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Abstract 

This paper contrasts measures of teacher effectiveness with the students’ evaluations of 
the same teachers using administrative data from Bocconi University (Italy). The 
effectiveness measures are estimated by comparing the subsequent performance in follow-on 
coursework of students who are randomly assigned to teachers in each of their compulsory 
courses. We find that, even in a setting where the syllabuses are fixed, teachers still matter 
substantially. Additionally, we find that our measure of teacher effectiveness is negatively 
correlated with the students’ evaluations of professors: in other words, teachers who are 
associated with better subsequent performance receive worse evaluations from their students. 
We rationalize these results with a simple model where teachers can either engage in real 
teaching or in teaching-to-the-test, the former requiring greater student effort than the latter. 
Teaching-to-the-test guarantees high grades in the current course but does not improve future 
outcomes. Hence, if students are short-sighted and give better evaluations to teachers from 
whom they derive higher utility in a static framework, the model is capable of predicting our 
empirical finding that good teachers receive bad evaluations. 

JEL Classification: I20. 
Keywords: teacher quality, postsecondary education. 

 
Contents 

1. Introduction.......................................................................................................................... 5 
2. Data and institutional details ............................................................................................. 10 

2.1 The random allocation ................................................................................................. 18 
3. Estimating teacher effectiveness........................................................................................ 23 
4. Correlating teacher effectiveness and student evaluations ................................................ 31 
5. Robustness checks ............................................................................................................. 34 
6. Interpreting the results: a simple theoretical framework ................................................... 39 
7. Further evidence ................................................................................................................. 43 
8. Conclusions ........................................................................................................................ 47 
References .............................................................................................................................. 49      
Appendix ................................................................................................................................ 53 
 

 

 

 

_______________________________________ 

* University of Milan. 

† Bank of Italy, Trento Branch, Economic Research Unit. 

‡ Bocconi University, IGIER, IZA and C.F. Dondena Centre. 





1 Introduction1

The use of anonymous students’ evaluations of professors to measure teachers’ performance

has become extremely popular in many universities around the world (Becker and Watts, 1999).

These normally include questions about the clarity of lectures, the logistics of the course, and

many others. They are either administered to the students during a teaching session toward the

end of the term or, more recently, filled on-line.

From the point of view of the university administration, such evaluations are used to solve

the agency problems related to the selection and motivation of teachers, in a context in which

neither the types of teachers, nor their levels of effort, can be observed precisely. In fact,

students’ evaluations are often used to inform hiring and promotion decisions (Becker and

Watts, 1999) and, in institutions that put a strong emphasis on research, to avoid strategic

behavior in the allocation of time or effort between teaching and research activities (Brown and

Saks, 1987).2

The validity of anonymous students’ evaluations as indicators of teacher ability rests on the

assumption that students are in a better position to observe the performance of their teachers.

While this might be true for the simple fact that students attend lectures, there are also many

reasons to question the appropriateness of such a measure. For example, the students’ objec-

tives might be different from those of the principal, i.e. the university administration. Students

may simply care about their grades, whereas the university (or parents or society as a whole)

cares about their learning and the two (grades and learning) might not be perfectly correlated,

especially when the same professor is engaged both in teaching and in grading the exams.

1We would like to thank Bocconi University for granting access to its administrative archives for this project.
In particular, the following persons provided invaluable and generous help: Giacomo Carrai, Mariele Chirulli,
Mariapia Chisari, Alessandro Ciarlo, Alessandra Gadioli, Roberto Grassi, Enrica Greggio, Gabriella Maggioni,
Erika Palazzo, Giovanni Pavese, Cherubino Profeta, Alessandra Startari and Mariangela Vago. We are also in-
debted to Tito Boeri, Giovanni Bruno, Giacomo De Giorgi, Marco Leonardi, Tommaso Monacelli, Tommy Mur-
phy and Tommaso Nannicini for their precious comments. We would also like to thank seminar participants at
the Bank of Italy, Bocconi University, London School of Economics, UC Berkeley, Università Statale di Milano
and LUISS University. Davide Malacrino and Alessandro Ferrari provided excellent research assistance. The
views expressed in this paper are solely those of the authors and do not involve the responsibility of the Bank of
Italy. The usual disclaimer applies. Corresponding author: Michele Pellizzari, Department of Economics, Boc-
coni University, via Roentgen 1, 20136 Milan - Italy; phone: +39 02 5836 3413; fax: +39 02 5836 3309; email:
michele.pellizzari@unibocconi.it.

2Although there is some evidence that a more research oriented faculty also improve academic and labor
market outcomes of graduate students (Hogan, 1981).
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Consistently with this interpretation, Krautmann and Sander (1999) show that, conditional on

learning, teachers who give higher grades also receive better evaluations, a finding that is con-

firmed by several other studies and that is thought to be a key cause of grade inflation (Carrell

and West, 2010; Weinberg, Fleisher, and Hashimoto, 2009).

Measuring teaching quality is complicated also because the most common observable teach-

ers’ characteristics, such as their qualifications or experience, appear to be relatively unimpor-

tant (Hanushek and Rivkin, 2006; Krueger, 1999; Rivkin, Hanushek, and Kain, 2005). Despite

such difficulties, there is also ample evidence that teachers’ quality matters substantially in de-

termining students’ achievement (Carrell and West, 2010; Rivkin, Hanushek, and Kain, 2005)

and that teachers respond to incentives (Duflo, Hanna, and Kremer, 2010; Figlio and Kenny,

2007; Lavy, 2009). Hence, understanding how professors should (or should not) be monitored

and incentivized is of primary importance.

In this paper we evaluate the content of the students evaluations by contrasting them with

objective measures of teacher effectiveness. We construct such measures by comparing the

performance in subsequent coursework of students who are randomly allocated to different

teachers in their compulsory courses. For this exercise we use data about one cohort of students

at Bocconi University - the 1998/1999 freshmen - who were required to take a fixed sequence

of compulsory courses and who where randomly allocated to a set of teachers for each of such

courses. Additionally, the data are exceptionally rich in terms of observable characteristics, in

particular they include measures of cognitive ability, family income and entry wages, which are

obtained from regular surveys of graduates.3

We find that, even in a setting where the syllabuses are fixed and all teachers in the same

course present exactly the same material, professors still matter substantially. The average dif-

ference in subsequent performance between students who were assigned to the best and worst

teacher (on the effectiveness scale) is approximately 23% of a standard deviation in the distri-

bution of exam grades, corresponding to about 3% of the average grade. This effect translates

into approximately 1.4% of the average entry wage or 14 euros per month (160-200 euros per

year). Moreover, our measure of teaching quality appears to be negatively correlated with the

3The same data are used in De Giorgi, Pellizzari, and Redaelli (2010).
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students’ evaluations of the professors: in other words, teachers who are associated with bet-

ter subsequent performance receive worst evaluations from their students. On the other hand,

teachers who are associated with high grades in their own exams receive better evaluations.

We rationalize these results with a simple model, where good teachers are those who pro-

vide their students with knowledge that is useful in future learning and, at the same time, require

high effort from their students. Students are heterogeneous in their disutility of effort, which

is higher for the least able ones, and evaluate professors on the basis of their realized utility,

which depends on grades/learning and effort. In this setting, students in the bottom part of the

ability distribution may, in fact, give worse evaluations to the good teachers, who impose a high

effort cost on them, than the bad teachers.

Consistently with these predictions, we also find that the evaluations of classes in which

high skill students (identified by their score in the cognitive admission test) are over-represented

are more in line with the estimated real teacher quality. Furthermore, the distributions of grades

in the classes of the most effective teachers are more dispersed, a piece of evidence that lends

support to our specification of the learning function. Additionally, in order to support our as-

sumption that evaluations are based on students’ realized utility, we match our data with the

weather conditions observed on the exact days when students filled the evaluation question-

naires. Under the assumption that the weather affects utility and not teaching quality, finding

that the students’ evaluations react to meteorological conditions lends support to the specifica-

tion of our model.4 Our results show that students evaluate professors more negatively on rainy

and cold days.

There is a large literature that investigates the role of teacher quality and teacher incentives

in improving educational outcomes, although most of the existing studies focus on primary

and secondary schooling (Figlio and Kenny, 2007; Jacob and Lefgren, 2008; Kane and Staiger,

2008; Rivkin, Hanushek, and Kain, 2005; Rockoff, 2004; Rockoff and Speroni, 2010; Tyler,

Taylor, Kane, and Wooten, 2010). The availability of standardized test scores facilitates the

4One may actually think that also the mood of the professors, hence, their effectiveness in teaching is affected
by the weather. However, students’ are asked to evaluate teachers’ performance over the entire duration of the
course and not exclusively on the day of the test. Moreover, it is a clear rule of the university to have students fill
the questionnaires before the lecture, so that the teachers’ performance on that specific day should not affect the
evaluations.
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evaluation of teachers in primary and secondary schools and such tests are currently available

in many countries and also across countries (Mullis, Martin, Robitaille, and Foy, 2009; OECD,

2010). The large degree of heterogeneity in subjects and syllabuses in universities makes it

very difficult to design common tests that would allow to compare the performance of students

who were exposed to different teachers, especially across subjects. At the same time, the large

increase in college enrollment experienced in almost all countries around the world in the past

decades (OECD, 2008) calls for a specific focus on higher education, as in this study.5

To the best of our knowledge, only three other papers investigate the role of students’ eval-

uations in university, namely Carrell and West (2010), Hoffman and Oreopoulos (2009) and

Weinberg, Fleisher, and Hashimoto (2009). Compared to these papers we improve in various

directions. First of all, the random allocation of students to teachers in our setting differenti-

ates our approach from that of Hoffman and Oreopoulos (2009) and Weinberg, Fleisher, and

Hashimoto (2009), who cannot purge their estimates from the potential bias due to the best

students selecting the courses of the best professors. Rothstein (2009) and Rothstein (2010)

show that correcting such a selection bias is pivotal to producing reliable measures of teaching

quality.

The study of Carrell and West (2010), a paper that was developed parallelly and indepen-

dently of ours, is perhaps the most similar to ours, both in terms of methodology and results.

They also document a surprising negative correlation between the students’ evaluations of pro-

fessors and harder measures of teaching quality, however, we improve on their analysis in at

least three important dimensions. First and most important, we provide a theoretical frame-

work for the interpretation of such a striking finding, which is absent in Carrell and West

(2010). Given that our results forcefully challenge the current most popular method used by

most universities around the world to measure the teaching performance of their employees, it

is paramount to provide a model that can rationalize the behaviors of both students and profes-

sors which generate the observed data. Furthermore, we show that our theory is consistent with

additional pieces of evidence and we use it to formulate policy proposals.

