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Abstract

The paper is concerned with determinacy in a version of the New-Keynesian model
that integrates imperfect competition and nominal price and wage setting on goods and
labour markets. The model is reformulated with an explicit period of arbitrary length
and shown to remain well-defined as the period shrinks to zero. The 4 x4 constituent
matrix of the model’s continuous-time counterpart is mathematically tractable and its
determinacy results carry over to the period model at least if the period is sufficiently
short. This being understood, it is proved that determinacy is (essentially) ensured if an

extended Taylor principle requirement is met.
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1. Introduction

A basic extension of the standard New-Keynesian model with its forward-looking price
Phillips curve, dynamic IS equation and a monetary policy rule is concerned with an

integration of labour markets. Introducing imperfect competition and staggered nominal
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wage setting in these markets, they can be treated in an analogous way to the goods
markets; see Erceg et al. (2000), Woodford (2003, chapter 6), or Gali (2007, chapter 6).
In its reduced form, the model now contains four dynamic variables: output gap, price
inflation and wage inflation on the one hand, which are non-predetermined variables, and
the real wage gap on the other hand, which is a predetermined variable.

As the model is formulated in discrete time, uniqueness of a stationary equilibrium re-
quires that three eigen-values of a suitable 4x4 matrix lie outside, and one inside, the unit
circle. From the numerical investigations to be found in the literature one can infer that
this determinacy causes no problems once a modified Taylor principle is satisfied, which
says that the central bank adjusts the nominal interest rate more than one-for-one in re-
sponse to variations in any arbitrarily weighted average of price and wage inflation (Gali,
2007, p.128). A mathematical proof supporting this numerical knowledge is, however,
not available. It also seems hard to achieve in general, given that already the conditions
for all four eigen-values to lie on either side of the unit circle are fairly complicated.

Prospects of analytical tractability appear to improve if the model were conceived in
continuous time, so that three eigen-values of suitable matrix would have to lie in the
right half of the complex plane and the fourth one in the left half. An a priori preference
for continuous time on the basis of mathematical reasons fits in with a methodological
precept that was put forward by Duncan Foley several decades ago: “No substantive
prediction or explanation of a well-defined macroeconomic period model should depend
on the real time length of the period” (Foley, 1975, p.310; his emphasis). Accordingly,
the length of the period should be retained as an explicit variable in the mathematical
formulation of a period model, and it is to be made sure that it is possible to find
meaningful limiting forms of the equations as the period goes to zero. And Foley goes
on to state, “In my view, this procedure should be routinely applied as a test that any
period model is consistent and well formed where no particular calendar time is specified
as the natural period” (ibid., p.311).

In this paper we follow Foley’s maxim and reformulate the sticky wages and prices
model with an explicit period of arbitrary length. We will thus confirm that the model
indeed passes the test of remaining well-defined as the period shrinks to zero. It will
subsequently be possible to study the four eigen-values of the matrix that constitutes
the model’s continuous-time counterpart. Determinacy in this case carries over to the
discrete-time framework at least if the period length is sufficiently short, and it is in this
sense that we can derive conditions for determinacy in the period model. As a matter of
fact, they essentially amount to the modified Taylor principle mentioned above.

The remainder of the paper is organized as followed. The next section reiterates the
key equations of the New-Keynesian period model. Section 3 provides the details for
the eigen-value relationships between the discrete-time and continuous-time framework.
Section 4 reformulates the original model with a variable period, and Section 5 contains

the determinacy proposition together with the proof. Section 6 gives some numerical
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evidence of how variations of the period length may affect the determinacy threshold of
the sum of the two policy coefficients on wage and price inflation. Section 7 concludes
with pointing out that the methodological interest of the paper may well reach beyond
the scope of the specific model studied here.

2. The period model

The presentation of the key equations of the New-Keynesian model follows Gali (2007,
chapter 6). In the main we also adopt his notation, except that we avoid using a tilde.
Thus, let y; be the output gap in period t, i.e. the percentage deviation of output from
its natural level, and w; the real wage gap, which is the difference between the (log of
the) real wage rate and the (log of the) natural real wage. Price and wage inflation are
denoted by 77 and 7}", respectively, the nominal rate of interest is 7; and the natural
interest rate " (they are explicitly supposed to be quarterly rates; cf. Gali, p. 52, fn6). If
in addition u; and vy designate the model’s two exogenous components, Gali’s equations
(15), (17)—(20) on pp. 126f can be reproduced as follows:

= BEmia] + Key — Aww (1)

T = BE[ ] + mpye + Apwi (2)
1 .

vy = Eiy] — . (it — Ex[my, (] —rf) (3)

it = p+ G} + duT + dyur + v (4)

wp = w1 + o — m o= w (5)

All coefficients are constant and positive, apart from the policy coefficients in (4), some of
which may also attain zero values. The coefficient p can be interpreted as the household’s
discount rate, from which 3 derives as In f = —p (Gali, 2007, p. 18).

