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Abstract

The objective of this paper is to re-evaluate the attitude to effort of a risk-averse decision-
maker in an evolving environment. In the classical analysis, the space of efforts is generally
discretized. More realistic, this new approach employes a continuum of effort levels. The pres-
ence of multiple possible efforts and performance levels provide a better basis for explaining real
economic phenomena. In the context of a principal-agent relationship, not only the incentives
of the Principal can determine the private agent to exert a good effort, but also the evolution
of the dynamic system. The dynamic incentives can be ineffective when the environment does
not sufficiently incite the agent to allocate effort. This possible scenario explains why some
efficient strategic incentive-compatible constraints that cover the entire period of contract do
not generally exist. The proposed approach offers an elegant study of the close relationship
between behavior, attitude and effort allocation.

Keywords: Rational decision-maker, endogenous dynamic learning, adaptive effort man-
agement, optimal effort threshold, effort aversion, excessive effort behavior.
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1. Introduction

Consider a rational decision-maker characterized by a consistent and efficient outcome
oriented behavior (Dreze 1990; Walsh 1996) who utilizes a set of control instruments in
order to constrain the system to follow an optimal trajectory ensuring its equilibrium and
stability.
The decision-maker adjusts to keep small the difference between the actual and assumed

system characteristics by supervising and managing the system behavior. At each control
period, his uncertainty level is determined by the deviations of the system from a fixed reference
path. High (small) deviations from the fixed targets correspond to a high (small) level of
uncertainty.
In general, a consistent behavior in problems of decision-making implies risk-aversion char-

acterized by risky actions implemented by the decision-maker. It characterizes the majority of
decision-makers, at least for high profits or important losses.
The degree of information included in the observation of the state variable generally depends

on the values chosen for the control instruments, so that the extent of the learning on the
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latent parameters of the system can be directly influenced by the decision-maker. He has
a certain influence over the rate at which the information arrives, so that his behavior may
generate information. The active learning makes the decision-maker more experienced over
time. However, despite of potential benefits from active learning in stochastic optimization
problems, the potential for learning is very limited if the model is noisy (Easley and Kiefer
1988; Kiefer and Nyarko 1989).
The analysis is placed in the context of a closed-loop strategy, the information being utilized

by the decision-maker in real time. His objective is to reduce the uncertainty related to the
choice of his actions by acquiring information from the beginning of the control to the moment
of decision. The feedback control responds not only to the effects of random inputs, but also
to the measurement errors as well. It is thus useless to identify and measure the sources of
disturbance.
The fact that the decision-maker is risk-averse by nature does not give any obvious reason

for which one should also suppose that he is effort-averse. Uncertainty generally depreciates
the activity of the decision-maker and produces a temporary stability followed by a longer or
shorter period of adaptation in instability which implies an additional effort allocated by the
decision-maker in order to reduce the probability of a high deviation to occur.
The evolution of the dynamic system has an important impact on the decision-maker’s

effort behavior over time. The higher the system fluctuations, the higher the effort exerted.
The effort level invested by the decision-maker at each period of control will also depend on
the importance attached to the history of the process, as well as on his effort-averse type.
The objective of the present study is to explore the relationship between attitude, behavior,

and perceived effort in dynamic risky environments.
The paper is organized as follows. Section 2 presents the model. Section 3 proposes a

refinement of the effort concept by integrating in the analysis a truncated /progressive history
of the dynamic environment. Section 4 obtains several qualitative results with regard to the
decision-maker’s attitude to effort during the period of control. It also provides an interesting
analysis of the decision-maker’s effort preferences and discusses the case of high potential shifts.
Section 5 introduces the concept of (excessive) effort-aversion according to an optimal effort-
threshold which characterizes the agent’s type. It is analyzed here the relationship between
agent’s effort allocation and horizon length. Section 6 concludes and makes suggestions for
future research.

2. The Model

The type of model we analyze corresponds to a data generation process which is dynamic,
nonlinear and managed by a system of discrete simultaneous equations.
Let xt ∈ Rq be the control variable at time t, let yt ∈ Rp be the target variable in t, and

let zt ∈ Rr be an exogenous variable not subjected to the agent’s control at the time period t.
Denote byXt = {..., x−1, x0, x1, ..., xt} the history of the process x up to time t, and similarly

for Yt and Zt. We allow for the current state variable to depend not only on the agent’s
current decision but also on an arbitrarily complex history Xt. We make the following basic
assumptions:

Assumption 1. The evolution of the environment is modelled by a nonlinear extended-
memory process generated according to the structural state equation:

yt = F (Yt−1,Xt,Zt, et,βt, t) + ut, t ∈ Z
The adjustment function F is assumed twice continuously differentiable with respect to

βt ∈ Rk (the time-varying parameter to be estimated). The variable et represents the agent’s
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effort employed for the period t. The exogenous unobserved random shock ut ∈ Rp is the specific
“risk” modelled by a normal distribution with zero mean-vector and finite variance-covariance
matrix Ψ.
In general, yt is not a Gaussian process. Obviously, non-linearity between yt and Yt−1

implies non-normality and hence an asymmetric dynamic. The variable t plays the role of a
synthesis variable in the econometric model.

Assumption 2. The agent’s objective is to constrain the system to follow a feasible optimal
path η

not.
= {yg1, yg2, ..., ygT} by selecting the control variable xt in a suitable way. Taking into

account foreseeable movements in y as well as possible economic constraints, the agent will fix
some optimal bounds lt such that 0 < ygt ≤ lt < 1, t = 1, ..., T .

Assumption 3. The timing of the control is as follows: At each period t, the agent
implements an optimal action xt, which is a stimulus for the dynamic environment. This is
purported to contribute to the stability of the evolving system. A shock ut is carried out and
the agent observes the output yt (the impulse response) from which he extracts a dynamic
signal about the future trend of the system. The information revealed by the output signal can
increase the precision of the next control instrument. This signal and the corresponding action
provide information on the data generating process. The agent will employ this output signal
for a strategic learning (specific to a closed-loop monitoring) in order to reduce his uncertainty
over time. The question is: How this signal will influence the agent’s effort behavior during the
period of control?

Assumption 4. The optimality of the instrument xt is considered according to a global
criterion W (y1, y2, ..., yT ) which measures the system deviations M yt

not.
= yt − ygt , t = 1, ..., T .