5On average in the OECD countries 56% of school-leavers enrolled in tertiary education in 2006 versus 35%
in 1995. The same secular trends appear in non-OECD countries. Further, the number of students enrolled in
tertiary education has increased on average in the OECD countries by almost 20% between 1998 and 2006, with
the US having experienced a higher than average increase from 13 to 17 millions.
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Second, by observing wages for our students we are able to attach a price tag to our mea-

sures of teacher quality, something that, to our knowledge, has never been possible in previous

studies. 6

Finally, Carrell and West (2010) use data from a U.S. Air Force Academy, while our empir-

ical application is based on a more standard institution of higher education.7 In particular, the

vast majority of the students in our sample enter a standard labor market when they graduate,

whereas the cadets in Carrell and West (2010) are required to serve as officers in the U.S. Air

Force for 5 years after graduation and many probably pursue a longer military career. There are

many reasons why the behaviors of both teachers, students and the university/academy might

vary depending on the labor market they face. For example, students may put particular effort

on some exams or activities that are particularly important in the military setting - like physical

activities - at the expenses of other subjects and teachers and administrators may do the same.

More generally, this paper is also related and contributes to the wider literature on per-

formance measurement and performance pay. For example, one concern with the students’

evaluations of teachers is that they might divert professors from activities that have a higher

learning content for the students (but that are more demanding in terms of students’ effort)

and concentrate more on classroom entertainment (popularity contests) or change their grad-

ing policies. This interpretation is consistent with the view that teaching is a multi-tasking

job, which makes the agency problem more difficult to solve (Holmstrom and Milgrom, 1994).

Subjective evaluations, which have become more and more popular in modern human resource

practices, can be seen as a mean to address such a problem and, given the very limited extant

empirical evidence (Baker, Gibbons, and Murphy, 1994; Prendergast and Topel, 1996), our

results can certainly inform also this area of the literature.

6Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan (2011) present some results in this same spirit
but in a very different context (kindergarten) and without explicitly looking at measures of teaching quality (they
rather consider teachers’ experience).

7Bocconi is a selective college that offers majors in the wide area of economics, management, public policy
and law, hence it is likely comparable to US colleges in the mid-upper part of the quality distribution. For example,
faculty in the economics department hold PhDs from Harvard, MIT, NYU, Stanford, UCLA, LSE, Pompeu Fabra,
Stockholm University. Recent top Bocconi PhD graduates landed jobs (either tenure track positions or post-docs)
at the World Bank and the University College of London. Also, the Bocconi Business school is normally ranked
in the same range as the Georgetown University McDonough School of Business or the Johnson School at Cornell
University in the US and to the Manchester Business School or the Warwick Business School in the UK (see the
Financial Times Business Schools Rankings).
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The paper is organized as follows. Section 2 describes our data and the institutional details

of Bocconi University. Section 3 presents our strategy to estimate teacher effectiveness and

shows the results. In Section 4 we correlate teacher effectiveness with the students’ evaluations

of professors. Robustness checks are reported in Section 5. In Section 6 we present a simple

theoretical framework that rationalizes our results, while Section 7 discusses some additional

evidence that corroborates our model. Finally, Section 8 concludes.

2 Data and institutional details

The empirical analysis in this paper is based on data for one enrollment cohort of undergrad-

uate students at Bocconi university, an Italian private institution of tertiary education offering

degree programs in economics, management, public policy and law. We select the cohort of

the 1998/1999 freshmen for technical reasons, being the only one available in our data where

students were randomly allocated to teaching classes for each of their compulsory courses.8

In later cohorts, the random allocation was repeated at the beginning of each academic year,

so that students would take all the compulsory courses of each academic year with the same

group of classmates, which only permits to identify the joint effectiveness of the entire set of

teachers in each academic year.9 For earlier cohorts the class identifiers, which are the crucial

piece of information for our study, were not recorded in the university archives.

The students entering Bocconi in the 1998/1999 academic year were offered 7 differ-

ent degree programs, although only three of them attracted a sufficient number of students

to require the splitting of lectures into more than one class: Management, Economics and

Law&Management10. Students in these programs were required to take a fixed sequence of

compulsory courses that span the entire duration of their first two years, a good part of their

third year and, in a few cases, also their last year. Table 1 lists the exact sequence for each of
8The terms class and lecture often have different meanings in different countries and sometimes also in dif-

ferent schools within the same country. In most British universities, for example, lecture indicates a teaching
session where an instructor - typically a full faculty member - presents the main material of the course; classes are
instead practical sessions where a teacher assistant solves problem sets and applied exercises with the students.
At Bocconi there was no such distinction, meaning that the same randomly allocated groups were kept for both
regular lectures and applied classes. Hence, in the remainder of the paper we use the two terms interchangeably.

9De Giorgi, Pellizzari, and Woolston (2011) use data for these later cohorts for a study of class size.
10The other degree programs were Economics and Social Disciplines, Economics and Finance, Economics and

Public Administration.
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the three programs that we consider, breaking down courses by the term (or semester) in which

they were taught and by subject areas (classified with different colors: red for management,

black for economics, green for quantitative subjects, blue for law).11 In Section 3 we construct

measures of teacher effectiveness for the professors of these compulsory courses. We do not

consider elective subjects, as the endogenous self-selection of students would complicate the

analysis.

Table 1: Structure of degree programs
MANAGEMENT ECONOMICS LAW&MANAG.

Term I Management I Management I Management I
Private law Private law Mathematics

Mathematics Mathematics
Term II Microeconomics Microeconomics Accounting

Public law Public law
Accounting Accounting

Term III Management II Management II Management II
Macroeconomics Macroeconomics Statistics

Statistics Statistics
Term IV Business law Financial mathematics Accounting II

Manag. of Public Administrations Public economics Fiscal law
Financial mathematics Business law Financial mathematics

Human resources management
Term V Banking Econometrics Corporate finance

Corporate finance Economic policy
Management of industrial firms

Term VI Marketing Banking
Management III
Economic policy

Managerial accounting
Term VII Corporate strategy
Term VIII Business law II
The colors indicate the subject area the courses belong to: red=management, black=economics,
green=quantitative, blue=law. Only compulsory courses are displayed.

Most (but not all) of the courses listed in Table 1 were taught in multiple classes (see

Section 3 for details). The number of such classes varied across both degree programs and

specific courses. For example, Management was the program that attracted the most students

(over 70% in our cohort), who were normally divided into 8 to 10 classes. Economics and
11Notice that Economics and Management share exactly the same sequence of compulsory courses in the first

three terms. Indeed, students in these two programs did attend these courses together and made a final decision
about their major at the end of the third term. De Giorgi, Pellizzari, and Redaelli (2010) study precisely this choice.
In the rest of the paper we abstract from this issue and we treat the two degree programs as entirely separated. In
the Appendix we present some robustness checks to justify this approach (see Figure A-2).

11



Law&Management students were much fewer and were rarely allocated to more than just two

classes. Moreover, the number of classes also varied within degree programs depending on the

number of available teachers in each course. For instance, in 1998/99 Bocconi did not have a

law department and all law professors were contracted from other nearby universities. Hence,

the number of classes in law courses were normally fewer than in other subjects. Similarly,

since the management department was (and still is) much larger than the economics or the

mathematics department, courses in the management areas were normally split in more classes

than courses in other subjects.

Regardless of the specific class to which students were allocated, they were all taught the

same material. In other words, all professors of the same course were required to follow exactly

the same syllabus, although some variations across degree programs were allowed (i.e. mathe-

matics was taught slightly more formally to Economics students than Law&Management ones).

Additionally, the exam questions were also the same for all students (within degree pro-

gram), regardless of their classes. Specifically, one of the teachers in each course (normally a

senior person) acted as a coordinator, making sure that all classes progressed similarly during

the term, defining changes in the syllabus and addressing specific problems that might have

arisen. The coordinator also prepared the exam paper, which was administered to all classes.

Grading was usually delegated to the individual teachers, each of them marking the papers of

the students in his/her own class, typically with the help of one or more teaching assistants.

Before communicating the marks to the students, the coordinator would check that there were

no large discrepancies in the distributions across teachers. Other than this check, the grades

were not curved, neither across nor within classes.

Table 2 reports some descriptive statistics that summarize the distributions of (compulsory)

courses and their classes across terms and degree programs. For example, in the first term

Management students took 3 courses, divided into a total of 24 different classes: management

I, which was split into 10 classes; private law, 6 classes; mathematics, 8 classes. The table also

reports basic statistics (means and standard deviations) for the size of these classes.

Our data cover in details the entire academic history of the students in these programs, in-

cluding their basic demographics (gender, place of residence and place of birth), high school

12



Table 2: Descriptive statistics of degree programs
Term

Variable I II III IV V VI VII VIII
Management

No. Courses 3 3 3 4 3 4 1 -
No. Classes 24 21 23 26 23 27 12 -
Avg. Class Size 129.00 147.42 134.61 138.62 117.52 133.48 75.08 -
SD Class Size 73.13 80.57 57.46 100.06 16.64 46.20 11.89 -

Economics
No. Courses 3 3 3 3 2 1 - -
No. Classes 24 21 23 4 2 2 - -
Avg. Class Size 129.00 147.42 134.61 98.25 131.00 65.5 - -
SD Class Size 73.13 80.57 57.46 37.81 0 37.81 - -

Law & Management
No. Courses 3 4 4 4 2 - - 1
No. Classes 5 5 5 6 3 - - 1
Avg. Class Size 104.40 139.20 139.20 116.00 116.00 - - 174.00
SD Class Size 39.11 47.65 47.67 44.96 50.47 - - 0.00

leaving grades as well as the type of high school (academic or technical/vocational), the grades

in each single exam they sat at Bocconi together with the date when the exams were sat. Grad-

uation marks are observed for all non-dropout students.12 Additionally, all students took a

cognitive admission test as part of their application to the university and such test scores are

available in our data for all the students. Moreover, since tuition fees varied with family in-

come, this variable is also recorded in our dataset. Importantly, we also have access to the

random class identifiers that allow us to identify in which class each students attended each of

their courses.

