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Abstract

Stop-loss rules—predetermined policies that reduce a portfolio’s exposure after reaching a
certain threshold of cumulative losses—are commonly used by retail and institutional in-
vestors to manage the risks of their investments, but have also been viewed with some skep-
ticism by critics who question their efficacy. In this paper, we develop a simple framework for
measuring the impact of stop-loss rules on the expected return and volatility of an arbitrary
portfolio strategy, and derive conditions under which stop-loss rules add or subtract value
to that portfolio strategy. We show that under the Random Walk Hypothesis, simple 0/1
stop-loss rules always decrease a strategy’s expected return, but in the presence of momen-
tum, stop-loss rules can add value. To illustrate the practical relevance of our framework,
we provide an empirical analysis of a stop-loss policy applied to a buy-and-hold strategy in
U.S. equities, where the stop-loss asset is U.S. long-term government bonds. Using monthly
returns data from January 1950 to December 2004, we find that certain stop-loss rules add
50 to 100 basis points per month to the buy-and-hold portfolio during stop-out periods.
By computing performance measures for several price processes, including a new regime-
switching model that implies periodic “flights-to-quality”, we provide a possible explanation
for our empirical results and connections to the behavioral finance literature.
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1 Introduction

Thanks to the overwhelming dominance of the mean-variance portfolio optimization frame-

work pioneered by Markowitz (1952), Tobin (1958), Sharpe (1964), and Lintner (1965),

much of the investments literature—both in academia and in industry—has been focused

on constructing well-diversified static portfolios using low-cost index funds. With little use

for active trading or frequent rebalancing, this passive perspective comes from the recogni-

tion that individual equity returns are difficult to forecast and trading is not costless. The

questionable benefits of day-trading are unlikely to outweigh the very real costs of changing

one’s portfolio weights. It is, therefore, no surprise that a “buy-and-hold” philosophy has

permeated the mutual-fund industry and the financial planning profession.1

However, this passive approach to investing is often contradicted by human behavior,

especially during periods of market turmoil.2 These behavioral biases sometimes lead in-

vestors astray, causing them to shift their portfolio weights in response to significant swings

in market indexes, often “selling at the low” and “buying at the high”. On the other hand,

some of the most seasoned investment professionals routinely make use of systematic rules

for exiting and re-entering portfolio strategies based on cumulative losses, gains, and other

“technical” indicators.

In this paper, we investigate the efficacy of such behavior in the narrow context of stop-

loss rules, i.e., rules for exiting an investment after some threshold of loss is reached and

re-entered after some level of gains is achieved. We wish to identify the economic motivation

for stop-loss policies so as to distinguish between rational and behavioral explanations for

these rules. While certain market conditions may encourage irrational investor behavior—for

example, large rapid market declines—stop-loss policies are sufficiently ubiquitous that their

use cannot always be irrational.

This raises the question we seek to answer in this paper: When do stop-loss rules stop

losses? In particular, because a stop-loss rule can be viewed as an overlay strategy for a

specific portfolio, we can derive the impact of that rule on the return characteristics of the

portfolio. The question of whether or not a stop-loss rule stops losses can then be answered

by comparing the expected return of the portfolio with and without the stop-loss rule. If the

1This philosophy has changed slightly with the recent innovation of a slowly varying asset allocation that
changes according to one’s age, e.g., a “lifecycle” fund.

2For example, psychologists and behavioral economists have documented the following systematic bi-
ases in the human decisionmaking process: overconfidence (Fischoff and Slovic, 1980; Barber and Odean,
2001; Gervais and Odean, 2001), overreaction (DeBondt and Thaler, 1986), loss aversion (Kahneman and
Tversky, 1979; Shefrin and Statman, 1985; Odean, 1998), herding (Huberman and Regev, 2001), psycholog-
ical accounting (Tversky and Kahneman, 1981), miscalibration of probabilities (Lichtenstein et al., 1982),
hyperbolic discounting (Laibson, 1997), and regret (Bell, 1982a,b; Clarke et al., 1994).
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expected return of the portfolio is higher with the stop-loss rule than without it, we conclude

that the stop-loss rule does, indeed, stop losses.

Using simple properties of conditional expectations, we are able to characterize the

marginal impact of stop-loss rules on any given portfolio’s expected return, which we define

as the “stopping premium”. We show that the stopping premium is inextricably linked to

the stochastic process driving the underlying portfolio’s return. If the portfolio follows a

random walk, i.e., independently and identically distributed returns, the stopping premium

is always negative. This may explain why the academic and industry literature has looked

askance at stop-loss policies to date. If returns are unforecastable, stop-loss rules simply

force the portfolio out of higher-yielding assets on occasion, thereby lowering the overall

expected return without adding any benefits. In such cases, stop-loss rules never stop losses.

However, for non-random-walk portfolios, we find that stop-loss rules can stop losses. For

example, if portfolio returns are characterized by “momentum” or positive serial correlation,

we show that the stopping premium can be positive and is directly proportional to the

magnitude of return persistence. Not surprisingly, if conditioning on past cumulative returns

changes the conditional distribution of a portfolio’s return, it should be possible to find a

stop-loss policy that yields a positive stopping premium. We provide specific guidelines for

finding such policies under several return specifications: mean reversion, momentum, and

Markov regime-switching processes. In each case, we are able to derive explicit conditions

for stop-loss rules to stop losses.

Of course, focusing on expected returns does not account for risk in any way. It may

be the case that a stop-loss rule increases the expected return but also increases the risk

of the underlying portfolio, yielding ambiguous implications for the risk-adjusted return of

a portfolio with a stop-loss rule. To address this issue, we compare the variance of the

portfolio with and without the stop-loss rule and find that, in cases where the stop-loss rule

involves switching to a lower-volatility asset when the stop-loss threshold is reached, the

unconditional variance of the portfolio return is reduced by the stop-loss rule. A decrease in

the variance coupled with the possibility of a positive stopping premium implies that, within

the traditional mean-variance framework, stop-loss rules may play an important role under

certain market conditions.

To illustrate the empirical relevance of our analysis, we apply a simple stop-loss rule to

the standard asset-allocation problem of stocks vs. bonds using monthly U.S. equity and

bond returns from 1950 to 2004. We find that stop-loss rules exhibit significant positive

stopping premiums and substantial reductions in variance over large ranges of threshold

values—a remarkable feat for a buy-high/sell-low strategy. For example, in one calibration,

the stopping premium is approximately 1.0% per annum, with a corresponding reduction

2



in overall volatility of 0.8% per annum, and an average duration of the stopping period of

less than 1 month per year. Moreover, we observe conditional-momentum effects following

periods of sustained losses in equities that seem to produce scenarios where long-term bonds

strongly dominate equities for months at a time. These results suggest that the random

walk model is a particularly poor approximation to monthly U.S. equity returns, as Lo and

MacKinlay (1999) and others have concluded using other methods.

Motivated by Agnew’s (2003) “flight to safety” for household investors, which is similar to

the well-documented “flight to quality” phenomenon involving stocks and bonds, we propose

a regime-switching model of equity returns in which the Markov regime-switching process

is a function of cumulative returns. We show that such a model fits U.S. aggregate stock

index data better than other time-series models such as the random walk and AR(1), and

can explain a portion of the stopping premium and variance reduction in the historical data.

2 Literature Review

Before presenting our framework for examining the performance impact of stop-loss rules,

we provide a brief review of the relevant portfolio-choice literature, and illustrate some of its

limitations to underscore the need for a different approach.

The standard approach to portfolio choice is to solve an optimization problem in a multi-

period setting, for which the solution is contingent on two important assumptions: the

choice of objective function and the specification of the underlying stochastic process for

asset returns. The problem was first posed by Samuelson (1969) in discrete time and Merton

(1969) in continuous time, and solved in both cases by stochastic dynamic programming.

As the asset-pricing literature has grown, this paradigm has been extended in a number of

important directions.3

However, in practice, household investment behavior seems to be at odds with finance

theory. In particular, Ameriks and Zeldes (2004) observe that

. . . a great deal of observed variation in portfolio behavior may be explained

by the outcome of a few significant decisions that individuals make infrequently,

rather than by marginal adjustments continuously.

3For a comprehensive summary of portfolio choice see Brandt (2004). Recent extensions include pre-
dictability and autocorrelation in asset returns (Brennan and Xia, 2001; Xia, 2001; Kim and Omberg, 1996;
Wachter, 2002; Liu, 1999; and Campbell and Viceria, 1999), model uncertainty (Barberis, 2000), transac-
tion costs (Balduzzi and Lynch, 1999), stochastic opportunity sets (Brennan, Schwartz, and Lagnado, 1997;
Brandt, Goyal, Santa-Clara, and Stroud, 2005; and Campbell, Chan, and Viceria, 2003), and behavioral
finance (see the references in footnote 2).
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Moreover, other documented empirical characteristics of investor behavior include non-

participation (Calvet, Campbell, and Sodini 2006); under-diversification (Calvet, Campbell,

and Sodini 2006); limited monitoring frequency and trading (Ameriks and Zeldes 2004);

survival-based selling decisions or a “flight to safety” (Agnew 2003); an absence of hedg-

ing strategies (Massa and Simonov, 2004); and concentration in simple strategies through

mutual-fund investments (Calvet, Campbell and Sodini 2006). Variations in investment

policies due to characteristics such as age, wealth, and profession have been examined as

well.4

In fact, in contrast to the over-trading phenomenon documented by Odean (1999) and

Barber and Odean (2000), Agnew (2003) asserts that individual investors actually trade

infrequently. By examining asset-class flows, she finds that investors often shift out of

equities after extremely negative asset returns into fixed-income products, and concludes

that in retirement accounts, investors are more prone to exhibit a “flight to safety” instead

of explicit return chasing. Given that 1 in 3 of the workers in the United States participate

in 401(k) programs, it is clear that this “flight to safety” could have a significant impact on

market prices as well as demand. Consistent with Agnew’s “flight-to-safety” in the empirical

application of stop-loss, we find momentum in long-term bonds as a result of sustained

periods of loss in equities. This suggests conditional relationships between stocks and bonds,

an implication which is also confirmed by our empirical results.5

Although stop-loss rules are widely used, the corresponding academic literature is rather

limited. The market microstructure literature contains a number of studies about limit orders

and optimal order selection algorithms (Easley and O’Hara, 1991; Biais, Hillion, and Spatt,

1995; Chakravarty and Holden, 1995; Handa and Schwartz, 1996; Harris and Hasbrouck,

1996; Seppi, 1997; and Lo, MacKinlay, and Zhang, 2002). Carr and Jarrow (1990) investigate

the properties of a particular trading strategy that employs stop-loss orders, and Tschoegl

(1988) and Shefrin and Statman (1985) consider behavioral patterns that may explain the

popularity of stop-loss rules. However, to date, there has been no systematic analysis of the

impact of a stop-loss rule on an existing investment policy, an oversight that we remedy in

this paper.

