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Abstract

In the literature on risk, one generally assume that uncertainty is uniformly distributed over
the entire working horizon, when the absolute risk-aversion index is negative and constant. From
this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The
traditional measures of risk-aversion are generally too weak for making comparisons between
risky situations. This can be highlighted in concrete problems in finance and insurance, context
for which the Arrow-Pratt measures of risk-aversion give ambiguous results (Ross 1981).
We improve the Arrow-Pratt approach (1964, 1971a, 1971b), which takes into account
only attitudes towards small exogenous risks, by integrating in the analysis potentially high
endogenous risks that are under the control of the agent. Based on multiple theoretical and
empirical arguments, this new approach offers an elegant study of the close relationship between
behavior, attitude and perceived risk.

Keywords: Endogenous risk-aversion, adaptive risk management, optimal risk-aversion
threshold, excessive risk-averse behavior, risk perception, changing risk behavior.
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1. Introduction

It is well-known that economic agents behave on average risk-neutral for small and repeated
decisions, but the most common attitude of economic agents in all important decision-making
problems is one generated by risk-aversion (Aiginger 1987). Such a behavior is characteristic
for large gains as well as large losses.
Rational agents are goal oriented, they have values and reference points and base their

decisions on uncertain future. In general, they are confronted with various sources of risk and
uncertainty, which are generally different in different contexts.
The decision adopted is not made independently but jointly with other decisions, which

place the agents in risky situations. Decisions taken to avoid, even partially, a source of risk
can be affected by the presence of others.
Uncertainty always attends the risk. It must distinguish between quantifiable risks (when the

objective probabilities are supposed to be known) and inherently unmeasurable uncertainties
(when the objective probabilities are not given in advance). In other words, it must distinguish
between decisions under risk and decisions under uncertainty.

1Financial support from the Spanish Ministry of Education and Science through grant PTA-2003-02-00877
and FEDER is acknowledged.
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It is well-known that endogenous risks are generated and amplified within the system, in
contrast with exogenous risks which generally refer to shocks that arrive from outside the
system. Traditionally, the risk-aversion is equivalent to the concavity of the utility function
(viewed as the measure upon which the agent bases his decisions) or a decreasing marginal
utility. Formally speaking, it means that for any arbitrary risk, the agent will prefer the sure
amount equal to the expected value of the risk rather than the risk itself. However, the condition
of concavity is just a way of expressing risk-averse preferences.
In the literature on risk, two polar cases can be distinguished according to the degree of

risk-aversion exhibited by the economic agent: i) the risk-neutral case; and ii) the infinitely
risk-averse case. These are restrictive theoretical assumptions, which do not apply for economic
studies leading to risk assessment, risk control, and risk management in a dynamic stochastic
environment.
The objective of this paper is to analyze how the traditional results are modified when the

agents’ risk behavior depends on the system dynamics in the past and future as well as on their
individual risk perception. It offers an elegant solution to the inconvenients that arise when
modelling the risk-aversion as in Arrow-Pratt traditional approach.

2. Problem Statement

Consider a rational risk-averse decision-maker characterized by a consistent and efficient
outcome oriented behavior (Dreze 1990; Walsh 1996) who faces uncertainty about the
evolution of a dynamic stochastic environment. His objective is to drive the system as close as
possible to a desired reference trajectory by employing a set of control instruments in an optimal
way. The instruments are selected on the basis of a non-decreasing endogenous information set.
Facing complex decisions, the decision-maker adopts a closed-loop strategy, the information

being utilized in real time. In this case, the optimal policy does not require some large periods
of engagement. The control rules are sensitive to the choice of the working horizon. This
may be the case when the relevant information acquisition cost is high, most likely due to
permanent random shocks in the system or because of the slow inertia of the environment. The
decision-maker tries to reduce the uncertainty related to the choice of his actions by acquiring
information from the beginning of the control to the moment of decision. He has the possibility
to learn from errors and to make a self-evaluation of his actions during the period of control.
The feedback control responds not only to the effects of random inputs, but also to the

measurement errors as well. It is thus not necessary to be able to identify and measure the
sources of disturbance. The feedback learning process is progressive, allowing to adjust the
decision-maker’s ex-ante anticipations about the future trend of the system. In this way, the
difference between actual and assumed system characteristics is minimized by monitoring its
random fluctuations.
The degree of information embedded in the observation of the state variable generally de-

pends on the selected values for the control instruments, so that the extent of learning about
the latent parameters can be directly influenced by the decision-maker. This is the context of
a rational active learning which allows for the decision-maker to experiment. In a multiperiod
setting, the decision-maker can learn about the consequences of his actions through experimen-
tation. It helps to better anticipate the trend of the system, and thus to avoid undesirable
scenarios in the future.
The decision-maker bases his actions on his state of knowledge at the point where the actions

are taken. He has some influence over the rate at which information arrives. His behavior may
generate information. The active learning makes the decision-maker more experienced over
time. However, despite of potential benefits from active learning in stochastic optimization
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problems, the potential for learning is limited if the model is noisy (Easley and Kiefer
1988; Kiefer and Nyarko 1989).
The paper is organized as follows. Section 3 discusses the general model. Section 4 deals

with the choice of the performance criterion ensuring an unique optimal solution for the problem
of optimization and control. Section 5 briefly summarizes the traditional approach of Arrow-
Pratt (1964, 1971a, 1971b). Section 6 introduces the concept of endogenous risk-aversion
by taking into account performances of the system in the past as well as anticipations of the
future behavior of the system in the future. We also analyze the case of high potential shifts in
fluctuating systems. Several qualitative results on adaptive risk management /perception are
given in Section 7. Section 8 introduces the concept of excessive risk-averse decision-maker. A
complete characterization of common /distinct types of decision-makers becomes thus possible.
Section 9 refines the risk analysis by taking into account potential sensitive periods influencing
the choice of the optimal risk-aversion threshold. Section 10 discusses the case of a changing
risk profile, when the decision-maker becomes risk-averse, (almost) risk-neutral or risk-lover,
depending on the system evolution and his individual risk perception. An interesting analysis
about risk-averse preferences based on the decision-maker’s type is provided. Section 11 draws
several important conclusions and makes suggestions for further research.

3. The Model

The type of model we analyze corresponds to a data generating process which is dynamic,
non-linear and managed by a system of discrete simultaneous equations.
Suppose that the economic agent disposes of an instrument (or control variable) with the

help of which he tries to control the environment in an optimal way.
Let xt ∈ Rq be the value of the control variable at time t. Note that xt is not strictly

exogenous, in general the actions being dependent variables on the history and current state of
the system. Different contexts of decision-making generally call for different actions.
Let yt ∈ Rp be the observable target variable in t, and let zt ∈ Rr be an exogenous variable

observed outside the system under consideration, and hence not subjected to the agent’s control
at the time period t. This may be forecasted but cannot be influenced by the decision-maker.
Whether or not the variable zt is exogenous depends upon whether or not that variable

can be taken as given without losing information for the purpose at hand. Specifically, the
exogeneity of the variable zt depends on the parameters of interest of the decision-maker as well
as on the purpose of the model (statistical inference, forecasting, or policy analysis). Variations
in the process zt over time will generate variations in the process xt.
Denote byXt = {..., x−1, x0, x1, ..., xt} the history of the process x up to time t, and similarly

for Yt and Zt. We thus allow for the current state variable to depend not only on the agent’s
current decision but also on an arbitrarily complex history Xt.
We make the following basic assumptions:

Assumption 1. The evolution of the environment is modelled by a non-linear extended-
memory process generated according to the structural state equation:

yt = F (Yt−1,Xt,Zt,βt, t) + ut, t ∈ Z

where ut ∈ Rp (exogenous environmental “white noise”) is the specific “risk” modelled by a
normal random variable with zero mean-vector and finite variance-covariance matrix Ψ.
The parameter vector βt ∈ Rk varies according to the information available at time t. It

specifies the structure of the model. The shape of F and the value of the parameters of interest
are generally determined from the behavior of the decision-maker over time.
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In general, yt is not a Gaussian process. Obviously, nonlinearity between yt andYt−1 implies
non-normality, and hence an asymmetric dynamic. The variable t plays the role of a synthesis
variable in the econometric model.

Assumption 2. The agent’s objective is to constrain the system to follow a feasible optimal
path (or aspiration level) η not.

= {yg1, yg2 , ..., ygT} by selecting the control variable xt in a suitable
way.
This is a pre-specified condition which cannot be changed during the period of control. We

say that η characterizes the agent’s preferences on the outcomes of the system.
Taking into account foreseeable movements in y as well as possible economic constraints,

the agent chooses some optimal bounds lt such that 0 < ygt ≤ lt < 1, t = 1, ..., T .
Since a real time control process is necessarily discrete, this cannot converge with precision

to any target value, but only to a neighborhood of it. When the process of control is finished,
the decision-maker will obtain a stochastic neighbouring-optimal trajectory which is expected
to be close to the optimal path η. More is non-linear the model, more it will be difficult to
track the targets.

Remark 1: When the targets are endogenously fixed, these are modelled sequentially, that
is, simultaneously with the system dynamics. The targets must be compatible with the state
of the system. Constraints may change over time.

Assumption 3. The timing of the control is as follows: At each period t, the agent im-
plements an optimal action xt, which is a stimulus for the dynamic environment. This is
purported to contribute to the stability against deviations from the system equilibrium or to
correct unavoidable deviations in the past. A shock ut is carried out and the agent observes
the output yt (the impulse response) which allows for extracting a dynamic signal about the
future trend of the system. The agent employes this signal for a strategic learning (specific
to a closed-loop monitoring) in order to reduce his uncertainty about the future trend of the
system. The question is: How this signal will influence the agent’s risk behavior over time?
The information revealed by the output signal can increase the precision of the next control

instrument, and hence to decrease the agent’s risk aversion in the future. This output together
with the corresponding action provide information on the data generating process.
The uncertainty is reduced only ex-post, that is, only after the informative output-signal

has been received. The effect of the shock ut on the output yt will disappear gradually in time.

Assumption 4. The optimality of the instruments xt (t = 1, ..., T ) is considered with
respect to a global criterion (preference function) W (y1, y2, ..., yT ) which measures the system
deviations ∆yt

not.
= yt−ygt . This is supposed twice continuously differentiable, strictly increasing

and convex in the feasible area of the model.

Assumption 5. The decision problem is to find the optimal values of the control instru-
ments which minimize the agent’s loss function by taking into account the constraint relation-
ships that exist between the controlled, partially controlled and uncontrolled variables.
The agent estimates his optimal policy bx(.) not.

= (bx1, bx2, ..., bxT ) before knowing the value of
y0. He therefore obtains a random policy conditional to y0:

bx (.) = argmin
x(·)

Ex[W (y1, y2, ..., yT ) | y0]

where Ex denotes the expectation with respect to the stochastic process induced by the decision
rule x.
It is very likely that difference between ex-ante decisions and ex-post results (i.e., between

ex-ante and ex-post optimality) exists.
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In practice, the initial state y0 can be fixed or random. It is crucial to treat the initial value
correctly and to measure its impact. Small variations of the initial conditions can have large
effects on the long-run outcomes.
This is the classical context, often employed in the literature, where the hypothesis of risk-

neutrality for the decision-maker is adopted for the entire period of control.