Table 3 reports some descriptive statistics for the students in our data by degree pro-

gram. The vast majority of them were enrolled in the Management program (74%), while

Economics and Law&Management attracted 11% and 14%. Female students were gener-

ally under-represented in the student body (43% overall), apart from the degree program in

Law&Management. About two thirds of the students came from outside the province of Mi-

lan, which is where Bocconi is located, and such a share increased to 75% in the Economics
12The dropout rate, defined as the number of students who, according to our data, do not appear to have com-

pleted their programs at Bocconi over the total size of the entering cohort, is just above 10%. Notice that some
of these students might have transfered to another university or still be working towards the completion of their
program, whose formal duration was 4 years. In Section 5 we perform a robustness check to show that excluding
the dropouts from our calculations is irrelevant for our results.
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Table 3: Descriptive statistics of students

Variable Management Economics Law &Management Total
1=female 0.408 0.427 0.523 0.427
1=outside Milana 0.620 0.748 0.621 0.634
1=top Income Bracketb 0.239 0.153 0.368 0.248
1=academic high schoolc 0.779 0.794 0.684 0.767
1=late enrolleed 0.014 0.015 0.011 0.014
High-school grade (0-100) 86.152 93.053 88.084 87.181

(10.905) (8.878) (10.852) (10.904)
Entry Test Score (0-100) 60.422 63.127 58.894 60.496

(13.069) (15.096) (12.262) (13.224)
University Grades (0-30) 25.684 27.032 25.618 25.799

(3.382) (2.938) (3.473) (3.379)
Wage (Euro)e 966.191 1,012.241 958.381 967.964

(260.145) (265.089) (198.437) (250.367)

Number of students 901 131 174 1,206
a Dummy equal to one if the student’s place of residence at the time of first enrollment is outside the

province of Milan (which is where Bocconi university is located).
b Family income is recorded in brackets and the dummy is equal to one for students who report incomes in

the top bracket, whose lower threshold is in the order of approximately 110,000 euros at current prices.
c Dummy equal to one if the student attended a academic high school, such as a lyceum, rather than

professional or vocational schools.
d Dummy equal to one if the student enrolled at Bocconi after age 19.
e Nominal value at current (2010) prices. Based on 391 observations for Management, 36 observations for

Economics, 94 observations for Law&Management, i.e. 521 observations overall.

program. Family income was recorded in brackets and one quarter of the students were in the

top bracket, whose lower threshold was in the order of approximately 110,000 euros at current

prices. Students from such a wealthy background were under-represented in the Economics

program and over-represented in Law&Management. High school grades and entry test scores

(both normalized on the scale 0-100) provide a measure of ability and suggest that Economics

attracted the best students, a fact that is confirmed by looking at university grades, graduation

marks and entry wages in the labor market.

Data on wages come from graduate surveys that we were able to match with the admin-

istrative records. Bocconi runs regular surveys of all alumni approximately one to one and a

half years since graduation. These surveys contain a detailed set of questions on labor mar-

ket experience, including employment status, occupation, and (for the employed) entry wages.

As it is common with survey data, not all contacts were successful but we were still able to

14



match almost 60% of the students in our cohort, a relatively good response rate for surveys.13

Two years after graduation, the employment rate for students that graduated in 2002 and 2003

(surveyed in 2004 and 2005, respectively) was around 92%; 35% of the non-employed were

continuing education. For this reason, entry wages is the only measure of labor market success

we look at.

Finally, we complement our dataset with students’ evaluations of teachers. Towards the end

of each term (typically in the last week), students in all classes were asked to fill an evaluation

questionnaire during one lecture. Questionnaires are distributed at the beginning of the lecture,

and students are given a fair amount of time to fill in the forms (15-20 minutes). The questions

gathered students’ opinions about various aspects of the teaching experience, including the

clarity of the lectures, the logistics of the course, the availability of the professor and so on. For

each item in the questionnaire, students answered on a scale from 0 (very negative) to 10 (very

positive) or 1 to 5.

In order to allow students to evaluate their experience without fear of retaliation from the

teachers at the exam, such questionnaires are anonymous and it is impossible to match the indi-

vidual student with a specific evaluation of the teacher. One might be worried that, nonetheless,

students tend to give higher valuations to professors they fear the most, in order to please them

in some way. We are not overly concerned about this issue.The evaluation of a single student

has little weight (average class size is above 100), and students should be aware they have little

chances of influencing the average valuation of the class. Furthermore, students know that the

exams will be the same for all classes and that a single professor can’t tailor the exam according

to the desires of his students (only the coordinator can do that, to some extent, but we control for

coordinator status). Students might know that some professors are more prone to ”trade” good

grades with good evaluations (and this might partially explain the positive correlation between

evaluations and contemporaneous grades); this is consistent with our model in which students

evaluate professors on the basis of their perceived utility and it would be a further argument

13The response rates are highly correlated with gender, because of compulsory military service, and with the
graduation year, given that Bocconi has improved substantially over time in its ability to track its graduates. Until
the 1985 birth cohort, all Italian males were required to serve in the army for 10-12 months but were allowed to
postpone the service if enrolled in full time education. For college students, it was customary to enroll right after
graduation.
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against using students’ evaluations as measures of teacher ”quality”.

Each questionnaire reports the name of the course and the class identifier, so that we can

attach average evaluations to each class in each course. Figure A-1 in the Appendix shows,

as an example, the first page of the evaluation questionnaire used in the academic year 1998-

1999.14

In Table 4 we present some descriptive statistics of the answers to the evaluation question-

naires. We concentrate on a limited set of items, which we consider to be the most informative

and interesting, namely overall teaching quality, lecturing clarity, the teacher’s ability to gen-

erate interest in the subject, the logistic of the course and workload. These are the same items

that we analyze in more details in Section 4. The exact wording and scaling of the questions

are reported in Table A-4 in the Appendix.

The average evaluation of overall teaching quality is around 7, with a relatively large stan-

dard deviation of 0.9 and minor variations across degree programs. Although differences are

not statistically significant, professors in the Economics program seem to receive slightly better

students’ evaluations than their colleagues in Management and, even more, in Law&Management.

The same ranking holds for the other measures of teaching quality, namely the clarity of lec-

turing and the ability to generate interest in the subject. Economics compares slightly worse to

the other programs in terms of course logistics

Some of the evaluation items are, understandably, highly correlated. For example, the

correlation coefficient between overall teaching quality and lecturing clarity is 0.89. The course

logistics and the ability of the teacher in generating interest for the subject are slightly less

strongly correlated with the core measures of teacher quality (around 0.5-0.6). Workload is

the least correlated with any other item (all correlation coefficients are below 0.2). The full

correlation matrix is reported in Table A-5 in the Appendix.

Additionally, in Table 4 we also report the mean and standard deviations of the number of

collected questionnaires and the number of officially enrolled students in each of class. One

might actually be worried that students may drop out of a class in response to the quality of the

14The questionnaires were changed slightly over time as new items were added and questions were slightly
rephrased. We focus on a subset of questions that are consistent over the period under consideration.
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Table 4: Descriptive statistics of students’ evaluations

Management Economics Law&Manag. Total
Variable mean mean mean mean

(std.dev.) (std.dev.) (std.dev.) (std.dev.)
Overall teaching qualitya 7.103 7.161 6.999 7.115

(0.956) (0.754) (1.048) (0.900)
Lecturing clarityb 3.772 3.810 3.683 3.779

(0.476) (0.423) (0.599) (0.467)
Teacher generates interesta 6.800 6.981 6.915 6.864

(0.905) (0.689) (1.208) (0.865)
Course logisticb 3.683 3.641 3.617 3.666

(0.306) (0.266) (0.441) (0.303)
Course workloadb 2.709 2.630 2.887 2.695

(0.461) (0.542) (0.518) (0.493)
Questionnaires/studentsc 0.777 0.774 0.864 0.782

(0.377) (0.411) (0.310) (0.383)
a Scores range from 0 to 10.
b Scores range from 1 to 5.
c Number of collected valid questionnaires over the number of officially enrolled students.

See Table A-4 for the exact wording of the evaluation questions.

teaching so that at the end of the course, when questionnaires are distributed only the students

who liked the teacher are eventually present. Such a process would lead to a compression of

the distribution of the evaluations, with good teachers being evaluated by their entire class (or

by a majority of their allocated students) and bad teachers being evaluated only by a subset of

students who particularly liked them.

The descriptive statistics reported in Table 4 seem to indicate that this is not a major issue,

as on average the number of collected questionnaires is around 80% of the total number of

enrolled students (the median is very similar). Moreover, when we correlate our measures of

teaching effectiveness with the evaluations we condition on the official size of the class and we

weight observations by the number of questionnaires.

Indirectly, the relatively high number of questionnaires over students is evidence that at-

tendance was also pretty high. An alternative measure of attendance can be extracted from a

direct question of the evaluation forms which asks students what percentage of the lectures they

attended. Such a self-reported measure of attendance is also around 80%.
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2.1 The random allocation

In this section we present evidence that the random allocation of students into classes was

successful. De Giorgi, Pellizzari, and Redaelli (2010) use data for the same cohort (although

for a smaller set of courses and programs) and provide similar evidence.

The randomization was (and still is) performed via a simple random algorithm that assigned

a class identifier to each student, who were then instructed to attend the lectures for the specific

course in the class labeled with the same identifier. The university administration adopted the

policy of repeating the randomization for each course with the explicit purpose of encouraging

wide interactions among the students.

Table 5 reports test statistics derived from regressions of the observable students’ charac-

teristics (by column) on class dummies.The null hypothesis under consideration is the joint

significance of the coefficients on the class dummies, which amounts to testing for the equality

of the means of the observable variables across classes. Notice that these are very restrictive

tests, as it is sufficient to have one unbalanced class to make the test fail. Results show that the

F statistics are never particularly high. In most cases the null cannot be rejected at conventional

significance levels. The only exception is residence from outside Milan, which is abnormally

low in two Management groups. Four outlier groups in the Economics program (out of the 72

classes that we considered) also seem to have a particularly low presence of female students,

while high school grades appear slightly lower than average in 3 classes of the same program.

Overall, Table 5 suggests that the randomization was rather successful.

Testing the equality of means is not a sufficient test of randomization for continuous vari-

ables. Hence, in Figure 1 we compare the distributions of our measures of ability (high school

grades and entry test scores) for the entire student body and for a randomly selected class in

each program. The figure evidently shows that the distributions are extremely similar and for-

mal Kolmogorov-Smirnov tests confirm the visual impression.