4For example, lack of age-dependence in allocation, lower wealth and lower education with greater non-
participation and under-diversification, and greater sophistication in higher wealth investors have all been
considered (see Ameriks and Zeldes, 2004).

5Although excess performance in long-term bonds may seem puzzling, from a historical perspective, the
deregulation of long-term government fixed-income products in the 1950’s could provide motivation for the
existence of these effects.
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3 A Framework for Analyzing Stop-Loss Rules

In this section, we outline a framework for measuring the impact of stop-loss policies on

investment performance. In Section 3.1, we begin by specifying a simple stop-loss policy

and deriving some basic statistics for its effect on an existing portfolio strategy. We describe

several generalizations and qualifications of our framework in Section 3.2, and then apply

our framework in Section 4 to various return-generating processes including the Random

Walk Hypothesis, momentum and mean-reversion models, and regime-switching models.

3.1 Assumptions and Definitions

Consider any arbitrary portfolio strategy P with returns {rt} that satisfy the following

assumptions:

(A1) The returns {rt} for the portfolio strategy P are stationary with finite mean µ and

variance σ2.

(A2) The expected return µ of P is greater than the riskfree rate rf , and let π ≡ µ − rf

denote the risk premium of P .

Our use of the term “portfolio strategy” in Assumption (A1) is meant to underscore the

possibility that P is a complex dynamic investment policy, not necessarily a static basket of

securities. Assumption (A2) simply rules out perverse cases where stop-loss rules add value

because the “safe” asset has a higher expected return than the original strategy itself.

Now suppose an investor seeks to impose a stop-loss policy on a portfolio strategy. This

typically involves tracking the cumulative return Rt(J) of the portfolio over a window of J

periods, where:6

Rt(J) ≡
J∑

j=1

rt−j+1 (1)

and when the cumulative return crosses some lower boundary, reducing the investment in

P by switching into cash or some other safer asset. This heuristic approach motivates the

following definition:

6For simplicity, we ignore compounding effects and define cumulative returns by summing simple returns rt

instead of multiplying (1+rt). For purposes of defining the trigger of our stop-loss policy, this approximation
does not have significant impact. However, we do take compounding into account when simulating the
investment returns of a portfolio with and without a stop-loss policy.
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Definition 1 A simple stop-loss policy S(γ, δ, J) for a portfolio strategy P with returns

{rt} is a dynamic binary asset-allocation rule {st} between P and a riskfree asset F with

return rf , where st is the proportion of assets allocated to P , and:

st ≡





0 if Rt−1(J) < − γ and st−1 = 1 (exit)

1 if rt−1 ≥ δ and st−1 = 0 (re-enter)

1 if Rt−1(J) ≥ − γ and st−1 = 1 (stay in)

0 if rt−1 < δ and st−1 = 0 (stay out)

(2)

for γ≥0. Denote by rst the return of portfolio strategy S, which is the combinaton of portfolio

strategy P and the stop-loss policy S, hence:

rst ≡ strt + (1− st)rf . (3)

Definition 1 describes a 0/1 asset-allocation rule between P and the riskfree asset F , where

100% of the assets are withdrawn from P and invested in F as soon as the J-period cumula-

tive return Rt1(J) reaches some loss threshold γ at t1. The stop-loss rule stays in place until

some future date t2−1 > t1 when P realizes a return rt2−1 greater than δ, at which point

100% of the assets are transferred from F back to P at date t2. Therefore, the stop-loss pol-

icy S(γ, δ, J) is a function of three parameters: the loss threshold γ, the re-entry threshold

δ, and the cumulative-return window J . Of course, the performance of the stop-loss policy

also depends on the characteristics of F—lower riskfree rates imply a more significant drag

on performance during periods when the stop-loss policy is in effect.

Note that the specification of the loss and re-entry mechanisms are different; the exit

decision is a function of the cumulative return Rt−1(J) whereas the re-entry decision involves

only the one-period return rt−1. This is intentional, and motivated by two behavioral biases.

The first is loss aversion and the disposition effect, in which an individual becomes less

risk-averse when facing mounting losses. The second is the “snake-bite” effect, in which

an individual is more reluctant to re-enter a portfolio after experiencing losses from that

strategy. The simple stop-loss policy in Definition 1 is meant to address both of these

behavioral biases in a systematic fashion.

To gauge the impact of the stop-loss policy S on performance, we define the following

metric:

Definition 2 The stopping premium ∆µ(S) of a stop-loss policy S is the expected return

6



difference between the stop-loss policy S and the portfolio strategy P :

∆µ ≡ E[rst]− E[rt] = po

(
rf − E[rt|st = 0]

)
(4)

where po ≡ Prob(st = 0) (5)

and the stopping ratio is the ratio of the stopping premium to the probability of stopping

out:

∆µ

po

= rf − E[rt|st = 0] . (6)

Note that the difference of the expected returns of rst and rt reduces to the product of the

probability of a stop-loss po and the conditional expectation of the difference between rf and

rt, conditioned on being stopped out. The intuition for this expression is straightforward:

the only times rst and rt differ are during periods when the stop-loss policy has been trig-

gered. Therefore, the difference in expected return should be given by the difference in the

conditional expectation of the portfolio with and without the stop-loss policy—conditioned

on being stopped out—weighted by the probability of being stopped out.

The stopping premium (4) measures the expected-return difference per unit time between

the stop-loss policy S and the portfolio strategy P , but this metric may yield misleading

comparisons between two stop-loss policies that have very different parameter values. For

example, for a given portfolio strategy P , suppose S1 has a stopping premium of 1% and

S2 has a stopping premium of 2%; this suggests that S2 is superior to S1. But suppose the

parameters of S2 implies that S2 is active only 10% of the time, i.e., 1 month out of every

10 on average, whereas the parameters of S1 implies that it is active 25% of the time. On

a total-return basis, S1 is superior, even though it yields a lower expected-return difference

per-unit-time. The stopping ratio ∆µ/po given in (6) addresses this scale issue directly by

dividing the stopping premium by the probability po. The reciprocal of po is the expected

number of periods that st =0 or the expected duration of the stop-loss period. Multiplying

the per-unit-time expected-return difference ∆µ by this expected duration 1/po then yields

the total expected-return difference ∆µ/po between rf and rt.

The probability po of a stop-loss is of interest in its own right because more frequent

stop-loss events imply more trading and, consequently, more transactions costs. Although

we have not incorporated transactions costs explicitly into our analysis, this can be done

7



easily by imposing a return penalty in (3):

rst ≡ strt + (1− st)rf − κ |st − st−1| (7)

where κ>0 is the one-way transactions cost of a stop-loss event. For expositional simplicity,

we shall assume κ=0 for the remainder of this paper.

Using the metrics proposed in Definition 2, we now have a simple way to answer the

question posed in our title: stop-loss policies can be said to stop losses when the correspond-

ing stopping premium is positive. In other words, a stop-loss policy adds value if and only

if its implementation leads to an improvement in the overall expected return of a portfolio

strategy.

Of course, this simple interpretation of a stop-loss policy’s efficacy is based purely on

expected return, and ignores risk. Risk matters because it is conceivable that a stop-loss

policy with a positive stopping premium generates so much additional risk that the risk-

adjusted expected return is less attractive with the policy in place than without it. This

may seem unlikely because by construction, a stop-loss policy involves switching out of

P into a riskfree asset, implying that P spends more time in higher-risk assets than the

combination of P and S. However, it is important to acknowledge that P and S are dynamic

strategies and static measures of risk such as standard deviation are not sufficient statistics for

the intertemporal risk/reward trade-offs that characterize a dynamic rational expectations

equilibrium.7 Nevertheless, it is still useful to gauge the impact of a stop-loss policy on

volatility of a portfolio strategy P , as only one of possibly many risk characteristics of the

combined strategy. To that end, we have:

Definition 3 Let the variance difference ∆σ2 of a stopping strategy be given by:

∆σ2 ≡ Var[rst] − Var[rt] (8)

= E
[
Var[rst|st]

]
+ Var

[
E[rst|st]

] − E
[
Var[rt|st]

]− Var
[
E[rt|st]

]
(9)

= − poVar[rt|st = 0] +

po(1− po)

[(
rf − E[rt|st = 0]

)2 −
(

µ− E[rt|st = 0]

1− po

)2]
(10)

From an empirical perspective, standard deviations are often easier to interpret, hence we

also define the quantity ∆σ≡
√

Var[rst]− σ.

