06)

the lowest for all accelerating regimes. The estimates of the slope coefficients are visualized in the

bottom panel of Figure 2 plotting the estimated trend component mt. It illustrates that the last

two regimes with estimated ranges from 1993:II to 1999:IV and 2000:I to 2003:IV, respectively, are

characterized by flatter local trends than the previous regimes, suggesting a stabilization of the

growth rates. This empirical result closely corresponds to the narrowing gap between growth rates

during booms and recessions obtained under the MS model.

Furthermore note that the estimated regime change date (1993:I) at the beginning of the flat-

trajectory episode within the DLR model is in close accordance with the timing of the structural

break obtained under the AR and MS model around 1993. However, the associated interpretations
7The large decrease of GDP in 1987:I is mainly due to a large decrease of German exports induced by a significant

revaluation of the Deutsche Mark against the U.S. Dollar and to a particularly cold winter, see the annual economic

report of the Federal Ministry of Economics (1988).
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of the output stabilization are slightly different: While under the AR and MS model the stabilization

around 1993 is captured by a change in the structure of the model, a stabilization due to flattened

trajectories is part of the structure defining the DLR-model. Furthermore, a decrease in the DLR

slope coefficients leads to a gradual reduction of output volatility, whereas the estimated structural

breaks within the AR and MS model immediately triggers an output stabilization.

Compared to the AR and MS model, the DLR specification, permitting a variation of the trend

behavior across regimes, exhibits a greater flexibility in the mean equation, which allows to capture

some of the observed heterogeneity across business cycles. This heterogeneity with comparably flat

trajectories since the early-1990s seems to be one feature of the output stabilization. However, note

that this flexibility in the mean equation of the DLR model comes along with a corresponding large

uncertainty concerning the existence and timing of an additional reduction in the error variance.

On the other hand, the flexibility of the DLR model allows for a more detailed characterization

of the stabilization of the German economy than under the AR and MS model. In particular, the

first mode of the break date distribution for the error variance under the DLR model suggests that

a decline in the output volatility emerged already around 1987. In the early-1990s, this emerging

stabilization was interrupted by the extraordinary boom associated with the German reunification

and the opening of Eastern Europe and by the ensuing severe downturn. The reunification boom

shows up in a sequence of growth rates which are significantly above the local trend (see bottom

panel of Figure 2) and a corresponding large increase in the tension index triggering a regime change

(see top panel of Figure 2). After this reunification episode, finally, the interrupted process of output

stabilization seems to continue with flattened growth trajectories and a smaller error variance. In

contrast to this characterization obtained under the DLR model, the period of a volatility decline

predicted by the AR and MS model is concentrated only on the quarters following the reunification

episode.

5. Summary and Conclusion

In this paper we analyze whether the volatility of the growth in German output has declined over the

past decades like in most industrialized countries. Our analysis is based upon a Bayesian analysis

of three different business cycle models for the GDP growth rates. In addition to a simple linear

autoregressive (AR) model, we consider a Markov-switching (MS) model and a regime switching

(DLR) model based on local trends as proposed by DeJong et al. (2006a). Within the AR model

we allow for an output stabilization via a change in the error variance. Within the MS and DLR
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model we consider as additional sources for a stabilization a narrowing gap between the average

growth rates during economic expansions and contractions, and flattened local trends characterizing

the GDP growth rates, respectively.

Our empirical results based on quarterly data from 1970 to 2004 indicate a stabilization of the

German output in early-1990s, in particular after the downturn following the boom period associated

with the German reunification and the opening of Eastern Europe. This stabilization shows up in

all estimated business cycle models. While under the AR model the stabilization is reflected only by

a significant decrease in the shocks hitting the economy, the estimation results for the MS and DLR

model suggest that corresponding changes in the properties of the regimes also contributes to the

decline in the output volatility. In fact, we find within the MS model a notable reduction in the gap

between growth rates during booms and recessions, and under the DLR model a significant decrease

of the slopes characterizing the local trends for the GDP growth. The result that reduced output

volatility can be traced back to a change in mean behavior is in line with the finding of Fritsche and

Kuzin (2005).