Even though students were randomly assigned to classes, one may still be concerned about

teachers being selectively allocated to classes. Although no explicit random algorithm was used

to assign professors to classes, for obvious organizational reasons that was (and still is) done in
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Table 5: Randomness checks - Students
Female Academic High Entry Top Outside Late

High School Test Income Milan Enrolleesa

Schoola Grade Score Bracketa

[1] [2] [3] [4] [5] [6] [7]
Management

Test statistics: χ2 χ2 F F χ2 χ2 χ2

mean 0.489 0.482 0.497 0.393 0.500 0.311 0.642
median 0.466 0.483 0.559 0.290 0.512 0.241 0.702
minimum 0.049 0.055 0.012 0.004 0.037 0.000 0.025
maximum 0.994 0.949 0.991 0.944 0.947 0.824 0.970
P-valueb (total number of tests is 20)

<0.01 0 0 0 1 0 3 0
<0.05 1 0 1 1 2 6 1

Economics

Test statistics: χ2 χ2 F F χ2 χ2 χ2

mean 0.376 0.662 0.323 0.499 0.634 0.632 0.846
median 0.292 0.715 0.241 0.601 0.616 0.643 0.911
minimum 0.006 0.077 0.000 0.011 0.280 0.228 0.355
maximum 0.950 0.993 0.918 0.989 0.989 0.944 0.991
P-valueb (total number of tests is 11)

<0.01 1 0 2 0 0 0 0
<0.05 1 0 2 1 0 0 0

Law & Management

Test statistics: χ2 χ2 F F χ2 χ2 χ2

mean 0.321 0.507 0.636 0.570 0.545 0.566 0.948
median 0.234 0.341 0.730 0.631 0.586 0.533 0.948
minimum 0.022 0.168 0.145 0.182 0.291 0.138 0.935
maximum 0.972 0.966 0.977 0.847 0.999 0.880 0.961
P-valueb (total number of tests is 7)

<0.01 0 0 0 0 0 0 0
<0.05 2 0 0 0 0 0 0

The reported statistics are derived from probit (columns 1,2,5,6,7) or OLS (columns 3 and 4)
regressions of the observable students’ characteristics (by column) on class dummies for each
course in each degree program that we consider (Management: 20 courses, 144 classes;
Economics: 11 courses, 72 classes; Law & Management: 7 courses, 14 classes). The reported
p-values refer to tests of the null hypothesis that the coefficients on all the class dummies in each
model are all jointly equal to zero. The test statistics are either χ2 (columns 1,2,5,6,7) or F
(columns 3 and 4), with varying parameters depending on the model.

a See notes to Table 3.
b Number of courses for which the p-value of the test of joint significance of the class dummies is

below 0.05 or 0.01.

19



Figure 1: Evidence of random allocation - Ability variables

the Spring of the previous academic year, i.e. well before students were allowed to enroll, so

that even if teachers were allowed to choose their class identifiers they would have no chance

to know in advance the characteristics of the students who would be given that same identifier.

More specifically, there used to be (and still is) a very strong hysteresis in the matching of

professors to class identifiers, so that, if no particular changes occurred, one kept the same class

identifier of the previous academic year. It is only when some teachers needed to be replaced or

the overall number of classes changed that modifications took place. Even in these instances,

though, the distribution of class identifiers across professors changed only marginally. For

example if one teacher dropped out, then a new teacher would take his/her class identifier and

none of the others were given a different one. Similarly, if the total number of classes needed

to be increases, the new classes would be added at the bottom of the list of identifiers with new

teachers and no change would affect the existing classes and professors.15

15As far as we know, the total number of classes for a course has never been reduced.
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About around the same time when teachers were given class identifiers (i.e. in the Spring of

the previous academic year), also classrooms and time schedules were defined. On these two

items, though, teachers did have some limited choice. Typically, the administration suggested

a time schedule and room allocation and professors could request one or more modifications,

which were accommodated only if compatible with the overall teaching schedule (e.g. a room

of the required size was available at the new requested time).

In order to avoid any distortion in our estimates of teaching effectiveness due to the more or

less convenient teaching times, we collected detailed information about the exact schedule of

the lectures in all the classes that we consider, so that we can hold this specific factor constant

(see Section 3). Additionally, we also know in which exact room each class was taught and we

further conditions on the characteristics of the classrooms, namely the building and the floor

where they are located. There is no variation in other features of the rooms, such as the furniture

(all rooms were - and still are - fitted with exactly the same equipment: projector, computer,

white-board) or the orientation (all rooms face the inner part of the campus where there is very

limited car traffic).16

Table 6 provides evidence of the lack of correlation between teachers and classes’ char-

acteristics, namely we show the results of regressions of teachers’ observable characteristics

on classes’ observable characteristics. For this purpose, we estimate a system of 9 seemingly

unrelated simultaneous equations, where each observation is a class in a compulsory course.

The dependent variables are 9 teachers’ characteristics (age, gender, h-index, average citations

per year and 4 dummies for academic positions) and the regressors are the class characteris-

tics listed in the rows of the table.17 The reported statistics test the null hypothesis that the

coefficients on each class characteristic are all jointly equal to zero in all the equations of

the system.18 Results show that only the time of the lectures is significantly correlated with

the teachers’ observables at conventional statistical levels. In fact, this is one of the few ele-
16In principle we could also condition on room fixed effects but there are several rooms in which only one class

of the courses that we consider was taught.
17The h-index is a quality-adjusted measure of individual citations based on search results on Google Scholar.

It was proposed by Hirsch (2005) and it is defined as follows: A scientist has index h if h of his/her Np papers
have at least h citations each, and the other (Np − h) papers have no more than h citations each.

18To construct the tests we use the small sample estimate of the variance-covariance matrix of the system.
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Table 6: Randomness checks - Teachers
F-test P-value

Class sizea 0.94 0.491
Attendanceb 0.95 0.484
Avg. high school grade 0.73 0.678
Avg. entry test score 1.37 0.197
Share of females 1.05 0.398
Share of students from outside Milanc 0.25 0.987
Share of top-income studentsc 1.31 0.228
Share academic high schoolc 1.35 0.206
Share late enrolleesc 0.82 0.597
Share of high abilityd 0.69 0.716
Morning lectures e 5.24 0.000
Evening lectures f 1.97 0.039
Room’s floorg 0.45 0.998
Room’s buildingh 1.39 0.188

The reported statistics are derived from a system of 9 seemingly unrelated simultaneous
equations, where each observation is a class in a compulsory course (184 observations in total).
The dependent variables are 9 teachers’ characteristics (age, gender, h-index, average citations
per year and 4 dummies for academic positions) and the regressors are the class characteristics
listed in the table. The reported statistics test the null hypothesis that the coefficients on each
class characteristic are all jointly equal to zero in all the equations of the system. The last row
tests the hypothesis that the coefficients on all regressors are all jointly zero in all equations. All
tests are distributed according to a F-distribution with (9,1467) degrees of freedom, apart from
the joint test in the last row, which has (108,1467) degrees of freedom.

a Number or officially enrolled students.
b Attendance is monitored by random visits of university attendants to the class.
c See notes to Table 3.
d Share of students in the top 25% of the entry test score distribution.
e Share of lectures taught between 8.30 and 10.30 a.m.
f Share of lectures taught between 4.30 and 6.30 p.m.
g Test of the joint significance of 4 floor dummies.
h Dummy for building A.

ments of the teaching planning over which teachers had some limited choice. More specifically,

professors are given a suggested time schedule for their classes in the spring of the previous

academic year (usually based on the schedule of the current year), and they can either approve

it or request changes. The administration, then, accommodates such changes only if they are

compatible with the other many constraints in terms of rooms availability and course overlap-

pings. In our empirical analysis we do control for all the factors in Table 6, so that our measures

of teaching effectiveness are purged from the potential confounding effect of teaching times on

students’ learning.
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3 Estimating teacher effectiveness

We use performance data for our students to estimate measures of teacher effectiveness. Namely,

for each of the compulsory courses listed in Table 1 we compare the future outcomes of stu-

dents that attended those courses in different classes, under the assumption that students who

were taught by better professors enjoyed better outcomes later on. This approach is similar to

the value-added methodology that is more commonly used in primary and secondary schools

(Goldhaber and Hansen, 2010; Hanushek, 1979; Hanushek and Rivkin, 2006, 2010; Rivkin,

Hanushek, and Kain, 2005; Rothstein, 2009) but it departs from its standard version, that uses

contemporaneous outcomes and conditions on past performance, since we use future perfor-

mance to infer current teaching quality.19

One most obvious concern with the estimation of teacher quality is the non-random as-

signment of students to professors. For example, if the best students self-select themselves

into the classes of the best teachers, then estimates of teacher quality would be biased upward.

Rothstein (2009) shows that such a bias can be substantial even in well-specified models and

especially when selection is mostly driven by unobservabes.

We avoid these complications by exploiting the random allocation of students in our cohort

to different classes for each of their compulsory courses. For this same reason, we focus exclu-

sively on compulsory courses, as self-selection is an obvious concern for electives. Moreover,

elective courses were usually taken by fewer students than compulsory ones and they were

usually taught in one single class.

We compute our measures of teacher effectiveness in two steps. First, we estimate the

conditional mean of the future grades (in compulsory courses) of students in each class ac-

cording to the following procedure. Consider a set of students enrolled in degree program d

and indexed by i = 1, . . . , Nd, where Nd is the total number of students in the program. In

our application there are three degree programs (d = {1, 2, 3}): Management, Economics and

Law&Management. Each student i attends a fixed sequence of compulsory courses indexed by

c = 1, . . . , Cd, where Cd is the total number of such compulsory courses in degree program d.

In each course c the student is randomly allocated to a class s = 1, . . . , Sc, where Sc is the total

19For this reason we prefer to use the label teacher effectiveness for our estimates.
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number of classes in course c. Denote by ζ ∈ Zc a generic (compulsory) course, different from

c, which student i attends in semester t ≥ tc, where tc denotes the semester in which course c

is taught. Zc is the set of compulsory courses taught in any term t ≥ tc.