This is supposed twice continuously differentiable, strictly increasing and convex in the feasible
area of the model.
Using the traditional approach (Van der Ploeg 1984), we consider a quadratic additive

recursive criterion:

W[1,T ](y1, ..., yT )
def.
=

TX
t=1

Wt(yt)

where Wt is a quadratic asymmetric loss function given by:

Wt(yt)
def.
= (yt − ygt )

0Kt(yt − ygt ) + 2(yt − ygt )
0dt

with a prime denoting transpose.
The choice of the parameters Kt and dt reflects the priorities of the agent and also depends

on the available amount of information concerning the future development of the system pa-
rameters. At each time t, the parameters Kt and dt are updated and new optimal values are
selected to fulfill the requirements of the agent.

Assumption 5. At each period t, the agent must compute his optimal policy bxt before
knowing the initial state y0. He therefore obtains a random policy, conditional to y0:bxt = argmax

xt

Et−1[Ut(W[1,t], ϕt) | y0]

where Et−1(·) not.= E(· | It−1) is the operator of conditional expectation based on the information
available in t− 1, ϕt represents the absolute risk-aversion index in t, and Ut is the agent’s local
utility function defined by:

Ut(W[1,t], ϕt)
def.
=

2

ϕt

[exp(−ϕt

2
W[1,t])− 1]
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with

W[1,t]
def.
=

tX
s=1

Ws(ys) (evolutive loss)

We have:

−U
00
t (W[1,t], ϕt)

U 0
t(W[1,t], ϕt)

=
ϕt

2

where a prime denotes the partial derivative with respect to W[1,t].

Therefore,
ϕt(W[1,t])

2
measures locally (at the point W[1,t]) the agent’s risk aversion, Ut being

a CARA utility. Different contexts call for different optimal actions.

3. Dynamic Effort Modelling

Although there is an extensive literature on effort (Block and Heineke 1973; Sap-
pington 1991; Laffont and Tirole 1993; Salanie 1997; Laffont and Martimort
2002; Laffont 2003; Ippolito 2003; Oyer 2004; Bolton and Dewatripont 2005;
Epstein and Nitzan 2006; Shapiro 2006; Lee and Rupp 2007; Fong and Tosi Jr
2007; Strobl and Walsh 2007, amongst others), there is no theoretical and empirical
work for comparing and evaluating the degree of effort-aversion of risk-averse decision-makers
in the context of controlled dynamic stochastic environments.
The objective of this section is to propose a new definition of the effort concept with im-

portant implications on the agent’s adaptive behavior in an evolving environment.
In dynamic stochastic optimization problems, but not only, the agent’s effort level depends

on the history of the process, as well as on the importance the agent places on the past. It
implies a permanent adjustment process of the effort variable over time.
We formalize this point of view for a general class of models and we detail the positive

effects that it implies in the context of a dynamic stochastic system which evolves over a finite
and discrete horizon.
We make the following useful notations:

St, p_d
not.
= k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k

2

(the sum of squared past deviations at time t)

St, w_p_d
not.
= k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1
(the weighted sum of squared past deviations at time t)

where Lt−j1 (j1 = 1, ..., k1; 1 ≤ k1 < T ) are strategic weights attached to the system deviations
with respect to the equilibrium path {ygt−1, ..., ygt−k1} verifying the sequence of inequalities:

−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0

Definition 1. Using t to denote time, the absolute risk-aversion index ϕr_a
t, p evolves accord-

ing to the following relationship:

ϕ
r_a
t, p

def.
=

St, w_p_dq
S2t, p_d + l

, t = 1, ..., T

where l ≥ 1 is an integer characterizing the agent’s type.
The weights may differ across individuals. They are updated each time as new observation

becomes available. The agent gives a higher importance to the deviations which are closer
to the moment of implementation of a new optimal action. The higher (smaller) the weight,
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the smaller (higher) the importance given by the agent to the system deviation from his local
objective. Given the potential destabilizing role of a long memory of the process, the agent
takes into account only a limited history in the risk analysis. Distant past observations might
increase significantly the bias of the estimators in the econometric model. It generally exists
an arbitrary element as regards the choice of the backward lag k1. The objective is to find
the better compromise between fit and complexity. For further details, see Protopopescu
(2007).
In order to optimize the effort during the period of control, the agent will take into account

two distinct aspects: i) the effect of the last deviation of the system (at time t − 1); and ii)
the mixed effect of the other system deviations, from t− 2 to t− k1− 1. The agent’s degree of
risk-aversion at time t− 1 integrates this latter effect. It is assumed that the effort variable is
multiplicative separable in these two distinct effects.
We are now in a position to give a definition of the effort variable by taking into account a

truncated history of the system performances as well as the agent’s degree of risk-aversion.

Definition 2: Using t to denote time, the effort variable e
r_a
t, p evolves according to the

following relationship:

e
r_a
t, p

def.
= −k yt−1 − ygt−1 k2 Lt−1

k yt−1 − ygt−1 k2 +s
·
ϕ
r_a
t−1, p − 1

ϕ
r_a
t−1, p − d

, t = 1, ..., T

0 < s ≤ 1; 1 < d ≤ 2 (fixed real numbers)
It is important to note that s and d are two strategic parameters characterizing the agent’s

type.
The above definition expresses the idea that the risk-aversion can be viewed as effort incen-

tive. Moreover, the planning effort can be regarded as an effective risk management tool. The
effort invested depends on the way the agent exploits and interprets the system evolution. It
does not always take a minimal value as the intuition would suggest.
For this type of modelling, the effort is no more seen as a pure disutility, like in the traditional

approach, but rather as an efficient instrument to optimally manage the system trajectory.
There may be periods when the interest of the agent is to increase the effort in order to
perform his objectives.
The effort level at a given period t depends on all previous efforts invested by the agent.

It allows for an addaptive effort management during the period of control. There exist a close
relationship between the agent’s effort allocation and his strategic objectives. The smaller the
fixed targets, the higher the effort level invested. Increases in the effort cost (measured in terms
of disutility) result in reduced effort levels. This is a consequence of the importance the agent
places on the system deviations.
Since a real time control process is necessarily discrete, this cannot converge with precision

to any target value, but only to a neighborhood of it. When the process of control is finished,
the agent will obtain a stochastic neighbouring-optimal trajectory which is expected to be close
to the optimal path η. The effort level will be hence strictly positive. In other words, the
effort invested by the agent is always necessary (but not always sufficient) in order to reach a
fixed objective. For small symmetric deviations with respect to the fixed targets, the agent will
adopt the same attitude to effort at time t. By contrast, the restriction imposed on the fixed
targets does not allow for a symmetric evolution of the system for large variations.