A further result of our analysis is that under the AR and MS specification the posterior distribu-

tion for the date of the volatility decline is tightly concentrated on the quarters around the downturn

following the reunification. In contrast under the DLR model the distribution of the break date for

the error variance is much more dispersed with two pronounced modes, one after and one before the

reunification episode. Hence, viewed through the lens of the DLR model, it seems that the German

reunification interrupted an output stabilization emerging already before this extraordinary event

hitting the German economy, an argument in line with Buch et al. (2004). The retarding moment of

the German reunification on output volatility is also found by Stock and Watson (2003). In contrast

Mills and Wang (2003) time the break in error variance in the early-1970ies which can hardly be

compared to the findings presented here due to the fact that the the considered data sets differ in

the sample length. Mills and Wang (2003) use data from 1960 onwards.
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Table 1. Classical Structural Break Tests in an AR(4) model

H0: parameter is constant

Parameter µ φ1 φ2 φ3 φ4 σ2

sup-Wald 3.91 2.31 2.29 2.59 9.35 22.58
(.34) (.64) (.65) (.58) (.03) (.00)

exp-Wald .63 .23 .30 .44 1.81 8.80
(.34) (.70) (.61) (.46) (.07) (.00)

Estimated Break Date −− −− −− −− 1992 : I 1994 : I

NOTE: Asymptotic p-values are in parentheses.
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Table 2. Prior Specifications

Sets of priors

Parameters (I) (II) (III)

AR-model

µ N (0, 10) N (0, 10) N (0, 5)
(φ1, ..., φ4)′ N (0, 10 · I) N (0, 10 · I) N (0, 5 · I)
1/σ2

0 , 1/σ2
1 G(0.02, 5) G(0.05, 2) G(0.01, 1)

υ B(8, 0.2) B(8, 0.1) B(8, 0.1)

MS-model

µ10, µ11 N (2, 10)I(0.5,∞)(·) N (2, 10)I(0.5,∞)(·) N (2, 5)I(0.5,∞)(·)
µ00, µ01 N (0, 10)I(−∞,0.5)(·) N (0, 10)I(−∞,0.5)(·) N (0, 5)I(−∞,0.5)(·)
(φ1, ..., φ4)′ N (0, 10 · I) N (0, 10 · I) N (0, 5 · I)
p, q B(6, 2) B(6, 2) B(6, 2)
1/σ2

0 , 1/σ2
1 G(0.02, 5) G(0.05, 2) G(0.01, 1)

υ B(8, 0.2) B(8, 0.1) B(8, 0.1)

DLR-model

(ν, γ)′ N (0, 10 · I) N (0, 10 · I) N (0, 5 · I)
{(aj , bj)′}8j=1 N (0, 10 · I)I(0,∞)(bj) N (0, 10 · I)I(0,∞)(bj) N (0, 5 · I)I(0,∞)(bj)
(β0, β1)′ N (0, 10 · I) N (0, 10 · I) N (0, 5 · I)
1/σ2

0 , 1/σ2
1 G(0.02, 5) G(0.05, 2) G(0.01, 1)

υ B(8, 0.2) B(8, 0.1) B(8, 0.1)

NOTE: B(., .) and G(., .) refer to a Beta and a Gamma distribution, respectively, I denotes an identity
matrix and N (., .)I(l,h)(z) represents a truncated Normal distribution where the range of z is restricted
to the interval (l, h).
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Table 3. Bayesian Estimates of the AR-model with a Break in the Conditional Variance

Prior Posterior

Parameter Mean Std. dev. Mean Std. dev. 95%-bands

µ 0
√

10 1.174 .403 [.378 ; 1.953]
φ1 0

√
10 −.054 .087 [−.223 ; .117]

φ2 0
√

10 .124 .086 [−.042 ; .298]
φ3 0

√
10 .107 .087 [−.067 ; .277]

φ4 0
√

10 .136 .087 [−.034 ; .308]
1/σ2

0 .100 .707 .055 .009 [.039 ; .073]
1/σ2

1 .100 .707 .205 .058 [.109 ; .325]
σ2

0 18.778 3.060 [13.744 ; 25.707]
σ2

1 5.316 1.617 [3.123 ; 9.236]
υ .976 .051 .988 .011 [.958 ; 0.999]
Break date 1993:III 7.247 [1988:I ; 1997:II]

Log marginal likelihood ln f(GT |MAR,1) −373.17
Log Bayes factor ln[f(GT |MAR,1)/f(GT |MAR,0)] 3.08