Let yidsζ denote the grade obtained by student i in course ζ . To control for differences in the

distribution of grades across courses, yidsζ is standardized at the course level. Then, for each

course c in each program d we run the following regression:

yidsζ = αdcs + βXi + εidsζ (1)

where Xi is a vector of student-level characteristics including a gender dummy, a dummy for

whether the student is in the top income bracket, the entry test score and the high school leaving

grade. The α’s are our parameters of interest and they measure the conditional means of the

future grades of students in class s: high values of α indicate that, on average, students attending

course c in class s performed better (in subsequent courses) than students taking course c in a

different class. The random allocation procedure guarantees that the class fixed effects αdcs in

equation 1 are purely exogenous and identification is straightforward.20

Notice that, since in general there are several subsequent courses ζ for each course c, each

student is observed multiple times and the error terms εidsζ are serially correlated within i and

across ζ . We address this issue by adopting a standard random effect model to estimate all the

equations 1 (we estimate one such equation for each course c). Moreover, we further allow for

cross-sectional correlation among the error terms of students in the same class by clustering the

standard errors at the class level.

More formally, we assume that the error term is composed of three additive components

(all with mean equal zero):

εidsζ = vi + ωs + νidsζ (2)

where vi and ωs are, respectively, an individual and a class component, and νidsζ is a purely

random term. Operatively, we first apply the standard random effect transformation to the

20Notice that in few cases more than one teacher taught in the same class, so that our class effects capture the
overall effectiveness of teaching and cannot be attached to a specific person. Since the students’ evaluations are
also available at the class level and not for specific teachers, we cannot disaggregate further.
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original model of equation 1.21

In the absence of other sources of serial correlation (i.e if the variance of ωs were zero), such

a transformation would lead to a serially uncorrelated and homoskedastic variance-covariance

matrix of the error terms, so that the standard random effect estimator could be produced by

running simple OLS on the transformed model. In our specific case, we further cluster the

transformed errors at the class level to account for the additional serial correlation induced by

the term ωs.

Overall, we are able to estimate 230 such fixed effects, the large majority of which are for

Management courses.22. Descriptive statistics of the estimated α’s are reported in Table A-1 in

the Appendix.

The second step of our approach is meant to purge the estimated α’s from the effect of other

class characteristics that might affect the performance of students in later courses but are not

attributable to teachers. By definition, the class fixed effects capture all those features, both

observable and unobservable, that are fixed for all students in the class. These certainly include

teaching quality but also other factors that are documented to be important ingredients of the

education production function, such as class size and class composition (De Giorgi, Pellizzari,

and Woolston, 2011).

A key advantage of our data is that most of these other factors are observable. In particular,

based on our academic records we can construct measures of both class size and class compo-

sition (in terms of students’ characteristics). Additionally, we also have access to the identifiers

of the teachers in each class and we can recover a large set of variables like gender, tenure

status, and measures of research output. We also know which of the several teachers in each

course acted as coordinator. These are the same teacher characteristics that we used in Table
21The standard random effect transformation subtracts from each variable in the model (both the dependent

and each of the regressors) its within-mean scaled by the factor θ = 1 −
√

σ2
v

|Zc|(σ2
ω+σ

2
ν)+σ

2
v

, where |Zc| is the
cardinality of Zc. For example, the random-effects transformed dependent variable is yidsζ − θyids, where yids =
|Zc|−1

∑|Zc|
h=1 yidhζ . Similarly for all the regressors. The estimates of σ2

v and (σ2
ω + σ2

ν) that we use for this
transformation are the usual Swamy-Arora, also used by the command xtreg in Stata (Swamy and Arora, 1972).

22We cannot run equation 1 for courses that have no contemporaneous nor subsequent courses, such
as Corporate Strategy for Management, Banking for Economics and Business Law for Law&Management
(see Table 1). For such courses, the set Zc is empty. Additionally, some courses in Economics and in
Law&Management are taught in one single class, for example Econometrics (for Economics students) or Statistics
(for Law&Management). For such courses, we have Sc = 1. The evidence that we reported in Tables 5 and 6 also
refer to the same set of 230 classes.
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6. Once we condition on all these observable controls, unobservable teaching quality is likely

to be the only remaining factor that generates variation in the estimated α’s. At a minimum, it

should be uncontroversial that teaching quality is by far the single most important unobservable

that generates variation in the α̂’s, once conditioning on the observables.

The effect of social interactions among the students might also affect the estimated α̂’s.

However, notice that if such effects are related to the observable characteristics of the students,

then we are able to control for those. Additionally, there might be complementarities among

teachers’ ability and students’ interactions, as good teachers are also those who stimulate fruit-

ful collaborations among their students. This component of the social interaction effects is

certainly something that one would like to incorporate in a measure of teaching quality, as in

our analysis.

Thus, in Table 7 we regress the estimated α’s on all observable class and teacher charac-

teristics. In column 1 we condition only on class size and class composition, in column 2 only

on teachers’ characteristics and in column 3 we combine the two sets of controls. In all cases

we weight observations by the inverse of the standard error of the estimated α’s to take into

account differences in the precision of such estimates. Consistently with previous studies on

the same data (De Giorgi, Pellizzari, and Woolston, 2011), we find that larger classes tend to be

associated with worse learning outcomes, that classes with more able students, measured with

either high school grades or the entry test score, also perform better and that a high concentra-

tion of high income students appears to be detrimental for learning. Overall, observable class

characteristics explain about 8% of the variation in the estimated α’s within degree program,

term and subject cells, where subjects are defined as in Table 1.23

The results in column 2 show a non linear relationship between teachers’ age and teaching

outcomes, which might be rationalized with increasing returns to experience. Also, professors

who are more productive in research seem to be less effective as teachers, when output is

measured with the h-index. The effect is reversed using yearly citations but it never reaches

acceptable levels of statistical significance. Finally, and consistently with the age effect, also

23The Partial R-squared reported at the bottom of the table refer to the R-squared of a partitioned regression
where the dummies for the degree program, the term and the subject are partialled out.
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Table 7: Determinants of class effects
Dependent variable = α̂s [1] [2]a [3]
Class sizeb -0.000** - -0.000**

(0.000) (0.000)
Avg. HS grade 2.159** - 2.360**

(1.039) (1.070)
Avg. entry test score -1.140 - -1.530

(1.392) (1.405)
Share of females 0.006 - -0.094

(0.237) (0.245)
Share from outside Milan -0.080 - -0.078

(0.203) (0.201)
Share of top incomeb -0.283 - -0.331

(0.271) (0.278)
Share from academic HS 0.059 - -0.054

(0.301) (0.313)
Share of late enrollees -0.365 - 0.017

(0.827) (0.843)
Share of high abilityb 0.733* - 0.763*

(0.394) (0.390)
Morning lecturesb 0.015 - -0.015

(0.037) (0.040)
Evening lecturesb -0.175 - -0.170

(0.452) (0.490)
1=coordinator - 0.013 0.039

(0.038) (0.041)
Male - -0.017 -0.014

(0.024) (0.025)
Age - -0.013*** -0.013**

(0.005) (0.005)
Age squared - 0.000** 0.000*

(0.000) (0.000)
H-index - -0.008 -0.007

(0.006) (0.006)
Citations per year - 0.000 0.000

(0.001) (0.001)
Full professorc 0.116* 0.121*

(0.066) (0.072)
Associate professorc 0.113* 0.118*

(0.062) (0.067)
Assistant professorc 0.109* 0.123*

(0.061) (0.065)
Classroom characteristicsd yes no yes
Degree program dummies yes yes yes
Subject area dummies yes yes yes
Term dummies yes yes yes

Partial R squarede 0.089 0.081 0.158
Observations 230 230 230

Observations are weighted by the inverse of the standard error of the estimated α’s. * p<0.1, **
p<0.05,***p<0.01

a Weighted averages of individual characteristics if there is more than one teacher per class.
b See notes to Table 6.
c All variables regarding the academic position refer to the main teacher of the class. The excluded dummy is a

residual category (visiting prof., external experts, collaborators.)
d Four floor dummies, one building dummy and a dummy for multi-classrooms classes.
e R squared computed once program, term and subject fixed effects are partialled out.
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the professor’s academic position matters, with a ranking that gradually improves from assistant

to associate to full professors (other academic positions, such as external or non tenured-track

teachers, are the excluded group). However, as in Hanushek and Rivkin (2006) and Krueger

(1999), we find that the individual traits of the teachers explain less than a tenth of the (residual)

variation in students’ achievement. Overall, the complete set of observable class and teachers’

variables explains approximately 15% of the (residual) variation.

Our final measures of teacher effectiveness are the residuals of the regression of the esti-

mated α’s on all the observable variables, i.e the regression reported in column 3 of Table 7. In

Table 8 we present descriptive statistics of such measures.

Table 8: Descriptive statistics of estimated teacher effectiveness

Management Economics Law & Management Total

PANEL A: Std. dev. of estimated teacher effect
mean 0.069 0.159 0.019 0.086
minimum 0.041 0.030 0.010 0.010
maximum 0.106 0.241 0.030 0.241

PANEL B: Largest minus smallest class effect
mean 0.190 0.432 0.027 0.230
minimum 0.123 0.042 0.014 0.014
maximum 0.287 0.793 0.043 0.043

No. of courses 20 11 7 38
No. of classes 144 72 14 230

Teacher effectiveness is estimated by regressing the estimated class effects (α) on observable class
and teacher’s characteristics (see Table 7).

The overall standard deviation of teacher effectiveness is 0.086.24 This average is the com-

position of a larger variation among the courses of the program in Economics (0.159) and

a more limited variation in Management (0.069) and Law & Management (0.019). Recall

that grades are normalized so that the distributions of the class effects are comparable across

courses. Hence, these results can be directly interpreted in terms of changes in outcomes. In

other words, the overall effect of increasing teacher effectiveness by one standard deviation is

24The standard deviation that we consider is the OLS estimate of the residuals of the regression in column 3 of
Table 7
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an increase in the average grade of subsequent courses by 0.086 standard deviations, roughly

0.3 of a grade point or 1.1% over the average grade of approximately 26.25 Given an estimated

conditional elasticity of entry wages to GPA of 0.45, such an effect would cost students slightly

more than 0.5% of their average entry monthly wage of 967 euros, or about 60 euros per year.26

Since in our data we only observe entry wages, it might well be that the long term effects of

teaching quality are even larger.

In Table 8 we also report the standard deviations of teacher effectiveness of the courses with

the least and the most variation to show that there is substantial heterogeneity across courses.

Overall, we find that in the course with the highest variation (management I in the Economics

program) the standard deviation of our measure of effectiveness is approximately a quarter of a

standard deviation in grades. This compares to a standard deviation of essentially zero (0.010)

in the course with the lowest variation (mathematics in the Law&Management program).