Remark 1. There is no loss of generality in considering that the effort variable et takes
values in [0, 1) because one can always find an isomorphism from [0, 1) to [0, a), with a ≥ 1 a
fixed real number.
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In the traditional approach (Shapiro and Stiglitz 1984; Cantor 1987; Boadway et
al. 2003, among others), it is often supposed that workers either provide no effort or a
unit level of effort over time. In the first case, the effort is regarded to be low, while in the
second case, it is considered to be large. This type of modelling is “myopic” with regard to
potential changes in the agent’s attitude to effort due to inherent endogenous fluctuations of
the system over time. These two restrictive cases offer a poor characterization of the agent’s
effort behavior in an evolving environment.

Remark 2. Large system deviations with respect to the optimal path η leads to the
following condition:

k yt−j1 − ygt−j1 k À 1, j1 = 1, ..., k1

4. Qualitative Results on Effort Allocation

The traditional approach does not take into account the potential effect of the system
dynamics on the agent’s effort behavior over time. The objective of this section is to develop
realistic scenarios for the environment in order to reveal the agent’s adaptive effort behavior
during the period of control.
To illustrate why the proposed definition is informative about how attitudes to effort of the

agent change over time, we prove several theoretical results in this direction.

Proposition 1. The effort invested by a risk-averse agent is non-monotonous over time.
Proof. In the appendix. ¥
This type of behavior is natural in the real world. However, in particular cases, it is possible

to obtain a monotonous configuration of the effort during the period of control.
We develop this idea later when analyzing the impact of a progressive transition of the

system on the agent’s effort behavior over time.
We give below a graphical illustration of the Proposition 1.
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Figure 1

Different contexts do not necessarily call for different effort levels. It is possible for the agent
to assign the same effort level for distinct periods of time. This may be the case of a smooth
(almost constant) evolution of the system. By smooth evolution we understand either small or
large comparable deviations. A slow inertia of the system contributes to the realization of this
type of scenario.
We illustrate below this type of behavior in three different contexts:
i) large system deviations and large weighting scalars;
ii) small system deviations and small weighting scalars;
iii) mixed (small and large) deviations and mixed (small and large) weighting scalars.
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Figure 3-ii)
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Figure 4-iii)

4.1. Analysis of Agent’s Preferences

In a dynamic stochastic environment, the agent’s preferences evolve according to the system
fluctuations. These are represented at each time period by an utility function which is supposed
to be multiplicative separable in the effort level and the evolutive loss:

Ut(W[1,t], ϕ
r_a
t, p , e

r_a
t, p )

def.
=
2D(e

r_a
t, p )

ϕ
r_a
t, p

[exp(−
ϕ
r_a
t, p

2
W[1,t])− 1]

W[1,t](y1, ..., yt)
def.
=

tX
s=1

Ws(ys)

with D a twice continuously differentiable function such that:

D(e
r_a
t, p ) > 0, D0(e

r_a
t, p ) > 0, D00(e

r_a
t, p ) > 0, ∀ e

r_a
t, p ∈ [0, 1), ∀ t = 1, ..., T

The agent’s preferences are refined on the basis of a non-decreasing endogenous information
set. The agent can draw benefit from the learning of his preferences. The intuition for this
point of view comes from the dynamic dimension of the problem.
LetW[1,t] and ϕ

r_a
t, p be arbitrarly fixed. It is easy to see that Ut(e

r_a
t, p ) is a decreasing concave

function in e
r_a
t, p . This is in agreement with economic theory and empirical evidence. For the

generality sake, let us suppose for D the following quadratic parametrization:

D(e
r_a
t, p ) = c · (er_at, p )

2, ∀ er_at, p ∈ [0, 1), t = 1, ..., T

where c ∈ (0, 1) is a strategic parameter chosen according to the agent’s effort-averse type.
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We develop this idea later when introducing the concept of more /less effort-averse agent.
Note that a smaller value of the parameter c ensures to the agent a higher utility level

during the entire period of control. For an illustration, we give below two superposed graphics
for different values of c.

Evolution of the agent's uti li ty with respect to the effort and the risk-aversion index
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Figure 5

Proposition 2. If ϕr_a
t, p is large (small) andW[1,t] and e

r_a
t, p are small (large), then Ut(W[1,t],

ϕ
r_a
t, p , e

r_a
t, p ) is large (small).

Proof. In the appendix. ¥
It is far from probable that the agent exactly maximizes his utility function at each stage

of the control. We rather face a nearly optimization behavior, where the control variable is
continuously and optimally adjusted over time to maximize some objective function (Van de
Stadt et al. 1985; Varian 1990).
We point out that a great class of decision rules are representable by a variation of the

utility between two consecutive periods (Gilboa 1989). This comes to treat the same agent
at different times as different individuals (Allais 1947).
This situation is formally equivalent to that one specific to a game in which decisions are

made by a sequence of heterogenous planners (Phelps and Pollak 1968).
The stochastic disturbance in the system will produce random shocks in the agent’s prefer-

ences over time. Uncertainty can change the agent’s behavior.
We give below two suggestive graphics illustrating the evolution of the agent’s utility func-

tion Ut with respect to ϕ
r_a
t, p , W[1,t], and e

r_a
t, p .
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Figure 6

Evolution of the agent's uti li ty with respect to the effort and the risk-aversion index
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It is possible for the agent to have the same utility level for distinct periods of time. Different
contexts do not necessarily call for different preferences. We illustrate this possibility by a
suggestive graphic.
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Remark 3. The agent will allocate a negligible (almost null) effort level at time t when
the system deviation at time t− 1 is negligible (almost null).
The dynamic environment does not always incite the economic agent to invest a good ef-

fort level. It may be the case when all system deviations are small or the last deviation of
the system is negligible (almost null). We illustrate this particular behavior in Figure 9 below.
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Figure 9

We observe here that the agent’s effort invested at time t = 3, t = 5, t = 8, and t = 10 is
almost null. This is a consequence of the importance the agent places on the system deviations
at the previous periods. The other values of the effort can be considered as negligible.
This type of result has important implications for the design of incentive mechanism in the

context of a dynamic principal-agent relationship. In general, the compensation paid to the
agent is based on his performances because his inputs are not verifiable in court. Note here
that different levels of performance can occur when agents exert similar efforts.
Given that the effort is not fully observable, it cannot be made the subject of any explicit

contract. The objective of the Principal is to influence the choice of the private agent’s action by
conditioning his utility on the outcome, and hence offering to him a recompense which depends
on its level.
For this type of contract, the output is considered to be of strategic importance, and hence

it is not allowed to exceed a specific magnitude. The recompense is supposed to increase with
the success of the agent in obtaining a high performance. The Principal’s decision cost increases
with the incentive levels.
For the above scenario, regardless of the system deviation in t = 2, t = 4, t = 7 and t = 9,

the effort invested by the agent for the next periods is almost null. Thus, in the case where all
system deviations would be small, the recompenses granted to the agent would be uncorrelated
with the effort allocated. Equilibrium outcome will be realized with a very low effort level.
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Contrary to what is generally believed or intuition would suggest, this type of scenario
proves that the effort level is not always high in equilibrium. This explains why, in the context
of a dynamic principal-agent relationship, it may be possible for the incentives to be ineffective
when the environment does not incite the agent to allocate a good effort. In other words, some
efficient strategic incentive-compatible constraints that cover the entire period of contract do
not generally exist.
The strategy of the Principal to restrict attention to the class of allocations satisfying the