4. Choice of the Criterion

In order to avoid several local minima, and thus to have a unique solution for the optimal
control problem, a necessary condition is to use a strictly convex criterion.
Using the parsimony principle, we seek for the simplest strictly convex loss function. It is the

quadratic approximation which satisfies this condition. Interpretation is simple: a quadratic
objective function may be considered as a good local approximation of the true preferences,
exactly as a model approaches the behavior of the environment around the observed variables.
This is reasonable because it induces a high penalty for large deviations of the state from the
target but a relatively weak penalty for small deviations.
Nothing impedes to consider an additive recursive criterion, on the one hand, in order to

simplify the determination of the formula for the optimal instrument and, on the other hand,
because it makes possible to apply the Bellman’s (1961) optimality principle.
A limited expansion of second order of W[1,T ](y1, ..., yT ) around a given feasible point

Y g = (yg1, ..., y
g
T ) gives us:

W[1,T ](y1, ..., yT ) = ∆Y 0K∆Y + 2∆Y 0d+ c

where

K(pT×pT )
not.
=

∙
∂2W

∂Y ∂Y 0

¸
Y g

, d
not.
=

∙
∂W

∂Y 0

¸
Y g

The quadratic performance criterion W being strictly convex and twice continuously
differentiable, the matrix K is symmetrical and positive semidefinite.
The decision criterion is a function that puts weight (or measure) on the possible outcomes,

indicating their desirability or undesirability.
By definition,

W[1,T ](y1, ..., yT )
def.
=

TX
t=1

Wt(yt)

(additively separable criterion)

where Wt is a quadratic asymmetric loss function given by the following analytical expression:

Wt(yt) = (yt − ygt )
0Kt(yt − ygt ) + 2(yt − ygt )

0dt

with a prime denoting transpose.
Asymmetry derives from the difference in penalty costs which the decision-maker may attach

to errors, depending on whether these are errors of shortfall or overshooting about the targets.
Generally, the decision to choose certain parameters Kt and dt reflects the decision-maker’s

priorities and also depend on the available quantity of information concerning the future de-
velopment of the system parameters. However, it is far from probable that the decision-maker
will be able to assign values to the weights which represent his preferences correctly.
If the future evolution of the system is unpredictable, then the best weighting matrix Kt

which can be selected is the identity matrix, while the best value for dt is the unity vector.
If Kt is not diagonal, then the penalties also attach to the covariances of the state variable
deviations from its desired level.
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The weights employed are anything but objective, since the deviation of the target variable
may be not of the same importance at different moments in time. The idea is to choose the
parameters which yield a smoother (i.e., less fluctuating) control, and so a more stable system.
At each period t, the parameters Kt and dt are updated and new optimal values are chosen

to fulfill the requirements of the decision-maker. These requirements are based on policy values
presented at each period and do not require any direct information about the actual weighting
that the decision-maker may have in mind.

5. Sensitive Criterion to Risk: Static Approach

The notion of utility is fundamental in decision and risk theory. In the theory of utility
maximization, the risk situations are measured by taking into consideration the agent’s prefer-
ences. Thus, a decision in a risky situation (e.g., a lottery) is more risked than another, if the
utility of the former is inferior to the utility of the latter, for an agent who is risk-averse.
In the static approach of expected utility (one aggregated period of time), the measure

of risk-aversion is given by the Arrow-Pratt index, which requires the existence of a Von
Neumann-Morgenstern utility function.
LetW[1,T ] be the usual quadratic (non-symmetrical) criterion, and let U be the global utility

of the control described by the following exponential relationship:

U(W[1,T ]) =
2

ϕ
[exp(−ϕ

2
W[1,T ])− 1]

It verifies:

−U
00(W[1,T ])

U 0(W[1,T ])
=

ϕ

2
, ∀ W[1,T ]

where a prime denotes the partial derivative with respect to W[1,T ]. The parameter
ϕ(W[1,T ])

2

can be interpreted in terms of the Arrow-Pratt risk measure of risk-aversion at a particular
W[1,T ], U being a CARA exogenous utility function.
It is well-known that the non-linearity of the utility function is more commonly represented

as risk-aversion. The exponential utility functions are, in this sense, the most widely utilized
risk-sensitive utility functions because they can model a spectrum of risk attitudes for the
players (Corner and Corner 1995).
This is the case of a totally exogenous risk, when the agent’s risk attitude is rigid during

the entire working horizon. This type of approach is easy to handle as it allows to work with
a mean-variance framework, but unfortunately, constant absolute risk-aversion is not a tenable
assumption for a majority of economic /financial models.
The static approach is “myopic” with regard to potential changes in the future behavior of

the agent due to inherent fluctuations of the system over time. Input effects are not thus taken
into account. In dynamic stochastic environments, this procedure is not appropriate.
The optimal strategy will be ϕ-dependent:

sgϕ (.) = argmax
x1,...,xT

E0[U(W[1,T ])]

sgϕ (t)
not.
= bxt (It−1) | y0, ∀ t = 1, ..., T

where It is the information set acquired until time t and updated each time as new observation
becomes available. We define the sensitive criterion to risk by:

γ0(ϕ)
def.
= E0[U(W[1,T ])]
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It is easy to see that if the term ϕV0(W[1,T ](y1, ..., yT )) is small, then a limited expansion of
second order justifies the following approximation:

γ0(ϕ) ≈ −E0[W[1,T ](y1, ..., yT )] +
ϕ

4
V0(W[1,T ](y1, ..., yT ))

We distinguish three distinct cases:
i) If ϕ < 0, then the function U(W[1,T ]) is negative, strictly concave and decreasing. Note

that the sign of U has no particular importance (conceptually, this is unimportant). When one
maximizes γ0(ϕ), the above approximation shows that the variability is penalized; the agent is
afraid of large accidental values of W[1,T ].
There is a strong correlation between pessimism and risk-aversion. Indeed, if ϕ decreases, the

agent is convinced that some large values ofW[1,T ] appear more and more frequently. Therefore,
the agent will have some pessimistic expectations, being characterized by a significative loss
aversion.
ii) If ϕ > 0, then the function U(W[1,T ]) is negative, strictly convex and decreasing.

The line W = −2/ϕ is an horizontal asymptote towards infinity of the curve U(W[1,T ]) and
(0, 0) ∈ Graph(U). The situation is opposed to the previous case. There is rather an interest
for moderate values of W[1,T ] than for extreme values. We say that the agent is optimistic (or
risk-lover).
iii) If ϕ = 0, then one obtains (using the Hospital’s rule):

lim
ϕ→0

γ0(ϕ) = −E0[W[1,T ](y1, ..., yT )]

Thus:
minE0[W[1,T ](y1, ..., yT )]⇔ max γ0(ϕ)

the term in the left-hand being the usual criterion from the risk-neutral case.
We have that U(W[1,T ]) →

ϕ→0
−W[1,T ]. In other words, the agent’s problem is to minimize

the expected loss if he is risk-neutral, or to maximize the expected utility of the loss if he is
risk-averse. The shape of the utility function will determine the magnitude of the departure
from the risk-neutrality case.
Although often criticized for its limitations in explaining and evaluating risky choices, the

most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This is a
potential borderline case which must be envisaged with prudence in complex dynamic stochastic
systems.
If ϕ1 ≤ 0 ≤ ϕ2, then one can write the following inequalities:

Uϕ1(W
∗
[1,T ]) ≤ U0(W

∗
[1,T ]) ≤ Uϕ2(W

∗
[1,T ])

We give below a graphical illustration of the three above cases.

Figure 1
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While in a static environment one can imagine an agent that does not learn during the
process and maintains a fixed utility function, this type of behavior would be less likely to pro-
duce a positive payoff in a very dynamic environment. There is by now accumulating evidence
that agents differ substantially in their risk preferences and also that CARA risk preferences are
not a good description of agents’ revealed risk preferences. CARA utility functions cannot cap-
ture the full behavior of agents towards risk. This is because, in this context, the risk premium
is assumed constant across shifts of a lottery. Numerous empirical studies have demonstrated
the need for more flexible and realistic utlity functions than the CARA. It is necessary to have
a more profound understanding of the way the evolution of the dynamic system can affect the
risk perception, risk attitude, and risk behavior of rational decision-makers.

6. Adaptive Endogenous Risk-Aversion

6.1. General Framework

Although there is a large amount of literature on risk (Friedman and Savage 1948;
Bernoulli 1954/1738; Pratt 1964; Arrow 1951, 1971; Kahneman and Tversky
1979; Ross 1981; Yaari 1987; Kimball 1993; Rabin 2000; Rabin and Thaler 2001;
Cheve and Congar 2002; Eisenhauer 2003; Eisenhauer and Ventura 2003;
Novoselov 2003; Kirkwood 2004; Yao et al. 2004; Filbeck et al. 2005; Nielsen
2005; Bommier 2006; Chambers and Quiggin 2006; Eisenhauer 2007; Jerker 2007,
amongst others), there is no theoretical and empirical work for comparing the degree of
risk-aversion of rational decision-makers in the context of controlled dynamic stochastic en-
vironments. The purpose of the present study is to extend the Arrow-Pratt traditional
approach, which takes into account only attitudes towards small exogenous risks, to the con-
text of potentially high endogenous risks that are under the control of the decision-maker.
The attitude towards risk is closely linked to the history of the process as well as to the

agent’s anticipations on the system behavior in the future. We formalize this point of view for
a general class of models and we detail the positive implications in the context of a varying-
risk environment which evolves over a finite discrete-time horizon. Because the system behavior
changes continuously, the agent’s risk aversion will also change, particularly when these changes
are significative. Based on a dynamic adjustment process of the system deviations, the agent’s
objective is to diminish his risk-aversion over time. He moves from risk avoidance to risk
elimination.
The agent makes decisions according to his attitude towards risk. The dynamicity of the

evironment might affect the design of the agent’s utility in a subtle way. We consider an
exponential utility function (performance criterion) Ut depending on the evolutive loss W[1,t]

and a dynamic absolute risk-aversion index ϕt:

Ut(W[1,t], ϕt)
def.
=

2

ϕt

[exp(−ϕt

2
W[1,t])− 1], t = 1, ..., T

with

W[1,t]
def.
=

tX
s=1

Ws(ys)

It follows that:

−U
00
t (W[1,t], ϕt)

U 0
t(W[1,t], ϕt)

=
ϕt

2

where a prime denotes the partial derivative with respect to W[1,t].
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Therefore,
ϕt(W[1,t])

2
measures locally (at the point W[1,t]) the agent’s risk-aversion, Ut being

a CARA endogenous time-varying utility function. This new approach extends the case of
time-varying preferences embedded in the recursive utility concept introduced by Epstein and
Zin (1989). The key concept here is the endogeneity of the agent’s risk aversion index, which
is particularly important in the policy settings. Time-varying preferences is only a secondary
aspect, a direct consequence of the model specification.
We define the sensitive criterion to dynamic risk at time t by:

γ0(ϕt)
def.
= E0[Ut(W[1,t], ϕt)]

We have:
minE0[W[1,t](y1, ...yt)]⇔ max γ0(ϕt)

To illustrate why this new risk framework is informative about how attitudes towards risk of
the decision-maker change in a dynamic environment, we prove several theoretical results that
support the need to review and improve the traditional approach of Arrow-Pratt (1964,
1971a, 1971b).

Proposition 1. A more (less) risk-averse decision-maker is characterized by a smaller
(higher) local utility level.
Proof. In the appendix. ¥
This result characterizes the agent’s preferences in function of his risk-aversion degree over

time. The objective is not to exceed a fixed risk threshold value over which the agent becomes
excessively risk-averse (see Section 8). He will therefore be characterized by an over-pessimism,
that is, an induced deviating behavior with respect to perceived states of the system.
At each control period, the interest of the agent is to choose an optimal action with a higher

ex-ante expected utility. This prevents to exceed some threshold utility levels under which the
agent’s ex-post preferences are suboptimal. We provide below a suggestive graphical illustration
of the Proposition 1.