Effectively, the two exogenous variables in the dynamics are 21 := v, — (1 — p) and
29+ = ug. If the system is to have a solution satisfying y; = 77 = 7" = 0 for all ¢,
then z;; and 2zp; must vanish (Gali, pp. 127f). Assuming this for the rest of the paper,
we are left with the four dynamic variables z; := (7}, 7Y, ys,w;—1)’. Plugging (4) into
(3) and solving these four equations for the expected values of x411, the system can be

transformed into the representation,
Eyfzi] = Axy (6)

where A is a suitable 4 x 4 matrix. The non-predetermined variables of the model are
7, 7l and y;, while the real wage gap w;—1 of the previous quarter is a predetermined
variable. Hence determinacy requires that the matrix A has three eigen-values outside,

and one inside, the unit circle.2 As a result of his numerical analysis, Gali (p. 128) asserts

2 Which, in particular, implies that there is no scope for endogenous cyclical behaviour, or an
overshooting wage-price spiral.



that a sufficient (albeit not necessary) condition for this to prevail is the inequality,
bw + &p > 1 (7)

Accordingly, determinacy is guaranteed if the central bank adjusts the nominal interest
rate more than one-for-one in response to variations in any arbitrarily weighted average
of price and wage inflation. Equation (7) is thus an extended version of the famous Taylor

principle.

3. Determinacy and the concept of a variable period length

Let us now consider Foley’s axiom mentioned in the introduction, though still at a
general level. Given a fixed a time unit, we will refer to a dynamic system as an h-
economy if its period has length h. To make the results comparable across different
values of h, the variables in z; have to be expressed in terms of the time unit. In the
present case this means that the inflation rates have to be ‘quarterized’, if the underlying
time unit continues to be a quarter: 7’ = (wy — wy_p)/h and 7' = (p; — ps—p)/h for the
log wages w; and prices p; (the output gap as a ratio of two flow magnitudes and the
real wage gap have no time dimension).

Transforming a quarterly model into an h-economy would be straightforward if Ey[z;1]
= 2441 holds true in (6) and the right-hand side represents a linear partial adjustment
mechanism for each variable. The matrix A can then be decomposed into A = I+J (I
the identity matrix) and the adjustments in the h-economy become ;1 = 2y +h J¢. In
the limit h — 0 a differential equations system is obtained, © = Jx, whose basic dynamic
properties are characterized by the eigen-values of the matrix J. Provided no eigen-value
is zero or lies on the imaginary axis, these properties will carry over to the discrete-time
h-economy, at least if h is sufficiently small.

Things are a bit more involved for the present New-Keynesian model. Here the influ-
ence of h will be of a nonlinear nature and the matrix J = (A—1I)/h from (6) is itself
dependent on h. This gives us J = J(h) and

Eiwipn] = [I+hJ(h)] xe (8)

It will furthermore be established that the matrices J(h) converge to some finite matrix
J° as h tends to zero. Under Ei[ziipn] = x4yp, the limit would be well-defined if Iz,
is brought to the left-hand side in (8) and the resulting equation divided by h. Hence
the ‘continuous-time matrix’ J° should contain all the relevant information about the
qualitative behaviour of the discrete-time system (8) if h is small enough. In the present
context we are interested in the number of stable and unstable eigen-values in J° and [I+
hJ(h)], respectively. The precise relationship between the two is stated in the following

lemma.



Lemma

Let h — J(h) be a continuous function of nxn matrices defined on an interval [0, €] for
some € > 0. Suppose k eigen-values of J° := J(0) have positive, and n—k eigen-values
have negative real parts. Then there is a positive number h such that for all0 < h < h
the matriz [I +hJ(h)] has k eigen-values of J° inside, and n—k eigen-values outside,

the unit circle.

