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Abstract

The objective of this paper is to correct and improve the results obtained by Van der
Ploeg (1984a, 1984b) and utilized in the literature related to feedback stochastic optimal
control sensitive to constant exogenous risk-aversion (Karp 1987; Whittle 1989, 1990;
Chow 1993, amongst others). More realistic, the proposed approach deals with endoge-
nous risks that are under the control of the decision-maker. It has strong implications on the
policy decisions adopted by the decision-maker during the entire planning horizon.
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1. Introduction and Survey: Nonlinear Versus Linear Behavior

Behavior optimization is very important in any positive economic analysis. The need to
solve optimization problems arises in almost all fields of economic inquiry. Various difficul-
ties are encountered by the decision-maker when modelling real economic phenomena. There
are multiple sources of uncertainty that he must deal with by using optimal adequate solu-
tions. Complex real world interactions between economy and environment is the main barrier
to applied research within the field of economic modelling. In general, the decision model ei-
ther makes assumptions on how the decision-maker reponds to his environment or derive this
behavior from optimality-based considerations.
Uncertainty is an intimate dimension of economics. This generally arises because of inherent

difficulties of perception and information processing. We are generally uncertain about the
structure of the model, the numerical values of its parameters of interest and the future values
of exogenous or random variables. It is well-known the crucial role that the information plays in
the decision-making process of individual agents facing uncertainty. Incorporation and judicious
use of further prior information into the statistical procedures will produce better estimators.
Greater information reduces the environmental complexity, and hence the decision-maker’s
uncertainty.
In practice, the decision-maker bases his decisions on some body of knowledge. He does

not know which state in the future will in fact hold. When that base of knowledge evolves
over time, regulatory decisions evolve too. The knowledge can be viewed as future oriented
expertise. In dynamic behavior situations, generally the uncertainty is only gradually solved
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through time and the decision-maker may be afforded continuously the opportunity to revise
his plan of action.
Under uncertainty, the optimal sequence of decisions depends on not only the expected

losses, but also the flexibility in terms of availability of future options associated with each
decision. Does not matter the preferred decision-maker’s policy, the uncertainty will alter this
considerably. We recall here some efficient methods in order to reduce the uncertainty, as the
control of the future, the increased power of prediction, or by diffusion (Knight 1971).
The decision-maker can utilize the history of the process and develop an approximate model

in order to analyze the system behavior. Unless we profit of the particular structure of the
problem, it will generally be very expansive to generate information to approximate a large
model with enough accuracy. To include this as part of an iteration procedure would be an
order of magnitude more complex. Satisfactory approximations are difficult to obtain. A close
approximation is sufficient but not necessary for solving the problem. There is a trade-off
between the utility of a better approximation and the increase in computational costs which
limit our ability to study the model in a data relevant manner. In general, we have a hierarchy of
costs for different levels of approximation of the true model. The agent models the main features
of the data generating process in a relatively simplified representation (which becomes gradually
more complicated if additional data become available) based on observables and related to prior
economic theory. The problem is whether this simplification does or does not involve a loss
of information. Economic models are only rough approximations of the true data generating
process, generally unknown. Because of the measurement error and other random effects, there
is considerable uncertainty in determining whether the observed data actually are generated
from the true model. How useful are the models based on approximate solutions to optimal
behavior, this is a question whose response is given by the various numerical applications.
The stochastic optimal control theory is well developed in the literature (Fleming and

Rishel 1975; Kendrick 1981; Karatzas and Shreve 1988, among others). Mathe-
matically speaking, an optimal control problem is concerned with the determination of the best
ways to achieve a set of objectives as indexed by a criterion function when the performance is
judged over many periods and when the dynamic behavior of the system is subject to a set of
constraints. In the terminology of the control theory, the variables are divided into those which
represent the condition or state of the objective functional (the so called state variables), and
those which guide or control the state variables (the so called control variables).
Depending on the difficulty of the problem, the dynamic optima can be either theoretically

analyzed or empirically tested. Improvements in finding closed-form solutions of dynamic sto-
chastic models is still very slow. In order to obtain analytically tractable results, restrictions
which are less attractive from an economic point of view have to be imposed.
The only model which can be solved in any generality is the linear-quadratic approximation

model which gives linear decision rules under given specific conditions, very convenient for
theoretical analyses and attractive on computational grounds.
Linear models are widely used in the literature due to their theoretical simplicity and flex-

ibility or for avoiding hard numerical estimation. One can think of a dynamic model as being
linear if its global properties can be completely characterized by its local behavior. Non-linear
dynamic models do not have this property of equivalence between local and global dynamics,
and thus are substantially more complicated to analyze. The non-linearity typically impedes
analytical solutions for an optimization problem. The non-linear modelling is generally less
amenable, especially by the presence of uncertainty. This is another reason for which the
literature is generally focused on the linear model.
Non-linearity may arise in diverse ways in the econometric applications and there are many

possible approaches for specifying non-linear models. One can have, for example, non-linearity
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in parameters and /or in variables as well as non-linearities in time series or with respect to
the system disturbances (Amemiya 1974).
In non-linear dynamic models (described by non-smooth functional forms), very special

assumptions have to be made in order to obtain closed-form solutions. If the dimension of
non-linear models is high, then the analytical treatment becomes very difficult. Moreover,
they present considerable difficulties in terms of initialization and convergence. The existence
of the optimum as well as the speed of convergence of the algorithm is restricted to certain
configurations of the initial parameters of interest. It implies an adjustment mechanism of the
tatonnement type.
The deviation caused by the non-linearities in the model is quite important in the sense

that while deterministic optimal trajectory follows the desired path quite closely, the stochastic
optimal trajectory does not. The more the model is complex, the more difficult will be to
track the targets. As flexible as the non-linear dynamic model may be, there is a substantial
specification uncertainty. When the analytical formula cannot be obtained easily, the analysis
of the problem requires the use of some numerical computational algorithms or simulation
techniques-based methods. They remain the only viable way to obtain insights about the
system studied. However, difficulties in terms of numerical computation /implementation arise,
because the dynamic optimization problem may be characterized by multiple optima.
Confrontation with data is very important. A number of numerical methods have been

proposed in the literature of stochastic simulation (Taylor and Uhling 1990; Marcet
1994; Amman 1995; Rust 1996; Judd 1998, among others). The continue increase in
the computers computational speed makes feasible new adaptive control learning algorithms
(designed for experimentation) and enlarges the class of models that can be approached by
simulation using the data generating process. They are playing an increasingly important role
in economic analysis (especially in controlling economic dynamics) and allow to gain experience
from large structural models whose properties are revealed by empirical experimentation.
The dynamic programming method provides, in this sense, a constructive recursive pro-

cedure for computing the optimal decision rules (Bellman 1957; Aris 1964; Beckmann
1968; Dreyfus and Law 1977; Bertsekas and Shreve 1978; Whittle 1982; Ross
1983; Capuzzo, Fleming and Zolezzi 1985; Sniedovich and Dekker 1992, among
others).
This procedure (based on a process of backward induction) amounts to a solution algorithm

that allows us to obtain numerical solutions to specific problems as well as analytic character-
izations of a wide class of problems. Unfortunately, the amount of computation required to
obtain the dynamic programming solution rises exponentially with the number of variables in
the model, due to the curse of dimensionality (Pitchford 1977).
A weakness of these simulation techniques-based methods is that the properties of the model

may depend on a particular specification of the true model, and one may get a distorted picture
of the properties. In general, when information is gathered in the real world, the data generating
process is not independent and free of noise. The simulation results must not be considered as
a perfect substitute of the theory but only as an instrument which may confirm the theoretical
results. The transition from theoretical models to empirical models is severely constrained by
the quantity and the quality of the available data.
The handling of policy instruments requires information on all states of the system, making

the policy rule complicated from the point of view of implementation. It is more difficult to
investigate the properties of the optimal policy when one allows for complex history dependence.
It is therefore essential to maintain a balance between the desire for a more sophisticated
economic model and the need for nominal configuration in terms of computer use. This is what
makes the research in this area both difficult and interesting.
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In the most practical situations (typically in parametric models), a less complicated model is
likely to be preferred if we wish to pursue the accuracy of the estimation or to profit of important
analytic advantage. There is a gain of information from the theoretical analysis of the linear
model viewed as an a priori specification. It may serve as a good illustrative theoretical example
by simplifying the analysis considerably. For example, in the context of a game, the linearity of
the model allows for a complete characterization of the set of equilibria. This is not the case in
a non-linear model. The assumption of linearity in functional relationships serves to simplify
the conceptual and computational development of the theory.
Although linear models are conceptually convenient and analytically flexible, they do not

always provide an adequate framework for modelling the economic behavior. More complex
models are needed if policy intervention is the purpose of modelling. We need empirical knowl-
edge of the optimal policy performance in different contexts of decision-making. Different
contexts call for different actions. The question is whether the differences between linear and
non-linear models lead to qualitatively different predictions on the form that learning should
take. This problem deserves special attention and many numerical simulations. The linear
approach is not preferable when it works with a naive and extremely simplified model.
Efficient dynamic specification tests seem to be relevant for the model selection. In principle,

any dynamic optimization model is empirically testable. It allows to study the behavior of
the model under different environments. Empirically, there are often conflicts in the criteria
of selecting a model to achieve multiple objectives. Several procedures exist for testing the
specification of an econometric model in the presence of one or more other models which purport
to explain the same phenomenon (Davidson and Mackinnon 1981, among others).
It is useful to note that the rejection of the null hypothesis should not lead to automatic

acceptance of the alternative hypothesis, as the test could have a greater power against other
deficiencies (Sargan 1988). In other words, the fact that the test fails to reject an hypothesis
should not necessarily leads to accept it. The linearity may thus not be rejected if, for example,
other variables are added to the initially specified linear model (Granger and Terasvirta
1993). Therefore, it is helpful to know when one can decide that the non-linearity is the element
which causes misspecification in the linear model.
It is well-known that misspecified theoretical models could forecast well if the process re-