(ex-ante) incentive-compatible constraints is not always optimal. This does not necessarily
ensure that the agent will not misrepresent his private information and preferences. It makes
sense to announce his characteristics if the Principal can design a mechanism that incites the
agent to do this truthfully.
The revelation principle (“the truth is dominant strategy”) simplifies the Principal’s problem

but it cannot always be restricted to an allocation that gives to the agent no incentive to
misrepresent his type. In general, there is not a strict implementation because the truth is
not the unique equilibrium of the game. Due to the externality in the utility functions, strict
dominant strategy implementation is not generally feasible.
The information asymmetry and costly acquisition of information impose restrictions on

the Principal’s behavior. The incentives will typically be provided at each period of control.
However, even if the process is incentive-compatible at each step, the agent’s actions will not
necessarily reveal the truth at any time of the contract period. Generally, the incentive mecha-
nism is subjected to inescapable informational constraints. This is sensitive to the environment
description and the size of informational asymmetries.
The strategic weights attached to the system deviations with respect to the fixed targets are

correlated with the importance the agent places on the incentives implemented by the Principal.
Agent’s actions are not directly punished, but only his poor performances.
The present model has the potential to explain the adaptive effort behavior of the agent. It

can be seen as a step further in the refinement of the effort concept, providing new perspectives
of research for theorists and empirical analysts.
The possibility of a null effort of the agent at a given period t is taken into account in the

present model. It is the case when the agent does not attribute any importance to the system
deviation in t− 1. We illustrate below this particular behavior by a numerical example.
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Figure 10

Remark 4. An interesting relationship emerges between risk and effort. The strategy
adopted by the agent to minimize the risk will also minimize the effort. The opposite is not
generally true.

Definition 3. Two deviations of the system are said to be comparable in magnitude if and
only if their ratio is very close to 1.
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Proposition 3. An almost risk-neutral agent can allocate a higher effort than a risk-averse
one.
Proof. In the appendix. ¥
This is an astonishing result, far from intuitive. It proves that effort attitude and behavior

towards risk are not always positive correlated.
The proposed model reveals surprising attitudes to effort of risk-averse agents. We give

below two suggestive graphics in this sense.
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Proposition 4. If all system deviations are high and comparable in magnitude, then the
effort invested by the agent is highly correlated with the importance he places on the system
evolution in the past.
Proof. In the appendix. ¥
We consider two distinct scenarios: i) when the strategic weights are large; and ii) when the

strategic weights are small. The first (second) scenario corresponds to the case of a less (more)
effort-averse agent by nature. For an illustration, we give below two suggestive graphics in this
sense.
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Let us now consider the context where all system deviations are high and comparable in
magnitude.

Proposition 5. If a higher number of backward periods are taken into account when esti-
mating the risk-aversion index, then a lower effort will be invested by the agent for the same
period of control.
Proof. In the appendix. ¥
This result proves the importance of the history of the process in the effort assignment over

time. The effort varies with the environmental context and the way the agent exploits and
interprets the system dynamics.
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We give below a graphical illustration of the Proposition 5.
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Let us now consider the context where the agent has the interest to use a progressive history
of the process for the estimation of the risk-aversion index. This may be the case where the
horizon length is short and the economic agent needs more information useful in improving the
process of risk assessment. In this particular context, the risk-aversion index is given by:

Definition 4. Using t to denote time, the absolute risk-aversion index ϕr_a
t, w evolves accord-

ing to:

ϕ
r_a
t, w

def.
=
k yt−1 − ygt−1 k2 Lt−1 + ...+ k y0 − yg0 k2 L0p
(k yt−1 − ygt−1 k2 +...+ k y0 − yg0 k2)2 + l

, t = 1, ..., T

where −1 < Lt−1 ≤ Lt−2 ≤ ... ≤ L0 ≤ 0 are strategic weights attached to the system deviations
with respect to the optimal reference path {ygt−1, ..., yg0} and l ≥ 1 is a fixed integer characterizing
the agent’s type. For further details, see Protopopescu (2007).

Proposition 6. A risk-averse agent who manages more and more hardly the evolution of
the system will invest more and more effort over time.
Proof. In the appendix. ¥
The environmental context can decide the agent’s effort behavior during the period of con-

trol. The effort invested by the agent is necessary but not always sufficient to improve the
system target variable. It may be the case of a system characterized by a slow inertia, whose
tendency is to move towards a disequilibrium state. The efficiency of the control instruments
plays a crucial role in the effort allocation over time. Better instruments allow for better effort
management. For a numerical illustration of the Proposition 6, we give below a suggestive
graphic.
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This result proves that in environments with a slow inertia, the incentive mechanism imple-
mented by the Principal may not ensure an optimal equilibrium of the game. Even for a high

12



effort invested, the private agent may not be recompensed. Moreover, the agent can be pun-
ished by the Principal for his deviating behavior. In this particular context, a principal-agent
relationship on a long-term cannot be incitative for the private agent.

Proposition 7. A risk-averse agent who manages better and better the evolution of the
system will invest less and less effort over time.

Proof. In the appendix. ¥
This type of scenario is specific to dynamic environments characterized by a high inertia.

In this particular context, it is possible to obtain small deviations of the system by investing a
small effort. For a numerical illustration, we give below a suggestive graphic.
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This type of result has the potential to explain why, in the context of a dynamic principal-
agent relationship, the incentive-compatibility constraints imposed by the Principal are not
always optimal. The agent can obtain a high recompense with a low effort level.