Proof: It is immediate that if x(h) is an eigen-value of J(h), then 14+hu(h) is an eigen-
value of [I+hJ(h)]. Let o, = —a,=£ib, be an eigen-value of J° with a, > 0,b, > 0, and let
w(h) = —a(h)£ib(h) be the eigen-values of J(h) that converge to p, as h — 0. Then for h
sufficiently small we have |1+ hu(h)|? = [1—ha(h)]? + h2b%(h) < (1—hao/2)? + 2h2b% =
1 — hlap — h(a2/4+20b2)].

Clearly, there exists some h >0 such that the last term in square brackets is positive
for h < h , which says that for all these h the eigen-values [1+ hu(h)] are inside the unit
circle. On the other hand, it is obvious that if an eigen-value u, = a, £ ib, of J° has a

positive real part a,, then |1+ hu(h)| > 1 for all p(h) close to p,.
g.e.d

Taking J(h) — J° for granted as h approaches zero, the main significance of the
Lemma lies in the fact that it is much easier to derive the number of eigen-values of the
matrix J¢ that are in the left and right half of the complex plane, respectively, than the
number of eigen-values of [I + hJ(h)] that are inside and outside the unit circle, whether

h is small or h = 1 as in the original economy.

4. Reformulation of the model with a variable period length

After presenting the general idea of the h-economies and expressing our hopes for
its benefits in the determinacy analysis, we have now to come to terms with our specific
model and introduce a period of arbitrary length A into it. We begin with the equation for
the real wage gap. With the assumption u; = 22 = 0 mentioned above, which means that
the natural real wage is constant, eq. (5) becomes w; = wy—p, + (wW—pi) — (We—p—Dr—p) =
wi—p + h[(w —wi—p)/h — (Pt — pt—n)/h], or

w = win + b ) ©)

Consider next the Taylor rule in (4). Given that in the quarterly model the interest rate
iy corresponds to the log of the gross yield on bonds purchased in ¢ and maturing in
t+1 (Gali, pp. 16, 18), hi; corresponds to the log of the gross yield when these bonds
are maturing in t+h. The household’s rate for discounting periods of length h is hp, and
similarly so for the component v; (see the specification of z;; in Section 2). In the h-
economy, the Taylor rule thus reads hiy = hp+ ¢p(Di—pi—n) + Gw(Wi—wi—p) +hoy ye + hoy.

Retranslated into quarterly magnitudes we obtain
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it = p+ Gpm + dum + dyyr + v (10)

Before we turn to the counterparts of (1) - (3) in the h-economy, we have to have a look
at the structural parameters entering these equations or their composed coefficients &y,

Aws Kp, Ap, respectively. The latter are given by

Kw = Oy Aw Kp = Qp Ap

ay =0+ ¢/(1—a) ap = a/(1-a) (11)
L0808 1 (1-6)(0-f) 1-a

Yo O 1+ ¢ew P Op l—a+ag

(cf. Gali, 2007, pp. 121, 125f). All of these parameters are specified as positive numbers,
where the following ones are independent of the length of the period: « is the exponent
on labour in the production function (o < 1, p.18 in Gali); o and ¢ are the elastic-
ity coefficients in the household’s utility function that refer to consumption and labour
(p.17);3 €p is the household’s elasticity of substitution among the differentiated con-
sumption goods (pp.41f, 122); and ¢, is the firms’ elasticity of substitution among the
varieties of labour inputs (p. 120).

The parameter [ serves to discount the household’s intertemporal utility and so
changes with the length of the period. When instead of a quarter this parameter ap-
plies to a period of length h, it may be denoted as §(h). Since the discount rate for a
period of length h is hp and the quarterly coefficient 5 = (3(1) was already said to be
related to the quarterly discount rate by In 3 = —p, or equivalently 5 = 1/(1 + p),* the
coefficient 3(h) is determined by

p(h) = 1/(1+hp) (12)

The two remaining parameters 6,, and 6, have a time dimension, too. (1—#6,,) is the
fraction of households/unions that reoptimize their posted nominal wage within a given
quarter, while the rest 6,, of them post the wage of the previous quarter (Gali, p.122).
Likewise, (1—6)) is the fraction of firms that in this period reset their price, and the rest
6, does not (pp.43, 47, 121).