Evolution of the local uti l ity function: the case of a risk-averse decision-maker
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Figure 2

In an evolving environment, the utility function obviously does not remain constant over
time. It changes at each stage of the control, even if not significatively (the case of smooth
preferences). It does not exclude the possibility to have the same utility level for various periods.
In this direction, we note a large class of decision rules which is representable by a variation of
the utility between each two consecutive periods (Gilboa 1989). It comes to consider the agent
at different periods as though he were different individuals (Allais 1947). It is important to
stress that the current decision can affect the agent’s utility level in the future.
The agent can benefit from the learning of preferences. This idea was developed in first

by Stigler and Becker (1977). However, it is far from probable that the agent exactly
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maximizes his utility at each stage of the control. We rather face a nearly optimization behavior,
where the control variable is continuously and optimally adjusted to maximize some objective
function (Van de Stadt et al. 1985; Varian 1990; Leland 1990).
Generally speaking, the utility depends on the purposes for which it is developed. It does

not exist but for the agent, and thus, it has a subjective character. This is derived from
individual preferences. It is very rare in econometrics to be able to fully specify the utility
function. No economic agent has sufficient a priori knowledge to fully specify his utility. The
stochastic disturbance in the system produces random shocks in the agent’s preferences over
time. It is also important to note here that the decision-makers usually violate the expected
utility theory when there is risk in the choices.
Before introducing new theoretical considerations on the concept of risk-aversion, a natural

question arises: How the standard conclusions on risk assessment and management modifies
when modelling the attitude towards risk of the decision-maker according to past and expected
future dynamics of the stochastic system?

6.2. Risk-Aversion Based on a Truncated History of the Process and Rational
Anticipations of the System Behavior in the Future

In a dynamic context, the agent can fully take advantage from the learning benefits. He can
influence the likelihood of the system states by using a reinforcement learning strategy. The
agent is not myopic in the sense of expecting. Future anticipations play an important role in
how the agent will decide what strategic actions and optimal risk to take. Risk is endogenous
by nature. Its estimation typically depends on forecasts of the future state of the system.
Suppose that the agent is a strategic decision-maker. He thinks about the future taking into

account feedback-and-forward information. Depending on the way the agent perceives future
outcomes, both risk sensitivity and optimal decisions will be affected during the process of
optimization and control. An increased power of prediction is an efficient method in order to
reduce the uncertainty about the future system trajectory. The forecast is updated each time
as new observation becomes available. The future can thus be regarded as an extended present.
A correct evaluation of the past evolution of the system is crucial for making optimal

predictions in the future. This is necessary for an optimal assessment of the agent’s risk aversion
over time. Fluctuations in the system target variable will generate a fluctuating risk-aversion
of the agent.
We make the following useful notations:

St, p_d
not.
= k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k

2

(the sum of squared past deviations at time t)

St, a_f_d
not.
= k yat|It − ygt k2 +...+ k yat+k2|It+k2 − ygt+k2 k

2

(the sum of squared anticipated future deviations at time t)

St, w_p_d
not.
= k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1
(the weighted sum of squared past deviations at time t)

St, w_a_f_d
not.
= k yat|It − ygt k2 Lt + ...+ k yat+k2|It+k2 − ygt+k2 k

2 Lt+k2

(the weighted sum of squared anticipated future deviations at time t)

where ygt+i (i = 0, ..., k2) represent fixed targets in the future (taking into account foreseeable
movements in y), yat+i|It+i (i = 0, ..., k2) are expected values of the target variable at time t+ i

based on non-decreasing endogenous information sets It+i and Lt−j1 (j1 = 1, ..., k1), Lt+j2

(j2 = 0, ..., k2) are strategic weights attached to the system deviations (in the past and future)
with respect to the equilibrium path η.
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In a real decision-making problem, the forecast must be as accurate and efficient as possible.
A necessary preliminary step for the decision-maker in order to optimally choose the target path
is to make some a priori expectations on the future evolution of the system based on its past
performances. A question arises: Are the current and past values of the process yt sufficient to
forecast yt+k (k = 1, ..., k2)?
Ex-ante expectations refer to those which held prior to the acquisition of information and

generally imply a discrete-time process of tatonnement. These must be unique and in accord
with the agent’s observations and generally are dependent on the initial value of the state
variable. The more they are distant in time, the more they are difficult to assess (due to
the extreme uncertainty of the far future). Ex-ante and ex-post forecast errors are viewed as
indicators of uncertainty of the decision-making process. Because expectations differ across
decision-makers, they are generally characterized by distinct degrees of risk-aversion.
We are now in a position to give a definition of the agent’s risk aversion index by taking

into account past performances of the system (a truncated history) and rational anticipations
of the system behavior in the future.

Definition 1. Using t to denote time, the absolute risk-aversion index ϕ
r_a
t, p_f evolves

according to:

ϕ
r_a
t, p_f

def.
=

St, w_p_d + St, w_a_f_dp
(St, p_d + St, a_f_d)2 + l

, t = 1, ..., T

where l ≥ 1 is an integer characterizing the agent’s type, and the parameters Lt−j1, Lt+j2(j1 =
1, ..., k1; j2 = 0, ..., k2) verify the following inequalities:

−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0,−1 < Lt ≤ ... ≤ Lt+k2 ≤ 0

with
1 ≤ k1 < T ; k2 ≥ 0; 1 ≤ k1 + k2 ≤ T − 1

The weights may differ across economic agents. They are updated each time as new observa-
tion becomes available. The agent gives a higher importance to the past and future deviations
which are closer to the moment of implementation of a new optimal action. The smaller the
weight, the higher the importance given by the agent to the system deviation from his local
objective.
Taking into account the potential destabilizing role of a long memory of the process, the

agent takes into account only a limited history in the risk analysis. Distant past observations
might increase significatively the bias of the estimates in the econometric model. These provide
an imprecise signal for the agent.
It generally exists an arbitrary element as regards the choice of the backward lag k1. The

objective is to find the better compromise between fit and complexity. On the other hand,
distant forecasts are difficult to formulate due to unpredictable external disturbances which
affect the system performance. The larger the forward lag k2, the higher the prediction errors.
The risk can be interpreted like the agent’s degree of confidence in the future. It decreases

with uncertainty. It is only by taking into account the past and the expected future that
the agent can optimally evaluate the risk in a dynamic system. It allows for a better risk
management at each control period.
Despite the fact that risk-averse agents hate uncertainty whereas the risk-neutral are indif-

ferent (their behavior remains unchanged), they often place a lower value on forecasting than
risk-neutral agents do.
Both objectivity and subjectivity characterizes the agent’s risk behavior over time. Its

complexity is given by the changing environment design and the agent’s typology.
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Remark 2. Note the local character of the agent’s risk aversion. This is defined for a
neighborhood of the fixed targets ygt−1, ..., y

g
t−k1 and ygt , ..., y

g
t+k2

, respectively. It will therefore
exist some neighborhood effects of the system dynamics on the agent’s risk behavior.
There is a strong relationship between the choice of the targets and the agent’s attitude

towards risk. Smaller targets are correlated with a smaller degree of risk-aversion, and hence a
higher sensitivity to risk of the agent.
Remark 3. The higher (lower) the degree of risk-aversion at time t, the lower (higher) the

absolute risk-aversion index ϕ
r_a
t, p_f . It is important to distinguish between local risk-aversion

(at time t) and global risk-aversion (over the whole period [1, T ]).
Remark 4. There is no loss of generality in considering that the absolute risk-aversion

index ϕ
r_a
t, p_f takes values in (−1, 0] because one can always find an isomorphism from (−1, 0]

to (a, 0], with a < −1 a fixed real number.
Remark 5. By definition, two system deviations with respect to the agent’s fixed targets

are comparable in magnitude if and only if their ratio is very close to 1.
Remark 6. Large deviations of the system with respect to the agent’s fixed targets are

expressed by the following inequalities:

k yt−j1 − ygt−j1 k À 1, j1 = 1, ..., k1; k yat+j2|It+j2 − ygt+j2 k À 1, j2 = 0, ..., k2

These are generally caused by systematic random shocks within and outside the system. It
is important to note here that large deviations in the past could lead to less confidence in the
future.
This new approach has strong implications on the agent’s adaptive behavior towards risk in

a fluctuating environment. It improves the point of view of previous work in the literature on
risk management /assessment /perception (Cohen 1995; Eeckhoudt and Godfroid 2000;
Isaac and Duncan 2000; Cox 2001; Rabin and Thaler 2001; Cheve and Congar
2002; Eisenhauer 2003; Eisenhauer and Ventura 2003; Novoselov 2003; Kirk-
wood 2004; Nielsen 2005; Chambers and Quiggin 2006; Eisenhauer 2007, amongst
others).

Proposition 2. Risk perception changes with the behavior of the system as well as the way
the agent interprets its evolution.
Proof. In the appendix. ¥
In the real world, the risk is not uniformly distributed over the entire working horizon. In

other words, the risk-aversion index is non-monotonous over time. The agent becomes more or
less risk-averse according to the fluctuation of the system state.
Uncertainty does not necessarily diminish over time. It verifies for simple systems as well

as for complex dynamic environments. We give below a suggestive graphic in this sense.
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Note that for smaller deviations of the system with respect to the fixed targets, one obtains
a smaller value of the quadratic loss function. The agent more readily accepts the risk when
the loss is decreased. His behavior is thus characterized by a smaller degree of loss aversion.

Remark 7. In dynamic systems with a smooth evolution (but not only) it may be possible
to obtain the same value for the risk-aversion index at distinct periods of time. Mathematically
speaking, this behavior is due to the non-injectivity of the index function.
We illustrate below two scenarios in this sense, when all system deviations are small and,

respectively, high.
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6.3. Risk-Aversion Based on a Truncated History of the Process

Suppose that the agent takes into account only a truncated history of the system when
estimating the risk-aversion index. More exactly, only the most informative information is
considered. In this particular context, it is proposed the following definition for the index:

Definition 2. Using t to denote time, the absolute risk-aversion index ϕr_a
t, p evolves accord-

ing to:

ϕ
r_a
t, p

def.
=
k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1q
(k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k2)2 + l

, t = 1, T ; k1 = 1, T − 1

where −1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0 are strategic weights attached to the system deviations
with respect to the optimal path {ygt−1, ..., ygt−k1}, and l ≥ 1 is a fixed integer characterizing the
agent’s type.

An interesting case, very often encountered in economic /financial applications, is that of
comparable deviations of the system, when these are all either high or small in magnitude. We
formulate and prove a theoretical result in this direction.

Proposition 3. Suppose that all system deviations are comparable in magnitude. In this
case, the agent is characterized by a higher degree of risk-aversion at the same stage of the
control if a smaller value for the backward lag k1 is considered in the estimation of the local
index ϕr_a

t, p .

Proof. In the appendix. ¥
This result reveals the role played by the history of the system in estimating the agent’s

degree of risk-aversion.
When all system deviations are small and comparable in magnitude, we say that the system

is characterized by a smooth evolution (i.e., without significative shifts over time).
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By contrast, a system with relevant shifts is characterized by large deviations from the fixed
targets. The inertia of the system can generate either small or large fluctuations. The degree
of inertia of the system is quantified by the sum of the squares of the distances of the outputs
from the fixed targets.
It is important to note here that the shift amplitude is considered with respect to the optimal

reference path η. We give below a graphical illustration of the Proposition 3.
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6.3.1 High Potential Shifts

Shift happens. The agent learns from failures. Every high deviation, seen as a failure,
is analyzed in order to avoid unexpected fluctuations of the system in the future. A large
deviation from the expected outcome is perceived as a shift by the agent.
We call a high positive shift, the transition of the system from consecutive small levels of

performance to a high level one. In the opposite case, we call this a high negative shift. The
risky shift phenomenon is one of the key issues in economics, and in the study of dynamic
systems in particular.
The agent’s objective during the period of control is to obtain smooth shift values with

respect to the fixed targets. This contributes to the equilibrium and stability of the dynamic
system.
The concept of risk-aversion is appropriate to dynamic stochastic environments whose be-

havior change significatively over time. This is the case of high fluctuating systems.