7See Merton (1973) and Lucas (1978), for example.
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Given that a stop-loss policy can affect both the mean and standard deviation of the

portfolio strategy P , we can also define the difference between the Sharpe ratios of P with

and without S:

∆SR ≡ E[rst]− rf

σs

− µ− rf

σ
. (11)

However, given the potentially misleading interpretations of the Sharpe ratio for dynamic

strategies such as P and S, we shall refrain from using this metric for evaluating the efficacy

of stop-loss policies.8

3.2 Generalizations and Qualifications

The basic framework outlined in Section 3.1 can be generalized in many ways. For example,

instead of switching out of P and into a completely riskfree asset, we can allow F to be a

lower-risk asset but with some non-negligible volatility. More generally, instead of focusing

on binary asset-allocation policies, we can consider a continuous function ω(·) ∈ [0, 1] of

cumulative returns that declines with losses and rises with gains. Also, instead of a single

“safe” asset, we might consider switching into multiple assets when losses are realized, or

incorporate the stop-loss policy directly into the portfolio strategy P itself so that the original

strategy is affected in some systematic way by cumulative losses and gains. Finally, there is

nothing to suggest that stop-loss policies must be applied at the portfolio level—such rules

can be implemented security-by-security or asset-class by asset-class.

Of course, with each generalization, the gains in flexibility must be traded off against

the corresponding costs of complexity and analytic intractability. These trade-offs can only

be decided on a case-by-case basis, and we leave it to the reader to make such trade-offs

individually. Our more modest objective in this paper is to provide a complete solution for

the leading case of the simple stop-loss policy in Definition (1). From our analysis of this

simple case, a number of generalizations should follow naturally, some of which are explored

in Kaminski (2006).

However, an important qualification regarding our approach is the fact that we do not

derive the simple stop-loss policy (2) from any optimization problem—it is only a heuristic,

albeit a fairly popular one among many institutional and retail investors. This is a distinct

departure from much of the asset-pricing literature in which investment behavior is modelled

as the outcome of an optimizing individual seeking to maximize his expected lifetime utility

8See Sharpe (1994), Spurgin (2001), and Lo (2002) for details.
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by investing in a finite set of securities subject to a budget constraint, e.g., Merton (1971).

While such a formal approach is certainly preferable if the consumption/investment problem

is well posed—for example, if preferences are given and the investment opportunity set is

completely specified—the simple stop-loss policy can still be studied in the absence of such

structure.

Moreover, from a purely behavioral perspective, it is useful to consider the impact of a

stop-loss heuristic even if it is not derived from optimizing behavior, precisely because we

seek to understand the basis of such behavior. Of course, we can ask the more challenging

question of whether the stop-loss heuristic (2) can be derived as the optimal portfolio rule

for a specific set of preferences, but such inverse-optimal problems become intractable very

quickly (see, for example, Chang, 1988). Instead, we have a narrower set of objectives in this

paper: to investigate the basic properties of simple stop-loss heuristics without reference to

any optimization problem, and with as few restrictions as possible on the portfolio strategy

P to which the stop-loss policy is applied. The benefits of our narrower focus are the explicit

analytical results described in Section 4, and the intuition that they provide for how stop-loss

mechanisms add or subtract value from an existing portfolio strategy.

Although this approach may be more limited in the insights it can provide to the invest-

ment process, the siren call of stop-loss rules seems so universal that we hope to derive some

useful implications for optimal consumption and portfolio rules from our analysis. Moreover,

the idea of overlaying one set of heuristics on top of an existing portfolio strategy has a cer-

tain operational appeal that many institutional investors have found so compelling recently,

e.g., so-called “portable alpha” strategies. Overlay products can be considered a general

class of “superposition strategies”, and this is explored in more detail in Kaminski (2006).

4 Analytical Results

Having defined the basic framework in Section 3 for evaluating the performance of simple

stop-loss rules, we now apply them to several specific return-generating processes for {rt},
including the Random Walk Hypothesis in Section 4.1, mean-reversion and momentum pro-

cesses in Section 4.2, and a statistical regime-switching model in Section 4.3. The simplicity

of our stop-loss heuristic (2) will allow us to derive explicit conditions under which stop-loss

policies can stop losses in each of these cases.
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4.1 The Random Walk Hypothesis

Since the Random Walk Hypothesis is one of the most widely used return-generating pro-

cesses in the finance literature, any analysis of stop-loss policies must consider this leading

case first. Given the framework proposed in Section 3, we are able to derive a surprisingly

strong conclusion about the efficacy of stop-loss rules:

Proposition 1 If {rt} satisfies the Random Walk Hypothesis so that:

rt = µ + εt , εt
IID∼ White Noise(0, σ2

ε ) (12)

then the stop-loss policy (2) has the following properties:

∆µ = po(rf − µ) = − poπ (13a)

∆µ

po

= − π (13b)

∆σ2 = −poσ
2 + po(1− po)π

2 (13c)

∆SR = − π

σ
+

∆µ + π√
∆σ2 + σ2

(13d)

Proof: See Appendix A.1.

Proposition 1 shows that, for any portfolio strategy with an expected return greater

than the riskfree rate rf , the Random Walk Hypothesis implies that the stop-loss policy

(2) will always reduce the portfolio’s expected return since ∆µ ≤ 0. In the absence of any

predictability in {rt}, whether or not the stop-loss is activated has no information content for

the portfolio’s returns; hence, the only effect of a stop-loss policy is to replace the portfolio

strategy P with the riskfree asset when the strategy is stopped out, thereby reducing the

expected return by the risk premium of the original portfolio strategy P . If the stop-loss

probability po is large enough and the risk premium is small enough, (13) shows that the

stop-loss policy can also reduce the volatility of the portfolio.

The fact that there are no conditions under which the simple stop-loss policy (2) can add

value to a portfolio with IID returns may explain why stop-loss rules have been given so little

attention in the academic finance literature. The fact that the Random Walk Hypothesis was

widely accepted in the 1960’s and 1970’s—and considered to be synonymous with market

efficiency and rationality—eliminated the motivation for stop-loss rules altogether. In fact,

our simple stop-loss policy may be viewed as a more sophisticated version of the “filter

rule” that was tested extensively by Alexander (1961) and Fama and Blume (1966). Their

11



conclusion that such strategies did not produce any excess profits was typical of the outcomes

of many similar studies during this period.

However, despite the lack of interest in stop-loss rules in academic studies, investment

professionals have been using such rules for many years, and part of the reason for this di-

chotomy may be the fact that the theoretical motivation for the Random Walk Hypothesis is

stronger than the empirical reality. In particular, Lo and MacKinlay (1988) presented com-

pelling evidence against the Random Walk Hypothesis for weekly U.S. stock-index returns

from 1962 to 1985, which has subsequently been confirmed and extended to other markets

and countries by a number of other authors. In the next section, we shall see that, if asset-

returns do not follow random walks, there are several situations in which stop-loss policies

can add significant value to an existing portfolio strategy.

4.2 Mean Reversion and Momentum

In the 1980’s and 1990’s, several authors documented important departures from the Random

Walk Hypothesis for U.S. equity returns,9 and, in such cases, the implications for the stop-

loss policy (2) can be quite different than in Proposition 1. To see how, consider the simplest

case of a non-random-walk return-generating process, the AR(1):

rt = µ + ρ(rt−1 − µ) + εt , εt
IID∼ White Noise(0, σ2

ε ) , ρ ∈ (−1, 1) (14)

where the restriction that ρ lies in the open interval (−1, 1) is to ensure that rt is a stationary

process (see Hamilton, 1994).

This simple process captures a surprisingly broad range of behavior depending on the

single parameter ρ, including the Random Walk Hypothesis (ρ = 0), mean reversion (ρ ∈
(−1, 0)), and momentum (ρ = (0, 1)). However, the implications of this return-generating

process for our stop-loss rule are not trivial to derive because the conditional distribution of

rt, conditioned on Rt−1(J), is quite complex. For example, according to (4), the expression

for the stopping premium ∆µ is given by:

∆µ = po(rf − E[rt|st = 0]) (15)

but the conditional expectation E[rt|st = 0] is not easy to evaluate in closed-form for an

9See, for example, Fama and French (1988), Lo and MacKinlay (1988, 1990, 1999), Poterba and Summers
(1988), Jegadeesh (1990), Lo (1991), and Jegadeesh and Titman (1993).
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AR(1). For ρ 6=0, the conditional expectation is likely to differ from the unconditional mean

µ since past returns do contain information about the future, but the exact expression is

not easily computable. Fortunately, we are able to obtain a good first-order approximation

under certain conditions, yielding the following result:

Proposition 2 If {rt} satisfies an AR(1) (14), then the stop-loss policy (2) has the following

properties:

∆µ

po

= − π + ρσ + η(γ, δ, J) (16)

and for ρ > 0 and reasonable stop-loss parameters, it can be shown that η(γ, δ, J) ≥ 0, which

yields the following lower bound:

∆µ

po

≥ − π + ρσ (17)

Proof: See Appendix A.2.

Proposition 2 shows that the impact of the stop-loss rule on expected returns is the sum

of three terms: the negative of the risk premium, a linear function of the autoregressive

parameter ρ, and a remainder term. For a mean-reverting portfolio strategy, ρ < 0; hence,

the stop-loss policy hurts expected returns to a first-order approximation. This is consistent

with the intuition that mean-reversion strategies benefit from reversals, thus a stop-loss

policy that switches out of the portfolio after certain cumulative losses will miss the reversal

and lower the expected return of the portfolio. On the other hand, for a momentum strategy,

ρ>0, in which case there is a possibility that the second term dominates the first, yielding a

positive stopping premium. This is also consistent with the intuition that in the presence of

momentum, losses are likely to persist, therefore, switching to the riskfree asset after certain

cumulative losses can be more profitable than staying fully invested.