The parameter 6,,(h) appropriate for the h-economy is obtained from the observation
that in a period of length h the fraction of reoptimizing households will be h(1—6,,).
This gives us 0,(h) = 1 — h(1—60,,). Using (12), the term (1 — 36,) in (11) now reads
1—08(h)0y(h) =1 —[1—h(1—604)]/(14+hp) = h(1 + p — 0,)/(1+hp). In this way the
first fraction in the definition of Ay, in (11) becomes [1 — 0,,(h)] [1 — B(h)0y(h)] / Ow(h) =
h(1=0.) h(14p—0y) / [1 — h(1—0,,)](14+hp). The same reasoning applies to 6,(h) and the
first fraction in the definition of A, in (11). The coefficients A, (h) and A, (h) adjusted to

the h-economy can thus be written as

3 This ¢ may not be confused with the policy coefficients ¢, ¢, ¢, in the Taylor rule.
4 Note that solving 8 = 1/(1+ p) for p gives p = (1-3)/B =~ In[1+ (1-3)/8] = In(1/8) = —In 3.
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(1_9w)(1+p_0w) 1
[1 = h(1=0u)](1+hp) 1+ dcw

Aw(h) = h% by(h), bw(h) =

(13)
1-0)(1+p=0) l-a
1 —h(1—-6,)](1+hp) 1—a+ag,

If the period-dependent parameters 3, 0, and 6, in the model are suitably adjusted, then

Ap(h) = h? by(h) bp(h) =

all of the agents’ optimization procedures go through unaltered. This means that we can
directly refer to the Phillips curve and the dynamic IS equation as they are formulated
in (1) —(3); we only have to replace the coefficients 3, Ay, Ap with B(h), Ay (h), Ap(h),
and Ky, kp With Ky (h) = ayw Aw(h), kp(h) = ap Ap(h), respectively.

So, to begin with, let us reconsider the wage Phillips curve (1) in the context of
an h-economy. Employing (11) and (13) we here get wy — wi—p, = B(h) Et{wirn — we] +
aw Mo(h) Yi —Aw (h) wi = B(R) E[wiyn —wi] + h? [aw by (h) y¢—by (k) wi]. Dividing through
by h to express the wage inflation rates as quarterly magnitudes, 7" = (wy; — wi_p)/h,
solving for the expected values and using (12) as well as (9) yields Eyr},] = (1+
hp) {7 — hay bw(h) yt — bu(h)(wi—p + h(7 — 7F))] }. Expected price inflation can be

treated in the same way. It is then convenient to define

Jww(h) = p+h(A+hp)by(h)  jup(h) = —h(1+hp)by(h)
Juy(h) = —(+hp) awbuw(h)  juw(h) = (1+hp)by(h) 14
Jpw(h) = —h(1+hp)by(h) Jpp(h) = p+h(1+hp)by(h)
Jpy(h) = —(1+hp)apby(h) Jpo(h) = —(14hp) by(h)

and write the reduced form of the expected inflation rates as
Eyniyn] = 7 + hljww () 7+ jup(R) 77 + Juwy () ye + Juw(h) win] (15)
Ent) = w0+ hlgpw() 7 + Gop(R) 77 + Gy () ye + Jpw (B) wi—n ] (16)

Regarding the output gap, use eq. (10) to obtain the counterpart of the dynamic IS curve
(3) in the h-economy, solved for the expectational variable, as Ei[y;yp] = v + (h/o) (p+
Gp 7t + Gu T + by yr + ve — Eefm), ] — ). The magnitudes p, v; and rj* cancel out if

21, = 0 from Section 2 is taken into account. Substituting (16) and defining

Jyw(h) = [P — hjpw(h)] /o Jyp(h) = [‘1519 —-1- hjpp(h)] /o

Juy(h) = [by = hipy(R)] / 0 Jyw(h) = —hjpu(h) /o .
the output equation can be written as

Eilyeen] = v + hliyw(h) 7" + jyp(h) 71 + Jyy (B) ye + Jyo(h) wi—p] (18)
Lastly, put

Jow = 1 Jup = =1 Juy = Juw = 0 (19)

and adjust the identity for the real wage gap (9) to the present notation (apart from the

reference of these coefficients to h, which is here obsolete),
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Ey [Wt] = wep + h [jww 77'7?” + jwp 7Ttp + jwy Yt + Jww Wi—h ] (20)

We have thus achieved our goal to write the h-economy version of the model compactly
as E[xiip] = [I + hJ(h)] z¢, to which we can then apply the Lemma from the previous
Section. It only remains to make explicit that the limit of the matrices J(h) exists. In
fact, from (14), (17), (19) we obtain:

[, 0 —ayby by |

) - 0 p —ayb, —b,
bulo (6p-1)/o  dyfo 0 o
i 1 -1 0 0 |

bo = bu(0) = (1—0u)(1+p—0)/(1+ )

by = by(0) = (1—6,)(1+p—06,)(1-a)/(1—a+ac,)

In contrast to the unwieldy general discrete-time matrices J(1) or J(h) in (8), the limit
matrix J° seems to offer some scope for an analytical treatment of the determinacy
problem. This will be the upshot of the paper in the next section.