Proposition 4. Consider the following two opposite scenarios: the transition of the system
is from consecutive small (large) deviations to a large (small) deviation. For this type of
scenarios, the degree of risk-aversion is highly dependent on the weights the agent will attach
to the large deviations of the system.
Proof. In the appendix. ¥
Sudden significative changes in the system behavior can affect differently the agent’s risk

aversion. Large shifts are correlated with large deviations of the system with respect to the
fixed targets. The shift amplitude generally depends on the type of transition.
We give below three distinct attitudes towards risk depending on the agent’s individual

perception about large fluctuations of the system.
i) the large deviation of the system at time t−1 (in the context of the first scenario) is much

more important for the agent than all other (k1 − 1) large deviations obtained in the context
of the second scenario.
ii) the large deviation of the system at time t−1 (in the context of the first scenario) is much

less important for the agent than all other (k1 − 1) large deviations obtained in the context of
the second scenario.
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iii) the large deviation of the system at time t − 1 (in the context of the first scenario) is
either much more or much less important for the agent than all other (k1 − 1) large deviations
obtained in the context of the second scenario.
The following three graphics illustrate numerically the Proposition 4.
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Figure 9: Case c

Note that for the three above graphics, the risk-aversion index value at time
t = 1, ..., 4 corresponds, respectively, to the following distinct cases:
i) system transition from four large (small) consecutive deviations to a small (large) devia-

tion;
ii) system transition from three large (small) consecutive deviations to a small (large) devi-

ation;
iii) system transition from two large (small) consecutive deviations to a small (large) devi-

ation;
iv) system transition from a large (small) to a small (large) deviation.
The sense of transition is perceived differently by a risk-averse agent. The initial state of

transition plays a crucial role in estimating his degree of risk-aversion at a given period of time.
The agent’s objective is to anticipate significative fluctuations in the target variable during the
period of control.

6.3.2. Fluctuating System

In what follows, we analyze the impact of the system fluctuations on the agent’s attitude
towards risk during the period of control.
A natural question arises: In the real world, does more often envisage to pass from a high

deviation of the system to a small one or the opposite? The answer is not obvious. When the
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system inertia is high, the first scenario is not easy to be carried out. An effective control will
also prevent the realization of the second scenario.
The agent must avoid to deviate from the fixed targets during the period of control. In

order to reach this strategic objective, a robust control strategy (i.e., with a low sensitivity to
changes in the input data) is necessary.
We give below two suggestive graphics which illustrate the agent’s risk behavior in the

context of a fluctuating system.
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The first (second) graph corresponds to a highly (weakly) risk-averse agent who implements
his optimal policy in the context of a dynamic environment characterized by a large inertia.
Effective management of the system inertia will have a positive impact on the agent’s risk
attitude.
It is well-known the role of risk preferences in explaining financial system inertia. It is

important to distinguish here between exogenous and endogenous inertia. These influence
differently the agent’s risk behavior and his optimal decisions over time. The endogenous
inertia present in all dynamic processes is one of the most critical parameters affecting the
evaluation of alternative policies. There is generally an inherent inertia effect of the system due
to its capacity of reaction. The degree of inertia is modelled as an endogenous rational choice
made by the agent.
It is interesting to analyze the correlation between the agent’s risk behavior and his degree of

inertia over time. This is an exciting fruitful area for future research, with strong implications
in terms of policy-making.

6.3.2. Risk-Aversion Based on a Progressive History of the Process

Suppose that the agent has the interest to use a progressive history of the process for
estimating the risk-aversion index. It may be the case where more information is needed in
improving the risk assessment process. Past overall performances of the system are taken into
account in measuring the agent’s degree of risk-avesrion. The index value is updated each time
as new observation becomes available. In this particular context, we introduce the following
definition for the risk-aversion index:

Definition 3. Using t to denote time, the absolute risk-aversion index ϕr_a
t, w evolves accord-

ing to:

ϕ
r_a
t, w

def.
=
k yt−1 − ygt−1 k2 Lt−1 + ...+ k y0 − yg0 k2 L0p
(k yt−1 − ygt−1 k2 +...+ k y0 − yg0 k2)2 + l

, t = 1, ..., T

with l ≥ 1, a fixed integer which characterizes the agent’s type, and −1 < Lt−1 ≤ Lt−2 ≤ ... ≤
L0 ≤ 0, some strategic weights attached to the system deviations with respect to the reference
path {ygt−1, ygt−2, ..., yg0}.
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Denote by yg0 the target variable at time t = 0 employed by the agent in the previous
optimization scheme. This is chosen to be a small value.
The initial state of the process influences the system trajectory and implicitly the agent’s

risk attitude during the period of control. Agent’s sensitivity to risk (generally non-uniform
over time) may be captured by the shape of the agent’s index curve. An empirical analysis in
the case of a free-floating initial state can illustrate the agent’s risk-sensitive behavior. One can
imagine two distinct scenarios in this direction:
i) y0 is small, in which case the deviation k y0 − yg0 k is small in magnitude, and thus the

risk-aversion index ϕr_a
1, w has a high value.

ii) y0 is high, in which case the deviation k y0 − yg0 k is high in magnitude, and thus the
risk-aversion index ϕr_a

1, w has a small value.
In the real world, the relationship between the agent’s reaction to the perceived states of

nature and his attitude towards risk is complex. This is a consequence of the importance the
agent places on the system states. The observability of the system is dependent only on the
system states and the system output.
Generally, risk-aversion makes the reaction stronger than risk-neutrality. However, when

both agents are risk-averse but at very different degrees, the less cautious of the two can have
a weaker reaction than in the risk-neutral case. This is an astonishing result that naturally
follows from the analysis of the relationship between high deviations and perceived states of
nature.

Proposition 5. A risk-averse agent who manages more and more hardly the evolution of
the system is characterized by an increasing risk-aversion over time.

Proof. In the appendix. ¥
As the number of consecutive failures increases, the economic agent will become less and less

confident, and thus his degree of risk-aversion will be more and more raised. It is the context
when it is possible for the agent to become excessively risk-averse during the period of control.
This type of scenario is possible when large deviations are correlated with a high inertia of

the system. The potential for learning is limited in this particular context.
In a noisy environment, the actions implemented by the agent have a weak impact on the

irregular trend of the system.
Reasoning by analogy, we conclude that in the case where the agent controls better and

better the system trajectory, he will become more and more confident over time. His degree
of risk-aversion will then be less and less raised. It is important to note that the two above
scenarios are not symmetrical.
We give below a graphical illustration of these two distinct scenarios when the amplitude

of the system deviation at time t = 1 is relatively small or very large.
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It is interesting to remark that in the case where the agent more and more hardly controls
the system trajectory, the index value decreases more quickly, while in the opposite case, it
increases slowly. In other words, it is more easy to loss the control of the system than to
improve its trajectory.
For the second scenario, the shape of the index curve is almost linear, while for the first

scenario, this is characterized by an important degree of nonlinearity. This is a surprising result,
far from intuitive.

6.4. Risk-Aversion Based on Rational Anticipations of the System Behavior in
the Future

In this section, we analyze the case where the agent takes into account only rational
anticipations about the system behavior when modelling the risk estimates over time. It implies
a risk-attitude adjustment during the period of control.
This may be the case where the agent looks towards the future rather than evaluating the

evolution of the system in the past. Deviations from past targets are “ignored” except to the
extent that they affect the future.
In this particular context, the absolute risk-aversion index is defined as follows:

Definition 4. Using t to denote time, the absolute risk-aversion index ϕr_a
t, f evolves accord-

ing to the following relationship:

ϕ
r_a
t, f

def.
=

St, w_a_f_dp
(St, a_f_d)2 + l

, t = 1, ..., T.

6.5. Comparing the four Dynamic Risk-Aversion Definitions

Proposition 6. In a dynamic environment, the agent’s degree of risk-aversion varies
according to his adopted strategy to manage endogenous uncertainty.
Proof. In the appendix. ¥
Future uncertainty affects the agent’s risk attitude. Anticipation of higher (smaller) system

deviations with respect to the fixed targets corresponds to a higher (smaller) degree of risk-
aversion only if the agent attaches appropriate weights to these deviations.
More information helps for better forecasting the risk but it does not necessarily decrease the

agent’s uncertainty. Adaptive dynamics of the system correlated with its inherent inertia can
produce significative changes in the agent’s risk behavior. The shorter the planning horizon, the
easier it is to be accurate in forecasting. It is therefore expected to obtain a better evaluation
of the risk.
Errors from learning occur. These can be improved but not eliminated when analyzing real

phenomena. The process of learning is generally non-monotonous over time.
The agent dynamically adjusts his actions in order to minimize the distance between the

actual state of the system and the fixed target. Large endogenous risks are not easy to avoid
due to their correlation with high fluctuations of the system.
Permanent or transitory shocks in observed movements of the system will affect the agent’s

degree of risk-aversion. Contrary to what is generally believed or intuition would suggest, the
sensitivity to risk can be lower when the agent does not explicitly integrate past information
in the risk-aversion index formula. The observed outputs depend upon his ability to anticipate
the future.
A natural question arises: How to define the optimal trade-off between past and expected

future when dealing with adaptive risk perception and optimal risk assessment?
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We give below four suggestive graphics (corresponding to the four proposed risk-aversion
index definitions) which illustrate numerically the above theoretical result.
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We have the following inequalities for the risk-aversion index:

ϕ
r_a
1, p_f < ϕ

r_a
1, w < ϕ

r_a
1, p < ϕ

r_a
1, f ,while ϕ

r_a
2, f < ϕ

r_a
2, w < ϕ

r_a
2, p_f < ϕ

r_a
2, p

ϕ
r_a
12, p < ϕ

r_a
12, w < ϕ

r_a
12, p_f < ϕ

r_a
12, f ,while ϕ

r_a
6, f < ϕ

r_a
6, p_f < ϕ

r_a
6, w < ϕ

r_a
6, p

ϕ
r_a
3, p_f < ϕ

r_a
3, w < ϕ

r_a
3, p < ϕ

r_a
3, f ,while ϕ

r_a
8, w < ϕ

r_a
8, p < ϕ

r_a
8, f < ϕ

r_a
8, p_f

Distinct agents, characterized by distinct risk-averse preferences, have generally distinct
perceptions of endogenous risks in a given environment. It depends on how they succeed to
manage the available information from the system as well as future information from outside
the system.
It is important to make distinction between risk-aversion before and after starting the control

process. They are not generally based on the same information set.
Before starting the control, the agent’s degree of risk-aversion is measured on the basis of

an exogenous information set. It defines the agent’s type at a given period of time.
After starting the control, the agent’s degree of risk-aversion is estimated on the basis of

a non-decreasing endogenous information set. In a dynamic evolving environment, the risk-
aversion profile of the agent can change.

7. Qualitative Consequences on Strategic Risk Management

The object of this section is to explore the theoretical and empirical implications of the
proposed risk-aversion concept on the agent’s risk behavior by developing realistic scenarios for
the dynamic system.

19



7.1. Small System Deviations

Proposition 7. Suppose that all system deviations in the past and future are small. For
this type of scenario, the agent is characterized by a small risk-aversion during the period of
control. In particular, when all system deviations are very close to zero in magnitude, the agent
becomes almost risk-neutral.

Proof. In the appendix. ¥
It is interesting to note that for small symmetrical deviations with respect to the fixed

targets, the agent will adopt the same attitude towards risk over time.
Zero risk can exist only if the agent does not attribute any importance to the system

deviations. It may be the case of a system characterized by very small fluctuations.
For large deviations of the system with respect to the fixed targets, this particular scenario

is not compatible with a rational behavior (Douard 1996).
Because at least one amongst the system deviations (in the past and future) is inherently

strictly positive, it follows that the risk-aversion index value is generally non-null.
This can be explained by the presence of random shocks that are beyond the agent’s control,

and inevitable forecast errors in predicting the system trajectory.
The hypothesis of risk-neutrality for the entire working horizon, very often employed in the

literature, is very restrictive.
Taking into account the dynamic complexity of the system, this work-hypothesis is non-

realistic. Its use in theoretical and empirical studies is associated with a “myopic” behavior of
the agent, being convenient only for parsimony purposes. This restricts an endogenous behavior
to a rigid exogenous one.
The apparent need for parsimony is derived by the facility brought in the construction of

the models. Parsimony may seems desirable, but is in fact not because this generally introduces
non-negligible errors in the model.
We give below two suggestive graphics which illustrate the adaptive behavior towards risk

of the agent in the context of small (almost null) system deviations.
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There is an intimate correlation between the choice of the parameter l (which characterizes
the agent’s type) and the agent’s risk perception during the period of control.