mains constant, while good models could forecast poorly if the data variance is high. In other
words, a model can be acceptable despite having a poor fit and, the fact that a rival model has
a better fit does not necessarily make it a better one (Hendry 1995).
Sometimes, it happens that although the model is restrictive and in some ways unrealistic,

it brings out many of the key insights. If a model is found to be superior, the matter which
remains to be solved is to prove if the difference between the two specifications is significative.
Naturally, all results of the linear model are asymptotically valid in the non-linear specifi-

cation case. This is the encompassing principle which requires a model to be able to explain
characteristics of rival models. However, a model including another does not necessarily en-
compass this model (Gourieroux and Monfort 1995).
Each econometric approach has its advantages and limitations. New approaches rise new

difficulties. The objective of the modeller is to discover the most appropriate model that ex-
plains the observed data. In general, there are many implicit restrictions derived from the
economic theory. Any specification would be preferred, the builded model must be consistent
with the economic theory, data admissible, congruent with the data and computationally at-
tractive (Hendry 1995). There is no royal way to develop good models. There are no precise
rules for econometric model design.
The paper is organized as follows. Section 2 deals with the problem statement and makes

preliminary considerations. Section 3 presents the model. Section 4 deals with the probabilistic
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hypotheses on the acquisition of information. Section 5 corrects the results of Van der Ploeg
(1984a, 1984b) in the context of a constant exogenous risk-aversion. Section 6 introduces the
concept of endogenous risk-aversion. Section 7 improves the formulas obtained in Section 5 by
considering endogenous risks that are under the control of the decision-maker. Section 8 draws
some conclusions and makes suggestions for further research.

2. Problem Statement and Preliminary Considerations

Facing a risky environment, a rational decision-maker disposes of a set of control instruments
in order to constrain the system to follow a fixed optimal trajectory ensuring its equilibrium
and stability. The goal is the path. It generally exists a trade-off between the efficiency of
control instruments and the decision-maker’s objectives in an uncertain and changing world.
The rationality of the decision-maker is characterized by the anticipation that the environ-

ment will be affected by other factors than the control instruments. It implies an forward-
looking behavior. These factors are completely or partially observed and may be exogenous
or endogenous variables. Rationality lies in the correspondence of the decision-maker’s action
with some goal or objective. He does not refuse to act in accordance with the efficient outcome,
at best of his interest (Walsh 1996).
The notion of rational decision-making in an uncertain environment is associated with the

expected utility-function maximization behavior. The decision-maker’s preferences are gener-
ally incomplete. It is very rare in econometrics to be able to fully specify the utility function.
No decision-maker has sufficient a priori knowledge to fully specify his preferences.
The decision model is based on the joint use of the econometric model and of the decision-

maker’s preference function. The latter is optimized under the constraint represented by the
former and, very likely, other necessary constraints. The decision will be not separated from
the decision procedure and the judgment of rationality carries on the whole.
Learning is one of the three aspects of the decision-maker’s uncertainty problem (beside

the parametric uncertainty and stochasticity) and has many dimensions. It can take place at
various levels of a decision problem. As learning constitutes a form of economic estimation,
it is desirable to develop learning algorithms in a context that allows for dynamic structure.
Learning possibility can occur only in dynamic models and appears more likely with longer
planning horizons. The relative efficiency of the learning generally depends on the method
chosen. An optimal behavior may arise from a learning process. However, if the model is
very noisy, then the potential for learning is limited. In function of the success of model
approximation, the learning may be more or less efficient.
Economic models involving learning often have the potential for converting independent

shocks into correlated movements in observables. Models with learning induce persistent ef-
fects of transitory shocks. This is an important feature of models with stochastic endogenous
fluctuations.
A double learning dynamic is taken into account when analyzing the decision problem of

a risk-averse decision-maker: one which describes how the decision-maker adjusts his behavior
towards risk over time, and another which reveals the impact of his optimal actions on the
system performances. Reinforcement or stimulus-response learning is not generally based on
the principle that actions which have led to good outcomes in the past are more likely to be
repeated in the future.
The timing of information is a crucial aspect of the decision-making process. The decision-

maker can acquire additional information by receiving a noisy signal about the true state of the
world. The degree of information embedded in the observation of the state variable generally
depends on the values of the control variables, so that the extent of learning about the latent
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parameters can be influenced directly by the decision-maker. He has some influence over the
rate at which information arrives, so that his behavior may generate information. The active
learning makes the decision-maker more experienced over time.
In general, the uncertainty will depreciate the decision-maker’s activity and will produces

a temporary stability followed by a longer or shorter period of adaptation in instability which
implies for the decision-maker an additional effort allocated in the active learning.
In a more general context, the instruments can be used for experimenting, the goal being

to learn the true parameter of interest. Strategic experimentation is an important aspect of
optimal decision-making for a wide class of learning problems. The purpose of experimentation
is to gain additional information (which is valuable for future decisions) in order to obtain an
optimal learning. The more the decision-maker cares about future performance of the dynamic
process, the more he will experiment. The objective of the decision-maker, in this case, is to
determine the optimal level of policy experimentation. A rapid decline in the variability of the
system state can be associated with an optimal experimentation. It substantially improves the
speed of learning as well as the bias in the control and target variables (Wieland 2000).
Optimal control with learning about unknown parameters has been applied to a variety of

economic problems (e.g., optimal investment with production uncertainty, monopolistic pricing
with unknown demand, fiscal and monetary policy with imperfect knowledge about the macro-
economy). If the cost of information is too expansive for permitting the learning (e.g., the
model is highly non-linear and one searches for the best linear approximation, or the system
uncertainties are large), one can be pleased with a rational random behavior (Barbosa 1975).
If the dynamic environment is highly sensitive to non-rational actions, then the stochastic con-
trol will be optimal if one can reconcile the desire of the risk with the non-stationarity of the
process and the instability of the equilibrium.
In practice, decisions are based on parameters which are not known with certainty and may

vary over time. When parameter uncertainty is large, experimentation becomes significatively
important. It increases with the variance of the unknown parameters. The degree of experi-
mentation is expected to be smaller with time-varying parameters than with constant ones. In
contrast to the constant fixed parameters case (when the incentive to experiment is temporary;
it disappears over time as parameter estimates become more precise), the incentive to exper-
iment remains high and never ceases when parameters vary over time (Beck and Wieland
2002). Does not matter the type of specification, the incentive to experiment will naturally
increase with the variance of random shocks as well as with their degree of persistence.
As regards the decision-maker’s strategy, this is based on an adaptive expectation mecha-

nism and on a feedback rule. Control actions adapt as a consequence of changes in endogenous
variables and also affect the observability of the system. It will exist feedback between the
decision-maker’s instruments and the system target variable. This implicitly generates a short-
run causality chain. In any discussion of causality, the timing of when things happen is of crucial
importance. It must put variables when they occur rather than they are first observed. The
decision-maker’s actions are taken in real time, whereas his decisions will usually be formulated
in advance. In other words, the time passes between taking a decision and its implementation.
Sometimes, apparent causality occurs because of the presence of unobserved variables.
The optimality of the strategy adopted is defined relative to the information the decision-

maker has at the time the strategy is used. He can use a knowledge base of past and present
information to effect a control strategy, but future information is unavailable. Because exoge-
nous shocks in the future are not predictable, the decision-maker strategy cannot incorporate
them into the decision. It is assumed that the decision-maker optimally chooses the control
instruments on the basis of a non-decreasing endogenous information set.
The control rule is characterized by informational requirements and the decision criterion.
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From dynamic economic theory, it is known that optimal decision rules vary systematically
with exogenous changes in the structure of series relevant to the decision-maker. It follows
that changes in policy will systematically alter the structure of series being forecasted by the
decision-maker, and therefore, the behavioral econometric relationships as well. Important
cumulative effects of the parameters change on the time path of the state and control variables
will be present. It generally exists a relationship between the instruments efficiency and the
optimal policy chosen by the decision-maker.
In general, the control process is limited by the speed with which the decision-maker reacts

to cautious changes in the environment. There is an inertia of the decision-maker to non-
significative environmental changes. This is concretized in deleted observations. The decision-
maker generally reacts to sudden shifts of the dynamic system. There is also an inherent inertia
effect of the environment due to its capacity of reaction.
At each control period, the level of uncertainty of the decision-maker is given by the deviation

of the actual state of the system from his local objective. High deviations from the fixed targets
correspond to a high level of uncertainty. The decision-maker adjusts to keep small the difference
between actual and assumed system characteristics by monitoring the system fluctuations.
It is assumed that the decision-maker employes a closed-loop strategy, which generally

depends on the history of the process, and thus includes feedback information. It may be the
case when the relevant information acquisition cost is high, most likely due to the permanent
random shocks in the system or because of the slow inertia of the economic environment. This
type of strategy has the advantage to continuously improve the decision-maker’s optimal policy.
Dynamic feedback entails measurements, and these may be uncertain or indirect. With

uncertain or indirect measurements, it is necessary to estimate the state history that is most
likely to have caused the measurements. The control principles and the estimation principles
are used together to solve the stochastic optimal control problem.
The decision-maker constantly monitors the output of the process under control, the in-

formation being employed in real time. The knowledge upon which the decisions are based
increases gradually with the passage of time and due to the wisdom derived from experience.
The decisions made in the past will be reflected in changes in the state of the system itself and
they will influence the perception of the future actions to be analyzed. Because the source of
randomness may differ from an application to another, the response of the decision-maker may
vary.
In a closed-loop strategy, the policy does not require some large periods of engagement from