5. The determinacy proposition

According to the Lemma, for determinacy in the h-economies it has to be shown that
the limit matrix J° in (21) has one real and negative eigen-value and three eigen-values
with positive real parts. The following two assumptions will prove sufficient to ensure
this.

Assumption 1

P by (bw + bp)

w 1 - —
Quwt Op > buw by (ayw + ap)

where ay, ap, by, b, are defined in (11) and (21), respectively.

Assumption 2

Either ¢, = 0 or p*> < by, +b, (or both).

The first assumption is a relaxed version of the Taylor principle stated in (7). Just
as in Gali’s (2007, p. 130, Figure 6.2) illustration of the determinacy frontier, a positive
policy coefficient on the output gap allows a (slight) weakening of the condition that the
sum of the two inflation coefficients exceed unity. The assumption will also turn out to

be a necessary condition for determinacy, at least in h-economies with a short period
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length h (if we disregard equality in Assumption 1, in which case the Lemma fails to
apply).

The inequality in Assumption 2 is a convenient condition to determine the sign of a
partial derivative in the proof; see eq. (25) below. However, neither the condition for the
sign nor the sign itself are necessarily needed in the mathematical argument. Neverthe-
less, since a typical value of the quarterly discount rate is p = 0.01 and so p? is extremely
small, this inequality can be safely taken for granted and there is no need to seek for
further (more tedious) refinements. In fact, with the numerical parameters that we will

employ from the literature below, we get b,, = 0.009 and b, = 0.029.

Proposition

1. If the inequality in Assumption 1 is reversed, then an h-economy as it was devel-
oped above, and compactly summarized by eq. (8), exhibits indeterminacy for (at
least) all h sufficiently small.

2. Let Assumptions 1 and 2 be satisfied. Then the steady state of the h-economy is
determinate (at least) if the period length h is sufficiently short.

The hard work to do is, of course, the proof of the determinacy part of the proposition,
that is, a demonstration of the 3:1 structure in the four eigen-values of J°. To give a
short outline of our approach, the proof begins with assigning zero values to two selected
parameters. They are easily seen to give rise to a negative and a positive eigen-value,
and to two eigen-values on the imaginary axis. In a second step, the Implicit Function
Theorem is employed to show that the real parts of the latter two become positive as
one of these parameters slightly increases. The third step makes sure that upon further
increases of the two parameters toward their originally given values, none of the eigen-
values can change the sign of its real part.

Proof: For the analysis of the eigen-value structure of the matrix J° we need the
coefficients in its characteristic equation, A* + A1 A% + AA2 + A\ + A4 = 0.6 With the
notation n:= 1/0 to avoid fractions, they result as follows (e.g., see Murata, 1977, p. 14):

Ay = —trace J° = =2(p + noy)

Ay = sum of the principal second-order minors of J°

5 Tt is quite a common feature in New-Keynesian models that, in the presence of a positive
weight on output fluctuations, determinacy of the steady state is also guaranteed if the central
bank raises interest rates a bit less than one-to-one in response to an increase in inflation. A
detailed discussion of this issue can be found in Woodford (2003, p.254). Another condition for
this to hold may, however, not be neglected, namely, the absence of nominal taxes; cf. Edge and
Rudd (2007).

6 The eigen-values can here be denoted by the usual letter ‘A’ since there will be no more risk of
confusing them with the parameters A, A, in (11) and (13).