In the lower panel of Table 8 we show the mean (across courses) of the difference between

the largest and the smallest indicators of teacher effectiveness, which allows us to compute

the effect of attending a course in the class of the best versus the worst teacher. On average,

this effect amounts to 0.230 of a standard deviation, that is almost 0.8 grade points or 3%

over the average grade. As already noted above, this average effect masks a large degree of

heterogeneity across subjects ranging from almost 80% to a mere 4% of a standard deviation.

To further understand the importance of these effects, we can also compare particularly

lucky students, who are assigned to good teachers (defined as those in the top 5% of the dis-

tribution of effectiveness) throughout their sequence of compulsory courses, to particularly

unlucky students, who are always assigned to bad teachers (defined as those in the bottom 5%

of the distribution of effectiveness). The average grades of these two groups of students are

1.8 grade points apart, corresponding to over 7% of the average grade. Based on our estimate

of the wage elasticity, this difference translates into a sizable 300-400 euros per year (30.45

25In Italy, university exams are graded on a scale 0 to 30, with pass equal to 18. Such a peculiar grading scale
comes from historical legacy: while in primary, middle and high school students were graded by one teacher per
subject on a scale 0 to 10 (pass equal to 6), at university each exam was supposed to be evaluated by a commission
of three professors, each grading on the same 0-10 scale, the final mark being the sum of these three. Hence, 18 is
pass and 30 is full marks. Apart from the scaling, the actual grading at Bocconi is performed as in the average US
or UK university.

26In Italy wages are normally paid either 13 or 14 times over the year, once every month plus one additional
payment around mid December (tredicesima) and around mid June (quattordicesima).
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euros/month) or 3.15% over the average.

For robustness and comparison, we estimate the class effects in two alternative ways. First,

we restrict the set Zc to courses belonging to the same subject area of course c, under the

assumption that good teaching in one course is likely to have a stronger effect on learning in

courses of the same subject areas (e.g. a good basic mathematics teacher is more effective in

improving students performance in financial mathematics than in business law). The subject

areas are defined by the colors in Table 1 and correspond to the department that was responsible

for the organization and teaching of the course. We label these estimates subject effects. Given

the more restrictive definition of Zc we can only produce these estimates for a smaller set of

courses and using fewer observation, which is the reason why we do not take them as our

benchmark.

Next, rather than using performance in subsequent courses, we run equation 1 with the

grade in the same course c as the dependent variable. We label these estimates contemporane-

ous effects27. We do not consider these contemporaneous effects as alternative and equivalent

measures of teacher effectiveness, but we will use them to show that they correlate very differ-

ently with the students’ evaluations. Descriptive statistics for the subject and contemporaneous

effects are reported in Tables A-3 and A-2 in the Appendix.

Table 9: Comparison of benchmark, subject and contemporaneous teacher effects

Dependent variable: Benchmark teacher effectiveness
Subject 0.048** -

(0.023)
Contemporaneous - -0.096***

(0.019)

Program fixed effects yes yes
Term fixed effects yes yes
Subject fixed effects yes yes

Observations 212 230
Bootstrapped standard errors in parentheses. Observations are weighted by the inverse of the standard
error of the dependent variable. * p<0.1, ** p<0.05,***p<0.01

In Table 9 we investigate the correlation between these alternative estimates of teacher ef-
27When estimating contemporaneous effects we include past grades in the vector of student-level characteristics

of equation 1
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fectiveness. Specifically, we report results from weighted OLS regressions with our benchmark

estimates as the dependent variable and, in turn, the subject and the contemporaneous effects

on the right hand side, together with dummies for degree program, term and subject area.28

Reassuringly, the subject effects are positively and significantly correlated with our bench-

mark, while the contemporaneous effects are negatively and significantly correlated with our

benchmark, a result that is consistent with previous findings (Carrell and West, 2010; Kraut-

mann and Sander, 1999; Weinberg, Fleisher, and Hashimoto, 2009) and to which we will return

in Section 4.

4 Correlating teacher effectiveness and student evaluations

In this section we investigate the relationship between our measures of teaching effectiveness

from Section 3 and the evaluations teachers receives from their students. We concentrate on

two core items from the evaluation questionnaires, namely overall teaching quality and the

overall clarity of the lectures. Additionally, we also look at other items: the teacher’s ability in

generating interest for the subject, the logistics of the course (schedule of classes, combinations

of practical sessions and traditional lectures) and the total workload compared to other courses.

Formally, we estimate the following equation:

qkdtcs = λ0 + λ1α̂dtcs + λ2Cdtcs + λ3Tdtcs + γd + δt + υc + εdtcs (3)

where qkdtcs is the average answer to question k in class s of course c in the degree program d

(which is taught in term t), α̂dtcs is the estimated class fixed effect from equation 1, Cdtcs is

the set of class characteristics, Tdtcs is the set of teacher characteristics. γd, δt and υc are fixed

effects for degree program, term and subject areas, respectively. εdtcs is a residual error term.

Notice that the class and teacher characteristics are exactly the same as in Table 7, so that

equation 3 is equivalent to a partitioned regression model of the evaluations qdtcs on our mea-

sures of teacher effectiveness, i.e. the residuals of the regressions in Table 7, where all the

28To take into account the additional noise due to the presence of generated regressors on the right hand side
of these models, the standard errors are bootstrapped. Further, each observation is weighted by the inverse of the
standard error of the dependent variable, which is also a generated variable.
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observables and the fixed effects are partialled out.

Since the dependent variable in equation 3 is an average, we use weighted OLS, where

each observation is weighted by the square root of the number of collected questionnaires in

the class, which corresponds to the size of the sample over which the average answers are

taken. Additionally, we also bootstrap the standard errors to take into account the presence of

generated regressors (the α̂’s).

The first four columns of Table 10 reports the estimates of equation 3 for a first set of core

evaluation items, namely overall teaching quality and lecturing clarity. For each of these items

we show results obtained using our benchmark estimates of teacher effectiveness and those

obtained using the contemporaneous class effects.

Results show that our benchmark class effects are negatively associated with all the items

that we consider. In other words, teachers who are more effective in promoting future perfor-

mance receive worst evaluations from their students. This relationship is statistically significant

for all items (but logistics and workload, which are features of the course that are common to

all classes and over which individual teachers have little or no control), and is of sizable magni-

tude. For example, one standard deviation increase in teacher effectiveness reduces the students

evaluations of overall teaching quality by about 50% of a standard deviation. Such an effect

could move a teacher who would otherwise receive a median evaluation down to the 31st per-

centile of the distribution. Effects of slightly smaller magnitude can be computed for lecturing

clarity. Consistently with the findings of other studies (Carrell and West, 2010; Krautmann

and Sander, 1999; Weinberg, Fleisher, and Hashimoto, 2009), when we use the contempora-

neous effects (even columns) the estimated coefficients turn positive and highly significant for

all items (but workload). In other words, the teachers of classes that are associated with higher

grades in their own exam receive better evaluations from their students. The magnitudes of

these effects are smaller than those estimated for our benchmark measures: one standard devi-

ation change in the contemporaneous teacher effect increases the evaluation of overall teaching

quality by 24% of a standard deviation and the evaluation of lecturing clarity by 11%.

The results in Table 10 clearly challenge the validity of students’ evaluations of professors

as a measure of teaching quality. Even abstracting from the possibility that professors strategi-
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cally adjust their grades to please the students (a practice that is made difficult by the timing of

the evaluations, that are always collected before the exam takes place, and by the fact that the

evaluations are communicated to the teachers with a certain delay), it might still be possible

that professors who make the classroom experience more enjoyable do that at the expense of

true learning or fail to encourage students to exert effort. Alternatively, students might reward

teachers who prepare them for the exam, that is teachers who teach to the test, even if this

is done at the expenses of true learning. This interpretation is consistent with the results in

Weinberg, Fleisher, and Hashimoto (2009), who provide evidence that students are generally

unaware of the value of the material they have learned in a course, and it is the interpretation

that we adopt to develop the theoretical framework of Section 6.

Of course, one may also argue that students’ satisfaction is important per se and, even,

that universities should aim at maximizing satisfaction rather than learning. The solution to

the principal-agent problem obviously depends on the objective function the principal wants to

maximize. A public university should in principle incorporate preferences of the society as a

whole: in this case, we doubt that any social planner would prefer to increase satisfaction rather

than promoting ”true learning” and increasing human capital. In the case of a private university

(like Bocconi), the objectives of the principal are not so obvious, but one could always think of

shifting the principal-agent problem simply one level up, with the relevant relationship being

the one between the policymaker and the private educational institutions he regulates. In this

case, the objective of the policymaker would be to make sure that private institutions (especially

if they receive public funds) promote learning and the accumulation of human capital rather

than simply making their students happy.

5 Robustness checks

In this section we present robustness checks for our main results in Sections 3 and 4.

First, we investigate the role of students’ dropout in the estimation of our measures of

teacher effectiveness. In our main empirical analysis students who do not have a complete

academic record are excluded. These are students who either dropped out of higher education

34



or have transfered to another university or are still working towards the completion of their

programs, whose formal duration was 4 years. They total about 10% of all the students who

enrolled in their first year in 1998-1999. In order to check that excluding them does not affect

our main results, in Figure 2 we compare our benchmark measure of teacher effectiveness es-

timated in Section 3 with similar estimates that include such dropout students. As it is evident,

the two sets of estimates are very similar and regressing one over the other (controlling for

degree program, term and subject fixed effects) yields an R2 of over 88%. Importantly, there

does not seem to be larger discrepancies between the two versions of the class effects for the

best or the worst teachers.

Figure 2: Robustness check for dropouts

Second, one might be worried that students might not comply with the random assignment

to the classes. For various reasons they may decide to attend one or more courses in a different

class from the one to which they were formally allocated. For example, they may desire to

stay with their friends, who might have been assigned to a different class, or they may like a

35



specific teacher, who is known to present the subject particularly clearly. Unfortunately, such

changes would not be recorded in our data, unless the student formally asked to be allocated to

a different class, a request that needed to be adequately motivated.29 Hence, we cannot exclude

a priori that some students switch classes.

If the process of class switching is unrelated to teaching quality, then it merely affects the

precision of our estimated class effects, but it is very well possible that students switch in search

for good or lenient lecturers. We can get some indication of the extent of this problem from

the students’ answers to an item of the evaluation questionnaires that asks about the congestion

in the classroom. Specifically, the question asks whether the number of students in the class

was detrimental to one’s learning. We can, thus, identify the most congested classes from the

average answer to such question in each course.