the part of the decision-maker. In other words, the control rules are sensitive to the choice of
the working horizon. Due to the imperfect information about the system reaction over time, it
is perfectly reasonable to consider a maximization of short-term for the utility function in the
context of a closed-loop strategy.
In general, the length of the working horizon does not only depend on the number of periods

but also on the unity of measure chosen. A question remains: What is the optimal length of
the planning horizon on which the decision-maker bases his decisions?
An infinite-horizon problem is not generally compatible with a closed-loop strategy. The

conceptual and mathematical elegance of infinite horizon models is impractical for a compu-
tational viewpoint (even if the policy is easier to implement). To solve such a problem, it is
initially convenient to consent ourselves with finite horizon approximates by including some
terminal criterion.
The advantage of a finite horizon also lies in the possibility to use forward recursive filter-

ing techniques (Kalman 1960; Kalman and Bucy 1971; Anderson and Moore 1979;
Harvey 1990, among others) which allows to monitor the expectation formation process
and implicitly the evolution of the stochastic system. This is specific to an incremental learning
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model based on a sequential forecast which varies with time and history. The infinite horizon
problem can be viewed as an approximation of the finite horizon problem with a large planning
horizon.
The decision-maker tries to reduce the uncertainty related to the choice of his actions by

acquiring information from the beginning of the control to the moment of decision. He has the
possibility to learn from errors and to make a self-evaluation of his actions during the period
of control.
The closed-loop control is robust in the sense that it anticipates the possibility of a dis-

turbance, and thus can prevent unexpected shocks. This responds not only to the effects of
random inputs, but also to the measurement errors as well. It is thus not necessary to be able
to identify and measure the sources of disturbance.
If the decision-maker is interested in determining the effect of parameter changes on the

optimal control policy, then the closed-loop strategy is generally the best way to do so. The
dependence of the coefficients realizations at each point in the horizon is not required in the case
of an open-loop approach. For optimal policy experiments and associated hypotheses testing
of the optimal control problem, the closed-loop (or feedback) solution is preferable.
The performance of the closed-loop control is superior to any open-loop control in a sto-

chastic dynamic context (Cruz 1975; Xepapadeas 1992; Wiedmer et al. 1996, among
others). More the period of control is longer, more the effect of cumulated errors on the
decision-maker’s optimal policy is significative. If the system evolution is perturbed at each
step by a random shock, then the open-loop policy will not integrate this stochastic character-
istic for computing the future decisions. The information purchased during the control period
is not taken into account, so that the decision-maker will lose the strategic learning. This will
affect the optimal policy efficiency as it is adopted on a long-term. The information available to
the decision-maker is restricted to the initial value of the state vector. All errors on the initial
state of the system will be intactly transmitted until the end of the control process.
The closed-loop strategy is a refinement of the open-loop concept. The open-loop and closed-

loop strategies are equivalent only under the perfect forecast assumption, which is unrealistic, in
most circumstances. In general, the closed-loop solution deviates from the open-loop solution.
Disadvantages of the open-loop controls are that they require much information about the
future development of the system and that they are not robust. It is by using a closed-loop
strategy that economic theory can be exploited at best.

3. The Model

Consider a stochastic data generating process managed by a system of discrete dynamic
simultaneous equations.
Let xt ∈ Rq be the value of the control-related external variable at time t (regarded as

a strategic instrument of the agent), let yt ∈ Rp be the system target internal-variable in
t (modelled as a partly or indirectly controlled variable), and let zt ∈ Rr be an exogenous
variable observed outside the system under consideration, and hence unaffected by the control
process at the time period t. It may be forecasted but cannot be influenced by the agent.
Only the inputs and outputs are available to influence and observe the sytem. Hidden state

signals are not accessible and may only be estimated using appropriate filters. The control
inputs are signals that can be defined arbitrarily by the designer of the control system. The
actions are generally dependent variables on the history and current state of the system. For
employing the input xt, the agent will incur a certain cost. Adjustment costs are also incurred
for necessary changes in the inputs. In general, the agent is restricted in the use of instruments.
Inevitably, there is an arbitrary element in the choice of control variables and an insufficient
variability in the instruments.
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Whether or not the variable zt is exogenous depends upon whether or not that variable
can be taken as given without losing information for the purpose at hand. Specifically, the
exogeneity of the variable zt depends on the parameters of interest of the agent and on the
purpose of the model (statistical inference, forecasting, or policy analysis).
For the purpose of this study, the optimal action xt is assumed to depend on the observed

value of zt. The variations in the process {zt} will therefore result in variations in the process
{xt}. Complete learning of the true parameter vector will then depend on whether the process
{xt} varies linearly or nonlinearly with the process {zt}. Changes in uncertainty about exoge-
nous variables zt lead to changes in the agent’s bias.
In what follows, we make the following basic assumptions:

Assumption 1. The evolution of the system is modelled by the multivariate linear sto-
chastic process:

yt = Atyt−1 + Ctxt +Btzt +Dt + ut, t = 1, ..., T

where βt
not.
= (At, Ct, Bt, Dt) ∈ Rk is the time-varying parameter to be estimated. It specifies

the structure of the model according to the information available in t.

The parameters in the econometric relationships are supposed to vary according to the
information accumulated in the system over time. The agent knows that shocks will occur in
the future and it is need to be counteracted. Future stabilization of the system is more effective
with more precise estimates of the unknown parameters. The whole system is specified and
estimated simultaneously.
For optimality reasons, the agent will reestimate the parameters of the model at each period

t by taking the feedback effects of learning into account. The process of continuous learning
implies an iterative adjustment process and ensures a consistent estimation of the parameters of
interest because of the increasingly finer information. The uncertainty on the system parameters
is thus renewed at each period. This regular reevaluation of the parameters certifies that the
evolution of the estimated model follows that one of the true process. The parameter estimates
are only revised in response to forecast errors.

Remark 1. In practice, even if the history of the process is longer, the memory of its states
is shorter. The predictable impact of yt−1 on yt depends on the degree of persistence parameter
At. This is the lagged dependent variable which determines the dynamic of the system. It
represents the internal force of the system. The smaller the multiplicative slope parameter Bt,
the greater needs to have a compensating moving in the control variable xt. If the parameter on
the control variable is large, then a small change in the control can cause a much larger change
in future state. A feature of such control problems is the possibility of a trade-off between
current control and estimation.

Note that ut ∼ iN (0,Ψ) is an exogenous unobserved random shock modelled by a p-
dimensional normal distribution with zero mean-vector and finite variance-covariance matrix
Ψ. However, nothing forces the data generating process to be stable. The stable distribution is
a statistical phenomenon. Note that Ψ is a non-negative symmetric matrix (not necessarily of
full rank) supposed to depend on an unknown nuisance parameter vector which can be either
restricted or not. In general, the heteroscedasticity cannot be completely eliminated.

Assumption 2. The agent’s objective is to constrain the system to follow a feasible optimal
path η

not.
= {yg1, yg2, ..., ygT} by selecting the control variable xt in a suitable way.

The targets (a priori aspiration levels) reflect the agent’s anticipation on the future dynamic
of the system, given its backward evolution. Taking into account foreseeable movements in y
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as well as possible economic constraints, the agent will fix some optimal bounds lt such that
0 < ygt ≤ lt < 1, t = 1, ..., T .
Assigning extreme values to the targets to be sure that the solution of the model always

keeps the values of the objectives on one side of the targets, would not be a realistic strategy
for the agent. For stochastic control systems, there are many paths that the system states may
follow given the control and initial data. The negative effect of the system stochasticity is the
control deviation. The best system performance depends on the information available to the
controller at each period t.
Another explanation why the targets are generally unattainable may be their incompatibility

with the state of the system. There exist situations when the targets are based on personal
assessments rather than on data. The goal of the control is to maintain the process most of its
time near the equilibrium state η. An a priori analysis of the deterministic control problem is
often crucial (Sargent 1987).
Since a real-time control process is necessarily discrete, this cannot converge with precision

to any target value, but only to some neighborhood of it. In other words, after the process of
control is ended, the agent will obtain a stochastic neighbouring-trajectory which is expected
to be close to the reference-optimal trajectory.
In the real world, it exists permanent and significative errors on the control. Deviations exist

because of the phenomenon of “learning bunching”, that is, small learning biases are present
during some periods while large biases occur during others.

Remark 2. When there is no cost on the control, then the agent does not have as objective
to follow a fixed optimal path. This is the case of a myopic (pseudo-optimal) decision behavior.

Remark 3. A necessary condition for the unicity of the instrument is that the number of
target variables be inferior to the number of instruments (p ≤ q).

Assumption 3. The timing of the control is as follows: At each stage t, the agent imple-
ments an optimal action xt, which is a stimulus for the system. This is purported to contribute
towards equilibrium and stability. A shock ut is realized and the agent observes the output yt
(the impulse response) from which he extracts a dynamic signal about the future trend of the
system. The agent employes this output signal for a strategic learning (specific to a closed-
loop monitoring) in order to drive the system as close as possible to the reference path η.
This output and the corresponding action provide information on the data generating process.
The uncertainty is reduced only ex-post, that is, only after the informative message has been
received. The effect of the shock ut on the output yt will disappear gradually in time.

Remark 4. At the end of time period t − 1, the control rule xt is applied and the target
variable yt is determined. The values of xt and yt are thus determined at time t − 1. During
the period t− 1 to t the environment reacts to these values, as they become generally known,
and by the time t arrives, yt is determined from the state equation. Consequently, there is an
apparent instantaneous relationship between xt and yt in the state equation.

The time lag between t − 1 and t is a decision lag, and it should be strongly emphasized
that this lag need not correspond to the interval between observations of the environment
represented by the data available for analysis. Therefore, the decision lag (or decision time)
and the observation interval (or observation time-periods) need not coincide, such that one
decision period may equal N observation periods (N could be greater than or less than unity).