9



p 0 P _awbw 1Y bw
= + + +
0 p Now 1Py 10
p —ap by p by Ny 0
- -
n(op—1) ndy -1 0 0 0

= p2ndy+p) — [1=nodwaw|by — [1=n(dp—1)ay]b,

Az = — (sum of the principal third-order minors of J°)
p 0 —Qyy by p 0 by
= - 0 p —apb, | — 0 p b
now n(op—1) noy 1 -1 0
P —Qywby by p —apb, —by
“ | n¢w ey 0 | T |n(gp=1) ndy O
1 0 0 —1 0 0

= 77¢y(bw+bp_/32) + p[(1=ndwaw) by + (1 —n(¢p—1)ap)by]
Ay = det J° = —n[pgy (bw +by) + (w+ & — 1) (aw + ap) bw by ]

The first part of the proposition is easily verified by making use of the relationship
Ay = det J° = Ay Ay A3 A4 for the four eigen-values of J°. Recalling that for determinacy
three eigen-values must have positive real parts and one must be negative, it suffices to
note that the strict violation of Assumption 1 is equivalent to A4 > 0, and that a positive
sign of the determinant implies an even number of eigen-values with positive real parts.

In the proof of the second part of the proposition, the coefficients p and ¢, are treated
as variable. Their given values may therefore be marked as p* and ¢;. We also distinguish
the two cases that the expression [1 — 1 ¢y ayw| by + [1 — 1 (¢p—1)ap] by, in Ay and As
is zero or nonzero, respectively. The proof begins with the normal nonzero case.

In a first step, put p = ¢, = 0. Then A; = A3 = 0, Az # 0 and, with Assumption 1,
A4 < 0. The characteristic equation thus reduces to A* + Ay A2 + A4 = 0. The quadratic
equation that results from replacing A? with u has two real solutions 1,2, one of which is
positive and the other negative. Hence (from p; > 0) one eigen-value A is a positive and
one a negative real number, and (from po < 0) the remaining two are a pair of purely
complex eigen-values. In the next step we want to show that this pair moves into the

right half of the complex plane when now p is slightly increased above zero. As the signs
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of the other two real eigen-values are preserved, this intermediate step will achieve the
desired structure of the eigen-values.

For this purpose, write a complex eigen-value of J° as A = o + 37 and compute \? =
(@®—B%) +2a8i, A3 = a(a?-35%) + B(3a?—32) i, \ = (a?—£%)? —4a23% +4ap(a®—F?) .
The characteristic equation can be decomposed into its real and imaginary component
as follows,

(@ =0%)? —4a®B? + Aja(a®=36%) + A3 (®=F%) + Aza + Ay =

daf(a®=F%) + A1 B(3a*~ 5’ = (22)
1 o ﬁ)+2A20&ﬁ—|—A3IB 0

In the special situation where o = 0, we obtain two relationships that will prove useful

further below,

B2—Ay = —Ayg/B3* >0

(23)
—A1 B2+ A45 = 0

Conceiving the composite terms A; as functions of p and (later) ¢,, the two equations

in (22) may be more compactly written as,

Fi(a,B;p,¢y) = 0
Fy(a,B;p,¢y) = 0

(24)

Equation (24) is a typical example for an application of the Implicit Function Theorem
in its two-dimensional version: « and 3 are two endogenous real variables that vary with
the exogenous variables p and ¢, in order to reestablish equality in (24), which may be
expressed as o = «(p, ¢y), B = B(p, ¢y). Furthermore we have a base solution (0, 0) = 0,
B(0,0) > 0 for p = ¢, = 0. The theorem, then, gives us a formula to compute the partial
derivative of the real part a = a(p, ¢,) at this point with respect to p, which should turn
out to be positive.

Entering the formula will be all of the partial derivatives of the two function F} and Fb.
Denote them as F}j, = 0F;/0vy for j=1,2, v=«, 3, p, ¢, where in order to avoid stacked
indices let here ¢ stand for ¢,. Likewise write A;, = 0A;/0p and Ajs = 0A;/0¢, for
j=1,2,3,4. Generally at a point at which a = 0, we can, in particular, use (23) to

compute the derivatives and their signs:

Fio = 2822p+n9,) > 0 Foy = —28(28%—A43) < 0
Fig = 26(268° = 42) > 0 Fos = 26°(20+nd,) = 0 (25)
Fi, = =26%(p+n¢y) <0 Foy = B(p*+282—43) > 0
Fig = —np(2824+by+by) < 0 Foy = np(26%+by+b,—p?) > 0
In the computation of Fy, it has also been exploited that A3, = —2n¢,p + [1 —

N bw aw) b + [1 =1 (¢p—1) ap) by equals p* — As. The positive sign of Foy is ensured by
Assumption 2.
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After these preparations we can take the real part of an eigen-value A = A(p, ¢,) =
a(p, ¢y) + B(p, ¢y) ¢ and differentiate it with respect to p. The formula from the Implicit

Function Theorem reads,

da(p, ¢y) _ P By, + Fig By (26)
op Fio Fop — Fig Faq

Equation (25) ascertains that both the numerator and denominator are unambiguously
positive. This holds for all nonnegative values of p and ¢, and thus, in particular, at the
point p = 0, ¢, = 0. The positive derivative in (26) proves the claim that at ¢, = 0
and for p sufficiently small (but positive), one eigen-value of J° is negative and the other
three have positive real parts.