In fact, (17) implies that a sufficient condition for a stop-loss policy with reasonable

parameters to add value for a momentum-AR(1) return-generating process is

ρ ≥ π

σ
≡ SR (18)

where SR is the usual Sharpe ratio of the portfolio strategy. In other words, if the return-

generating process exhibits enough momentum, then the stop-loss rule will indeed stop losses.
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This may seem like a rather high hurdle, especially for hedge-fund strategies that have Sharpe

ratios in excess of 1.00! However, note that (18) assumes that the Sharpe ratio is calibrated

at the same sampling frequency as ρ. Therefore, if we are using monthly returns in (14),

the Sharpe ratio in (18) must also be monthly. A portfolio strategy with an annual Sharpe

ratio of 1.00—annualized in the standard way by multiplying the monthly Sharpe ratio by√
12—implies a monthly Sharpe ratio of 0.29, which is still a significant hurdle for ρ but not

quite as imposing as 1.00.10

4.3 Regime-Switching Models

Statistical models of changes in regime, such as the Hamilton (1989) model, are parsimonious

ways to capture apparent nonstationarities in the data such as sudden shifts in means and

variances. Although such models are, in fact, stationary, they do exhibit time-varying con-

ditional means and variances, conditioned on the particular state that prevails. Moreover,

by assuming that transitions from one state to another follow a time-homogenous Markov

process, regime-switching models exhibit rich time-series properties that are surprisingly dif-

ficult to replicate with traditional linear processes. Regime-switching models are particularly

relevant for stop-loss policies because one of the most common reasons investors put forward

for using a stop-loss rule is to deal with a significant change in market conditions such as

October 1987 or August 1998. To the extent that this motivation is genuine and appropriate,

we should see significant advantages to using stop-loss policies when the portfolio return {rt}
follows a regime-switching process.

More formally, let rt be given by the following stochastic process:

rt = Itr1t + (1− It)r2t , rit
IID∼ N (µi, σ

2
i ) , i = 1, 2 (19a)

A ≡
( It+1 =1 It+1 =0

It =1 p11 p12

It =0 p21 p22

)
(19b)

where It is an indicator function that takes on the value 1 when state 1 prevails and 0

when state 2 prevails, and A is the Markov transition probabilities matrix that governs the

transitions between the two states. The parameters of (19) are the means and variances of

the two states, (µ1, µ2, σ
2
1, σ

2
2), and the transition probabilities (p11, p22). Without any loss

10Of course, the assumption that returns follow an AR(1) makes the usual annualization factor of
√

12
incorrect, which is why we use the phrase “annualized in the standard way”. See Lo (2002) for the proper
method of annualizing Sharpe ratios in the presence of serial correlation.
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in generality, we adopt the convention that state 1 is the higher-mean state so that µ1 >µ2.

Given assumption (A2), this convention implies that µ1 > rf , which is an inequality we will

make use of below. The six parameters of (19) may be estimated numerically via maximum

likelihood (see, for example, Hamilton, 1994).

Despite the many studies in the economics and finance literatures that have implemented

the regime-switching model (19), the implications of regime-switching returns for the invest-

ment process has only recently been considered (see Ang and Bekaert, 2004). This is due,

in part, to the analytical intractability of (19)—while the specification may seem simple, it

poses significant challenges for even the simplest portfolio optimization process. However,

numerical results can easily be obtained via Monte Carlo simulation, and we provide such

results in Sections 5.

In this section, we investigate the performance of our simple stop-loss policy (2) for this

return-generating process. Because of the relatively simple time-series structure of returns

within each regime, we are able to characterize the stopping premium explicitly:

Proposition 3 If {rt} satisfies the two-state Markov regime-switching process (19), then

the stop-loss policy (2) has the following properties:

∆µ = po,1(rf − µ1) + po,2(rf − µ2) (20)

∆µ

po

= (1− p̃o,2)(rf − µ1) + p̃o,2(rf − µ2) (21)

where

po,1 ≡ Prob ( st =0, It =1 ) (22a)

po,2 ≡ Prob ( st =0, It =0 ) (22b)

p̃o,2 ≡ po,2

po

= Prob (It =0 | st =0) . (22c)

If the riskfree rate rf follows the same two-state Markov regime-switching process (19), with

expected returns rf1 and rf2 in states 1 and 2, respectively, then the stop-loss policy (2) has

the following properties:

∆µ = po,1(rf1 − µ1) + po,2(rf2 − µ2) (23)

∆µ

po

= (1− p̃o,2)(rf1 − µ1) + p̃o,2(rf2 − µ2) . (24)
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The conditional probability p̃o,2 can be interpreted as the accuracy of the stop-loss policy in

anticipating the low-mean regime. The higher is this probability, the more likely it is that

the stop-loss policy triggers during low-mean regimes (regime 2), which should add value to

the expected return of the portfolio as long as the riskfree asset-return rf is sufficiently high

relative to the low-mean expected return µ2.

In particular, we can use our expression for the stopping ratio ∆µ/po to provide a bound

on the level of accuracy required to have a non-negative stopping premium. Consider first the

case where the riskfree asset rf is the same across both regimes. For levels of p̃o,2 satisfying

the inequality:

p̃o,2 ≥ µ1 − rf

µ1 − µ2

(25)

the corresponding stopping premium ∆µ will be non-negative. By convention, µ1 >µ2, and

by assumption (A2), µ1 >rf , therefore the sign of the right side of (25) is positive. If rf is

less than µ2, then the right side of (25) is greater than 1, and no value of p̃o,2 can satisfy

(25). If the expected return of equities in both regimes dominates the riskfree asset, then the

simple stop-loss policy will always decrease the portfolio’s expected return, regardless of how

accurate it is. To see why, recall that returns are independently and identically distributed

within each regime, and we know from Section 4.1 that our stop-loss policy never adds value

under the Random Walk Hypothesis. Therefore, the only source of potential value-added

for the stop-loss policy (2) under a regime-switching process is if the equity investment in

the low-mean regime has a lower expected return than the riskfree rate, i.e., µ2 <rf . In this

case, the right side of (25) is positive and less than 1, implying that sufficiently accurate

stop-loss policies will yield positive stopping premia.

Note that the threshold for positive stopping premia in (25) is decreasing in the spread

µ1−µ2. As the difference between expected equity returns in the high-mean and low-mean

states widens, less accuracy is needed to ensure that the stop-loss policy adds value. This

may be an important psychological justification for the ubiquity of stop-loss rules in practice.

If an investor possesses a particularly pessimistic view of the low-mean state—implying a

large spread between µ1 and µ2—then our simple stop-loss policy may appeal to him even

if its accuracy is not very high.
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5 Empirical Analysis

To illustrate the potential relevance of our framework for analyzing stop-loss rules, we con-

sider the performance of (2) when applied to the standard household asset-allocation problem

involving just two asset classes: stocks and long-term bonds. Using monthly stock- and bond-

index data from 1950 to 2004, we find that stop-loss policies produce surprising conditional

properties in portfolio returns, stopping losses over a wide range of parameter specifications.

Our simple stop-loss rule seems to be able to pick out periods in which long-term bonds

substantially out-perform equities, which is especially counterintuitive when we consider the

unconditional properties of these two asset classes historically.

For our empirical analysis, we use the monthly CRSP value-weighted returns index to

proxy for equities and monthly long-term government bond returns from Ibbotson and Asso-

ciate to proxy for bonds. We also consider Ibbotson’s short-term government bond returns

for purposes of comparison. Our sample runs from January 1950 to December 2004, the same

time span used by Ang and Berkart’s (2004) study of regime-switching models and asset al-

location. In Section 5.4, we consider the longer time span from January 1926 to December

2004 to reduce estimation error for our behavioral regime-switching model estimates.

Ann. 

Mean Ann. SD rrrr1 Min Med Max MDD

(%) (%) (%) (%) (%) (%) (%)

Equities 12.5  14.4  2    -0.3  4.7  -21.6  1.3  16.8  0.9  38.4  

Long-Term Bonds 6.2  9.0  6    0.6  6.4  -9.8  0.3  15.2  0.7  25.1  

Short-Term Bonds 4.8  0.8  96    1.0  4.4  0.0  0.4  1.4  5.8  1.3  

Skew Kurt
Ann. 

Sharpe
Asset

Table 1: Summary statistics for the CRSP Value-Weighted Total Market Index, and Ibbotson
Associates Long-Term and Short-Term Government Bond Indexes, from January 1950 to
December 2004.

In Table 1, we summarize the basic statistical properties of our dataset. To be consistent

with practice, we implement our stop-loss policies using simple returns, but also provide

means and standard deviations of log returns for equities and bonds in Table 2 to calibrate

some of our simulations. The results in Table 1 are well known and require little com-

mentary: stocks outperform bonds, long-term bonds outperform short-term bonds, and the

corresponding annual volatilities are consistent with the rank-ordering of mean returns.

In Section 5.1, we present the performance statistics of our stop-loss policy applied to

our stock and bond return series. We provide a more detailed performance attribution of
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the stop-loss policy in Section 5.2. In Section 5.3, we compare our empirical findings to

simulated results under the Random Walk Hypothesis, momentum and mean reversion, and

regime switching. We conclude that stop-loss rules apparently exploit momentum effects in

equities and long-term bonds following periods of sustained losses in equities.

5.1 Basic Results

The empirical analysis we perform is straightforward: consider investing 100% in equities

in January 1950, and apply the simple stop-loss policy (2) to this portfolio on a monthly

basis, switching to a 100% investment in long-term bonds when stopped out, and switching

back into equities 100% when the re-entry threshold is reached. We run this simulation

until December 2004, which yields a time series of 660 monthly returns {rst} with which we

compute the performance statistics in Definition 2.

Specifically, we compute performance measures for the simple stop-loss strategy (2) for

cumulative-return windows J =3, 6, 12, and 18 months over stop-loss thresholds γ =4–14%

and re-entry thresholds δ = 0% and 2%. The performance measures ∆µ, ∆σ, ∆µ

po
, and po

are graphed in Figure 1. Two robust features are immediately apparent: the first is that

stopping premiums ∆µ are positive, and the second is that the volatility differences ∆σ are

also negative. This suggests that stop-loss rules unambiguously add value to mean-variance

portfolio optimizers. Moreover, the robustness of the results over a large range of parameter

values indicates some significant time-series structure within these two asset classes.