NOTE: The estimated model (MAR,1) is given by Equations (2)-(4). The posterior moments are based
on 10,000 Gibbs iterations, where the first 2,000 Gibbs draws are discarded. The prior specifications
used for estimation are that of set (I) given in Table 2. The log marginal likelihood under the prior
specifications (II) and (III) are given by -371.91 and -369.00, respectively.
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Table 4. Bayesian Estimates of the MS-model with a Break in the Conditional Variance

Prior Posterior

Parameter Mean Std. dev. Mean Std. dev. 95%-bands

µ10 3.499 2.248 3.157 .808 [1.456 ; 4.744]
µ00 −2.397 1.943 −.362 .455 [−1.481 ; .177]
φ1 0

√
10 −.148 .094 [−.330 ; .039]

φ2 0
√

10 .076 .092 [−.104 ; .255]
φ3 0

√
10 .108 .091 [−.070 ; .286]

φ4 0
√

10 .137 .088 [−.030 ; .315]
1/σ2

0 .100 .707 .068 .014 [.045 ; .102]
1/σ2

1 .100 .707 .470 .287 [.172 ; 1.254]
σ2

0 15.188 3.213 [9.734 ; 22.207]
σ2

1 2.452 1.351 [.763 ; 5.892]
υ .976 .051 .988 .011 [.961 ; 1.000]
p .750 .144 .713 .105 [.482 ; .892]
q .750 .144 .735 .110 [.476 ; .910]
Break date 1993:II 6.726 [1989:II ; 1997:I]

Log marginal likelihood ln f(GT |MMS,1) −378.54
Log Bayes factor ln[f(GT |MMS,1)/f(GT |MMS,0)] .12

NOTE: The estimated model (MMS,1) is given by Equations (3), (4), (8)-(10) with µ00 = µ11 = 0 . The
posterior moments are based on 10,000 Gibbs iterations, where the first 2,000 Gibbs draws are discarded.
The prior specifications used for estimation are that of set (I) given in Table 2. The log marginal likelihood
under the prior specifications (II) and (III) are given by -375.73 and -372.09, respectively.
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Table 5. Bayesian Estimates of the MS-model with a joint Break in the Conditional
Variance and in the Intercept Coefficients

Prior Posterior

Parameter Mean Std. dev. Mean Std. dev. 95%-bands

µ10 3.499 2.248 3.773 1.034 [1.516 ; 5.598]
µ00 −2.397 1.943 −1.230 .932 [−3.374 ; .038]
µ11 3.499 2.248 2.203 .831 [.604 ; 3.770]
µ01 −2.397 1.943 −.671 .736 [−2.497 ; .071]
φ1 0

√
10 −.181 .103 [−.376 ; .023]

φ2 0
√

10 .068 .096 [−.124 ; .251]
φ3 0

√
10 .107 .093 [−.079 ; .287]

φ4 0
√

10 .132 .088 [−.041 ; .303]
1/σ2

0 .100 .707 .077 .022 [.047 ; .130]
1/σ2

1 .100 .707 .266 .136 [.120 ; .636]
σ2

0 13.921 3.649 [7.883 ; 22.023]
σ2

1 4.299 1.776 [1.676 ; 8.284]
υ .976 .051 .988 .011 [.960 ; .999]
p .750 .144 .684 .110 [.444 ; .872]
q .750 .144 .792 .109 [.545 ; .958]
Break date 1993:I 7.911 [1989:I ; 1995:II]

Log marginal likelihood ln f(GT |MMS,2) −375.34
Log Bayes factor ln[f(GT |MMS,2)/f(GT |MMS,0)] 3.32
Log Bayes factor ln[f(GT |MMS,2)/f(GT |MMS,1)] 3.20

NOTE: The estimated model (MMS,2) is given by Equations (3), (4), (8)-(10). The posterior moments are
based on 10,000 Gibbs iterations, where the first 2,000 Gibbs draws are discarded. The prior specifications
used for estimation are that of set (I) given in Table 2. The log marginal likelihood under the prior
specifications (II) and (III) are given by -374.22 and -371.27, respectively.
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Table 6. Bayesian Estimates of the DLR-model with a Break in the Conditional Variance