It next has to be shown that at a further rise of p up to the given value p*, none of
the eigen-values can hit the imaginary axis or even move from one half-plane into the
other. Suppose this happens at some value p > 0. Owing to A4 = det J° # 0 there must
be again a pair of purely imaginary eigen-values, for which «a(p,0) = 0. Furthermore,
since there is only a single eigen-value with a negative real part, the partial derivative
da(p,0)/0p must be negative or zero. This, however, contradicts the fact that (25) has
just been found to be strictly positive at all p and ¢ that would entail a(p,0) = 0. Hence
the desired 3:1 eigen-value structure also prevails at p = p* and ¢, = 0.

For the case of a positive coefficient on the output gap it remains to verify that the
eigen-value structure is preserved if now ¢, rises from zero to the given value ¢y. The
argument is completely analogous to the previous paragraph. In computing the partial
derivative da(p*, ¢y)/0¢, we only have to replace Fy, and Fy, in (26) with Fj4 and
F54, and observe with (25) that this does not change the sign of the numerator. Hence
da(p*, ¢y)/0¢y > 0 for all values of ¢,, which implies that the variations of ¢, cannot
change the signs of the real parts of the four eigen-values, either.

Finally, consider the special case C':= [1 — 1 ¢y @y by + [1 — 1 (¢p—1) ap] by, = 0. Here
the above method of proof fails to apply since As = 0 at the very beginning. Instead, we
now treat 1 as a variable coefficient and mark its given value as n*. Since C' = C(n) # 0
for  # n*, we know that for all these 7 the real parts of the corresponding eigen-values
have the desired 3:1 structure. The rest of the proof makes sure that at n = n* this
property does not possibly get lost.

Suppose to the contrary that some eigen-value changes the sign of its real part at
n*. Then by virtue of det J° # 0 there must be a pair A\; 2 = +43 of purely complex
eigen-values at this value. Since for n # n* the other two eigen-values are real and of
opposite sign, Az < 0 < A4 (say) also holds true at n = n*. To check the consistency
of this situation, we refer to the following two identities between the coefficients in the

characteristic polynomial and the four eigen-values of .J°,7

7 To show them, use the fact that the characteristic polynomial equals (A — A1)(A — Xo)(A —
A3)(A — )\4) and expand out.
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Al = =X —Aa—A3— A\
A3 = =2 A A3 — A1 Ao — A A3 — A A3 Ay

Since A1 < 0 and A1+ Ao = 0, the first equation implies A3+ A4 > 0. The second equation
yields Az = —A1A2 (A3 + A1) — (A1 + X2) Ashy = 2 32 (A3 + \y), which says that A3 is
negative. With C(n*) = 0, on the other hand, Aj is here given by A3 = n*¢y (by+bp,—p?).
Since according to Assumption 2 this expression is nonnegative, we have a contradiction,

that is, A\j2 = £ at n = n* is impossible.
g.e.d

6. Determinacy under a variable period length

To study determinacy under variations of the period length h, let ¢y,,(h) denote the
critical value of the sum of the wage and price policy coefficients ¢, + ¢, at which, given
h, the steady state of (8) becomes determinate as ¢, + ¢, increases from zero. 8 Then,
taking Assumption 2 for granted, the Proposition and the Lemma tell us that ¢;,,(h)
converges toward the right-hand side of Assumption 1 as h tends to zero, which may
be written as ¢},,(0). Attempts to check this numerically will, however, face an intrinsic
problem. While usually a procedure computing eigen-values with a precision of, say, five
significant digits will be considered fully satisfactory, this error is no longer negligible if|
at a given small value of h, one of the eigen-values of the matrix [I + hJ(h)] in eq. (8)
is, for example, computed as 0.99995 and thus said to be stable, although it is actually
unstable with a true value of 1.00001. As a consequence, the numerical computations
yield somewhat distorted values for the determinacy threshold ¢7,,(h).