Figure 1 also shows that ∆µ seems to decrease with larger cumulative-return windows,

especially for J =6 and 12 months. This finding is consistent with ∆µ increasing in po when

the riskfree rate rf is higher than the conditional expected return of equities, conditioned on

being stopped out (see equation (15)). For reference, we plot po in Figure 2.

For reference, we also plot po in Figure 2 and find that po is monotonically decreasing

with γ as we would expect. In addition, po generally ranges between 5% and 10% implying

that stop-loss rules stop-out rather infrequently, approximately once a year or once every

two years. Nevertheless, these infrequent decisions seem to add considerable value to a

buy-and-hold equity portfolio.

Figure 1 also contains plots of the stopping ratio ∆µ/po and the figure shows that the

stop-loss policy yields an incremental 0.5% to 1% increase in expected return on a monthly

basis. The worst ∆µ/po occurs for the 3-month cumulative-return window, and the best

∆µ/po is obtained for large thresholds with an 18-month window size. For the shorter win-

dow lengths, smaller thresholds provide less value-added but the value remains positive.

However, for the 18-month window, larger thresholds perform better. This connection be-
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Figure 1: Stop-loss performance metrics ∆µ, ∆σ, ∆µ

po
, and po for the simple stop-loss policy

over stopping thresholds γ = 4–14% with δ = 0%, J = 3 months (◦), 6 months (+), 12
months (¦), and 18 months (4).
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tween stop-loss threshold and cumulative-return window size suggests that there is some

fundamental relation—either theoretical or behavioral—between the duration of losses and

their magnitude.
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Figure 2: Stop-loss performance metrics for ∆SRfor the simple stop-loss policy over stopping
thresholds γ =4–14% with δ=0%, J = 3 months (◦), 6 months (+), 12 months (¦), and 18
months (4).

In Tables A.2 and A.3 of Appendix A.4, we examine the performance of equities and

bonds during stopped-out periods for stop-loss thresholds δ=0% and δ=2%, and find that

bonds have significantly better performance with the same level of volatility whereas stocks

show reduced performance and increased volatility. We apply a Kolmogorov-Smirnov test

to compare the returns before and after stop-loss policies are triggered, and find statistically

significant p-values, indicating a difference between the marginal distribution of returns in

and out of stop-out periods (see Table A.4).

Our findings seem to imply momentum-like effects for large negative equity returns,

except in the case of large losses over short periods of time which seems to imply reversals.

However, since the main focus of our attention is on means and variances, a natural concern

is the undue influence of outliers. Even during stop-out periods, we find that the kurtosis

of stock and bond returns to be in the range of 2 to 3 (see Tables A.2 and A.3). We also

find that the stop-out periods are relatively uniformly distributed over time, refuting the

obvious conjecture that a small number of major market crashes are driving the results.

Surprisingly, when we exclude the “Tech Bubble” by limiting our sample to December 1999,

we find increased performance for our stop-loss policy in most cases. One explanation is that

during significant market declines, our stop-loss policy may get back in too quickly, thereby

hurting overall performance.

Figure 1 also includes a plot of ∆σ, which shows that volatility is always reduced by
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the stop-loss policy, but the reduction is smaller for larger stopping thresholds γ. This is

to be expected because larger thresholds imply that the stop-loss policy is activated less

often. Nevertheless, the reduction in variance is remarkably pronounced for a strategy which

so rarely switches out of equities (see Tables A.2 and A.3 for the relative frequency and

duration of stop-outs). This reduction seems to be coming from two sources: switching to a

lower-volatility asset, and avoiding subsequently higher-volatility periods in equities.

Based on the empirical behavior of ∆µ and ∆σ, we expect an increase in the Sharpe ratio,

and Figure 2 confirms this with a plot of ∆SR. The stop-loss policy has a significant impact

on the portfolio’s Sharpe ratio even in this simple two-asset case. The relation between ∆SR

and window size underscores the potential connection between the amount of time losses are

realized and appropriate stop-loss thresholds.

Based on our empirical analysis, we conclude that stop-loss policies could indeed have

added value to the typical investor when applied to equities and long-term bonds from 1950

to 2004. In the next two sections, we provide a more detailed analysis of these results by

conducting a performance attribution for the two assets, and by examining several models

for asset returns to gauge how substantial these effects are.

5.2 Performance Attribution

The empirical success of our simple stop-loss policy implies periods where long-term bonds

provide more attractive returns than equities, which beckons us to examine in more detail

the properties of both asset classes during stopped-out periods. In particular, we would like

to understand if the positive stopping premium is driven by avoiding downside-momentum

in equities, positive returns from a flight-to-safety in bonds, or both. Although a closer

analysis indicates that both phenomena are present, the conditional performance in bonds

seems more compelling. To demonstrate this effect, we examine a specific stop-loss policy

and graph the conditional asset-class properties in Figure 3, 4, and 5.

In Figure 3, we plot the empirical cumulative distribution functions (CDFs) for equities,

long-term bonds, and their difference for stopped-out and non-stopped-out returns, and

in Figure 4, we plot the corresponding return histograms for equities and long-term bonds

during stopped-out periods, non-stopped-out periods, and both. Figure 3 shows that for long-

term bonds, returns during stopped-out periods seem to first-order stochastically dominate

returns during non-stopped-out period, and that stopped-out returns exhibit a much larger

positive skew. In contrast, equities have larger negative returns and a few larger positive

returns, coupled with larger volatility.

When we examine the difference between long-term bonds and equities, we find that the
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Figure 3: Empirical CDFs of (a) Ibbotson Associates Long-Term Government Bond returns
(rb); (b) CRSP Value-Weighted Total Market returns (re); (c) and their difference (rb − re),
for returns during stopped-out periods (50 data points, dotted line) and non-stopped out
periods (610 data points, solid line) with stop-loss parameters J =12, γ = 8%, and δ = 0%,
from January 1950 to December 2004.

CDF of the stopped-out periods almost first-order stochastically dominates the CDF of the

non-stopped-out periods, and the positive skew is due to both the increased positive skew in

long-term bonds and the large negative returns in equities. The stopped-out difference does

not stochastically dominate the non-stopped out periods due to the few large positive returns

in equities during stopped-out periods. By examining these conditional CDFs, we conclude

that performance during stopped-out periods is generally good because equities tend to have

persistent negative performance and long-term bonds generate excess performance during the

periods following negative equity returns. In addition, long-term bonds do not stochastically

dominate equities because of the few large reversals in equity returns.

In Figure 5, we compare equities to bonds directly by plotting the empirical CDFs for

both assets together, for stopped-out and non-stopped-out periods. In this case, we find

that during non-stopped-out periods, equities provide a higher return than bonds 70% of the

time, but during stopped-out periods, equities provide a higher return only 30% of the time.

5.3 A Comparison of Empirical and Analytical Results

To develop further intuition for the empirical results of Section 5.1, we conduct several sim-

ulation experiments in this section for the return-generating processes of Section 4. These

simulations will serve as useful benchmarks to gauge the economic significance of our em-

pirical results, and can also provide insights into the specific sources of value-added of our

stop-loss policy.

We simulate three return-generating processes: the Random Walk Hypothesis, an AR(1)

with positive ρ (momentum), and the regime-switching model (19). For each process, we

simulate 10,000 histories of artificial equity and bond return series, each series containing
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Figure 4: Histograms of (a) Ibbotson Associates Long-Term Government Bond returns (rb);
(b) CRSP Value-Weighted Total Market returns (re); and (c) their difference (rb − re), for
returns during stopped-out periods and the entire sample, with stop-loss parameters J =12,
γ = 8%, and δ = 0%, from January 1950 to December 2004.
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Figure 5: Empirical CDFs of Ibbotson Associates Long-Term Government Bond returns (rb)
vs. CRSP Value-Weighted Total Market returns (re), for returns during stopped-out periods
(50 data points, dotted line) and non-stopped out periods (610 data points, solid line) with
stop-loss parameters J =12, γ =8%, and δ=0%, from January 1950 to December 2004.

660 normally distributed monthly returns (the same sample size as our data), and calibrated

to match the means and standard deviations of our data. The parameter estimates used for

the IID and AR(1) cases are given in Table 2, and the regime-switching parameter estimates,

estimated by maximum likelihood, are given in Table 3.

For each return history, we apply our stop-loss policy (2), compute the performance

metrics in Definition 2, repeat this procedure 10,000 times, and average the performance

metrics across these 10,000 histories. Figure 6 plots these simulated metrics for the three

return-generating processes, along with the empirical performance metrics for the stop-loss

policy with a window size J =12 months and a re-entry threshold of 0%.