7.2. Small and Large System Deviations

Proposition 8. When the system is characterized by small and large deviations, the agent
is not be necessarily more risk-averse for the same period of control compared to the case where
all system deviations are small.
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Proof. In the appendix. ¥
The intuition for this result is based on two considerations:
i) the effect of high deviations of the system in the past diminishes with time;
ii) large expected deviations in distant future have a non significative effect on the agent’s

risk behavior. Economic agents are more risk tolerant on distant horizons.
The agent’s degree of risk-aversion depends on two distinct factors:
i) the moment when high deviations of the system arrive in the past or are expected to be

realized in the future;
ii) the strategic weights the agent will attach to the large deviations of the system.
We give below a realistic scenario for the system evolution which confirms this intuition.
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As is easily seen, at time t = 5, we ascertain a higher index value compared to that one
obtained when all deviations of the system are small.

7.3. Large System Deviations

Assumption 6. The parameter l verifies the additional conditions:

l/ k yt−j1 − ygt−j1 k4∼= 0, ∀ j1 = 1, ..., k1
l/ k yat+j2|It+j2 − ygt+j2 k4∼= 0, ∀ j2 = 0, ..., k2

Proposition 9. When all system deviations are large and comparable in magnitude, the
agent’s degree of risk-aversion is highly dependent on the strategic weights attached to the
system deviations.

Proof. In the appendix. ¥
There is a close relationship between risk-neutrality and perverted perception of the system.

This is the case where the agent does not attribute any importance to the system deviations.
When the weights attached to the system deviations are negligible, the agent will be

characterized by an almost risk-neutral behavior.
In contrast, for significative weights, the agent’s degree of risk-aversion is non-negligible.
It is interesting to note that for this type of scenario, the boundary condition imposed on

the fixed targets does not allow for a symmetrical evolution of the system with respect to the
optimal path η.
We give below three suggestive graphics which show the strong correlation between the

agent’s risk perception and the size of the strategic weights attached to the system deviations.
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Proposition 10. Suppose that all system deviations are comparable in magnitude. In this
case, a higher value of the sum of k1(feedback lag parameter) and k2 (forward lag parameter)
does not necessarily diminish the agent’s risk-aversion at the same stage of control.

Proof. In the appendix. ¥
This result proves the trade-off between past and future evolution of the system. Neither the

past nor the future have a dominant effect on the agent’s risk behavior over time. In general,
this is influenced by the mixed cumulative effect of both temporal dimensions.
The past is often a backwards indicator of the future. The weight that the agent places on

the future may be correlated with exogenous signals from the past.
Depending on the context, the past can provide more or less informative signals about the

future trend of the system. The agent’s risk behavior can be influenced by signals from the
past, and thus future decisions can change.
A smooth (or almost constant) evolution of the system will not change significatively the

agent’s risk attitude. In this case, the past and the expected future will have almost the same
impact on the agent’s risk behavior.
Generally, the agent’s risk sensitivity is highly correlated with a significative change in the

system evolution. The more the system fluctuates, the more marked is the agent’s degree of
risk-aversion over time.
There is a close relationship between the system inherent inertia and the agent’s risk percep-

tion. Distinct agents develop individual behaviors with regard to how they respond in similar
risky situations. They are characterized by different degrees of risk-aversion. However, it may
be possible that their attitudes towards risk be similar in a given particular context.
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We give below two suggestive graphics illustrating the Proposition 10.
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8. Excessive Risk-Averse Decision-Maker

Experimental evidence shows that economic agents overweight extreme events. These can
modify their individual behavior towards risk. The ability to assess future risks associated with
extreme events is increasingly important to economic behavior.
Let ϕp_f

min be an optimal risk-aversion threshold fixed by the agent before starting the control
and for the entire working horizon. The objective is not to exceed it. Otherwise, the agent
becomes excessively risk-averse for the current period of control, and thus will be characterized
by an extreme pessimism.
The exceeding of the threshold ϕ

p_f
min during the period of control is correlated with large

deviations of the system from the agent’s fixed targets. There is a close relationship between
the choice of optimal targets and the possibility to exceed the risk-aversion threshold ϕ

p_f
min .

Smaller targets generally imply a smaller risk-aversion index, and thus a higher possibility to
exceed the optimal threshold ϕ

p_f
min .

An agent with a higher (smaller) risk-aversion before starting the control will choose a
smaller (higher) threshold ϕ

p_f
min .

Note that ϕr_a
t, p_f characterizes the agent’s local risk-aversion (at time period t), while ϕp_f

min

characterizes his global risk-aversion (over the whole period [1, T ]). The optimal threshold ϕp_f
min

is selected such that it offers the best characterization of the agent’s type. It also depends on
the particular environmental context. It must distinguish between ϕ

p_f
min and ϕ

r_a
1, p_f . It is a

strategic attitude for the agent to fix a threshold ϕ
p_f
min inferior to ϕ

r_a
1, p_f .

The definition of the risk-aversion threshold ϕ
p_f
min offers a good explanation why the risk-

aversion index is non-monotonous with respect to the time variable t:
i) an increasing risk-aversion index would be in contradiction with the definition of ϕp_f

min , in
the sense that it would be never exceeded. In the real world, this limit threshold is most often
exceeded by risk-averse agents.
ii) a decreasing risk-aversion index would constrain the decision-maker to exceed the thresh-

old ϕ
p_f
min over time, and hence to become excessively risk-averse for the remaining period of

control. This type of scenario would not be realistic.
The agent’s global utility function corresponding to the fixed risk-aversion optimal threshold

ϕ
p_f
min is given by:

U[1,T ](W[1,T ], ϕ
p_f
min )

def.
=

2

ϕ
p_f
min

[exp(−ϕ
p_f
min

2
W[1,T ])− 1]
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Proposition 11. A risk-averse agent is characterized by an optimal risk-aversion threshold
ϕ
p_f
min fixed according to his individual type.
Proof. In the appendix. ¥
Risk is not symmetric across agents. They perceive differently the system evolution, and thus

give different interpretations to the system dynamics. It may be possible that they implement
distinct optimal actions for the same period of time. This can be explained by arguments based
on the non-injectivity of the control decision rule, regarded as a function of the risk-aversion
index.
This type of modelling allows for a complete characterization of common /distinct types of

risk-averse agents. We deal with a continuum of agent types and risk-averse preferences.
We illustrate below a realistic scenario concerning the choice of the agent’s risk aversion

threshold ϕ
p_f
min .

Choice of the risk-aversion threshold in the context of a six periods horizon
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In the following, we give an interesting theoretical result which characterizes the boundaries
of the agent’s utlity function during the period of control.

Proposition 12. The upper and lower bounds of the agent’s local utility function vary
according to the risk-aversion index level relative to the fixed optimal threshold ϕ

p_f
min .

Proof. In the appendix. ¥
The above result allows for characterizing the agent’s risk-averse preferences in function of

his individual type. The inherent disutility of the risk associated with extreme events is taken
into consideration in the present model.
We give below two suggestive graphics in this sense, in the case where ϕp_f

min = −0.5.

Evolution of the local uti l ity function: The agent does not exceed the optimal risk-aversion threshold
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Evolution of the local uti l ity function: The agent exceeds the optimal risk-aversion threshold
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In order to illustrate the positive correlation between the length of working horizon and the
agent’s degree of risk-aversion over time, we give below an interesting result in this direction.
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Proposition 13. In a dynamic stochastic environment, there is a positive correlation
between the horizon length and the agent’s risk profile.
Proof. In the appendix. ¥
In particular, this result allows us for characterizing the agent’s risk behavior when adopting

a closed-loop strategy. Although this type of strategy is generally employed for short periods
of time, the agent may be characterized by a higher risk-aversion before starting the control.
Contrary to what intuition would suggest, a shorter planning horizon does not necessarily

ensure a lower risk-aversion. It generally depends on the expected behavior of the system in the
future. Large expected deviations from the fixed path η induce a higher degree of uncertainty
in terms of decision-making, and hence a higher risk-aversion for the agent.
We illustrate here a realistic scenario for the above theoretical result.

Choice of the optimal risk-aversion threshold in the context of a four periods horizon
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We remark that in the context of a four periods horizon, the decision-maker can choose an
optimal risk-aversion threshold ϕ

p_f
min inferior to −0.45, while for a six periods horizon, ϕ

p_f
min

is inferior to −0.57. In other words, the agent’s risk behavior is sensitive to the fixed horizon
length. More exactly, risk-aversion increases with horizon length. This is in accordance with
the result obtained by Bommier (2006).

9. Potential Sensitive Periods

It may exist some periods with an important degree of uncertainty, when the agent’s ob-
jective is not to exceed a local fixed risk-aversion index level. More exactly, suppose that
for each significative period t, the agent chooses an optimal local value ϕloc.

t, p_f such that

ϕ
p_f
min ≤ ϕloc.

t, p_f ≤ ϕ
r_a
t, p_f . This can be explained by the fact that a global minimum is al-

ways smaller or equal than a local one.
It must not confuse ϕloc.

t, p_f (which is fixed before starting the control, and thus it does not
depend on the system evolution path) with ϕ

r_a
t, p_f (estimated after the control begins).

It is also important to distinguish between ϕp_f
min and ϕ

loc
t, p_f . The first one defines the agent’s

type (for the entire period of control), while the second depends on his local objective at time
t.
Let tj (j = 1, ..., k) be all significative periods, with {t1, ..., tk} ⊆ {1, ..., T}. Note that

ϕloc.
tj , p_f are defined only for the periods tj, while ϕ

p_f
min is chosen by the agent according to his

expectations on all ϕloc.
tj , p_f . Consequently, these are ϕ

loc.
tj , p_f (j = 1, ..., k) that will influence

ϕ
p_f
min and not vice versa. One can say that ϕ

loc.
tj , p_f is the equivalent of ϕ

p_f
min , but only locally.

We can write the following inequality:

ϕ
p_f
min ≤ min{ϕloc.

t1, p_f , ..., ϕ
loc.
tk, p_f

}
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The agent’s utility at time t, defined for a fixed threshold ϕloc.
t, p_f , is given by:

Ut(W[1,t], ϕ
loc.
t, p_f) =

2

ϕloc.
t, p_f

[exp(−
ϕloc.
t, p_f

2
W[1,t])− 1]

We have:
Ut(W[1,t], ϕ

p_f
min ) ≤ Ut(W[1,t], ϕ

loc.
t, p_f) ≤ Ut(W[1,t], ϕ

r_a
t, p_f)

if and only if
ϕ
p_f
min ≤ ϕloc.

t, p_f ≤ ϕ
r_a
t, p_f ∀ t = 1, ..., T

Note that ϕloc.
tj , p_f can be regarded as a first control-threshold imposed by the agent in

order not to exceed ϕ
p_f
min . At each stage tj, it is possible to exceed ϕloc.

tj , p_f but not ϕ
p_f
min . It

can be explained by the fact that the local conditions are generally more restrictive than the
global ones. Since a real time control process is necessarily discrete, the risk-aversion index
ϕ
r_a
tj , p_f cannot converge with precision to the fixed optimal threshold ϕloc.

tj , p_f , but only to a
neighborhood of it. When the process of control is finished, the agent will obtain a stochastic
neighbouring-optimal trajectory of the risk-aversion index which is expected to be close to the
optimal risk-aversion path {ϕloc.