Prior Posterior

Parameter Mean Std. dev. Mean Std. dev. 95%-bands

γ 0
√

10 −.261 .149 [−.554 ; .030]
ν 0

√
10 −.121 .142 [−.400 ; .160]

a1 0
√

10 .798 1.715 [−2.762 ; 3.959]
a2 0

√
10 1.374 2.159 [−2.735 ; 5.686]

a3 0
√

10 .109 1.915 [−4.249 ; 3.333]
a4 0

√
10 1.124 2.347 [−3.250 ; 5.506]

a5 0
√

10 −1.763 1.697 [−5.312 ; 1.223]
a6 0

√
10 3.629 2.552 [−1.334 ; 8.517]

a7 0
√

10 −1.648 .770 [−3.311 ; −.268]
a8 0

√
10 −.892 1.473 [−3.259 ; 2.449]

b1 2.523 1.906 .463 .282 [.035 ; 1.099]
b2 2.523 1.906 1.344 .570 [.356 ; 2.482]
b3 2.523 1.906 .290 .890 [.017 ; 3.266]
b4 2.523 1.906 .473 .670 [.064 ; 2.791]
b5 2.523 1.906 .188 .077 [.042 ; .330]
b6 2.523 1.906 1.175 .401 [.402 ; 2.058]
b7 2.523 1.906 .063 .070 [.004 ; .176]
b8 2.523 1.906 .252 .148 [.021 ; .574]
β0 0

√
10 −2.814 .591 [−4.183 ; −1.869]

β1 0
√

10 .243 .078 [.104 ; .411]
1/σ2

0 .100 .707 .067 .012 [.045 ; .093]
1/σ2

1 .100 .707 .216 .073 [.132 ; .380]
σ2

0 15.353 2.931 [10.813 ; 22.041]
σ2

1 4.744 1.302 [2.633 ; 7.551]
υ .976 .051 .987 .012 [.954 ; .999]
Break date 1990:III 11.557 [1988:IV ; 1996:I]

Log marginal likelihood ln[f(GT |MDLR,1)] −371.96
Log Bayes factor ln[f(GT |MDLR,1)/f(GT |MDLR,0)] .53

NOTE: The estimated model (MDLR,1) is given by Equations (3), (4), (12)-(15). The prior specifications
used for estimation are that of set (I) given in Table 2. The posterior moments are based on 10,000 Gibbs
iterations, where the first 2,000 Gibbs draws are discarded. The log marginal likelihood under the prior
specifications (II) and (III) are given by -369.86 and -366.68, respectively.
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Table 7. Log Marginal Likelihoods under Alternative Priors

Prior (I) Prior (II) Prior (III)

AR-model ln[f(GT |MAR,0)] −376.25 −375.43 −372.46
ln[f(GT |MAR,1)] −373.17 −371.93 −369.56

MS-model ln[f(GT |MMS,0)] −378.66 −377.49 −374.90
ln[f(GT |MMS,1)] −378.54 −375.73 −372.09
ln[f(GT |MMS,2)] −375.34 −374.22 −371.27

DLR-model ln[f(GT |MDLR,0)] −372.49 −371.55 −367.51
ln[f(GT |MDLR,1)] −371.96 −369.86 −366.68

NOTE: The set of prior distributions (I)-(III) are specified in Table 2.
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Fig. 1. German GDP growth from 1970:I to 2003:IV, measured in logged differences in quarterly GDP,
annualized by multiplying by 400 (top panel); residuals from a AR(4) model (middle panel); sequence of the
Wald statistics for testing for a break in the error variance of the AR(4) fitted to the GDP growth (bottom

panel).
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Fig. 2. Tension index ht based on δ = 0.575 and the dates of business cycle peaks and troughs (top panel);
estimated stochastic regime drift mt and deviations of growth from the estimated AR component

yt − γyt−1 − νht−1 (bottom panel). The parameters are set equal to their posterior mean for the set of
priors (I) given in Table 2.
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Fig. 3. Histograms of sampled break points: AR(4) model (top panel); MS model with a break in variance
(second panel); MS model with a break in variance and intercepts (third panel); DLR model (bottom

panel). The results are obtained for the sets of priors (I) given in Table 2.
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Fig. 4. Probabilities for a contraction: MS model without break (top panel); MS model with a break in
variance (second panel); MS model with a break in variance and intercepts (bottom panel). The results are

obtained for the sets of priors (I) given in Table 2.

30



1972 1976 1980 1984 1988 1992 1996 2000 2004
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DLR − without break

1972 1976 1980 1984 1988 1992 1996 2000 2004
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DLR − break in variance

Fig. 5. Probabilities for a deceleration: DLR model without break (top panel); DLR model with a break in
variance (bottom panel). The results are obtained for the set of priors (I) given in Table 2.
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