Courses in which students concentrate in the class of one or few professors should be char-

acterized by a very skewed distribution of such a measure of congestion, with one or a few

classes being very congested and the others being pretty empty. Thus, for each course we com-

pute the difference in the congestion indicator between the most and the least congested classes

(over the standard deviation). Courses in which such a difference is very large should be the

ones that are more affected by switching behaviors.

In Table 11 we replicate our benchmark estimates for the two core evaluation items (overall

teaching quality and lecturing clarity) by excluding the most switched course (Panel B), i.e. the

course with the largest difference between the most and the least congested classes (which is

marketing). For comparison we also report the original estimates from Table 10 in Panel A and

we find that results change only marginally. Next, in Panel C and D we exclude from the sample

also the second most switched course (human resource management) and the five most switched

courses, respectively.30 Again, the estimated coefficients are only mildly affected, although the

significance levels are reduced according with the smaller sample sizes. Overall, this exercise

suggests that course switching should not affect our estimates in any major direction.

29Possible motivations for such requests could be health reasons. For example, due to a broken leg a student
might not be able to reach classrooms in the upper floors of the university buildings and could ask to be assigned
to a class taught on the ground floor.

30The five most switched courses are marketing, human resource management, mathematics for Economics and
Management, financial mathematics and managerial accounting.
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Table 11: Robustness check for class switching

Overall teaching quality Lecturing clarity
[1] [2] [3] [4]

PANEL A: All courses

Benchmark teacher effects -0.496** - -0.249** -
(0.236) (0.113)

Contemporaneous teacher effects - 0.238*** - 0.116***
(0.055) (0.029)

Observations 230 230 230 230
PANEL B: Excluding most switched course

Benchmark teacher effects -0.572** - -0.261** -
(0.267) (0.118)

Contemporaneous teacher effects - 0.258*** - 0.121***
(0.064) (0.030)

Observations 222 222 222 222
PANEL C: Excluding most and second most switched course

Benchmark teacher effects -0.505* - -0.234* -
(0.272) (0.128)

Contemporaneous teacher effects - 0.233*** - 0.112***
(0.062) (0.031)

Observations 214 214 214 214
PANEL D: Excluding five most switched courses

Benchmark teacher effects -0.579** - -0.229* -
(0.273) (0.122)

Contemporaneous teacher effects - 0.154** - 0.065**
(0.063) (0.032)

Observations 176 176 176 176
Weighted OLS estimates. Observations are weighted by the squared root of the number of collected
questionnaires in each class.
Additional regressors: teacher characteristics (gender and coordinator status), class characteristics
(class size, attendance, average high school grade, average entry test score, share of high ability
students, share of students from outside Milan, share of top-income students), degree program
dummies, term dummies, subject area dummies.
Bootstrapped standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Finally, one might be worried that our results may be generated by some endogenous reac-

tion of students to the quality of their past teachers. For example, as one meets a bad teacher

in one course one might be induced to exert higher effort in the future to catch up, especially

if bad teaching resulted in a lower (contemporaneous) grade. Hence, the students evaluations

may reflect real teaching quality and our measure of teacher effectiveness would be biased by

such a process of mean reversion, leading to a negative correlation with real teaching quality

and, consequently, also with the evaluations of the students.

Figure 3: Robustness check for mean reversion in grades

To control for this potential feedback effect on students’ effort, we recompute our bench-

mark measures of teacher effectiveness adding the student average grade in all previous courses

to the set of controls. Figure 3 compares our benchmark teacher effectiveness with this aug-

mented version, conditioning on the usual fixed effects for degree program, term and subject

area and shows that the two are strongly correlated (even accounting for the outliers).
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6 Interpreting the results: a simple theoretical framework

We think of teaching as the combination of two types of activities: real teaching and teaching-

to-the-test. The first consists of presentations and discussions of the course material and leads

to actual learning, conditional on the students exerting effort; the latter is aimed at maximizing

performance in the exam, it requires lower effort by the students and it is not necessarily related

to actual learning.

Practically, we think of real teaching as competent presentations of the course material

with the aim of making students understand and master it and of teaching-to-the-test as mere

repetition of exam tests and exercises with the aim of making students learn how to solve them,

even without fully understanding their meaning.

Consider a setting in which teachers are heterogenous in their preference (or ability) to do

real teaching. We measure such heterogeneity with a parameter µj ∈ [0, 1], such that a teacher

j with µj = 0 exclusively teaches to the test and a teacher with µj = 1 exclusively engages in

real teaching.

The grade xi of a generic student i in the course taught by teacher (or in class) j is defined

by the following production function:

xi = µjh(ei) + (1− µj)x (4)

which is a linear combination of a function h(·) of student’s effort ei and a constant x, weighted

by the teacher’s type µj . We assume h(·) to be a continuous and twice differentiable concave

function. Under full real teaching (µj = 1) grades vary with students’ effort; on the other

hand, if the teacher exclusively teaches to the test (µj = 0), everyone gets the same grade x,

regardless of effort. This strong assumption can obviously be relaxed and all our implications

will be maintained as long as the gradient of grades to effort increases with µj .

The parameter x measures the extent to which the exam material and the exam format lend

themselves to teaching-to-the-test. To the one extreme, one can think of the exam as a selection

of multiple-choice questions randomly drawn from a large pool. In such a situation, teaching-

to-the-test merely consists in going over all the possible questions and memorizing the correct
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answer. This is a setting which would feature a large x. The other extreme are essays, where

there is no obvious correct answers and one needs to personally and originally elaborate on

one’s own understanding of the course material. Of course, there are costs and benefits to each

type of exam and multiple-choice tests are often adopted because they can be marked quickly,

easily and uncontroversially. For the sake of simplicity, however, we abstract from cost-benefit

considerations.

Furthermore, equation 4 assumes that teaching-to-the-test does not require students to exert

effort. All our results would be qualitatively unchanged under the weaker assumption that

teaching-to-the-test requires less effort by the students. We also assume that µj is a fixed

characteristic of teacher j, so that the model effectively describes the conditions for selecting

teachers of different types, a key piece of information for hiring and promotion decisions.

Alternatively, µj could be treated as an endogenous variable under the control of the individual

teacher, in which case the model would feature a rather standard agency problem where the

university tries to provide incentives to the teachers to choose a µj close to 1. Although, such

a model would be considerably more complicated than what we present in this section, its

qualitative results would be unchanged and the limited information on teachers in our data

would make its additional empirical content redundant in our setting.

More specifically, one could model µj as an endogenous choice of the teacher and generate

heterogeneity by assuming that different activities (real teaching or teaching-to-the-test) require

different efforts from the professors, who face heterogeneous marginal disutilities. Such an al-

ternative model would feature both adverse selection and moral hazard and proper measurement

of teaching quality could help addressing both issues, by facilitating the identification of low

quality agents (high disutility of effort) and by incentivizing effort. In our simplified frame-

work, only adverse selection of professors takes place, but the general intuition holds also in a

more complicated setting.

In all cases, a key assumption is that µj is unobservable by the university administrators

(the principal) and, although it might be observable to the students, it cannot be credibly com-

municated to third parties.

Assume now that students care about their grades but dislike exerting effort, so that the
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utility function of a generic student i can be written as follows:

Ui = xi −
1

2

e2i
ηi

(5)

where ηi is a measure of student’s ability.

For simplicity, we assume that students are perfectly informed about the production func-

tion of grades, i.e. they know the type of their teacher, they know the return to their effort

and there is no additional stochastic component to equation 4. This assumption can be easily

relaxed by introducing either imperfect information about the teacher’s type or about the exact

specification of the production function and, consequently, by rewriting the utility function in

equation 5 in expected terms. The main intuition of our results would be unchanged. Although

the perfect information assumption is obviously a modeling device and does not correspond to

reality, we do believe that students know a lot about their professors, either through conversa-

tions with older students or by observation through the duration of the course.

The utility function in equation 5 implicitly assumes that students are myopic, in the sense

that they care only about grades and not about real learning. The main implications of the

simple theory in this section would remain unchanged also with a different utility function that

incorporates real learning, as long as students of different abilities care equally about it (just

like they are equally myopic in the current specification).

The quasi-linearity of equation 5 simplifies the algebra of the model. Alternatively, we

could have introduced some curvature in the utility function and assumed a linear production

process without affecting the results. With non-linearities both in the production and in the util-

ity functions one would have to make explicit a number of additional assumptions to guarantee

existence and uniqueness of the equilibrium.

Students choose their optimal level of effort e∗i according to the following first order condi-

tions:

µj
∂h(e)

∂ei
(e∗i ) =

e∗i
ηi

(6)
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Using equation 6 it is easy to derive the following results:

de∗i
dηi

> 0 (7)

de∗i
dµj

> 0 (8)

de∗i
dµjdηi

> 0 (9)

Equation 7 shows that more able students exert higher effort. Equation 8 shows that more real

teaching induces higher effort from the students and equation 9 indicates that such an effect is

larger for the more able students

Additionally, using the envelope theorem it is easy to show that:

∂Ui(e
∗
i )

∂µj
= h(e∗i )− x (10)

Define e the level of effort such that h(e) = x. Moreover, since for a given µj there is a unique

correspondence between effort and ability, e uniquely identifies a η. Hence:

∂Ui(e
∗
i )

∂µj
> 0 if ηi > η (11)

∂Ui(e
∗
i )

∂µj
< 0 if ηi < η (12)

Equations 11 and 12 are particularly important under the assumption that, especially when

answering questions about the overall quality of a course, students give a better evaluation to

teachers (or classes) that are associated with a higher level of utility. Equations 11 and 12

suggest that high ability students evaluate better teachers or classes that are more focused on

real learning while low ability students prefer teachers that teach to the test. Hence, if the

(benchmark) teacher effects estimated in Section 3 indeed measure the real learning value of a

class (µj , in the terminology of our model), we expect to see a more positive (or less negative)

correlation between such class effects and the students’ evaluations in those classes where the

concentration of high ability students is higher.
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7 Further evidence

In this section we present some additional pieces of evidence that are consistent with the impli-

cations of the model of Section 6.