Assumption 4. The optimality of the instrument xt is considered with respect to a global
criterion which measures the system deviations M yt

not.
= yt − ygt , t = 1, ..., T .

LetW[1,T ](y1, y2, ..., yT ) be this criterion, supposed twice continuously differentiable, strictly
increasing and convex in the feasible area of the model.
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A quadratic objective function may be considered as a good local approximation of the true
preferences, exactly as a model approaches the behavior of the system around the observed
variables. This is a reasonable one since it induces a high penalty for large deviations of the
state variable from the target but a relatively small penalty for small deviations. Note here
that no unique criterion unambiguously determines the optimal values for the instruments.
Even in cases where the quadratic criterion is not entirely justified, it is still employed since

it leads to an elegant analytical solution for the linear model and a computationally feasible
numerical solution for the non-linear model.
Although widely adopted in the literature, the assumption of an explicit expression for the

criterion function is not free from critiques, especially when real world problems are considered
(Bock and Pauly 1978). There exist situations when the agent is not able or is not willing
to formulate an explicit criterion function. How sensitive is this assumption and how sensitive
to this assumption are the control results rest still a sensible subject in this area.
In addition, nothing impedes to suppose that the loss function is additively recursive, on

one hand, in order to simplify the deduction of the formula for the optimal instruments and, on
the other hand, because it makes possible to apply the Bellman (1961) optimality principle
backwards through time.
For the purpose of this study, we therefore consider a global criterion which is additive and

recursive:

W[1,T ](y1, ..., yT )
def.
=

TX
t=1

Wt(yt)

where Wt is a quadratic asymmetric loss function given by:

Wt(yt)
def.
= (yt − ygt )

0Kt(yt − ygt ) + 2(yt − ygt )
0dt

with a prime denoting transpose.
The asymmetry of the criterion in the target values derives from the difference in penalty

costs that the agent may attach to errors, depending on whether they are errors of shortfall
or errors of overshooting about the target. The agent is not thus indifferent with regard to
the sign of the system deviations over time. There is an asymmetric treatment of errors to
either side of the target. In other words, a positive deviation from a target is not penalized as
a negative deviation of the same magnitude.
The criterion for making decisions is a function that puts weight (or measure) on the

possible outcomes indicating their desirability or undesirability. The parameters Kt and dt
allow to weight differently the various loss components. In other words, there are not equivalent
deviations of the target variables during the optimization process.
The weights used are anything but objective, since the deviation of all target variables may

be not of the same importance.
In general, the decision for choosing certain parameters Kt and dt reflects the agent’s priori-

ties and also depends on the available amount of information concerning the future development
of the system parameters.
However, it is unlikely that the agent will be able to assign values to the weights which

correctly represent his preferences. The idea is to choose the parameters which yield a smoother
control (i.e., less fluctuating), and hence a more stable system.
If the future evolution of the system is unpredictable, then the best weighting matrix Kt

which can be chosen is the identity matrix, while the best value for the vector dt is the unity
vector.

11



At each stage t, the parameters Kt and dt are updated and new optimal values are chosen
to satisfy the agent’s requirements. These are based on policy values at each stage and do not
require any direct information about the actual weighting the agent may have in his mind.

Assumption 5. At each period t, the agent computes his optimal policy bxt before knowing
the initial state of the process y0. He therefore obtains a random optimal policy, conditional to
y0: bxt = argmax

xt

Et−1[Ut(W[1,t], ϕt) | y0]

where Et−1(·) not.= E(· | It−1) is the operator of conditional expectation based on the information
available in t − 1, ϕt is the absolute risk-aversion index at time t, and Ut is the agent’s local
utility function defined by:

Ut(W[1,t], ϕt)
def.
=

2

ϕt

[exp(−ϕt

2
W[1,t])− 1]

with

W[1,t]
def.
=

tX
s=1

Ws(ys) (evolutive loss)

It follows that:

−U
00
t (W[1,t], ϕt)

U 0
t(W[1,t], ϕt)

=
ϕt

2

where a prime denotes the partial derivative with respect toW[1,t]. Therefore,
ϕt(W[1,t])

2
measures

locally (at the pointW[1,t]) the agent’s risk aversion, Ut being a CARA utility. The non-linearity
of the utility function is more commonly represented as risk-aversion.
This is Jacobson (1973, 1977) the first who employed an exponential utility for the

problems of stochastic optimal control with symmetric quadratic criterion.
Generally speaking, the utility depends on the purposes for which it is developed. It does not

exist but for the agent, and thus it has a subjective character. This is derived from individual
preferences. The stochastic disturbance in the system will produce random shocks in the agent’s
preferences over time.
Note that the maximum expected utility solution does not necessarily correspond to a

stochastic optimal policy with minimum variance.

Remark 5. It is far from probable that the agent exactly maximizes his utility at each
stage of the control. We rather face a nearly optimization behavior, where the control variable
is continuously and optimally adjusted to maximize some objective function (Van de Stadt
et al. 1985; Varian 1990; Leland 1990, among others).

In general, the initial state y0 (a past observation of the dynamic process) is either fixed or
randomized. In this latter case, the agent can have an a priori distribution on y0 based on the
information acquired up to time t = 0.
Because a real system is always subject to permanent shocks, it is not possible to control

its initial state exactly. It will amplify the agent’s uncertainty on the system behavior. It is
crucial to achieve a correct treatment of the starting value y0 and to measure its impact. Small
differences in initial conditions can have large effects on long-run outcomes.

4. Probabilistic Hypotheses on the Acquisition of Information

Given that some random strategies are employed, the stochastic environment must be de-
scribed by a complete finite probability space (Ω,F , PΩ,H) endowed with a filtration H (i.e.,
an increasing sequence of σ sub-algebras of F) satisfying the usual technical conditions.
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Denote by F the σ-algebra of P(Ω). PΩ is the agent’s subjective probability measure on Ω
(P(Ω) = 1) and represents the stochastic law of the environment (the agent may be uncertain
about the state of the world). In statistical applications, PΩ is an element of a family of
sampling probabilities.
Let I = ∪

t≤T
It be the space of all possible “elementary events” in the given environment. It

plays the role of Ω. Suppose that the family of events Ω is atomless, that is, that any event but
∅ (the impossible event) is the union of two exclusive events which are also different from ∅.

This assumption expresses the idea that a refinement of the description of the uncertain
environment can always be made. Additional specific assumptions are also introduced:

Assumption 6. (Non-anticipation). The history of the process, the past actions and
the history of the exogenous variables constitute the maximum that can be fully observed and
known at a given period t.

Assumption 7. (Non-causality). The future actions cannot affect the current dynamic
of the process.

The principle of causality requires that the dynamics of the process being such that present
or past actions can affect only future outcomes and not vice versa.

Assumption 8. (Retention of information). At time t, the information It is It+1-
measurable. Once the information is obtained, this is definitively acquired. In particular, the
past actions are memorized. Uncertainty will be solved over time according to a discrete-
filtration H not.

= {Ft | t = 0, ..., T} with FT
def.
= P(Ω) and F0

def.
= {∅,Ω} almost trivial (meaning

that Ω is the only event of non-zero probability in F0), filtered to the right with respect to the
operator of inclusion (i.e., Ft = ∩

s>t
Fs for all t, and so Ft ⊂ Fs whenever s ≥ t). In other words,

nothing is forgotten, the memory of the process increasing over time.

5. Linear Feedback Optimal Strategy: The Classical Context

The objective of this section is to correct the theoretical results of Van der Ploeg (1984a,
1984b) for the estimation of the feedback optimal strategy in the context of a linear dynamic
stochastic environment.
We consider here the case where the agent’s risk-aversion is constant and exogenous by

hypothesis. Let ϕ be the absolute risk-aversion index fixed during the entire control period
[1, T ].

Proposition 1. Suppose that the matrices Ψ−1 + ϕHt, Kt − ϕHt(Ψ
−1 + ϕHt)

−1Ht, and
C 0
t[Kt − ϕHt(Ψ

−1 + ϕHt)
−1Ht]Ct are inversible for each t = 1, ..., T . Under the hypotheses

stated in Section 2 and Section 3, the optimal feedback control equation for the period t is
given by: bxt(It−1, zt, βt,Kt, dt, y

g
t ) | y0 = Gtyt−1 + gt, t = 1, ..., T

where:
Gt = −(C 0

t
eHtCt)

−1(C 0
t
eHtAt)

gt = −(C 0
t
eHtCt)

−1C 0
t[ eHt (Btzt +Dt)− (Ip − ϕKt(Ψ

−1 + ϕHt)
−1)ht]eHt = Kt − ϕHtM

−1
t (ϕ)Ht, MT (ϕ) = Ψ−1 + ϕHT

It exists the following backward recurrences (t = T, T − 1, ..., 1):

Ht−1 = Kt−1 + (At + CtGt)
0 eHt(At + CtGt)

ht−1 = Kt−1y
g
t−1 − (At + CtGt)

0 [ eHt(Ctgt +Btzt +Dt)− (Ip − ϕKt(Ψ
−1 + ϕHt)

−1)ht]

13



with initial conditions
HT = KT and hT = KTy

g
T − dT

Proof. The dynamic programming problem is approached in finite discrete-time and uncer-
tain future. Given the assumptions of non-anticipation, retention of information, and additivity
for the global loss function W[1,T ], the multiperiod optimization problem (T sub-periods) can
be decomposed into a sequence of optimization problems involving only decision variables of
each stage, which are easier than the original problem (Bellman 1961):

argmax
x1,...,xT

E0UT (W[1,T ], ϕ) = argmax
x1(·)

E0[argmax
x2(·)

E1[...argmax
xT (·)