Given our analysis of the Random Walk Hypothesis in Section 4.1, it is clear that IID

returns will yield a negative stopping premium. According to Proposition 1, we know the

value of the stopping premia ∆µ depends on our choice of stopping threshold only through

po, and the value of ∆µ

po
=rf − µ is constant. Figure 6 confirms these implications, and also

illustrates the gap between the Random Walk simulations and the empirical results which

are plotted using the symbol “◦”. The t-statistics associated with tests that the empirical

performance metrics ∆µ, ∆σ, and ∆SR are different from their simulated counterparts are

all highly significant at the usual levels, implying resounding rejections of the Random Walk

Hypothesis. Alternatively, for our simulations to be consistent with our empirical findings,

long-term bonds would have to earn a premium over equities of approximately 1% per month,

24



Return c k ssss rrrr

Process (%) (%) (%) (%)

AR(1) 0.93   0.17   4.12   2.52   

AR(1) (ann.) 11.16   2.04   14.28   —

IID 0.95   0.17   4.12   —

IID (ann.) 11.46   2.04   14.28   —

IID 0.48   0.06   2.58   —

IID (ann.) 5.81   0.80   8.93   —

Equity

Long-Term 

Bonds

Asset

Table 2: Parameter estimates for monthly log returns under both IID and AR(1) return-
generating processes for the CRSP Value-Weighted Total Market Index, and IID return-
generating process for and Ibbotson Associates Long-Term and Short-Term Government
Bond Indexes, from January 1950 to December 2004.

mmmme1 mmmme2 sssse1 sssse2 mmmmb1 mmmmb2 ssssb1 ssssb2 pppp

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Monthly 1.26   0.34   3.11   5.65   0.36   0.72   1.64   3.81   67     

Annual 15.14   4.06   10.77   19.57   4.37   8.70   5.67   13.20   —

Frequency

Table 3: Maximum likelihood estimates for a regime-switching model with constant transi-
tion probabilities for the CRSP Value-Weighted Total Market return, and Ibbotson Asso-
ciates Long-Term and Short-Term Government Bond returns, from January 1950 to Decem-
ber 2004.
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Figure 6: Empirical and simulated performance metrics ∆µ,∆σ, ∆µ

po
, and po for the simple

stop-loss policy with stopping thresholds γ =4–14%, δ =0%, J =12 months. The empirical
results (◦) are based on monthly returns of the CRSP Value-Weighted Total Market Index
and Ibbotson Associates Long-Term Bond Index from January 1950 to December 2004.
The simulated performance metrics are averages across 10,000 replications of 660 monthly
normally distributed returns for each of three return-generating processes: IID (+), an AR(1)
(4), and a regime-switching model (∗).

and equities would have to have much higher volatility than their historical returns have

exhibited.

For the AR(1) simulations, Figure 6 shows little improvement in explaining the empirical

results with this return-generating process—the simulated stopping premium is still quite

negative for the amount of positive autocorrelation we have calibrated according to Table 2.

Using Proposition 2, we can approximate and bound the value of the stopping ratio to be:

∆µ

po

≈ rf − µ + ρσ = −0.0034

which is comparable to the stopping ratio under the Random Walk Hypothesis, −0.0045.
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J Implied rrrr rrrrMLE

(Months) (%) (% )(% )(% )(% )

3     28.1   2.5   

6     33.6   2.5   

12     39.0   2.5   

18     40.1   2.5   

Table 4: Implied first-order serial correlation coefficient ρ based on the approximation of ∆µ

po

assuming an AR(1) return-generating process for equities where ∆µ

p0
is an average across the

following parameter values for γ: 4%, 5%, 6%, 7%, 8%, 9%, and 10%.

Given empirical values for ∆µ/po, we can back out the implied value of ρ under an AR(1);

these implied values are given in Table 4. Clearly, these implied autocorrelations are unre-

alistically high for monthly equity returns, suggesting that simple AR(1) momentum cannot

explain the empirical success of our stop-loss policy.

The third set of simulations is based on the regime-switching model (19) where long-term

bonds are also assumed to vary across regimes, and the parameter estimates in Table 3 show

some promise of capturing certain features of the data that neither IID nor AR(1) processes

can generate. The conditional asymmetry of the two regimes is characterized by one regime

with higher returns in equities and lower returns in bonds, and the other with lower returns in

equities and higher returns in bonds. Using Proposition 3 (the case with a regime-switching

riskfree asset), we can gauge the level of accuracy required of our regime-switching model to

obtain a positive stopping premium. Recall from (24) that

∆µ

po

= rf1 − µ1 + p̃o,2(rf2 − rf1 + µ1 − µ2)

= − 0.009 + 0.0128p̃o,2

Using this simple result, we see that the stop-loss strategy must correctly switch into bonds

with 69.9% accuracy to yield a positive stopping premium. Given the level of volatility in

asset returns, it is unrealistic to expect any stopping rule to be able to distinguish regimes

with such accuracy. To confirm this intuition, we simulate the regime-switching model using

the parameter estimates in Table 3 and plot the implied accuracy p̃o,2 over a large range of

stop-loss rules in Figure 7. The 3-month stopping window outperforms the other stopping

windows, especially for large stopping thresholds γ, but none of the implied accuracies comes

close to the required accuracy of 69.9% to yield a positive stopping premium. Despite the
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Figure 7: The probability of correctly being out of equities during the low-mean regime for
equities, or p̃o,2, under Hamilton’s (1989) regime-switching model for Basic Stop Loss Rules
over various stopping thresholds γ = 4–14% with δ = 0%, J = 3 (◦), 6 (+), 9 (¦), and 18
(4) months, threshold for positive ∆µ.

intuitive appeal of the regime-switching model, it cannot easily account for the empirical

success of our simple stop-loss policy.

5.4 A Behavioral Regime-Switching Model

Given the lack of success in the regime-switching model (19) to explain the empirical perfor-

mance of the simple stop-loss policy, we propose an alternative based on the flight-to-safety

phenomenon. The motivation for such an alternative is the mounting empirical and experi-

mental evidence that investors have two modes of behavior: a normal state, and a distressed

or panic state.11 An implication of this behavior is that investors are asymmetrically im-

pacted by losses, resulting in a flight to safety. The “distress state” is characterized by a

lower mean in equities, as well as a higher mean in bonds, and one possible trigger is a

sufficiently large cumulative decline in an investor’s wealth, e.g., a 401(k) account (Agnew,

2003)

This phenomenon can be captured parsimoniously by extending the regime-switching

model (19) to allow the regime-switching probabilities to be time-varying and dependent on

11Examples of such evidence include: disposition effects (Shefrin and Statman, 1985; Odean, 1998, 1999);
disappointment aversion (Gul, 1991); loss aversion and prospect theory (Kahneman and Tversky, 1979,1992);
and regret (Bell, 1982a,b; Loomes and Sugden, 1982).
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a cumulative sum of past asset returns:

Prob ( It =0 | It−1 =1) =
exp(a1 + b1Rt−1(J))

1 + exp(a1 + b1Rt−1(J))
(26a)

Prob ( It =1 | It−1 =0) =
exp(a1 + b1Rt−1(J))

1 + exp(a2 + b2Rt−1(J))
. (26b)

The motivation for such a specification is to capture the flight-to-safety effect where the

probability of switching to the distress state increases as cumulative losses mount, which

implies a negative b1 coefficient if we continue to adopt the convention that state 1 is the

higher-mean state.12 This behavioral regime-switching model can be estimated via maximum

likelihood estimation following an approach similar to Ang and Bekaert (2004) (see Appendix

A.3 for details), and the parameter estimates for our monthly equity and long-term bond

return series are given in Table 5. With the exception of the case where J = 18, the b1

coefficient estimates are indeed negative, consistent with the flight-to-safety phenomenon.

Moreover, the coefficient estimates b2 are positive and much larger in absolute value than

the b1 estimates, implying a stronger tendency to return to the high-mean state from the

low-mean state given a cumulative gain of the same absolute magnitude. The fact that both

b1 and b2 estimates are the largest in absolute value for the shortest horizon J = 3 is also

consistent with the behavioral evidence that losses and gains concentrated in time have more

salience than those over longer time periods.

Using the maximum likelihood estimates in Table 5, we can compute the implied accuracy

p̃o,2 required to achieve a positive stopping premium, and these thresholds are given in Table

6. These more plausible thresholds—for example, 58.9% for 3-month returns—show that a

regime-switching model, modified to include time-varying transition probabilities based on

cumulative returns, is capable of explaining the empirical results of Section 5. Moreover,

a simulation experiment similar to those of Section 5.3, summarized in Table 7, also yields

levels of implied accuracy levels required to yield positive stopping premia.

These results confirm the intuition that regime-switching models—properly extended to

incorporate certain behavioral features—can explain more of the empirical performance of

simple stop-loss rules than the other return-generating processes we have explored. In fact,

the differences between the empirical and simulated performance of our stop-loss policy

are not statistically significant under the behavioral regime-switching model for many of the

stop-loss parameters, and the behavioral regime-switching model generates variance patterns

12According to (26a), a negative value for b1 implies that cumulative losses would increase the probability
of transitioning from state 1 to state 2.
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mmmme1 mmmme2 sssse1 sssse2 mmmmb1 mmmmb2 ssssb1 ssssb2

(%) (%) (%) (%) (%) (%) (%) (%)

Monthly:

3         1.05 0.32 3.43 5.82 0.33 0.82 1.90 3.87 -4.02 -5.00 -7.53 24.05 0.24 0.15 

6         1.04 0.40 3.42 5.68 0.35 0.73 1.85 3.82 -3.87 -4.04 -3.00 10.10 0.22 0.16 

12         1.03 0.36 3.41 5.69 0.34 0.76 1.85 3.83 -3.52 -3.14 -2.99 2.47 0.23 0.16 

18         1.08 0.48 3.27 5.46 0.34 0.79 1.73 3.64 -4.51 -3.95 4.25 5.47 0.00 0.01 

Annual:

3         12.59 3.78 11.89 20.17 3.90 9.84 6.56 13.41 -4.02 -5.00 -7.53 24.05 0.24 0.15 

6         12.48 4.76 11.85 19.67 4.17 8.74 6.41 13.25 -3.87 -4.04 -3.00 10.10 0.22 0.16 

12         12.31 4.33 11.81 19.71 4.07 9.09 6.41 13.26 -3.52 -3.14 -2.99 2.47 0.23 0.16 

18         12.94 5.73 11.32 18.90 4.04 9.48 5.99 12.59 -4.51 -3.95 4.25 5.47 0.00 0.01 

b2 sssseb1 sssseb2J a1 a2 b1

Table 5: Maximum likelihood estimates of the behavioral regime-switching model for
monthly and annual log-returns for the CRSP Value-Weighted Total Market Index and
Ibbotson Associates Long-Term Government Bond Index, from January 1950 to December
2004, and for cumulative-return windows J =3, 6, 12, and 18 months.