4.2. High Potential Shifts

Shift happens. The agent learns from failures. Every high deviation, seen as a failure, is
analyzed in order to avoid unexpected fluctuations of the system in the future. A large deviation
from the expected outcome is perceived as a shift by the agent. We call a high positive shift
the transition of the system from consecutive small levels of performance to a high level one.
In the opposite case, we call this type of transition a high negative shift. The agent’s objective
during the period of control is to obtain smooth shifts with respect to the fixed targets. This
contributes to the equilibrium and stability of the system. The concept of effort-aversion is
appropriate to dynamic stochastic environments whose behavior change significantly over time.
It is the case of high fluctuating systems.

Proposition 8. Consider the following two opposite scenarios: the transition of the system
is from consecutive small (large) deviations to a large (small) deviation in t− 2. Assume that
the variation in the target variable at time t−1 is high and comparable with all other previous
deviations of the system. For this type of scenarios, the effort level is highly dependent on the
strategic weights the agent will attach to the large deviations of the system.

Proof. In the appendix. ¥
Sudden significative changes in the system behavior can affect differently the agent’s strategy

to effort over time. Large shifts are correlated with large deviations of the system with respect
to the fixed targets. The shift magnitude generally depends on the system transition type.
We give below three distinct attitudes to effort depending on the agent’s individual percep-

tion about large fluctuations of the system.
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a) the large deviation of the system at time t − 2 (in the context of the first scenario) is
much more important for the agent than all other (k1 − 1) large deviations obtained in the
context of the second scenario.
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b) the large deviation of the system at time t−2 (in the context of the first scenario) is much
less important for the agent than all other (k1 − 1) large deviations obtained in the context of
the second scenario.
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c) the large deviation of the system at time t − 2 (in the context of the first scenario) is
either much more or much less important for the agent than all other (k1 − 1) large deviations
obtained in the context of the second scenario.
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For the four above graphics, the effort level at time t = 1, ..., 4 corresponds, respectively, to
the following distinct contexts:
i) system transition from four large (small) deviations to a small (large) deviation; ii) system

transition from three large (small) deviations to a small (large) deviation; iii) system transition
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from two large (small) deviations to a small (large) deviation; and iv) system transition from
a large (small) to a small (large) deviation.

5. Effort-Aversion

The fact that the agent is risk-averse does not give any obvious reason for which one should
also suppose that he is effort-averse. In the real world, this is a common characteristic of most
risk-averse agents. However, this important behavior aspect is ignored in the literature on
risk and effort. Suppose that the agent will fix before starting the control an optimal effort-
threshold e

r_a
max which must not be exceeded during the entire working horizon. Otherwise, the

agent becomes excessively effort-averse for the current period of control. The effort-threshold
e
r_a
max must be selected in order to offer the best characterization of the agent’s type. A higher
(smaller) effort-aversion is correlated with a smaller (higher) threshold er_amax. Thinking strategi-
cally, the agent will fix er_amax superior to e

r_a
1, p . A natural question arrises: From what level, the

effort-threshold can be regarded as large? It will generally depend on the particular environ-
mental context and the agent’s effort-averse type. Let ϕr_a

min be a suitable risk-aversion threshold
fixed by the decision-maker before starting the control and for the entire period [1, T ]. When
this threshold is exceeded, the agent becomes excessively risk-averse for the current period of
control, being characterized by an extreme pessimism (Protopopescu 2007). Note that the
exceeding of the threshold ϕr_a

min in t− 1 does not necessarily imply an excessive effort behavior
in t. This is generally correlated with the amplitude size of the system deviation in t− 1. We
plot below this interesting behavior.
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On the other hand, the exceeding of the threshold er_amax in t is correlated with large fluctua-
tions in the target variable, but not necessarily implies an excessive risk behavior in t− 1. For
an illustration, we give below a suggestive graphic.
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Remark 5. For a low risk-aversion index ϕr_a
t−1, p and a high system deviation k yt−1−ygt−1 k,

it is possible for the agent to exceed the optimal effort-threshold er_amax for the period t. This may
be the case of a dynamic system characterized by large deviations with respect to the optimal
path η. We illustrate this possibility by a numerical example.
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Remark 6. We note here the local character of the agent’s effort-aversion. This is defined
for a neighborhood of the fixed targets ygt−1, ..., y

g
t−k1. It will therefore exist some neighborhood

effects of the system dynamics on the effort variable.

Remark 7. The higher (lower) the degree of effort-aversion at time t, the higher (lower)
the value of the effort variable er_at, p . It is important to distinguish between local effort-aversion
(at time t) and global effort-aversion (over the whole period [1, T ]).

In the context of a principal-agent problem, the relationship between the agent’s reaction to
the incentive strategy adopted by the Principal and his atitude to effort is generally complex.
Effort-aversion makes this reaction stronger than effort-neutrality.

Proposition 9. A risk-and-effort averse agent is characterized by a bounded utility function
during the entire period of control.

Proof. In the appendix. ¥
This result can be seen as a step further in the refinement of the agent’s preferences in an

evolving environment. An interesting characterization of the agent’s preferences with respect
to the optimal thresholds ϕr_a

min and e
r_a
max is thus possible. For a numerical illustration, we give

below a suggestive graphic in this sense.
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Note that in the case where both thresholds ϕr_a
min and e

r_a
max are exceeded, the agent’s pref-

erences become suboptimal. We illustrate below this type of behavior.
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Remark 8. The constant c characterizes the agent’s type and is correlated with the choice
of the optimal threshold er_amax. The smaller (higher) the threshold e

r_a
max, the smaller (higher) the

value of the parameter c fixed by the agent.
This allows to better understand the nature of moral hazard and the problems it causes in

the case of a principal-agent relationship stated as a dynamic Stackelberg game. We give below
a suggestive graphic in this sense.
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More exactly, if the Principal will condition the recompense that he is disposed to grant by
an effort level superior to e

r_a
max, then the agent will try to shirk by misrepresenting his type.

Thus the incentive-compatibility constraints imposed by the Principal may not be optimal.
There is a trade-off between incentive gains and payoff losses.