In fact, in a battery of numerical explorations in which we let  tend to zero, ¢7,,(h)
was typically found to converge to a value distinctly larger than qbfup(O). Nevertheless, in
all of these cases the limit was still consistently below unity, even for very small values of
the policy coefficient ¢, (recall that ¢y,,(0) tends to unity from below as ¢, approaches
zero). Hence for small values of h, the pure Taylor principle ¢, + ¢, > 1 was always

sufficient to ensure numerical determinacy.

P o ¢ o & u b Oy Py
00l 1/3 1 1 6 6 2/3 3/4 05/4or 2/4

Table 1: Gali’s numerical parameter scenario.

On the other hand, the rigorous mathematical formulation of the determinacy part of

the Proposition is limited to sufficiently short period lengths h and so must leave it open

8 Where it is understood that ¢,, and ¢, vary in fixed proportions. Effectively, in all our numerical
experiments ¢y, (h) proved to be independent of this proportion.
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whether for longer periods, up to h =1, determinacy would require stronger or weaker
conditions. This problem has to be investigated by numerical methods anyway. To this
end we take up the numerical example discussed in Gali (2007, pp. 52, 129). The values
of the structural parameters that will remain constant, or for which we only consider two
alternative values as in the case of ¢,, are given in Table 1. 9 Note that the first value
of ¢, is Taylor’s original value for the policy coefficient on the output gap, which is here

divided by 4 since Gali uses a quarter as his underlying time unit.

1.00 [ phi_w + phi_p ] Determinacy Thresholds
D phi_y=0.125fr

0.90 -

0.85 -
phi_y = 0500 /

0.00 0.20 0.40 0.60 0.80 [h]

Figure 1: Determinacy thresholds qbfup(h) under variations of the period length h.

Given the period length h and one of the values for ¢, together with the other pa-
rameters in Table 1, we can compute the determinacy threshold ¢;,,(h) by way of a
suitable iteration mechanism (basically a regula falsi procedure). Drawing the threshold
as a function of h over the interval [0.01, 1.00], the two graphs in Figure 1 are obtained;
one for ¢, = 0.5/4 = 0.125 and the other for ¢, = 2/4 = 0.500. The diagram illustrates
that the condition for determinacy is steadily relaxed as the period length increases up to
a quarter, h=1. It may be added that in both of the cases here depicted, the computed
values of ¢},,(h) are still persistently above the theoretical threshold ¢},,(0), which is
0.9406 for ¢, = 0.125 and 0.7623 for ¢, = 0.500.

9 Since we could not find an explicit value for &,,, we assigned the value of € = ¢, from p. 52 to
it.
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7. Conclusion

The paper took up a version of the standard New-Keynesian period model from the
literature that integrates goods and labour markets by designing imperfect competition
and staggered price and wage setting in an analogous manner. The model can be reduced
to a dynamic system in four variables, one of which is predetermined and the other
three are so-called jump variables. Numerical evidence suggests that a suitably extended
Taylor principle for the monetary policy rule will be sufficient to ensure determinacy
of the steady state, but an analytical treatment was missing so far. We approached the
determinacy problem by revitalizing a more than 30 year old methodological precept by
Duncan Foley. It says that a macroeconomic model should routinely specify its period
in an explicit way such that it can be of any arbitrary length h, and it should then be
checked that the model remains well-defined in the limit as the period shrinks to zero. A
side-effect of this procedure is that a matrix characterizing the continuous-time system
will usually be much easier to analyze than the matrix from the original period model.
Obviously, the significance of Foley’s axiom goes well beyond the scope of the specific
New-Keynesian model studied here.

In the present case of a period model it appears an extremely difficult task to locate its
four eigen-values inside and outside the unit circle. In contrast, for the limiting matrix
as h tends to zero it indeed turned out to be feasible to verify that, as required for
determinacy, one of the eigen-values is negative and the other three have positive real
parts, and that the abovementioned Taylor principle plays a key role for this. Also our
method of proof can be of more general interest. The proof begins with a special set of
the parameters that gives rise to one positive and one negative eigen-value, while the
other two eigen-values are on the imaginary axis. Using the Implicit Function Theorem
it is then shown that the latter two are moving into the positive half of the complex plane
as one of the modified parameters slightly increases. A final step makes sure that upon
further variations of the modified parameters toward their original values, none of the
eigen-values can hit the imaginary axis again. We may thus hope that similar methods
and ideas will prove fruitful for other dynamic systems of dimension three, four or perhaps

even five if it comes to a mathematical analysis of their stability or determinacy.
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