1, p_f , ..., ϕ
loc.
T, p_f}. It is very likely that difference between ex-ante

and ex-post behavior towards risk exists.

10. Agent with a Changing Risk Profile

The way the risk-aversion index is parameterized depends on the problem statement. We
refine the analysis by taking into account the case of a changing risk profile. In the real world,
there may be periods when the agent is risk-averse and periods when he becomes (almost) risk-
neutral or risk-lover. A mixture of pessimism and optimism can exist (Toulet 1982; Jerker
2007).
The definition of the risk-aversion index is similar to that one given in Chapter 5.2, with

the difference that the strategic weights attached to the system deviations lie inside the unit
circle. Let us make the following notations:

eSt, w_p_d not.
= k yt−1 − ygt−1 k2 eLt−1 + ...+ k yt−k1 − ygt−k1 k

2 eLt−k1
(the weighted sum of squared past deviations at time t)

S0t, w_a_f_d
not.
= k yat|It − ygt k2 L0t + ...+ k yat+k2|It+k2 − ygt+k2 k

2 L0t+k2
(the weighted sum of squared anticipated future deviations at time t)

where
−1 < eLt−1 ≤ ... ≤ eLt−k1 < 1, − 1 < L0t ≤ ... ≤ L0t+k2 < 1

are strategic weights attached to both observed and expected deviations of the system. Their
values are selected according to the importance the agent places on the past and future.

Remark 8. We distinct, in this general context, two completely opposite scenarios:

i) the pure risk-aversion case, defined according to the following boundaries conditions:

−1 < eLt−1 ≤ ... ≤ eLt−k1 < 0, − 1 < L0t ≤ ... ≤ L0t+k2 < 0

ii) the pure risk-taking case, defined according to the symmetrical boundaries conditions:

0 < eLt−1 ≤ ... ≤ eLt−k1 < 1, 0 < L0t ≤ ... ≤ L0t+k2 < 1
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A changing risk behavior can be thus regarded as a mixed case of risk-aversion, risk-
neutrality and risk-taking. System evolution can change the agent’s type.

Definition 5. Using t to denote time, the absolute risk index ϕ
r_a_n_l
t, p_f evolves according

to:

ϕ
r_a_n_l
t, p_f

def.
=

eSt, w_p_d + S0t, w_a_f_dq
(St, p_d + St, a_f_d)2 + el , t = 1, ..., T

where el ≥ 1 is a positive integer which characterizes the agent’s type, and ki (i = 1, 2) represent
the backward (forward) lag parameters verifying the following constraints:

1 ≤ k1 < T, k2 ≥ 0, 1 ≤ k1 + k2 ≤ T − 1

In this case, the boundary condition for the index will change. It is possible to obtain
negative values for some periods and positive (or null) values for others. This depends on
several factors including, the available exogenous information, the accuracy of the agent’s per-
ception and, respectively, the inherent discrepancies between ex-ante anticipations and the
corresponding ex-post quantities. The evolution of the system will affect differently the agent’s
risk behavior. His optimal actions are therefore different compared to those selected in a pure
risk-aversion (risk-taking) context. An important distinction between temporal and timeless
risks is provided by the present model. This offers a refinement of the traditional concept of
temporal risk-aversion employed in the literature (Machina 1984; Van der Ploeg 1992).
This also improves the standard analysis of economic behavior under temporal uncertainty
(Chavas and Larson 1994). Moreover, the present study contributes to the bounded ratio-
nality literature (Simon 1982a, 1982b; Sargent 1993) in that it allows for a refinement of
the agent’s risk-averse preferences.

Proposition 14. A more (less) risk-taker decision-maker is characterized by a smaller
(higher) local utility level.

Proof. In the appendix. ¥
Agent’s preferences level decreases with higher risk-taker index. His objective is not to

exceed a fixed limit threshold of the index. Otherwise, the agent becomes excessively risk-
taker, and thus will be characterized by an over-optimism. This strategic attitude prevents to
exceed some threshold utility level over which the agent’s ex-post preferences are suboptimal.
In order to reach his objective, the agent must avoid to deviate from the fixed optimal path.
Over-optimism can be defined as an induced deviating behavior with respect to perceived states
of the system. We give below a suggestive graphic illustrating the evolution of the agent’s utility
function with respect to the anticipative loss and the risk-taker index.

Evolution of the local uti li ty function: the case of a risk-lover decision-maker
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Proposition 15. A risk-lover decision-maker is characterized by an optimal threshold ϕp_f
max

fixed according to his risk-taker type.
Proof. In the appendix. ¥
It is useful to note that risk-taking and risk-aversion are non-symmetrical behaviors. These

are generally analyzed in non-symmetrical contexts.
We give below a suggestive graphic illustrating the Proposition 15.

Choice of the optimal risk-taker threshold in the context of a six periods horizon
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Proposition 16. A risk-lover decision-maker is characterized by a local utility function
whose upper and lower bounds vary according to the risk-taker index level relative to the fixed
optimal threshold ϕ

p_f
max.

Proof. In the appendix. ¥
A direct consequence of this result is the complete separability of the agent’s risk-taking

preferences. It depends on the index variation with respect to the fixed threshold ϕ
p_f
max. It

allows for characterizing the agent’s preferences in function of his individual type.
We give below two suggestive graphics in this sense, in the case where ϕp_f

min = 0.5.

Evolution of the local uti l i ty function: the agent does not exceed the optimal risk-taker threshold
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Evolution of the local util i ty function: the agent exceeds the optimal risk-taker threshold
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Proposition 17. There is a positive correlation between the horizon length and the agent’s
risk-taking behavior during the period of control.
Proof. In the appendix. ¥
The agent’s objective is to reduce the exogenous effect of the horizon length on the optimal

policy decisions.
A particular environmental context can change the agent’s risk-taking behavior. To fix a

smaller /higher working horizon depends, on the one hand, on the strategic objective of the
agent and, on the other hand, on his risk-taker type.

28



We give below a graphical illustration of the Proposition 17.

Choice of the optimal risk-taker threshold in the context of a four periods horizon
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We remark that in the context of a four periods horizon, the decision-maker can fix a
threshold ϕ

p_f
max inferior to 0.4, while for a six periods horizon, ϕ

p_f
max is inferior to 0.55.

This study takes a step towards a more refined understanding of the concepts of short and
long horizon risk-aversion. This is a key topic for future research with implications in a wide
range of economic applications intrinsically linked to the study of policy implementation and
analysis.

Proposition 18. A rational agent with a changing risk profile is characterized by two
distinct risk thresholds fixed according to his individual type: i) a risk-aversion threshold ϕp_f

min ;
and ii) a risk-taker threshold ϕ

p_f
max.

Proof. In the appendix. ¥
The objective of the agent is to maintain the level of the risk index inside the interval defined

by the risk thresholds ϕp_f
min and ϕ

p_f
max. This scenario is possible if and only if the agent succeeds

to constrain the dynamic system to follow the optimal path η.
When at least one of these risk thresholds are exceeded, the agent is characterized by an

excessive risk behavior.
Significative changes in the system evolution are necessary such that a transition from an

extreme risk behavior to the opposite one be possible.
An interesting question arises: Which of these two extreme attitudes are most probable to

arrive in the real world? The answer is not obvious.
The risk-neutrality case can be regarded as a transitory state in this dynamic process.

Changing risk behavior can be defined as a free floating state with respect to the agent’s risk
attitude over time.
For a stochastic system characterized by uniform trend towards lower values of the target

variable, the agent’s risk behavior is defined in a reasonably neighborhood of the risk-neutrality
state.
Generally, risk-taking makes the reaction stronger than risk-neutrality. However, when both

agents are risk-taker but at very different degrees, the more optimistic of the two can have a
weaker reaction than in the risk-neutral case. This is an astonishing result that can be explained
by the relationship between high deviations and perceived states of nature.
The evolution of the system can encourage risk-taking or induce risk-aversion behavior.

Outcomes as large losses can induce risk-aversion, while outcomes as large gains can induce
risk-taking. In other words, the endogenous fluctuations of the system can generate endogenous
waves of optimism and pessimism.
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We give below a realistic scenario illustrating the attitude towards risk of a strategic rational
decision-maker characterized by a changing risk profile during the period of control.

Choice of the optimal risk-aversion threshold: the case of an agent with a changing risk behavior
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Figure 35

For this scenario, the agent’s objective is not to exceed the optimal fixed thresholds
ϕ
p_f
min = −0.6 and ϕ

p_f
max = 0.4.

If ϕp_f
min (respectively ϕ

p_f
max) is exceeded at time t, the agent will implement an excessive risk-

averse (respectively risk-taking) decision for the period t. However, this does not necessarily
mean that the agent’s actions do not perform well at time t.
During the entire period of control, the agent’s utility function evolves according to the

following formula:

Ut(W[1,t], ϕ
r_a_n_l
t, p_f )

def.
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

ϕ
r_a_n_ l
t, p_f

[exp(−ϕ
r_a_n_ l
t, p_f

2
W[1,t])− 1] if − 1 < ϕ

r_a_n_l
t, p_f < 0

−W[1,t] if ϕ
r_a_n_l
t, p_f = 0

2

ϕ
r_a_n_ l
t, p_f

[exp(−ϕ
r_a_n_ l
t, p_f

2
W[1,t])− 1] if 0 < ϕ

r_a_n_l
t, p_f < 1

We illustrate below the agent’s changing risk-averse preferences and his adaptive behavior
to risk in a multiple-horizon dynamic environment.

Fluctuations of the local uti l ity function with respect to anticipative loss and agent's risk index
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An interesting question arises: From what values, the optimal thresholds ϕp_f
min and ϕ

p_f
max can

be regarded as small or large? This generally depends on the particular environmental context
as well as on the agent’s risk profile.
In order to illustrate the complexity of the agent’s risk behavior during the period of control,

we give below a suggestive graphic in this sense.
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The agent’s objective is not to exceed the optimal thresholds ϕp_f
min = −0.3 and ϕ

p_f
max = 0.4

during the entire working horizon.
The action taken at time t = 1 will induce a weak risk-taking for the next period. The agent

is thus characterized by a small degree of confidence. A reinforcement of the active learning
correlated with an efficient closed-loop strategy will progressively decrease the agent’s degree
of confidence in the two next periods.
At time t = 4, the agent becomes (almost) risk-neutral. For the following three periods,

we ascertain an increasing tendence in taking higher risks. However, the agent succeeds in not
overreaching the fixed optimal threshold ϕ

p_f
max.

At time t = 8 and t = 10, the agent’s degree of confidence is almost null. Given the inherent
inertia of the system, the agent’s risk aversion will increase (even if not significatively) for the
next period. He succeeds in not overreaching the fixed optimal threshold ϕ

p_f
min .

The strategic objective of the agent is thus reached. On the one hand, he succeeds to
optimally manage his risk-aversion during the period of control, and on the other hand, the
implemented optimal policy succeeds to constrain the dynamic system to follow the optimal
reference path η.