5.1. Definition of the threshold e
r_a
max

During the period of control, the agent’s objectives are the following:

e
r_a
t, p

def.
=
− k yt−1 − ygt−1 k2 Lt−1

k yt−1 − ygt−1 k2 +s
·
ϕ
r_a
t−1, p − 1

ϕ
r_a
t−1, p − d

< er_amax, ∀ t = 1, ..., T

k yt−j − ygt−j k < 1, t− j = 1, ..., T

ϕ
r_a
t, p > ϕ

r_a
min , ∀ t = 1, ..., T

It implies that:

e
r_a
t, p <

1

s+ 1
· ϕ

r_a
min − 1

ϕ
r_a
min − d
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We can thus define the effort-aversion threshold e
r_a
max by the following formula:

er_amax

def.
=

1

s+ 1
· ϕ

r_a
min − 1

ϕ
r_a
min − d

We give below an empirical characterization of the relationship that exists between the two
optimal thresholds ϕr_a

min and e
r_a
max.
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Following Protopopescu (2007), one can distinguish between two types of effort-averse
agents:
i) less effort-averse, in which case, the effort-threshold is defined by:

e
r_a
max , less

def.
=

1

s+ 1
·
ϕ
r_a
min , more − 1

ϕ
r_a
min , more − d

ii) more effort-averse, in which case, the effort-threshold is defined by:

er_amax , more
def.
=

1

s+ 1
·
ϕ
r_a
min , less − 1

ϕ
r_a
min , less − d

For an illustration, we plot below possible values of the effort-thresholds e
r_a
max , less and

e
r_a
max , more.
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Proposition 10 An effort-averse agent is characterized by an optimal effort-threshold fixed
according to his individual type.
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Proof. In the appendix. ¥
In this approach, we deal with a continuum of types of agents. The above result allows to

distinguish between agents of common /distinct types. It has strong implications in problems
of moral hasard and adverse selection, improving our understanding as regards the agent’s
psychology to effort in dynamic risky environments. We give below a graphical illustration of
the Proposition 10.

Optimal effort-threshold: The case of a less (more) effort-averse agent by nature
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Proposition 11. There is a positive correlation between the agent’s effort type and the
planning horizon length.

Proof. In the appendix. ¥
Because risk-aversion increases with horizon length (Protopopescu 2007), the agent will

choose a smaller risk-aversion threshold ϕr_a
min , and hence a higher effort-aversion threshold e

r_a
max.

The agent is thus more receptive in terms of effort allocation with respect to the fixed objectives.
The horizon length has a non-negligible impact on the agent’s effort behavior over time. The
higher the planning horizon, the larger its impact. The distinction between more and less
effort-averse agents is more (less) pronounced for a large (small) horizon length. We illustrate
below this theoretical result.

Potential correlation between agent's type and horizon length
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This type of result contributes to the theory of incentive contracts by revealing the relation-
ship that exists between contract length and effort allocation. This non-negligible component
must be taken into account when modelling a dynamic mechanism design problem. It has a
positive effect on the agent’s attitude to effort over time.

6. Concluding Remarks and Possible Extensions

The present study explores the impact of endogenous dynamics of an evolving system on the
behavior to effort of a risk-averse agent. From this new perspective, the effort is no more seen
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as a pure disutility, as in the classical approach, but rather as a potential efficient instrument
in order to better manage the system evolution. The agent’s type is defined according to an
optimal effort-threshold fixed before starting the control and for the entire working horizon.
One can thus distinguish between common and distinct types of agents according to their
individual effort-averse preferences. Moreover, it allows to introduce the concept of excessive
effort-aversion, which has strong implications in the context of strategic dynamic interactions,
where both moral hazard and adverse selection effects coexist. This may be the case of a
principal-agent relationship in which the agent’s private information may not be monitorable.
In particular, this type of modelling has the potential to explain why some efficient strategic
incentive-compatibility constraints that cover the entire horizon of the contract do not generally
exist. These do not always induce the agent to reveal his private information, and therefore do
not always capture the agent’s incentive to shirk. The presence of moral hazard and adverse
selection makes the analysis difficult but interesting, revealing the difficulties to implement an
incentive Pareto-optimal contract. The Principal cannot observe the agent’s behavior directly,
but only the consequences of his behavior, and those consequences are also influenced by the
environment. More exactly, the Principal will only observe a variable correlated with the agent’s
effort (the output, an imperfect signal of the effort invested) but he cannot force the agent to
choose an action which is Pareto-optimal. The asymmetric informational structure between the
agent and Principal makes unable this later to solve optimally the effort prediction problem.
It generates a conflict between incentive-compatibility and Pareto efficiency. The interaction
of the Principal’s policy with the dynamic learning process of the private agent is a reality
which must be fully recognized in incentive design. The proposed study can be extended in
the context of a strategic Nash game with cooperative /non-cooperative players, the objective
here being to define and characterize the equilibrium path according to an optimal dynamic
effort-sharing. Exploring such possibilities appears to be a good topic for further research. This
provides new theoretical perspectives in understanding the complexity of the effort mechanism.

Appendix

Proof of Proposition 1.
The ratio of the efforts in t+ 1 and t is given by:

et+1
et
=

−kyt−ygt k2Lt
kyt−ygt k2+s

· ϕ
r_a
t, p −1

ϕ
r_a
t, p −d

· kyt−1−ygt−1k2+s
−kyt−1−ygt−1k2Lt−1

· ϕ
r_a
t−1, p−d

ϕ
r_a
t−1, p−1

One can distinguish three distinct scenarios:
i) ϕr_a

t, p > ϕ
r_a
t−1, p, k yt − ygt k<k yt−1 − ygt−1 k and Lt > Lt−1. In this case, one obtains that

et+1 < et.
ii) ϕr_a

t, p < ϕ
r_a
t−1, p, k yt− ygt k>k yt−1− ygt−1 k and Lt < Lt−1. Contrary to the previous case,

we have that et+1 > et.
iii) ϕr_a

t, p ≶ ϕ
r_a
t−1, p, k yt − ygt k≶k yt−1 − ygt−1 k and Lt ≶ Lt−1. In this case, one obtains

either et+1 < et or et+1 > et.
There is thus a trade-off between three endogenous factors: i) the risk-aversion index, ii)

the last deviation of the system, and iii) the importance attached to the last deviation.

Proof of Proposition 2.
This is a direct consequence of the monotony of the local utility function Ut. This is

increasing in ϕ
r_a
t, p (Protopopescu 2007) and respectively decreasing in W[1,t] and e

r_a
t, p (by

construction).
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Proof of Proposition 3.
It is supposed that a risk-averse decision-maker will place a higher importance on the system

deviations compared to an almost risk-neutral one.
If the following conditions are verified:

k ya_r_nt−1 − ygt−1 k < k yr_at−1 − ygt−1 k and L
a_r_n
t−1 > L

r_a
t−1

then one can write:

e
a_r_n
t, p

def.
= −k y

a_r_n
t−1 − ygt−1 k2 L

a_r_n
t−1

k ya_r_nt−1 − ygt−1 k2 +s
·
ϕ
a_r_n
t−1,p − 1

ϕ
a_r_n
t−1,p − d

< −k y
r_a
t−1 − ygt−1 k2 L

r_a
t−1

k yr_at−1 − ygt−1 k2 +s
·
ϕ
r_a
t−1,p − 1

ϕ
r_a
t−1,p − d

def.
= e

r_a
t, p

In the case where k ya_r_nt−1 − ygt−1 k > k yr_at−1 − ygt−1 k, it is possible to obtain the opposite
scenario, that is, ea_r_nt, p > e

r_a
t, p .