ET−1UT (W[1,T ], ϕ)]

where
UT (W[1,T ], ϕ)

def.
=
2

ϕ
[exp(−ϕ

2
W[1,T ])− 1]

represents the agent’s utility function at time T and

Et−1(·) not.= E(· | It−1), t = 1, ..., T

is the operator of conditional expectation based on the information available at time t− 1.
We deal with a sequential decision problem. It comes to maximize period by period, working

every time conditionally to the information acquired. The optimal policy is computed step by
step starting from xT to x1 (backward through time).
We first consider the decision problem for the last period T , given all the information

available at the end of period T − 1. One can write:

ET−1UT (W[1,T ](yT ), ϕ) =
2

ϕ
ET−1[exp(−

ϕ

2
WT (yT )) exp(−

ϕ

2

T−1X
t=1

Wt(yt))− 1]

Because the last exponentiel does not depend on xT , we have:

bxT = argmax
xT

ET−1UT (W[1,T ](yT ), ϕ) = argmax
xT

ET−1[exp(−
ϕ

2
WT (yT ))]

The assumption of rational expectations makes the problem difficult because the expected
value of a non-linear function is not generally the non-linear function of the expected value of
the random variable.
Under appropriate regularity conditions, one can interchange the order of integration and

differentiation, that is, one can differentiate within the conditional expectation operator.
For the computation of ET−1[exp(−ϕ

2
WT (yT ))]

not.
= VT (which is supposed to exist), we

proceed as follows:

ET−1[exp(−
ϕ

2
WT (yT ))] = ET−1[exp(−

ϕ

2
(M y0TKT M yT + 2 M y0TdT ))]

= ET−1[exp(−
ϕ

2
(y0THTyT − 2y0ThT + fT ))]

where:
M yT

not.
= yT − ygT , HT = KT , hT = KTy

g
T − dT , fT = yg0T (hT − dT )

Substituting ATyT−1 + CTxT +BTzT +DT + uT for yT , one obtains:

VT = ET−1[exp(−
ϕ

2
u0THTuT − ϕu0T [KT (ATyT−1 + CTxT +BT zT +DT )− hT ]−

ϕ

2
fT )·
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exp(−ϕ
2
((ATyT−1 + CTxT +BTzT +DT )

0[KT (ATyT−1 + CTxT +BTzT +DT )− 2hT ]))]

= ET−1[exp (ω2 (uT ))] expω1(IT−1, xT , zT , βT , KT , dT , y
g
T )

= expω1(IT−1, xT , zT , βT ,KT , dT , y
g
T )

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp(−1
2
eu0TΨ−1euT ) expω2 (euT ) deuT

with ω2 (euT ) a quadratic function in euT .
One can write:

eIT not.
=

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp(−1
2
eu0TΨ−1euT ) expω2 (euT ) deuT

=

Z
Rp

(2π)−
p
2 | detΨ |−1

2 exp(−1
2
eu0T (Ψ−1 + ϕHT )euT + linear in eu0T )deuT

= | det(Ψ−1 + ϕHT ) |−
1
2 | detΨ |−1

2

Z
Rp

(2π)−
p
2 | det(Ψ−1 + ϕHT ) |

1
2 expω3 (euT ) deuT

with ω3 (euT ) a quadratic function in euT . Now, we find uT ∈ Rp such that:

ω3 (euT ) = −1
2
(euT − uT )

0 (Ψ−1 + ϕHT ) (euT − uT ) + independent of euT
By consequence, we have the following equality:

−1
2
eu0T (Ψ−1 + ϕHT )euT − ϕeu0T [KT (ATyT−1 + CTxT +BTzT +DT )− hT ]−

ϕ

2
fT

= −1
2
eu0T (Ψ−1 + ϕHT )euT + eu0T (Ψ−1 + ϕHT )uT −

1

2
u0T (Ψ

−1 + ϕHT )uT

+independent of euT
It follows that:

independent of euT = 1

2
u0T (Ψ

−1 + ϕHT )uT −
ϕ

2
fT

not.
= ω4 (uT )

and
−ϕeu0T [KT (ATyT−1 + CTxT +BTzT +DT )− hT ] = eu0T (Ψ−1 + ϕHT )uT

that is,

uT = −ϕ(Ψ−1 + ϕHT )
−1[KT (ATyT−1 + CTxT +BT zT +DT )− hT ]

Therefore, one can write:

eIT = | det(Ψ−1 + ϕHT ) |−
1
2 | detΨ |− 1

2 exp(
1

2
u0T (Ψ

−1 + ϕHT )uT −
ϕ

2
fT )·Z

Rp

(2π)−
p
2 | det(Ψ−1 + ϕHT ) |

1
2 exp(−1

2
(euT − uT )

0 (Ψ−1 + ϕHT ) (euT − uT ))deuT
The last integral is equal to 1 because the integrand is the probability density function of a

p-dimensional normal random variable:

euT ∼ N (uT , (Ψ−1 + ϕHT )
−1)

with −1 power denoting inverse.

15



We have the following equality:

| det(Ψ−1 + ϕHT ) |−
1
2 | detΨ |− 1

2

= | det[Ψ−1(Ip + ϕΨHT )Ψ] |−
1
2 = | det (Ip + ϕΨHT ) |−

1
2

If we replace uT by its value, we find without difficulty:

eIT = | det(Ip + ϕΨHT ) |−
1
2 exp(−ϕ

2
[KT (ATyT−1 + CTxT +BTzT +DT )− hT ]

0

·− ϕ(Ψ−1 + ϕHT )
−1[KT (ATyT−1 + CTxT +BTzT +DT )− hT ]−

ϕ

2
fT )

= | det(Ip + ϕΨHT ) |−
1
2 expω4(IT−1, xT , zT , βT ,KT , dT , y

g
T )

By consequence, we have:

VT
not.
= ET−1[exp(−

ϕ

2
WT (yT ))] = expω1(IT−1, xT , zT , βT , KT , dT , y

g
T ) ·eIT

= | det(Ip+ϕΨHT ) |−
1
2 exp(ω1(IT−1, xT , zT , βT , KT , dT , y

g
T )+ω4(IT−1, xT , zT , βT ,KT , dT , y

g
T ))

= | det(Ip + ϕΨHT ) |−
1
2 expω5(IT−1, xT , zT , βT ,KT , dT , y

g
T )

After several algebraic manipulations, one obtains:

ω5(IT−1, xT , zT , βT ,KT , dT , y
g
T ) = −

ϕ

2
[y0T−1A

0
T
eHTCTxT

+x0TC
0
T
eHT (ATyT−1 +BTzT +DT ) + x0TC

0
T
eHTCTxT + (z

0
TB

0
T +D0

T ) eHTCTxT ]

+ϕx0TC
0
T [Ip − ϕKT (Ψ

−1 + ϕHT )
−1]hT + independent of xT

where: eHT
not.
= KT − ϕHTM

−1
T (ϕ)HT

MT (ϕ)
not.
= Ψ−1 + ϕHT = Ψ−1(ϕΨ+H−1

T )HT

Using the well-known formulas for the derivatives of matrix functions, the first order con-
dition in xT writes:

−ϕ
2
C 0
T
eHTATyT−1 −

ϕ

2
C 0
T
eHT (ATyT−1 +BTzT +DT )− ϕC 0

T
eHTCTxT

−ϕ
2
C 0
T
eHT (BTzT +DT ) + ϕC 0

T [Ip − ϕKT (Ψ
−1 + ϕHT )

−1]hT = 0
(ϕ6=0)⇔

−C 0
T
eHTATyT−1 − C 0

T
eHT (BTzT +DT ) + C 0

T [Ip − ϕKT (Ψ
−1 + ϕHT )

−1]hT = C 0
T
eHTCTxT

It follows that: bxT (IT−1, zT , βT , KT , dT , y
g
T ) = GTyT−1 + gT (1)

GT = −(C 0
T
eHTCT )

−1(C 0
T
eHTAT ) (2)

gT = −(C 0
T
eHTCT )

−1C 0
T [ eHT (BTzT +DT )− (Ip − ϕKT (Ψ

−1 + ϕHT )
−1)hT ] (3)

The expected utility level for the period T is obtained by substituting for xT in uT :

bVT not.
= | det(Ip + ϕΨHT ) |−

1
2 expω5(IT−1, bxT , zT , βT , KT , dT , y

g
T )
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= | det(Ip + ϕΨHT ) |−
1
2 exp(−ϕ

2
[y0T−1(AT + CTGT )

0 eHT (AT + CTGT )yT−1

+2y0T−1(AT +CTGT )
0 eHT (CTgT +BT zT +DT ) + (CTgT +BTzT +DT )

0 eHT (CTgT +BTzT +DT )

−2y0T−1(AT + CTGT )
0(Ip − ϕKT (Ψ

−1 + ϕHT )
−1)hT − 2(CTgT +BT zT +DT )

0

·(Ip − ϕKT (Ψ
−1 + ϕHT )

−1)hT − ϕh0T (Ψ
−1 + ϕHT )

−1hT + fT ])

Now, we include the period T − 1 in our optimization problem. We have:

bxT−1 def.
= argmax

xT−1

ET−2[ET−1UT (W[1,T ](yT ), ϕ)] =

= argmax
xT−1

ET−2[ET−1[exp(−
ϕ

2
WT (yT )) exp(−

ϕ

2

T−1X
t=1

Wt(yt))− 1]]

= argmax
xT−1

ET−2[ET−1[exp(−
ϕ

2
WT (yT (bxT ))) exp(−ϕ

2
WT−1(yT−1))]]

= argmax
xT−1

ET−2[exp(−
ϕ

2
WT−1(yT−1))ET−1[exp(−

ϕ

2
WT (yT (bxT )))]]

The expected utility level for the two last sub-periods is therefore:

VT−1
not.
= ET−2[exp(−

ϕ

2
WT−1(yT−1))bVT ] = | det(Ip + ϕΨHT ) |−

1
2

·ET−2[exp(−
ϕ

2
[y0T−1KT−1yT−1 − 2y0T−1KT−1y

g
T−1 + yg0T−1KT−1y

g
T−1

+y0T−1(AT + CTGT )
0 eHT (AT + CTGT )yT−1 + 2y

0
T−1(AT + CTGT )

0 eHT (CTgT +BTzT +DT )

−2y0T−1(AT + CTGT )
0(Ip − ϕKT (Ψ

−1 + ϕHT )
−1)hT

+(CTgT +BTzT +DT )
0 eHT (CTgT +BTzT +DT )− 2(CTgT +BTzT +DT )

0

·(Ip − ϕKT (Ψ
−1 + ϕHT )

−1)hT − ϕh0T (Ψ
−1 + ϕHT )

−1hT + fT ])]

=| det(Ip + ϕΨHT ) |−
1
2 ET−2[exp(−

ϕ

2
[y0T−1HT−1yT−1 − 2y0T−1hT−1 + fT−1])]

where, by identification, one obtains the following recurrence relations:

HT−1 = KT−1 + (AT + CTGT )
0 eHT (AT + CTGT )

hT−1 = KT−1y
g
T−1 − (AT + CTGT )

0 [ eHT (CTgT +BTzT +DT )

−(Ip − ϕKT (Ψ
−1 + ϕHT )

−1)hT ]

fT−1 = yg0T−1KT−1y
g
T−1 + (CTgT +BTzT +DT )

0 eHT (CTgT +BTzT +DT )

−2(CTgT +BTzT +DT )
0(Ip − ϕKT (Ψ

−1 + ϕHT )
−1)hT + fT − ϕh0T (Ψ

−1 + ϕHT )
−1hT

The solution for bxT−1 will be identical with (1) with T replaced by T − 1, where GT−1 and
gT−1 are defined by (2) and (3), respectively, with a similar change in time subscripts.
One can thus apply a backward induction in time in order to find the agent’s optimal

strategy for all sub-periods. At the end of this process, one obtains bx1 = G1y0 + g1 as the
optimal policy for the first period and the associated maximum expected utility for all periods.

17



The determination of the optimal bx1 depends on the method of forward-looking which is
used in the optimality of the future decisions. One cannot obtain an optimal policy for the first
period if its behavior in the future is not known.
The matrices Gt are obtained by solving the matrix equations:

Gt = −(C 0
t
eHtCt)

−1(C 0
t
eHtAt)

Ht−1 = Kt−1 + (At + CtGt)
0 eHt(At + CtGt)

backward in time with initial condition HT = KT .
The vectors gt are obtained by solving:

gt = −(C 0
t
eHtCt)

−1C 0
t[ eHt (Btzt +Dt)− (Ip − ϕKt(Ψ

−1 + ϕHt)
−1)ht]

ht−1 = Kt−1y
g
t−1 − (At + CtGt)

0 [ eHt(Ctgt +Btzt +Dt)− (Ip − ϕKt(Ψ
−1 + ϕHt)

−1)ht]

backward in time with initial condition hT = KTy
g
T − dT .

These formulas correct the results obtained by Van der Ploeg (1984a, 1984b). In
particular, for ϕ = 0, one obtains a correction of the results obtained by Chow (1973, 1976a,
1976b, 1977, 1978, 1981, 1993) in the risk-neutral context.
It is possible that differences between ex-ante decisions and ex-post results (i.e., between

ex-ante and ex-post optimality) exist. What was in the agent’s ex-ante best interest is not
necessarily in his ex-post best one.
Even if the linear approximation is only roughly, one can however implement a feedback

strategy for a closed-loop dynamic process which is sufficiently good, on one hand for obtain-
ing the evaluation of the policy for the first period and, on the other hand, for the actual
implementation in the future.
A comparison between the risk-neutrality and the risk-aversion cases will allow us to analyze

the shape of the optimal solution. the risk-neutrality case can then be used as a benchmark, to
be compared with several possible values for risk-aversion parameters. Letting the risk-aversion
coefficient vary for a given specification of the agent’s utility function is not the only way to
assess the impact of attitudes towards risk. Another important option is to consider alternative
utility functions, characterized by different degrees of absolute risk-aversion. This important
aspect will be investigated in the Section 7.

6. Endogenous Risk-Aversion

In the real world, the agent is confronted with multiple risks. His decision is not made inde-
pendently but jointly with other decisions, which place the agent in risky situations. Decisions
made to avoid, even partially, a source of risk may be affected by the presence of others.
It is well-known that economic agents behave on average risk-neutral for small and repeated

decisions, but the most common attitude of economic agents in all important decision-making
problems is one generated by risk-aversion (they prefer the expected value of the risk to the
risk itself). Such a behavior characterizes most decision-makers, at least for large gains or
important losses. An agent who expects in the future large deviations from the fixed targets
can be considered to be risk-averse.
In general, the aversion is associated with increasing uncertainty while the uncertainty is

naturally associated with incomplete information about future behavior of the system. One can
interpret the risk as the agent’s degree of confidence in the future. It decreases with uncertainty.
Traditionally, the risk-aversion is equivalent to the concavity of the agent’s utility function or
a decreasing marginal utility. However, this is just a way of expressing risk-averse preferences.

18



In the literature on risk, one generally assume that uncertainty is uniformly distributed over
the entire working horizon, when the absolute risk-aversion index is negative and constant. From
this perspective, the risk is totally exogenous, and thus independent of endogenous risks.
The classical procedure is “myopic” with regard to potential changes in the future behavior

of the agent due to inherent fluctuations of the system over time. The traditional measures of
risk-aversion are generally too weak for making comparisons between risky situations.
This can be highlighted in concrete problems in finance and insurance, context for which

the Arrow-Pratt measures (in the small) give ambiguous results (Ross 1981).
We extend the Arrow-Pratt approach (1964, 1971a, 1971b), which takes into account

only attitudes towards small exogenous risks, by integrating in the analysis potentially high
endogenous risks which are under the control of the agent. This has strong implications on the
agent’s adaptive behavior in a highly fluctuating environment.
In any uncertain environment, the agent must form expectations. In the case where there

is a discrepancy between what the agent expects and reality, his uncertainty will be high. In
an noisy environment, the expectations may be disappointed.
The agent can influence the likelihood of the system states by using a reinforcement learning

strategy. We say, in this case, that he is not myopic in the sense of expecting. A myopic behavior
leads to an important bias in the controls and targets variables.
Future anticipations play an important role in how the agent will decide what strategic

actions and optimal risk to take. His behavior depends on forecasts of future system state.
Forecasts are updated each time as new observation becomes available.
The agent’s rationality is characterized by the fact that the sequence of updated forecasts

will converge to the equilibrium of the system. If the data generating process changes in
ways not anticipated by the model, then the forecasts lose accuracy. Without uncertainty, the
distinction between present and future is confused and there is no anticipation.
Suppose that the agent is a strategic decision-maker. He thinks about the future. Depending

on the way the agent perceives future outcomes, both risk sensitivity and optimal decisions will
be affected during the process of optimization and control.
Different forecasts are obtained from different information structure. There are several

sources of forecast uncertainty, including parameter non-constancy, estimation uncertainty,
variable uncertainty, innovation uncertainty and model misspecification.
A correct evaluation of the past is crucial for making optimal predictions in the future. This

is necessary for an optimal assessment of the agent’s risk aversion. Fluctuations in the system
target variable generate a time-varying risk-aversion during the control period.
We make the following useful notations:

St, p_d
not.
= k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k

2

(the sum of squared past deviations at time t)

St, a_f_d
not.
= k yat|It − ygt k2 +...+ k yat+k2|It+k2 − ygt+k2 k

2

(the sum of squared anticipated future deviations at time t)

St, w_p_d
not.
= k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1
(the weighted sum of squared past deviations at time t)

St, w_a_f_d
not.
= k yat|It − ygt k2 Lt + ...+ k yat+k2|It+k2 − ygt+k2 k

2 Lt+k2

(the weighted sum of squared anticipated future deviations at time t)

where ygt+i (i = 0, ..., k2) represent fixed targets in the future (taking into account foreseeable
movements in y), yat+i|It+i (i = 0, ..., k2) are expected values of the target variable at time t+ i

based on non-decreasing endogenous information sets It+i and Lt−j1 (j1 = 1, ..., k1), Lt+j2
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(j2 = 0, ..., k2) are strategic weights attached to the system deviations (in the past and future)
with respect to the equilibrium path η.
Econometric forecasting is an useful instrument for the agent. In real decision-making

problems, the forecast must be as accurate and efficient as possible. A necessary preliminary
step for the agent to optimally choose the target path is to make some a priori expectations on
the future evolution of the system based on its past performances.
A question arises: Are the current and past values of the process yt sufficient to forecast

yt+j (j = 1, ..., k2)?
Ex-ante expectations refer to those which held prior to the acquisition of information and

generally imply a discrete-time process of tatonnement. They must be unique and in accord
with the agent’s observations and generally are dependent on the initial value of the state
variable.
The more they are distant in time, the more they are difficult to assess (due to the extreme

uncertainty of the far future). Ex-ante and ex-post forecast errors are viewed as indicators of
uncertainty of the decision-making process.
We are now in a position to give a definition of the agent’s risk aversion index by taking

into account past performances of the system (a truncated history) and rational anticipations
of the system behavior in the future.