J 

(Months)

Bound on 

po,2 ⇒⇒⇒⇒ DDDD
m m m m 

≥ 0

3     58.9   

6     67.6   

12     63.4   

18     70.4   

Table 6: Implied lower bound for the accuracy p̃o,2 of the simple stop-loss policy to ensure a
positive stopping premia, based on maximum likelihood estimates of the behavioral regime-
switching model applied to monthly returns of the CRSP Value-Weighted Total Market
Index and Ibbotson Associates Long-Term Government Bond Index, from January 1950 to
December 2004.
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J 

(Months)
n

Implied 

Empirical 

po,2

Implied 

Range of po,2 

with 

Simulation

Bound on po,2 

⇒⇒⇒⇒ DDDD
mmmm ≥ 0

3  1.16    [0.421,0.834] 0.589     

6  1.58    [0.404,0.714] 0.676     

12  1.70    [0.341,0.566] 0.634     

18  1.84    [0.432,0.583] 0.704     

3  1.16    [0.485,0.847] 0.589     

6  1.58    [0.499,0.762] 0.676     

12  1.70    [0.418,0.604] 0.634     

18  1.84    [0.474,0.619] 0.704     

3  1.16    [0.578,0.785] 0.589     

6  1.58    [0.565,0.713] 0.676     

12  1.70    [0.486,0.668] 0.634     

18  1.84    [0.528,0.593] 0.704     

3  1.16    [0.663,0.857] 0.589     

6  1.58    [0.635,0.871] 0.676     

12  1.70    [0.545,0.604] 0.634     

18  1.84    [0.594,0.691] 0.704     

3      

6      

12      

18      

Table 7: Simulated values for implied p̃o,2, and thresholds for positive stopping premium
based on maximum likelihood parameter estimates of the behavioral regime-switching model
with behavioral cumulative-return windows of length n and stop-loss cumulative-return win-
dows of length J .

that are more consistent with those in the data.

However, despite providing a better explanation of the empirical success of our stop-loss

policy, the behavioral regime-switching model cannot generate the magnitude of stopping

premia observed in the historical record. Therefore, stop-loss policies must be exploiting

additional time-varying momentum in equities and long-term bonds that we have not com-

pletely captured in our time-series models of stock and bond returns. We leave this as a

direction for future research.

6 Conclusion

In this paper, we provide an answer to the question when do stop-loss rules stop losses? The

answer depends, of course, on the return-generating process of the underlying investment for

which the stop-loss policy is implemented, as well as the particular dynamics of the stop-loss

policy itself. If “stopping losses” is interpreted as having a higher expected return with

the stop-loss policy than without it, then for a specific binary stop-loss policy, we derive

various conditions under which the expected-return difference—which we call the stopping

premium—is positive. We show that under the most common return-generating process–
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the Random Walk Hypothesis—the stopping premium is always negative. The widespread

cultural affinity for the Random Walk Hypothesis, despite empirical evidence to the contrary,

may explain the general indifference to stop-loss policies in the academic finance literature.

However, under more empirically plausible return-generating processes such as momen-

tum or regime-switching models, we show that stop-loss policies can generate positive stop-

ping premia. And when applied to the standard household asset-allocation decision between

U.S. equities and long-term bonds from January 1950 to December 2004, we find a substan-

tially positive stopping premium with a correspondingly large reduction in variance. These

empirical results suggest important nonlinearities in aggregate stock and bond returns that

have not been fully explored in the empirical finance literature. For example, our analysis

suggests elevated levels of momentum associated with large negative returns, and asymme-

tries in asset returns following periods of cumulative losses.

Our analytical and empirical results contain several points of intersection with the be-

havioral finance literature. First, the flight-to-safety phenomena—best illustrated by events

surrounding the default of Russian government debt in August 1998—may create momentum

in equity returns and increase demand for long-term bonds, creating positive stopping premia

as a result. Second, systematic stop-loss policies may profit from the disposition effect and

loss aversion, the tendency to sell winners too soon and hold on to losers too long. Third,

if investors are ambiguity-averse, large negative returns may cause them to view equities as

more ambiguous which, in relative terms, will make long-term bonds seem less ambiguous.

This may cause investors to switch to bonds to avoid uncertainty about asset returns.

More generally, there is now substantial evidence from the cognitive sciences literature

that losses and gains are processed by different components of the brain. These different

components provide a partial explanation for some of the asymmetries observed in exper-

imental and actual markets. In particular, in the event of a significant drop in aggregate

stock prices, investors who are generally passive will become motivated to trade because

mounting losses will cause them to pay attention when they ordinarily would not. This

influx of uninformed traders, who have less market experience and are more likely to make

irrational trading decisions, can have a significant impact on equilibrium prices and their

dynamics. Therefore, even if markets are usually efficient, on occasions where a significant

number of investors experience losses simultaneously, markets may be dominated temporarily

by irrational forces. The mechanism for this coordinated irrationality is cumulative loss.

Of course, our findings shed little light on the controversy between market efficiency and

behavioral finance. The success of our simple stop-loss policy may be due to certain nonlinear

aspects of stock and bond returns from which our strategy happens to benefit, e.g., avoiding

momentum on the downside and exploiting asymmetries in asset returns following periods
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of negative cumulative returns. And from the behavioral perspective, our stop-loss policy is

just one mechanism for avoiding or anticipating the usual pitfalls of human judgment, e.g.,

the disposition effect, loss aversion, ambiguity aversion, and flight-to-safety.

In summary, both behavioral finance and rational asset-pricing models may be used to

motivate the efficacy of stop-loss policies, in addition to the widespread use of such policies

in practice. This underscores the importance of learning how to deal with loss as an investor,

of which a stop-loss rule is only one dimension. As difficult as it may be to accept, for the

millions of investors who lamented after the bursting of the Technology Bubble in 2000 that

“if I only got out earlier, I wouldn’t have lost so much”, they may have been correct.
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A Appendix

In this appendix, we provide proofs of Propositions 1 and 2 in Sections A.1 and A.2, a

derivation of the likelihood function of the behavioral regime-switching model (26) in Section

A.3, and present some additional empirical results in Section A.4.

A.1 Proof of Proposition 1

The conclusion follows almost immediately from the observation that the conditional expec-

tations in (4) and (6) are equal to the unconditional expectations because of the Random

Walk Hypothesis (conditioning on past returns provides no incremental information), hence:

∆µ = − poπ ≤ 0 (A.1)

∆µ

po

= − π ≤ 0 (A.2)

and the other relations follow in a similar manner.

A.2 Proof of Proposition 2

Let rt be a stationary AR(1) process:

rt = µ + ρ(rt−1 − µ) + εt , εt
IID∼ White Noise(0, σ2

ε ) , ρ ∈ (−1, 1) (A.3)

We seek the conditional expectation of rt given that the process is stopped out. If we let

J be sufficiently large and δ = −∞, we note that st =0 is equivalent to Rt−1(J)<− γ and

st−1 =1 with Rt−2(J)≥− γ. Using log returns, we have

E[rt|st = 0] = E[rt|Rt−1(J)<− γ,Rt−2(J)≥− γ] (A.4)

= µ(1− ρ) + ρE[rt−1 + εt|Rt−1(J)<− γ, Rt−2(J)≥− γ] (A.5)

= µ(1− ρ) + ρE[rt−1|Rt−1(J)<− γ,Rt−2(J)≥− γ] (A.6)
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By definition Rt−1(J) ≡ rt−1 + · · · + rt−J and Rt−2(J) = rt−2 + · · · + rt−J−1. Setting

y ≡ rt−2 + · · ·+ rt−J then yields:

E[rt|st = 0] = µ(1− ρ) + ρE[rt−1|Rt−1(J)<− γ,Rt−2(J)≥− γ] (A.7)

= µ(1− ρ) + ρEy

[
E[rt−1|rt−1 <− γ − y, rt−J−1≥− γ − y]

]
(A.8)

For J large enough, the dependence between rt−J−1 and rt−1 is of order o(ρJ) ≈ 0, hence:

Ey

[
E[rt−1|rt−1 <− γ − y]

] ≤ Ert−J−1

[
E[rt−1|rt−1 <rt−J−1]

]
(A.9)

≤ µ − σ (A.10)

which implies:

E[rt|st = 0] ≤ µ(1− ρ) + ρ(µ− σ) (A.11)

≤ µ − ρσ (A.12)

A.3 Behavioral Regime-Switching Likelihood Function

The behavioral regime-switching model begins with the standard regime-switching model

(19):

rt = Itr1t + (1− It)r2t , rit
IID∼ N (µi, σ

2
i ) , i = 1, 2

A ≡
( It+1 =1 It+1 =0

It =1 p11 p12

It =0 p21 p22

)

where It is an indicator function that takes on the value 1 when state 1 prevails and 0

when state 2 prevails, and A is the Markov transition probabilities matrix that governs the

transitions between the two states.
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The simple extension we propose is state-dependent transition probabilities:

Prob (It =0|It−1 =1,Ft−1; θ) =
exp(a1 + b1Rt−1(n))

1 + exp(a1 + b1Rt−1(n))
(A.13)

Prob (It =1|It−1 =0,Ft−1; θ) =
exp(a2 + b2Rt−1(n))

1 + exp(a2 + b2Rt−1(n))
(A.14)

where Rt−1(n) is defined to be the cumulative n-period return:

Rt−1(n) = rt−1 + · · · + rt−n (A.15)

and Ft−1 is the information set at time t−, which includes rt−1, Rt−1(n), and all lags of these

two variables.