11. Concluding Remarks and Possible Extensions

The present paper investigates the crucial role played by the past and future dynamics of the
system in characterizing the agent’s risk behavior over time. The definitions of the risk-aversion
index proposed in this approach allow for a more profound understanding on how exogenous
and endogenous uncertainty is captured over environmental changes. The agent interprets the
evolution of the system and reveals his adaptive behavior to risk in a fluctuating environment.
It is only by optimizing the past that the agent will optimally anticipate endogenous risks in
the future. A better risk management is thus possible by the use of both feedback and forward
information. An interesting characterization of the agent’s preferences according to his degree
of risk-aversion is put into evidence. A significative relationship emerges between behavior to
risk and length of working horizon. The hypothesis of risk-neutrality appears in the present
model as a potential borderline case. We propose a natural extension of the Arrow-Pratt
theory (which takes into account only attitudes towards small exogenous risks) by including in
the analysis potentially high endogenous risks that are under the control of the agent. This
is necessary to overcome the limits imposed by the standard measures of risk-aversion often
employed in the literature. Moreover, we refine the risk analysis by developing the case of
a changing risk profile over time. This type of modelling has the potential to be a powerful
tool for characterizing the agent’s risk behavior, including risk-aversion, risk-neutrality and
risk-taking. It can be seen as a step further in the refinement of the risk concept, providing

31



a better understanding on the complexity of the risk psychology in a discrete-time dynamic
environment. The proposed analysis can be easily extended to the context of stochastic dynamic
games (cooperative or non-cooperative), the objective here being to define and characterize the
equilibrium of the game according to the optimal risk-sharing between strategic players. We
can also study the identification of emerging endogenous coalitions in interactive strategic
environments, in function of the players’ types and their risky objectives. Exploring such
possibilities appears to be a good topic for further research, providing new perspectives for
theorists and empirical analysts.

Appendix

Proof of Proposition 1.
Differentiating Ut(W[1,t], ϕ

r_a
t, p_f) with respect to ϕ

r_a
t, p_f (for an arbitrary fixed value ofW[1,t]),

we then obtain:

U 0
t(W[1,t], ϕ

r_a
t, p_f) =

2[(−ϕ
r_a
t , p_f

2
W[1,t] − 1) exp(−ϕ

r_a
t , p_f

2
W[1,t]) + 1]

(ϕ
r_a
t, p_f)

2

Defining:

Vt(W[1,t], ϕ
r_a
t, p_f)

def.
= (−

ϕ
r_a
t, p_f

2
W[1,t] − 1) exp(−

ϕ
r_a
t, p_f

2
W[1,t]) + 1

as a function of ϕr_a
t, p_f , we find for the first derivative of Vt:

V
0
t (W[1,t], ϕ

r_a
t, p_f) = ϕ

r_a
t, p_f

W 2
[1,t]

4
exp(−

ϕ
r_a
t, p_f

2
W[1,t]) < 0

In other words, Vt decreases with ϕ
r_a
t, p_f :

ϕ
r_a
t, p_f < 0⇒ Vt(W[1,t], ϕ

r_a
t, p_f) > Vt(W[1,t], 0) = 0

It follows that U 0
t(W[1,t], ϕ

r_a
t, p_f) > 0. The local utility function Ut(W[1,t], ϕ

r_a
t, p_f) is therefore

increasing in ϕ
r_a
t, p_f . We also have that Ut is decreasing in W[1,t]. This is in agreement with

real world and strong empirical evidence.

Proof of Proposition 2.
Simple algebraic manipulations show that the sign of the difference:

ϕ
r_a
t+1, p_f − ϕ

r_a
t, p_f =

ξ0Lt + ...+ ξk1−1Lk1−1 + ξ1Lt+1 + ...+ ξk2+1Lt+1+k2q
(ξ0 + ...+ ξk1−1 + ξ1...+ ξk2+1)

2 + l

−ξ1Lt−1 + ...+ ξk1Lk1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

is either positive or negative, depending on the values taken by the norm-deviations:

ξj1
not.
= k yt−j1 − ygt−j1 k

(exogenous variables)

, j1 = 0, ..., k1

ξj2
not.
= k yat+j2|It+j2 − ygt+j2 k

(endogenous variables)

, j2 = 0, ..., k2 + 1
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Proof of Proposition 3.
Suppose that k1 < k01. Let us consider that k

0
1 = k1 + k, with k ≥ 1 a fixed integer. By

hypothesis, we have:

Lt−1 < Lt−2 < ... < Lt−k1 < Lt−(k1+1) < ... < Lt−(k1+k)

One can write:

Lt−1 + ...+ Lt−k1 + ...+ Lt−(k1+k)

k1 + k
− Lt−1 + ...+ Lt−k1

k1

=
−k[Lt−1 + ...+ Lt−k1 ] + k1[Lt−(k1+1) + ...+ Lt−(k1+k)]

k1(k1 + k)

=
[−kLt−1 + Lt−(k1+1) + ...+ Lt−(k1+k)] + ...+ [−kLt−k1 + Lt−(k1+1) + ...+ Lt−(k1+k)]

k1(k1 + k)
À 0

In other words, we have proved that:

k1 < k01 ⇒
Lt−1 + ...+ Lt−k01

k01
(the average of k01 weights)

À Lt−1 + ...+ Lt−k1
k1

(the average of k1 weights)

Proof of Proposition 4.
Consider first the case where the transition of the system is from consecutive small deviations

to a large deviation. Denote by ϕ
r_a, s_h
t, p the risk-aversion index at time t for this type of

scenario. We have that ϕr_a, s_h
t, p → Lt−1, where Lt−1 represents the weight attached to the

system deviation at time t− 1. Denote also by ϕr_a, h_s
t, p the risk-aversion index at time t when

the system transition is from consecutive large deviations to a small deviation. In this case, we
have:

ϕ
r_a, h_s
t, p →

eLt−2 + ...+ eLt−k1
k1 − 1

where eLt−2, ..., eLt−k1 are strategic weights attached to large deviations of the system (in the
context of the second scenario). Depending on the magnitude /size of the parameters Lt−1 and
Lt−2+...+ Lt−k1

k1−1 , one can imagine three distinct situations:
a) the large deviation of the system at time t − 1 (in the context of the first scenario) is

much more important for the agent than all other (k1 − 1) large deviations obtained in the
context of the second scenario:

Lt−1 ¿ eLt−2, ..., Lt−1 ¿ eLt−k1
(sufficient condition)

⇒ Lt−1 ¿
eLt−2 + ...+ eLt−k1

k1 − 1

In this case, it follows that ϕr_a, s_h
t, p < ϕ

r_a, h_s
t, p , and hence a higher degree of risk-aversion

for the same period of control in the context of the first scenario.
b) the large deviation of the system at time t−1 (in the context of the first scenario) is much

less important for the agent than all other (k1 − 1) large deviations obtained in the context of
the second scenario:

Lt−1 À eLt−2, ..., Lt−1 À eLt−k1
(sufficient condition)

⇒ Lt−1 À
eLt−2 + ...+ eLt−k1

k1 − 1
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In contrast with the previous case, one obtains that ϕr_a, s_h
t, p > ϕ

r_a, h_s
t, p , that is, a smaller

degree of risk-aversion at time t in the context of the first scenario.
c) the large deviation of the system at time t−1 (in the context of the first scenario) is much

more or much less important for the agent than all other (k1 − 1) large deviations obtained in
the context of the second scenario:

Lt−1 ¿ (orÀ) eLt−2, ..., Lt−1 ¿ (orÀ) eLt−k1

In this case, we obtain either ϕr_a, s_h
t, p < ϕ

r_a, h_s
t, p or ϕr_a, s_h

t, p > ϕ
r_a, h_s
t, p . This completes

the proof.

Proof of Proposition 5.
The conclusion results from the following sequence of inequalities:

L0
1
À L0 + L1

2
À ...À L0 + ...+ Lt−1

t

Each above ratio corresponds (in this order) to the estimation of the risk-aversion index at
time τ = 1, 2, ..., t. For this type of scenario, it is supposed that L1 ¿ L0. In other words,
the impact of system deviations from τ = 1 to τ = t on the agent’s future uncertainty is much
more important compared to the impact at τ = 0.

Proof of Proposition 6.
It is easy to see that the sign of the following differences:

ϕ
r_a
t, p_f − ϕ

r_a
t, f , ϕ

r_a
t, p_f − ϕ

r_a
t, p , ϕ

r_a
t, f − ϕ

r_a
t, p , ϕ

r_a
t, f − ϕ

r_a
t, w

may be either positive or negative. In other words, the agent’s degree of risk-aversion is
correlated with the adopted strategy to manage endogenous uncertainty.

Proof of Proposition 7.

Denote by ξj1
not.
= k yt−j1 − ygt−j1 k, j1 = 1, ..., k1, and ξj2

not.
= k yat+j2|It+j2

− ygt+j2 k,
j2 = 0, ..., k2, the system norm-deviations at time t − 1, ..., t − k1, and t, ..., t + k2,
respectively. They are supposed to be small but non-negligible in magnitude. The absolute
risk-aversion index ϕt, p_f evolves according to:

ϕ
r_a
t, p_f =

ξ1Lt−1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l
, t = 1, ..., T

For ease of exposition, we assume that lt = l∗ (a small value from (0, 1)) for all t = 1, ..., T .
It follows that:

ξj1 < l∗, ∀ j1 = 1, ..., k1 and ξj2 < l∗, ∀ j2 = 0, ..., k2
We have:

| ϕr_a
t, p_f | ≤

ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

<
l∗(k1 + k2 + 1)p

(l∗(k1 + k2 + 1))2 + l
=

1p
1 + l/(l∗(k1 + k2 + 1))2

Because the agent anticipates small deviations of the system with respect to the fixed
targets, his degree of risk-aversion will be small before starting the control. Consequently, he
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will choose a high value for the parameter l. As k1 and k2 have generally small values, the ratio
1√

1+l/(l∗(k1+k2+1))2
(and implicitly the risk-aversion index ϕr_a

t, p_f) will be small. We have:

− 1p
1 + l/(l∗(k1 + k2 + 1))2

≤ ϕ
r_a
t, p_f < 0

In particular, when k yt−j1 − ygt−j1 k → 0, ∀ j1 = 1, ..., k1 and k yat+j2|It+j2 − ygt+j2 k → 0, ∀
j2 = 0, ..., k2, it follows that ϕ

r_a
t, p_f → 0 (a borderline case).

In the real world, this type of scenario is rare to be realized due to endogenous fluctuations
of the system over time. The assumption of risk-neutrality for the entire working horizon is
generally non-realistic.
We have the following implication:

ϕ
r_a
t, p_f → 0⇒ Ut(W[1,t], ϕ

r_a
t, p_f)→ −W[1,t]

and thus
maxE0[Ut(W[1,t], ϕ

r_a
t,p_f)] = minE0[W[1,t](y1, ...yt)]

Proof of Proposition 8.
Suppose there is some large deviations of the system (in the past and future), say ξα1, ..., ξαN1

and ξβ1, ..., ξβN2
, respectively. We have:

α1, ..., αN1 ∈ {1, ..., k1}, N1 < k1 and β1, ..., βN2 ∈ {0, ..., k2}, N2 < k2

For simplicity, we assume that all high deviations of the system are comparable in magni-
tude. Denote by ϕr_a, s_h

t, p_f the risk-aversion index at time t in the case of mixed (i.e., small and
large) deviations of the system. Its value is defined by the following expression:

ξ1Lt−1 + ...+ ξαN1Lt−αN1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ...+ ξβN2
Lt+βN2

+ ...+ ξk2Lt+k2q
(ξ1 + ...+ ξαN1 + ...+ ξk1 + ξ0 + ...+ ξβN2

+ ...+ ξk2)
2 + l

where ξj1 and ξj2 (j1 = 1, ..., k1, j1 6= αN∗1
, N∗

1 = 1, ..., N1; j2 = 0, ..., k2, j2 6= αN∗2
, N∗

2 =
0, ..., N2) represent small deviations of the system.
Denote by ϕ

r_a, s
t, p_f the risk-aversion index at time t in the case where there is only small

deviations of the system with respect to the fixed targets. One can write:

ϕ
r_a, s
t, p_f =

ξ1Lt−1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

Without loss of generality, we assume that all small deviations ξj1 and ξj2 are comparable
in magnitude. It follows that:

ϕ
r_a, s_h
t, p_f →

Lt−α1 + ...+ Lt−αN1 + Lt+β1 + ...+ Lt+βN2p
(N1 +N2)2 + l

and

ϕ
r_a, s
t, p_f →

Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2p
(k1 + k2 + 1)2 + l
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Depending on the moment when high deviations arrive in the past or are expected to be
realized in the future, as well as on the strategic weights the agent will attach to the system
deviations, one can have two distinct scenarios:

Lt−α1 + ...+ Lt−αN1 + Lt+β1 + ...+ Lt+βN2p
(N1 +N2)2 + l

¿ (orÀ) Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2p
(k1 + k2 + 1)2 + l

Therefore:

ϕ
r_a, s_h
t, p_f < (or >) ϕr_a, s

t, p_f

In other words, the agent’s risk aversion at time t is not necessarily higher for mixed devi-
ations of the system, compared to the case when these deviations are all small.
This surprising result reveals the complexity of the agent’s risk behavior in a changing

environment.