Definition. Using t to denote time, the absolute risk-aversion index ϕt evolves according
to the following relationship:

ϕt
def.
=

St, w_p_d + St, w_a_f_dp
(St, p_d + St, a_f_d)2 + l

, t = 1, ..., T

where l ≥ 1 is a fixed integer characterizing the agent’s type, and the strategic parameters
Lt−j1 , Lt+j2 (j1 = 1, ..., k1; j2 = 0, ..., k2) verify the following inequalities:

−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0; − 1 < Lt ≤ ... ≤ Lt+k2 ≤ 0

with
1 ≤ k1 < T ; k2 ≥ 0; 1 ≤ k1 + k2 ≤ T − 1

The weights may differ across individuals. They are updated each time as new observation
becomes available. The agent gives a higher importance to the past and future deviations which
are closer to the moment of implementation of a new optimal action. Smaller the weight is,
higher is the importance given by the agent to the system deviation from his local objective.
Given the potential destabilizing role of a long memory of the process, the agent includes in

the analysis only a limited history. Distant past observations might increase significatively the
bias of the estimates in the econometric model. In general, these provide an imprecise signal
for the agent.
In general, it exists an arbitrary element as regards the choice of the backward lag k1. The

objective is to find the better compromise between fit and complexity. The larger the forward
lag k2 is, the more the prediction error increases. Distant forecasts are difficult to formulate
due to unpredictable external disturbances which generally affect the system performance.
It is only by taking into account both, the past and the expected future, that the agent can

optimally evaluate the risk in an evolving environment. It allows for a better risk allocation at
each period of control. Both objectivity and subjectivity characterizes the agent’s risk behavior.
Its complexity is given by the changing environment design and the agent’s typology.
The higher the degree of risk-aversion at time t, the lower the absolute risk-aversion index

ϕt. It may be possible to obtain ϕt1 = ϕt2 for t1 6= t2, that is, a constant risk-aversion for
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distinct periods of time. When ϕt = ϕ 6= 0 for t = 1, ..., T , the agent is characterized by a
constant risk-aversion during the entire planning horizon. In the case where ϕt

∼= 0, the agent
can be considered almost risk-neutral at time t.
The experimental evidence shows that individuals overweight extreme events. Let ϕmin be

an optimal risk-aversion threshold fixed by the agent before starting the control and for the
entire working horizon [1, T ]. The objective is not to exceed this limit threshold. Otherwise, the
agent becomes excessively risk-averse for the current control period, being characterized by an
extreme pessimism. The optimal threshold ϕmin is such that it offers the best characterization
of the agent’s type. The higher (smaller) the agent’s risk aversion before starting the control,
the smaller (higher) the threshold ϕmin. It is important to distinguish between ϕt and ϕmin. In
other words, it must distinguish between local risk-aversion (at time t) and global risk-aversion
(over the whole period [1, T ]). For further details, see Protopopescu (2007).

7. Linear Optimal Feedback Strategy Sensitive to Controlled Endogenous Risk-
Aversion

In this section, we improve the formulas obtained for the optimal feedback control rules
in the case of a constant exogenous risk-aversion, by considering the more realistic case of
time-varying endogenous risks subjected to the control of the decision-maker.

Proposition 2. Suppose that the matrices Ψ−1 + ϕtHt, Kt − ϕHt(Ψ
−1 + ϕtHt)

−1Ht, and
C 0
t[Kt − ϕHt(Ψ

−1 + ϕtHt)
−1Ht]Ct are inversible for each t = 1, ..., T . Under the hypotheses

stated in Section 2 and Section 3, the linear feedback control equations for a rational decision-
maker characterized by endogenous risk-aversion are given by:

bxt(It−1, zt, βt,Kt, dt, y
g
t ) | y0 = Gtyt−1 + gt, t = 1, ..., T

with the following optimal reaction coefficients:

Gt = −(C 0
tHtCt)

−1(C 0
tHtAt)

gt = −(C 0
tHtCt)

−1C 0
t[Ht (Btzt +Dt)− (Ip − ϕtKt(Ψ

−1 + ϕtHt)
−1)ht]

Ht = Kt − ϕtHtM
−1
t (ϕt)Ht, Mt(ϕt) = Ψ−1 + ϕtHt, ht = Kty

g
t − dt

Proof. If nonconvexities arise in the objective function, it may greatly complicate the
search for the optimal control instruments (Amman and Kendrick 1995) and additional
constraints for smoothing and bounding the controls may also be present.
Very often in practice, the optimal policies tend to fluctuate with a large amplitude. The

stochastic solutions have a certain dispersion. Instruments variability will generally have a
large influence, increasing the error on the targets. The observable fluctuations in instruments
are due to the initial impact of the unpredictable shocks and forecast errors.
One remedy to avoid drastic changes from one period to another is to impose preselected

upper and lower bounds on the values of the control variables (Sandblom and Banasik
1985). The bounded control approach with bounds not only on the magnitude but also on the
rate of change of the controls holds much benefit in many economic applications. However, this
procedure may introduce new sources of error and bias. The bounds on instrument variation
will produce truncated distributions, and hence will introduce a bias on instrument variation.
Moreover, the variation of instruments is given not by their actual efficiency but by their
relative position in the set of available instruments. It will therefore generate discontinuities in
the relation between instrument efficiency and optimal policy.
At each period t, the agent will maximize his expected utility function under a set of dynamic

constraints imposed in order to avoid drastic changes in the control variable:
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argmax
xt

Et−1Ut(W[1,t], ϕt)

s.t. :

⎧⎪⎪⎨⎪⎪⎩
yt = Atyt−1 + Ctxt +Btzt +Dt + ut
L0t ≤ xt ≤ L

0
t (amplitude bounds)

L00t ≤ xt − xt−1 ≤ L
00
t (change bounds)

y0, yt > 0, t = 1, ..., T (economic constraints)

where

W[1,t](y1, ..., yt)
def.
=

tX
s=1

Ws(ys)

with Wt an asymmetric quadratic loss function, strictly convex and twice continuously differ-
entiable:

Ws(ys)
def.
= (ys − ygs)

0Ks(ys − ygs) + 2(ys − ygs)
0ds = y0sKsys − 2y0shs + fs

hs = Ksy
g
s − ds; fs = yg0s (hs − ds)

The first set of constraints is imposed to keep the instruments within specific bounds through
time. Possible negative realizations of the instruments are ruled out. The wider the bound on
the instrument, the higher the importance given by the agent to the variation of the instrument
in that direction, so that they fit to the active learning process.
As regards the last set of constraints, this indicates that the variation of the control variable

between two consecutive periods lies within a prespecified bounded interval. The values of this
variation can be either positive or negative.
The two sets of constraints are called boundary conditions. They restrict the set of potential

optima.
The agent chooses the amplitude /change bounds at each iteration of the control algorithm.

He can thus exploit the information on the previous instruments when fixing the bounds for
the next instruments, by allowing a greater variability for an efficient instrument rather than
for an inefficient one.
The bounds on the instruments are simply the limits up to which the agent decides to

extend the research of the optimal solution at each iteration.
Note here that the nonnegativity constraints on the state and control variables are never

binding (dependent each other) in an optimal plan (Epstein 1981).
During the period of control, a revision process of the feedback information is required. New

information resolves uncertainty over time. The value of the optimal instrument bxt is obtained
by a revision of expectations in each previous step of the control. The agent’s decisions evolve
as result of learning.
Following the reasoning employed in Proposition 1, we obtain the analytical formulas for

the feedback optimal equations sensitive to controlled endogenous risk-aversion.
One can write:

bxt = argmax
xt

Et−1Ut(W[1,t](yt), ϕt) = argmax
xt

Et−1[exp(−
ϕt

2
Wt(yt))]

where:
Et−1[exp(−

ϕt

2
Wt(yt))] = Et−1[exp(−

ϕt

2
(y0tHtyt − 2y0tht + ft))]

with:
Ht = Kt, ht = Kty

g
t − dt, ft = yg0t (ht − dt)
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Substituting Atyt−1 + Ctxt +Btzt +Dt + ut for yt, one obtains finally:

V t
not.
= Et−1[exp(−

ϕt

2
Wt(yt))] = Et−1[exp (ω2 (ut))] expω1(It−1, xt, zt, βt, Kt, dt, y

g
t )

= expω1(It−1, xt, zt, βt,Kt, dt, y
g
t )

Z
Rp

(2π)−
p
2 | detΨ |− 1

2 exp(−1
2
eu0tΨ−1eut) expω2 (eut) deut

with βt
not.
= (At, Bt, Ct,Dt) and ω2 (eut) a quadratic function in eut.