Using methods from Hamilton (1994) we can construct the likelihood function as a func-

tion of the parameters θ≡{µ, σ, a1, b1, a2, b2}. Denote by r the matrix of data for equity and

long-term bond returns from t=1, . . . , T . Then the likelihood function is given by:

f(r|θ) =
T∏

t=1

(
f(rt|Ft−1, It =1; θ)Prob(It =1|Ft−1; θ) +

f(rt|Ft−1, It =0; θ)Prob(It =0|Ft−1; θ)

)
(A.16)

=
T∏

t=1

(
f(rt|Ft−1, It =1; θ)p1t + f(rt|Ft−1, It =0; θ)p2t

)
. (A.17)

The terms f(rt|Ft−1, It = 1; θ) and f(rt|Ft−1, It = 0; θ) are simply normal distributions for

both bonds and equities. The conditional probabilities are more challenging. We present

the expression for p1t only, since the other conditional probability is similar:

p1t ≡ Prob(It =1|Ft−1; θ) = Prob(It =1|It−1 =1,Ft−1; θ)q
1
t−1 +

Prob(It =1|It−1 =0,Ft−1; θ)q
2
t−1) (A.18a)

=
(
1− exp(a1 + b1Rt−1(n))

1 + exp(a1 + b1Rt−1(n))

)
q1t−1 +

exp(a2 + b2Rt−1(n))

1 + exp(a2 + b2Rt−1(n))
q2t−1(A.18b)

= (1− g1(Rt−1(n)))q1t−1 + g2(Rt−1(n))q2t−1 (A.18c)
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where

q1t−1 ≡ f(Ft−1|It−1 =1,Ft−2; θ)p1t−2

f(Ft−1|It−1 =1,Ft−2; θ)p1t−2 + f(Ft−1|It−1 =0,Ft−2; θ)p2t−2

(A.19a)

q2t−1 ≡ f(Ft−1|It−1 =0,Ft−2; θ)p2t−2

f(Ft−1|It−1 =1,Ft−2; θ)p1t−2 + f(Ft−1|It−1 =0,Ft−2; θ)p2t−2

. (A.19b)

We are left with one final term which we must characterize, f(Ft−1|It−1 =1,Ft−2; θ), which is

the probability density function for the new information set given the past information and

the past state. Since Ft−1 = {(rt−1, rft−1),Ft−2} we need the same expression f(rt−1|It−1 =

1,Ft−2; θ) which is a normal distribution.

Denote by φ(·) the standard normal density function, and let:

φit ≡ φ

(
rt − µi

σi

)
i = 1, 2 . (A.20)

Then the likelihood function may be rewritten more compactly as:

f(r|θ) =
T∏

t=1

(φ1tp1t + φ2tp2t) , where (A.21a)

p1t = (1− g1(Rt−1))
φ1t−1p1t−1

φ1t−1p1t−1 + φ2t−1p2t−1

+

g2(Rt−1)
φ2t−1p2t−1

φ1t−1p1t−1 + φ2t−1p2t−1

(A.21b)

p2t = g1(Rt−1)
φ1t−1p1t−1

φ1t−1p1t−1 + φ2t−1p2t−1

+

(1− g2(Rt−1))
φ2t−1p2t−1

φ1t−1p1t−1 + φ2t−1p2t−1

(A.21c)

We can then use an iterative algorithm that calculates pit as a function of Rt−1, rt−1, and

pit−1. Once we have all the pit’s, we substitute them into the expression for f(r|θ) to calculate

the likelihood function for a given θ, and then solve for the maximum likelihood estimator

in the usual fashion.

A.4 Additional Empirical Results

In this section, we provide four additional tables to supplement the empirical results in the

main text. In Table A.1, we present a more detailed set of summary statistics for the buy-and-
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hold equities strategy of Section 5 with and without the stop-loss policy, including means,

standard deviations, Sharpe ratios, and skewness and kurtosis coefficients for various stop-

loss parameters (γ,δ,J). In Tables A.2 and A.3, we present similar performance statistics, but

only for returns from the stopped-out periods, assuming a re-entry threshold of 0% in Table

A.2 and 2% in Table A.3. And in Table A.4, we report p-values of Kolmogorov-Smirnov test

statistics designed to distinguish between the unconditional returns of our two asset classes

and their conditional counterparts, conditioned on being stopped-out.

gggg mmmm ssss mmmm ssss

(% )(% )(% )(% ) (% )(% )(% )(% ) (% )(% )(% )(% ) (% )(% )(% )(% ) (% )(% )(% )(% )

No Stops — 12.5  14.4  0.87  -0.3  4.7  12.5  14.4  0.87  -0.3  4.7  

-4 12.9  13.2  0.97  -0.5  5.2  12.1  13.0  0.94  -0.4  5.3  

-6 12.8  13.5  0.95  -0.4  5.0  12.6  13.4  0.94  -0.4  5.0  

-8 13.2  13.7  0.96  -0.4  4.9  13.1  13.5  0.97  -0.4  5.0  

-10 12.8  13.8  0.93  -0.4  4.8  12.8  13.7  0.93  -0.4  4.8  

-12 12.7  13.9  0.92  -0.4  4.7  12.7  13.8  0.92  -0.4  4.7  

-14 12.5  14.0  0.89  -0.4  4.7  12.5  13.9  0.90  -0.4  4.7  

-4 13.5  13.2  1.03  -0.5  5.3  12.8  12.8  1.00  -0.5  5.5  

-6 13.3  13.4  1.00  -0.5  5.0  12.8  13.1  0.97  -0.5  5.2  

-8 13.2  13.5  0.98  -0.5  5.0  12.8  13.3  0.97  -0.5  5.0  

-10 13.1  13.6  0.96  -0.4  4.9  12.9  13.4  0.96  -0.4  5.0  

-12 12.7  13.7  0.93  -0.4  4.8  12.5  13.5  0.92  -0.4  4.9  

-14 12.5  13.7  0.91  -0.4  4.8  12.3  13.6  0.90  -0.4  4.8  

-4 13.7  13.4  1.03  -0.5  5.1  13.5  13.0  1.03  -0.5  5.3  

-6 13.6  13.5  1.01  -0.5  5.0  13.4  13.1  1.02  -0.5  5.2  

-8 13.4  13.5  0.99  -0.5  4.9  13.1  13.3  0.98  -0.5  5.1  

-10 13.3  13.6  0.98  -0.5  4.9  13.0  13.3  0.97  -0.5  5.0  

-12 13.1  13.6  0.96  -0.5  4.9  12.8  13.4  0.95  -0.5  4.9  

-14 13.0  13.8  0.95  -0.4  4.8  12.9  13.5  0.95  -0.5  4.9  

-4 13.1  13.6  0.96  -0.5  4.9  12.9  13.4  0.96  -0.5  4.9  

-6 13.2  13.6  0.97  -0.5  4.8  13.0  13.5  0.97  -0.5  4.9  

-8 13.3  13.7  0.98  -0.5  4.8  13.1  13.5  0.97  -0.5  4.8  

-10 13.6  13.7  0.99  -0.5  4.8  13.4  13.6  0.99  -0.5  4.8  

-12 13.7  13.7  1.00  -0.5  4.8  13.4  13.6  0.98  -0.5  4.8  

-14 13.6  13.7  0.99  -0.5  4.8  13.6  13.6  1.00  -0.4  4.9  

Skew Kurt

d = 2%d = 2%d = 2%d = 2%d = 0d = 0d = 0d = 0

J (dddd=0) SharpeSharpe Skew Kurt

3

6

12

18

Table A.1: Performance statistics of a buy-and-hold strategy for the CRSP Value-Weighted
Total Market return with and without a simple stop-loss-policy, where the stop-loss asset
yields the Ibbotson Associates Long-Term Government Bond return, for stop-loss thresholds
γ = 4–14%, re-entry threshold δ = 0%, 2%, and window sizes J = 3, 6, 12, and 18 months,
from January 1950 to December 2004.
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gggg p-Value p-Value p-Value p-Value p-Value p-Value p-Value p-Value

(%) re rb re rb re rb re rb

-3  0.08  0.12  0.04  0.04  0.20  0.11  0.05  0.02  

-4  0.04  0.02  0.07  0.05  0.07  0.10  0.09  0.07  

-5  0.09  0.01  0.18  0.01  0.10  0.09  0.08  0.10  

-6  0.08  0.01  0.18  0.10  0.10  0.05  0.04  0.04  

-7  0.12  0.00  0.07  0.24  0.04  0.12  0.08  0.04  

-8  0.04  0.00  0.02  0.13  0.08  0.08  0.08  0.08  

-9  0.02  0.00  0.01  0.07  0.11  0.04  0.05  0.09  

-10  0.00  0.00  0.00  0.17  0.06  0.05  0.01  0.03  

-11  0.00  0.00  0.01  0.12  0.12  0.01  0.01  0.03  

-12  0.01  0.00  0.05  0.10  0.06  0.02  0.01  0.05  

-13  0.09  0.00  0.03  0.20  0.02  0.02  0.01  0.04  

-14  0.04  0.06  0.07  0.25  0.02  0.02  0.01  0.04  

J = 6 J = 12 J = 18J = 2

Table A.4: p-values of Kolmogorov-Smirnov tests for for the equality of the empirical dis-
tributions of monthly returns unconditionally and after stop-loss triggers, for the CRSP
Value-Weighted Total Market Index and Ibbotson Associates Long-Term Bond Index from
January 1950 to December 2004.
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November 2002

12. Implicit Forward Rents as Predictors of Future Rents
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Henrik Cronqvist and Rüdiger Fahlenbrach, September 2007

61. Communication in the Boardroom
Renée B. Adams, April 2008

62. Is Online Trading Gambling with Peanuts?
Anders Anderson, May 2008

63. When Do Stop-Loss Rules Stop Losses?
Kathryn M. Kaminski and Andrew W. Lo, May 2008



 