Proof of Proposition 4.
By hypothesis:

k yt−j01 − ygt−j01
k / k yt−j001 − ygt−j001

k ∼= 1 for j01, j001 ∈ {1, ..., k1} , j01 6= j001

l/ k yt−j1 − ygt−j1 k
4 ∼= 0, ∀ j1 = 1, ..., k1

It implies that:

e
r_a
t, p → −Lt−1 ·

Lt−2+...+Lt−(k1+1)
k1

− 1
Lt−2+...+Lt−(k1+1)

k1
− d

Depending on the weights attached to the system deviations, the risk-aversion index level
at time t− 1 may be more or less close to −1 or 0. If all weights approach −1, then the index
value will be close enough to −1. The agent is characterized by an excessive risk-aversion at
time t− 1 and a significative effort level at time t.
Contrary to what is generally believed or intuition would suggest, the agent can have a

small degree of risk-aversion when the deviations of the system are large. It is the case where
all weights approach 0. The agent is almost risk-neutral, being characterized by a very small
variability in his risk-aversion over time. For this type of scenario, the agent’s effort allocated
at time t is negligible (almost null).

Proof of Proposition 5.
We have the following implication:

k1 < k01 ⇒
Lt−2 + ...+ Lt−(k01+1)

k01
(the average of k01 weights)

À Lt−2 + ...+ Lt−(k1+1)

k1
(the average of k1 weights)

The left (right) hand of the above inequality corresponds to the agent’s degree of risk-
aversion at time t − 1 in the case where a higher (smaller) number of backward periods are
taken into account when defining the risk-aversion index. The agent is supposed to attach
a higher importance to the system deviation at time t − 1 for the first scenario (k1 periods)
compared to the second one (k01 periods). It follows that:

−Lt−1, k01 ·
Lt−2+...+ Lt−(k01+1)

k01
− 1

Lt−2+...+ Lt−(k01+1)

k01
− d

< −Lt−1, k1 ·
Lt−2+...+ Lt−(k1+1)

k1
− 1

Lt−2+...+ Lt−(k1+1)
k1

− d

This completes the proof.
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Proof of Proposition 6.
A risk-averse agent who manages more and more hardly the evolution of the system is

characterized by an increasing risk-aversion over time (Protopopescu 2007).
Denote by eLτ the weight attached to the system deviation at time τ = 0, ..., t − 1. The

weights are supposed to gradually decrease during the period of control. One can write the
sequence of inequalities:

−eL0 · ϕm.m.h.
0, p − 1

ϕm.m.h.
1, p − d

< −eL1 · ϕm.m.h.
1, p − 1

ϕm.m.h.
1, p − d

< ... < −eLt−1 ·
ϕm.m.h.
t−1, p − 1

ϕm.m.h.
t−1, p − d

Each above term (in this order) corresponds to the agent’s effort assignment at time τ =
1, 2, ..., t. The conclusion follows.

Proof of Proposition 7.
A risk-averse agent who manages better and better the evolution of the system is charac-

terized by a decreasing risk-aversion over time (Protopopescu 2007).
Denote by bLτ the weight attached to the system deviations at time τ = 0, ..., t− 1. In this

particular context, the weights are supposed to gradually increase during the period of control.
One can write the sequence of inequalities:

−bL0 · ϕb.b.
0, p − 1

ϕb.b.
1, p − d

> −bL1 · ϕb.b.
1, p − 1

ϕb.b.
1, p − d

> ... > −bLt−1 ·
ϕb.b.
t−1, p − 1

ϕb.b.
t−1, p − d

This completes the proof.

Proof of Proposition 8.
Denote by ϕ

s_h_k1
t−1, p the risk-aversion index at time t − 1 in the case where the system

transition is from consecutive small deviations to a large deviation. In this case, we have that
ϕ
s_h_k1
t−1, p → Lt−2. Let us denote by ϕ

h_s_k1
t−1, p the risk-aversion index at time t−1 when the system

transition is from consecutive large deviations to a small deviation. One can write:

ϕ
h_s_k1
t−1, p →

Lt−3 + ...+ Lt−(k1+1)

k1 − 1
where Lt−3, ..., Lt−(k1+1) are strategic weights attached to large system deviations (in the context
of the second scenario). One can imagine three distinct situations:
a) the large deviation of the system at time t − 2 (in the context of the first scenario) is

much more important for the agent than all other (k1 − 1) large deviations obtained in the
context of the second scenario:

Lt−2 ¿ Lt−3, ..., Lt−2 ¿ Lt−(k1+1)
(sufficient condition)

⇒ Lt−2 ¿
Lt−3 + ...+ Lt−(k1+1)

k1 − 1

It follows that ϕs_h_k1
t−1, p < ϕ

h_s_k1
t−1, p , and hence a higher degree of risk-aversion at time t− 1

in the context of the first scenario. We have the inequality:

ϕ
s_h_k1
t−1, p − 1

ϕ
s_h_k1
t−1, p − d

>
ϕ
h_s_k1
t−1, p − 1

ϕ
h_s_k1
t−1, p − d

If the variation in the target variable at time t − 1 is high and Lt−1 ≤ Lt−1, then one can
write:

−Lt−1 ·
ϕ
s_h_k1
t−1, p − 1

ϕ
s_h_k1
t−1, p − d

> −Lt−1 ·
ϕ
h_s_k1
t−1, p − 1

ϕ
h_s_k1
t−1, p − d
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In other words, the effort invested by the agent at time t will be higher for the first scenario.
b) the large deviation of the system at time t−2 (in the context of the first scenario) is much

less important for the agent than all other (k1 − 1) large deviations obtained in the context of
the second scenario:

Lt−2 À Lt−3, ..., Lt−2 À Lt−(k1+1)
(sufficient condition)

⇒ Lt−2 À
Lt−3 + ...+ Lt−(k1+1)

k1 − 1

In contrast with the previous case, one obtains that ϕs_h_k1
t−1, p > ϕ

h_s_k1
t−1, p , and thus a smaller

degree of risk-aversion at time t − 1 in the context of the first scenario. If, in addition, the
variation in t− 1 is high and Lt−1 ≥ Lt−1, then one can write:

−Lt−1 ·
ϕ
s_h_k1
t−1, p − 1

ϕ
s_h_k1
t−1, p − d

< −Lt−1 ·
ϕ
h_s_k1
t−1, p − 1

ϕ
h_s_k1
t−1, p − d

In other words, the agent’s effort at time t will be smaller in the context of the first scenario
compared to the second one.
c) the large deviation of the system at time t−2 (in the context of the first scenario) is much

more or much less important for the agent than all other (k1 − 1) large deviations obtained in
the context of the second scenario:

Lt−2 ¿ (or À) Lt−3, ..., Lt−2 ¿ (or À) Lt−(k1+1)

In this case, it may be possible to obtain either ϕs_h_k1
t−1, p < ϕ

h_s_k1
t−1, p or ϕs_h_k1

t−1, p > ϕ
h_s_k1
t−1, p .