We have: eIt not.= Z
Rp

(2π)−
p
2 | detΨ |−1

2 exp(−1
2
eu0tΨ−1eut) expω2 (eut) deut

= | det(Ψ−1 + ϕtHt) |−
1
2 | detΨ |− 1

2

Z
Rp

(2π)−
p
2 | det(Ψ−1 + ϕtHt) |

1
2 expω3 (eut) deut

with ω3 (eut) a quadratic function in eut. Now, we need ut ∈ Rp such that:

ω3 (eut) = −1
2
(eut − ut)

0 (Ψ−1 + ϕtHt) (eut − ut) + independent of eut
As before, one obtains:

ut = −ϕt(Ψ
−1 + ϕtHt)

−1[Kt(Atyt−1 + Ctxt +Btzt +Dt)− ht]

Following the same steps as in Proposition 1, the integral becomes:eIt = | det(Ip + ϕtΨHt) |−
1
2 expω4(It−1, xt, zt, βt,Kt, dt, y

g
t )

We have:

V t
not.
= Et−1[exp(−

ϕt

2
Wt(yt))] = expω1(It−1, xt, zt, βt, Kt, dt, y

g
t ) ·eIt

= | det(Ip + ϕtΨHt) |−
1
2 expω5(It−1, xt, zt, βt,Kt, dt, y

g
t )

with:

ω5(It−1, xt, zt, βt,Kt, dt, y
g
t ) = −

ϕt

2
[y0t−1A

0
tHtCtxt + x0tC

0
tHt(Atyt−1 +Btzt +Dt)

+x0tC
0
tHtCtxt + (z

0
tB

0
t +D0

t)HtCtxt] + ϕtx
0
tC

0
t[Ip − ϕtKt(Ψ

−1 + ϕtHt)
−1]ht + independent of xt

where:
Ht

not.
= Kt − ϕtHtM

−1
t (ϕt)Ht

Mt(ϕt)
not.
= Ψ−1 + ϕtHt = Ψ−1(ϕtΨ+H−1

t )Ht

The first order condition in xt writes:

−C 0
tHtAtyt−1 − C 0

tHt (Btzt +Dt) + C 0
t[Ip − ϕtKt(Ψ

−1 + ϕtHt)
−1]ht = C 0

tHtCtxt

It follows that:

bxt(It−1, zt, βt,Kt, dt, y
g
t ) | y0 = Gtyt−1 + gt, t = 1, ..., T

where:
Gt = −(C 0

tHtCt)
−1(C 0

tHtAt)
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gt = −(C 0
tHtCt)

−1C 0
t[Ht (Btzt +Dt)− (Ip − ϕtKt(Ψ

−1 + ϕtHt)
−1)ht]

These formulas improve the results related to stochastic feedback optimal control employed
by Karp (1987) andWhittle (1981, 1989, 1990).
The optimal feedback control will stabilize the system because it allows for a free flow of

information about the system evolution. The strategic decision rule is reviewed and revised in
response to new signals from the environment. The agent will thus refine the distance between
the current target position and his fixed objectives. His actions are consistent with the planned
objective. The deviations from the targets are minimal amongst all possible deviations because
the imperfections on bx1, ..., bxt−1 will not affect bxt. The optimal policy is thus robust to the
variance of shocks. The algorithm anticipates future learning when choosing the control for
each period, and thus will perturb the system early in time in order to reduce the variance of
the parameters estimated later in time. The parameters of the behavioral equation are related
to the parameters of both economic environment and objective function. The former are derived
from the latter through optimization. Therefore, if the parameters of the economic environment
change, the parameters of the behavioral equation will also change. The parameters of the state
equation also change if the generating mechanism for xt changes. Knowledge of the former
parameters can be used to derive the parameters of the behavioral equation, which can then
be utilized to obtain forecasts of the endogenous target variable.
Note that the sufficient variables for describing bxt belong to some spaces of constant di-

mension, while the endogenous information set It generates a sequence of spaces of increasing
dimension.
The existence of the optimum may be restricted to certain configurations of the parameters

of interest. Accurate parameters estimates are necessary for an efficient implementation of the
agent’s optimal policy. They represent a basic information for the learning algorithm, and
hence are very important as regards the accuracy of numerical simulations.
Consider first the case where there is an unique optimal solution for each period of control.

It is supposed that the agent’s objective is to keep the instruments within the interval (0, 3.5).
We give below a graphical illustration in this sense.
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Figure 1

When there is no optimal solution at a given period of time, the agent will choose the most
recent value of the control variable which conducted the system close to its optimal target.
Three distinct scenarios may be possible in this particular context:
i) the variable of control takes a negative value, and hence this is ruled out;
ii) the variable of control does not satisfy the condition related to the amplitude bounds;
iii) the variable of control does not satisfy the condition related to the change bounds.
For a numerical illustration, we give below a suggestive graphic for each above scenario.
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Figure 2-i)

In this case, it is obtained a negative value for bx3. The agent will choose between bx1 andbx2, depending on their performance with respect to the fixed targets yg1 and yg2.
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Figure 3-ii)

In this case, the agent’s objective is to keep the instruments within the interval (0, 4) during
the period of control. At time t = 5, the amplitude bound is not satisfied.
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Figure 4-iii)

In this case, the agent’s objective is to keep the instruments within the interval (0, 5]. Both
boundary conditions are not satisfied at time t = 10.
It is possible for the agent to implement the same optimal action for distinct periods of time.

It may happen if the system is characterized by small fluctuations over time. We illustrate this
possibility by a suggestive graphic.
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Figure 5

The agent’s objective during the entire period of control is to obtain small deviations of the
system with respect to the fixed targets. A suggestive graphical illustration is given below.
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In a noisy environment there should be a trade-off between an increase in information and
a decrease in noise. In this particular context, severe problems can be caused to the agent in
optimizing the system trajectory. Two distinct scenarios are considered in this sense:
i) the agent does not succeed to constrain the system to follow the optimal trajectory η

during the entire planning horizon. We give below a graphical illustration in this sense.
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ii) the agent exceeds considerably the fixed targets at each period of the planning horizon.
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We analyze now the agent’s optimal actions with respect to the risk-aversion index level.
Two distinct cases are discussed here: i) when the agent is characterized by a small risk-aversion;
and ii) when the agent is characterized by a high risk-aversion.
We give below two superposed graphics illustrating these two scenarios.
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Agent’s actions are non-monotonous functions with respect to the risk-aversion index, and
hence are not necessarily distinct for distinct attitudes to risk. We examine below the case where
the agent’s risk aversion index is fluctuating between −1 and 0. Two distinct scenarios are
illustrated: i) fluctuating risk-aversion versus risk-neutrality; and ii) fluctuating risk-aversion
versus constant risk-aversion.
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Figure 10-c)
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The agent’s attitude towards risk is an important element that will condition the shape
of the optimal solution. There are important differences between optimal actions sensitive to
constant and, respectively, dynamic risk-aversion. It proves the critical importance of the way
in which the risk-aversion index is modelled in problems of decision and control, management
and planning. Note also that the exceeding of the threshold ϕmin at time t has a non-negligible
effect on the agent’s optimal behavior in t. An excessive risk behavior will generate excessive
risk actions. It implies either a higher or a lower value of the input xt. We give below two
comparative graphics in this sense.
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It is important for the agent to optimally choose the weighting parameters Kt and dt before
proceeding at the maximization of his objective function on the regulation horizon. In general,
Kt is chosen to be a symmetric positive semi-definite diagonal matrix attaching penalty constant
weights to deviations of the state variable from its desired level. If Kt is not diagonal, then
penalties also attach to covariances of deviations of the state variable from the desired threshold.
The variations of the weighting parameters will affect the extensiveness of the agent’s loss
function. It is therefore very important to know the effect of Kt and dt on the agent’s risk
behavior during the entire control period. The role played by the ponderation matrix Kt can
be easily illustrated in the univariate model case. Using the matrix differential rules, one
obtains the first-order condition for M yt: 2Kt M yt + 2dt = 0 ⇔ M yt = − dt

Kt
(if Kt 6= 0).

By consequence, if dt 6= 0, each increase (decrease) of the parameter Kt causes an increase
(decrease) of the distance between the value of yt measured and that one fixed at time t. We
give below a graphical illustration of the role played by the parameter Kt.
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The learning algorithm presented in this paper solves completely the linear-quadratic control
problem with suitable initial and boundary conditions in the case of a rational agent charac-
terized by an endogenous risk-aversion during the entire planning horizon. This new approach
has the potential to better predict the behavior of the system because integrates a controlled
risk-aversion at each period of control. It improves the agent’s ability to understand the sys-
tem response to his implemented actions. In the context of a dynamic game, it will improve
the agent’s ability to understand a rival’s pattern of play. The proposed study also improves
the analysis of Sawada (2008) developed in the context of risk-sensitive tracking control of
stochastic systems with preview action.

8. Concluding Remarks and Possible Extensions

This new approach improves previous studies in the literature on control (Jacobson 1973;
Karp 1987; Whittle 1981, 1989, 1990; Chow 1973, 1976a, 1976b, 1977, 1978, 1981,
1993, amongst others) by focusing on optimal feedback control rules sensitive to controlled
endogenous risk-aversion. This also corrects the results obtained by Van der Ploeg (1984a,
1984b). This work offers to decision-makers (e.g., governments, firms, economic agents) strate-
gic decision rules that allow for a better management and control of dynamic stochastic environ-
ments characterized by important fluctuations. Several possible directions for future research
can be envisaged here. An immediate application is the case of an asymmetric criterion function
expressed as a sum of weighted squares of deviations from given target values for the objec-
tives and instruments. The desired values of the instruments are included in the quadratic loss
function to prevent them from going too far away from realistic values. The analysis can also
be extended to the case of endogenous targets. The fixed goal is flexible with respect to the
possible changes (the nature can change its goal) and can be modified without incurring addi-
tional cost, time, or effort. A decision problem is often redefined during the decision process
itself. It may be the case where the target path is prescribed without any consideration of
the question whether it can be obtained. With endogenous targets, the decision-maker’s risk
behavior is better shaped. Of great interest is to study the more interesting case of a working
horizon that extends as time evolves. The horizon length is thus an endogenous parameter. The
resulting moving horizon decision rule will be based on a continuous refinement process of the
risk-aversion index. This allows to combine the finite and the infinite horizon optimization prob-
lems when the decision-maker exhibits endogenous risk-aversion. Significative differences exist
between an individual control problem (viewed as a game against nature), when the decision-
maker is submitted only to environment constraints, and respectively a controlled dynamic
game, when each player is, in addition, constrained by the opponent’s behavior. In this latter
case, the equilibrium of the game is subjected to many constraints which mix the parameters
of interest. Depending on the nature of the game, we can analyze here two types of behav-
ior: cooperative and non-cooperative. The objective of the players is the optimal risk-sharing
during the entire period of the game. We can also test (under heteroskedasticity) if a given
discrete time-series arises from a game with Nash /Stackelberg strategies. In the literature,
the interest in theoretical and empirical tests aspects in controlled dynamic stochastic games
is almost unexistent. We encourage other researchers to take up the challenge.
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