Proof of Proposition 9.
By hypothesis, we have:

k yt−j01 − ygt−j01
k / k yt−j001 − ygt−j001

k ∼= 1 for j01, j001 ∈ {1, ..., k1} , j01 6= j001

k yat+j02|It+j02 − ygt+j02
k / k yat+j002 |It+j002 − ygt+j002

k ∼= 1 for j02, j002 ∈ {0, ..., k2} , j02 6= j002

l/ k yt−j1 − ygt−j1 k
4 ∼= 0, ∀ j1 = 1, k1; l/ k yat+j2|It+j2 − ygt+j2 k

4 ∼= 0, ∀ j2 = 0, k2
It follows that:

ϕ
r_a
t, p_f →

Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
(the average of all past and future weights)

Depending on the weighting scalars values attached to the system deviations, the
risk-aversion index level at time t may be more or less close to −1 or 0. If all weighting scalars
approach −1, then the index value will be close enough to −1. In this case, the agent will be
characterized by an excessive risk-aversion. Contrary to what is generally believed or intuition
would suggest, it is possible to have a small risk-aversion for large deviations of the system. It
is the case where all weighting scalars approach 0. The agent is thus almost risk-neutral, that
is, there is a very small variability in his risk-aversion.

Proof of Proposition 10.
Suppose that all deviations of the system are comparable in magnitude. For ease of expo-

sition, we consider that k1 < k01 and k2 < k02.
Let us make the following notations before proceeding: k01

not.
= k1 + k∗ and k02

not.
= k2 + k∗∗,

where k∗, k∗∗ are two integers superior to 1.
We have:

Lt−1 + ...+ Lt−k01 + Lt + ...+ Lt+k02

k01 + k02 + 1
− Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
=

(Lt−1 + ...+ Lt−k1) + Lt−(k1+1) + ...+ Lt−(k1+k∗) + (Lt + ...+ Lt+k2) + Lt+(k2+1) + ...+ Lt+(k2+k∗∗)

k1 + k2 + 1 + k∗ + k∗∗

−Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
=
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(k1 + k2 + 1)[Lt−(k1+1) + ...+ Lt−(k1+k∗) + Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]

(k1 + k2 + 1 + k∗ + k∗∗)(k1 + k2 + 1)

−(k
∗ + k∗∗)(Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2)

(k1 + k2 + 1 + k∗ + k∗∗)(k1 + k2 + 1)

It is easy to see that:

k(Lt−1 + ...+ Lt−k1) < k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)], ∀ k ∈ {k∗, k∗∗}

k(Lt + ...+ Lt+k2) < (k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)], ∀ k ∈ {k∗, k∗∗}
It follows that:

(k∗ + k∗∗)(Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2)

< 2k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)] + 2(k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]

Let us examine the sign of the following difference:

k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)] + (k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]

−{k1[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)] + (k2 + 1)[Lt−(k1+1) + ...+ Lt−(k1+k∗)]}
= (k2 + 1− k1){[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]− [Lt−(k1+1) + ...+ Lt−(k1+k∗)]}

Several distinct scenarios are possible:
i)

k2 < k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) À Lt−(k1+1) + ...+ Lt−(k1+k∗)

ii)
k2 > k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) ¿ Lt−(k1+1) + ...+ Lt−(k1+k∗)

iii)
k2 < k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) ¿ Lt−(k1+1) + ...+ Lt−(k1+k∗)

iv)
k2 > k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) À Lt−(k1+1) + ...+ Lt−(k1+k∗)

For the first two scenarios, one obtains:

Lt−1 + ...+ Lt−k01 + Lt + ...+ Lt+k02

k01 + k02 + 1
À Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1

and hence a smaller degree of risk-aversion (at the same stage of the control) when the agent
considers a higher value of the sum of k1 and k2. We underline here the trade-off between
complexity and perception.
For the last two scenarios, the agent’s degree of risk-aversion does not necessarily diminish

(at the same stage of the control) when the sum of k1 and k2 is higher. It is the case where the
agent gives more importance either to the past or to the future.

Proof of Proposition 11.
One can write the inequality:

| ϕr_a
t, p_f | <

St, p_d + St, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ l

, t = 1, ..., T
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The agent’s objective is to constrain the system in such a way that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

where l∗ is a small value from (0, 1).
It follows that:

| ϕr_a
t, p_f | <

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + l

that is,

−1 < − l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + l

< ϕ
r_a
t, p_f < 0

The agent’s objective is not to exceed the fixed optimal threshold ϕ
p_f
min during the entire

period of control (i.e., ϕr_a
t, p_f > ϕ

p_f
min ∀ t = 1, ..., T ). Two distinct scenarios are possible:

Either

−1 < ϕ
p_f
min, more < −

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lmore

or

− l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lless

< ϕ
p_f
min, less < 0

with 1 ≤ lmore < lless two parameters which characterize the agent’s type.
The first (second) scenario corresponds to a more (less) risk-averse agent by nature. The

two fixed thresholds, ϕp_f
min, more and ϕ

p_f
min, less, are not exceeded during the period of control if

and only if the agent succeeds in controlling the system fluctuations.

Proof of Proposition 12.
Suppose that W[1,t] > 0, ∀ t = 1, ..., T . We have the following inequality:

exp(−
ϕ
r_a
t, p_f

2
W[1,t])− 1 > −

ϕ
r_a
t, p_f

2
W[1,t] > 0

and hence
Ut(W[1,t], ϕ

r_a
t, p_f) < −W[1,t] < 0

The agent’s local utility level varies with the value of the risk-aversion index. If the agent
succeeds to manage the risk at time t (i.e., ϕp_f

min < ϕ
r_a
t,p_f < 0), then:

Ut(W[1,t], ϕ
p_f
min ) < Ut(W[1,t], ϕ

r_a
t, p_f) < −W[1,t] = lim

ϕ
r_a
t,p_f→0

Ut(W[1,t], ϕ
r_a
t, p_f)

In the case where the agent does not succeed to manage the risk at time t (i.e., −1 <

ϕ
r_a
t, p_f < ϕ

p_f
min ), we have:

lim
ϕ
r_a
t,p_f→−1

Ut(W[1,t], ϕ
r_a
t, p_f) = Ut(W[1,t],−1) < Ut(W[1,t], ϕ

r_a
t, p_f) < Ut(W[1,t], ϕ

p_f
min )

What is optimal for the agent in the first context becomes unoptimal in the second context.
Optimality generally depends on context and adopted criteria.
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Proof of Proposition 13.
One can write the sequence of inequalities:

ϕ
p_f
min, more < −

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lmore

,

− l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lless

< ϕ
p_f
min, less

For a higher (smaller) time horizon T , the value of the parameters k1 and k2 can be higher
(smaller), and thus the ratio − l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lless
(respectively − l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lmore

) can take

a smaller (higher) value. In other words, a less (more) risk-averse decision-maker can choose
a smaller (higher) risk-aversion threshold ϕ

p_f
min, less (respectively ϕ

p_f
min, more) depending on the

length of the working horizon.
We must distinguish between “nature” and “type”. The agent is considered risk-averse by

nature, while his type is more or less risk-averse. The evolution of the system over time will
refine the agent’s type.

Proof of Proposition 14.
Following the same reasoning as in Proposition 1, we obtain that U r_l

t (W[1,t], ϕ
r_l
t, p_f) is a

decreasing function in ϕ
r_l
t, p_f and W[1,t], where:

U
r_l
t (W[1,t], ϕ

r_l
t, p_f)

def.
=

2

ϕ
r_l
t, p_f

[exp(−
ϕ
r_a
t, p_f

2
W[1,t])− 1]

represents the utility function at time t of a risk-taker decision-maker.

Proof of Proposition 15.
The strategic weights verify the following conditions:

0 < eLt−1 < ... < eLt−k1 < 1, 0 < L0t < ... < L0t+k2 < 1

Following the same reasoning as in Proposition 11, one can write:

ϕ
r_l
t, p_f <

eSt, p_d + S0t, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ el , t = 1, ..., T

It follows that:

ϕ
r_l
t, p_f <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + el

where l∗ is a small value from (0, 1) such that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

The agent’s objective is not to exceed a fixed optimal threshold ϕ
p_f
max during the entire

period of control (i.e., ϕr_l
t, p_f < ϕ

p_f
max ∀ t = 1, ..., T ). Two distinct scenarios are possible:
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Either

0 < ϕ
p_f
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless

or
l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f
max, more < 1

where elmore and elless (with 1 ≤ elmore < elless) are two strategic parameters which characterize
the agent’s type.
The first (second) scenario corresponds to a less (more) risk-taker agent by nature. The

thresholds ϕp_f
max, more and ϕ

p_f
max, less are not exceeded during the period of control if and only if

the agent succeeds in controlling the system fluctuations.

Proof of Proposition 16.
Following the same reasoning as in Proposition 12, one obtains the inequality:

U
r_l
t (W[1,t], ϕ

r_l
t, p_f) > −W[1,t], t = 1, ..., T

where by hypothesis, W[1,t] > 0. We distinguish two asymmetric cases:
i) the agent does not exceed the optimal threshold ϕ

p_f
max at time t (i.e., ϕ

r_l
t, p_f < ϕ

p_f
max).

ii) the agent exceeds the optimal threshold ϕ
p_f
max at time t (i.e., ϕ

r_l
t, p_f > ϕ

p_f
max).

In the first case, we have:

U
r_l
t (W[1,t], ϕ

p_f
max) < U

r_l
t (W[1,t], ϕ

r_l
t, p_f) < U

r_l
t (W[1,t], 0)

In the second case, one can write:

lim
ϕ
r_ l
t,p_f→0

U
r_l
t (W[1,t], ϕ

r_l
t, p_f) = −W[1,t] < U

r_l
t (W[1,t], ϕ

r_l
t, p_f) < U

r_l
t (W[1,t], ϕ

p_f
max)

Proof of Proposition 17.
One can write the sequence of inequalities:

ϕ
p_f
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless ,

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f
max, more

For a higher (smaller) time horizon T , the value of the parameters k1 and k2 can be higher
(smaller), and thus the ratio l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lless
(respectively l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lmore

) can take a

(higher) smaller value. In other words, a less (more) risk-taker decision-maker can choose a
higher (smaller) threshold ϕ

p_f
max, less (respectively ϕ

p_f
max, more) depending on the length of the

working horizon.

Proof of Proposition 18.
We have the inequality:

| ϕr_a_n_l
t, p_f | <

eSt, p_d + S0t, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ el , t = 1, ..., T
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It follows that:

ϕ
r_a_n_l
t, p_f <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + el if ϕ

r_a_n_l
t, p_f > 0

or

ϕ
r_a_n_l
t, p_f > − l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + el if ϕ
r_a_n_l
t, p_f < 0

where l∗ is a small value from (0, 1) such that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

Following the same reasoning as in Proposition 11 and Proposition 15, one obtains the
following distinct scenarios:
i) either

−1 < ϕ
p_f, c_b
min, more < −

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elmore

or

− l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless < ϕ

p_f, c_b
min, less < 0

ii) either

0 < ϕ
p_f, c_b
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless < 1

or

0 <
l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f, c_b
max, more < 1

with 1 ≤ elmore < elless two strategic parameters which characterize the agent’s type.
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