It follows that:

−Lt−1 ·
ϕ
s_h_k1
t−1, p − 1

ϕ
s_h_k1
t−1, p − d

≶ −Lt−1 ·
ϕ
h_s_k1
t−1, p − 1

ϕ
h_s_k1
t−1, p − d

In other words, the agent’s effort at time t will be either higher or smaller for the first
scenario compared to the second one. This completes the proof.

Remark 9. We have the following sequence of inequalities:

Lt−2 + ...+ Lt−(k1+1)

k1
<

Lt−3 + ...+ Lt−(k1+1)

k1 − 1
< ... <

Lt−k1 + Lt−(k1+1)

2
<

Lt−(k1+1)

1

Each above ratio (in this order) corresponds to the risk-aversion index at time t− 1 in the
case of a gradual transition from an ineffective control to an effective one.
Suppose that the variation in the target variable at time t− 1 is high and comparable with

all other previous large deviations of the system. Denote by Lt−1, k (k = k1, ..., 1) the weights
attached to the system deviation at time t−1 for each particular configuration described above.
It is supposed that the following inequalities are satisfied:

Lt−1, k1 ≤ Lt−1, k1−1 ≤ ... ≤ Lt−1, 2 ≤ Lt−1, 1

It follows that:

−Lt−1, 1 ·
Lt−(k1+1)

1
− 1

Lt−(k1+1)
1

− d
< −Lt−1, 2 ·

Lt−(k1+1)+Lt−k1
2

− 1
Lt−k1+Lt−(k1+1)

2
− d

< ... <

< −Lt−1, k1−1 ·
Lt−(k1+1)+...+Lt−3

k1−1 − 1
Lt−(k1+1)+...+Lt−3

k1−1 − d
< −Lt−1, k1 ·

Lt−(k1+1)+...+Lt−2
k1

− 1
Lt−(k1+1)+...+Lt−2

k1
− d
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In this particular context, the environment will incite the agent to invest a smaller effort
level for the same period of control t.

Remark 10. One can write:

Lt−1

1
<

Lt−2 + Lt−3

2
< ... <

Lt−2 + ...+ Lt−(k1+1)

k1

Each above ratio (in this order) corresponds to the risk-aversion index at time t− 1 in the
case of a gradual transition from an effective control an ineffective one.
For this type of scenario, it is supposed that:

Lt−1, 1 ≤ Lt−1, 2 ≤ ... ≤ Lt−1, k1

As above, the variation in the target variable at time t − 1 is assumed to be high and
comparable with all other previous large deviations of the system.
It follows that:

−Lt−1,1 ·
Lt−2
1
−1

Lt−2
1
−d

> −Lt−1,2 ·
Lt−2+Lt−3

2
−1

Lt−2+Lt−3
2

−d
> ... > −Lt−1,k1 ·

Lt−2+...+Lt−(k1+1)
k1

−1
Lt−2+...+Lt−(k1+1)

k1
−d

In other words, the environment will incite the agent to invest a higher effort for the same
period of control t.

Proof of Proposition 9.
Denote by Ut(W[1,t], ϕ

r_a
min , e

r_a
max) the agent’s disutility threshold at time t. We have the

implication:

ϕ
r_a
min ≤ ϕ

r_a
t, p and e

r_a
t, p ≤ er_amax ⇒ 0 > Ut(W[1,t], ϕ

r_a
t, p , e

r_a
t, p ) ≥ Ut(W[1,t], ϕ

r_a
min , e

r_a
max)

We can thus distinguish between two disutility thresholds according to the agent’s individual
type:
i) a smaller disutility threshold, denoted by U s

t (W[1,t], ϕ
r_a
min , more, e

r_a
max , less).

ii) a higher disutility threshold, denoted by Uh
t (W[1,t], ϕ

r_a
min , less, e

r_a
max , more).

Proof of Proposition 10.
Proof. Following Protopopescu (2007), we have:

−1 < ϕ
r_a
min , more < −

l∗k1p
[l∗k1]2 + lmore

(more risk-averse agent by nature)

and

− l∗k1p
[l∗k1]2 + lless

< ϕ
r_a
min , less < 0

(less risk-averse agent by nature)

where lmore and lless (with 1 ≤ lmore < lless) are two parameters which characterize the agent’s
type and lt = l∗ ∈ (0, 1) for t = 1, ..., T .
Therefore, we have:

1 > e
r_a
max , less >

1

s+ 1
·
− l∗k1√

[l∗k1]2+lmore

− 1

− l∗k1√
[l∗k1]2+lmore

− d

(less effort-averse agent by nature)
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and

0 < er_amax , more <
1

s+ 1
·
− l∗k1√

[l∗k1]2+lless
− 1

− l∗k1√
[l∗k1]2+lless

− d

(more effort-averse agent by nature)

A less (more) effort-averse agent is characterized by a higher (smaller) degree of effort-
aversion. We distinguish here between “nature” and “type”. The agent is considered effort-
averse by nature, while his “type” is more or less effort-averse. The evolution of the system
over time will refine the agent’s type.
We thus obtain a complete characterization of common /distinct types of agents. The two

fixed thresholds er_amax , less and e
r_a
max , more are not exceeded during the period of control if and

only if the agent succeeds in managing the system trajectory. Two common /distinct types
of agents generally adopt different attitudes to effort for the same period of control. In other
words, they are characterized by different degrees of effort-aversion over time.

Proof of Proposition 11.
For a higher number of periods T , the value of the parameter k1 can be higher, and thus

the ratio − l∗k1√
[l∗k1]2+lless

(respectively − l∗k1√
[l∗k1]2+lmore

) can take a smaller value.

It follows that a more /less effort-averse agent by nature can choose a higher effort-aversion
threshold e

r_a
max , more (respectively e

r_a
max , less). In other words, the agent is disposed to invest a

higher effort over time.
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