First, in the model we assume that students evaluate professors on the basis of their realized

utility from attending their courses. This might be a questionable assumption. Especially

university administrators who organize and elaborate the students’ questionnaires are often

convinced that, when asked about the ability of the teacher in presenting the course material,

students express their opinion regardless of whether the teacher has imposed a high effort cost

on them in order to pass the exam. In fact, an alternative behavioral model would be one in

which students observe the true type of the teacher and they truthfully communicate it in the

questionnaires regardless of their individual classroom experience.

In order to provide support for our specification, in Table 12 we produce evidence that the

students’ evaluations respond to the weather conditions on the day when they were filled. There

is ample evidence that people’s utility (or welfare, happiness, satisfaction) improves with good

meteorological conditions (Barrington-Leigh, 2008; Denissen, Butalid, Penke, and van Aken,

2008; Keller, Fredrickson, Ybarra, Coté, Johnson, Mikels, Conway, and Wager, 2005; Pray,

2011; Schwarz and Clore, 1983) and finding that such conditions also affect the evaluations

of professors suggests that they indeed reflect utility rather than (or together with) teaching

quality.

Specifically, we find that evaluations improve with temperature, deteriorate with rain and

improve on foggy days. The effects are significant for most of the items that we consider and

the signs of the estimates are consistent across items and specifications.

Obviously, teachers might be affected by meteorological conditions as much as their stu-

dents and one may wonder whether the estimated effects in the odd columns of Table 12 reflect

the indirect effect of the weather on teaching effectiveness. We consider this interpretation to

be very unlikely since the questionnaires are distributed and filled before the lecture so that

students should not be able to incorporate in their answers the performance of the teacher in

the day the evaluation forms are filled in. Moreover, students’ are asked to evaluate teachers’
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performance over the entire duration of the course and not exclusively on the day of the test.

Nevertheless, in the even columns of Table 12, we also condition on our benchmark measure

of teaching effectiveness and, as we expected, we find that the estimated effects of both the

weather conditions and teacher effectiveness itself change only marginally.

Second, our specification of the production function for exam grades in equation 4 implies a

positive relationship between grade dispersion and the professor’s propensity to engage in real

teaching (µj). In our empirical exercise our measures of teacher effectiveness can be interpreted

as measures of the µj’s in the terminology of the model. Hence, if grades were more dispersed

in the classes of the worst teachers one would have to question our specification of equation 4.

Figure 4: Teacher effectiveness and grade dispersion

In Figure 4 we plot the coefficient of variation of grades in each class (on the vertical axis)

against our measure of teacher effectiveness (on the horizontal axis). To take proper account

of differences across degree programs, the variables on both axes are the residuals of weighted

OLS regressions that condition on degree program, term and subject area fixed effects, as in
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standard partitioned regressions (the weights are the squared roots of class sizes). Consistently

with equation 4 in our model, the two variables are positively correlated and such a correlation

is statistically significant at conventional levels: a simple univariate OLS regression of the

variable on the vertical axis on the variable on the horizontal axis yields a coefficient of 0.011

with a standard error of 0.004.

Table 13: Teacher effectiveness and students evaluations by share of high ability
students

Presence of high-ability students
all >0.22 >0.25 >0.27

(top 75%) (top 50%) (top 25%)
[1] [2] [3] [4]

PANEL A: Overall teaching quality

Teaching effectiveness -0.496** -0.502* -0.543 -0.141***
(0.236) (0.310) (0.439) (0.000)

PANEL B: Lecturing clarity

Teaching effectiveness -0.249** -0.240 -0.283 -0.116*
(0.113) (0.140) (0.191) (0.068)

Observations 230 171 114 56
Weighted OLS estimates. Observations are weighted by the squared root of the number of
collected questionnaires in each class.
Additional regressors: teacher characteristics (gender and coordinator status), class
characteristics (class size, attendance, average high school grade, average entry test score,
share of high ability students, share of students from outside Milan, share of top-income
students), degree program dummies, term dummies, subject area dummies.
Bootstrapped standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

Next, according to equations 11 and 12, we expect the correlation between our measures of

teacher effectiveness and the average student evaluations to be less negative in classes where

the share of high ability students is higher. This is the hypothesis that we investigate in Table

13. We define as high ability those students who score in the upper quartile of the distribution of

the entry test score and, for each class in our data, we compute the share of such students. Then,

we investigate the relationship between the students’ evaluations and teacher effectiveness by

restricting the sample to classes in which high-ability students are over-represented. Results

seem to suggest the presence of non linearities or threshold effects, as the estimated coefficient

remains relatively stable until the fraction of high ability students in the class goes above 27%.
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At that point, the estimated effect of teacher effectiveness on students’ evaluations is about a

quarter of the one estimated on the entire sample. The results, thus, suggest that the negative

correlations reported in Table 10 are mostly due to classes with a particularly low incidence of

high ability students.

8 Conclusions

Using administrative archives from Bocconi University and exploiting random variation in stu-

dents’ allocation to teachers within courses we find that, on average, students evaluate posi-

tively classes that give high grades and negatively classes that are associated with high grades

in subsequent courses. These empirical findings can be rationalized with a simple model fea-

turing heterogeneity in the preferences (or ability) of teachers to engage in real teaching rather

than teaching-to-the-test, with the former requiring higher effort from students than the latter.

Furthermore, we also find that weather conditions on the day the questionnaires are filled in

are correlated with students’ evaluations of theachers. This is consistent with the assumption

of our model, namely that students’ evaluations reflect students’ perceived utility more than

teachers’ ability. Overall, our results cast serious doubts on the validity of students’ evaluations

of professors as measures of teaching quality or effort.

At the same time, the strong effects of teaching quality on students’ outcomes, as docu-

mented in Section 3, suggest that improving the quantity or the quality of professors’ inputs

in the education production function can lead to large gains. Under the interpretation offered

by our model in Section 6, this could be achieved through various types of interventions. For

example, one may think of adopting exam formats that reduce the returns to teaching-to-the-

test, although this may come at larger costs due to the additional time needed to grade less

standardized tests.

Alternatively, one may stick to the use of students’ evaluations to measure teachers’ perfor-

mance but limit the extent of grade leniency that may be induced in such a system, for example

by making sure that teaching and grading are done by different persons. Anecdotically, we

know that at Bocconi it is common practice among the teachers of the core statistics course to
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randomize the grading, i.e. at the end of the course the teachers of the different classes are ran-

domly assigned the papers of another class for marking. In the only year in which this practice

was abandoned, average grades increased substantially.

Another variation to the current most common use of the students’ evaluations consists in

postponing the collection of students’ opinions, so as to give them time to appreciate the value

of real teaching in subsequent learning (or even in the market). Obviously, this would also pose

problems in terms of recall bias and possible retaliation for low grading.

Alternatively, one may also think of other forms of performance measurement that are more

in line with the peer-review approach adopted in the evaluation of research output. It is already

common practice in several departments to have colleagues sitting in some classes and observ-

ing teacher performance, especially of assistant professors. This is often done primarily with

the aim of offering advise, but in principle it could also be used to measure outcomes. An ob-

vious concern is that one could change behavior due to the presence of the observer. A slightly

more sophisticated version of the same method could be based on the use of cameras to record

a few teaching sessions during the course without the teacher knowing exactly which ones. The

video recordings could then be viewed and evaluated by an external professor in the same field.

Obviously, these, as well as other potential alternative measurement methods, are costly but

they should be compared with the costs of the current systems of collecting students’ opinions

about teachers, which are often non trivial.
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Appendix

Figure A-1: Excerpt of student questionnaire

Table A-1: Descriptive statistics of estimated class effects

Management Economics Law & Management Total
Std. dev. of estimated class effects
mean 0.054 0.157 0.035 0.081
minimum 0.029 0.058 0.004 0.004
maximum 0.092 0.241 0.087 0.241
Largest minus smallest class effect
mean 0.152 0.423 0.050 0.211
minimum 0.045 0.010 0.005 0.005
maximum 0.249 0.723 0.122 0.723

No. of courses 20 11 7 38
No. of classes 144 72 14 230
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Table A-2: Descriptive statistics of subject teacher effectiveness

Management Economics Law & Management Total

PANEL A: Std. dev. of estimated teacher effects
mean 0.095 0.244 0.099 0.140
minimum 0.055 0.049 0.018 0.018
maximum 0.163 0.342 0.194 0.342
PANEL B: Largest minus smallest teacher effect
mean 0.266 0.733 0.140 0.377
minimum 0.175 0.069 0.026 0.026
maximum 0.428 1.171 0.275 1.171

No. of courses 17 10 7 34
No. of classes 128 70 14 212

Table A-3: Descriptive statistics of contemporaneous teacher effectiveness

Management Economics Law & Management Total

PANEL A: Std. dev. of estimated teacher effects
mean 0.200 0.310 0.163 0.225
minimum 0.094 0.150 0.001 0.001
maximum 0.351 0.507 0.468 0.507
PANEL B: Largest minus smallest teacher effect
mean 0.553 0.819 0.231 0.571
minimum 0.133 0.213 0.001 0.001
maximum 1.041 1.626 0.661 1.626

No. of courses 20 11 7 38
No. of classes 144 72 14 230
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Table A-4: Wording of the evaluation questions

Overall teaching quality On a scale 0 to 10, provide your overall evaluation
of the course you attended in terms of quality of the
teaching.

Clarity of the lectures On a scale 1 to 5, where 1 means complete disagree-
ment and 5 complete agreement, indicate to what
extent you agree with the following statement: the
speech and the language of the teacher during the lec-
tures are clear and easily understandable.

Ability in generating interest
for the subject

On a scale 0 to 10, provide your overall evaluation
about the teacher’s ability in generating interest for
the subject

Logistics of the course On a scale 1 to 5, where 1 means complete disagree-
ment and 5 complete agreement, indicate to what
extent you agree with the following statement: the
course has been carried out coherently with the ob-
jectives, the content and the schedule that were com-
municated to us at the beginning of the course by the
teacher.

Workload of the course On a scale 1 to 5, where 1 means complete disagree-
ment and 5 complete agreement, indicate to what
extent you agree with the following statement: the
amount of study materials required for the prepara-
tion of the exam has been realistically adequate to
the objective of learning and sitting the exams of all
courses of the term.

Table A-5: Correlations between evaluations items
Overall teaching Lecturing Teacher generates Course Course

quality clarity interest logistics workload
Overall teaching 1.000 - - - -
quality

Lecturing 0.888 1.000 - - -
clarity (0.000)

Teacher generates 0.697 0.536 1.000 - -
interest (0.000) (0.000)

Course 0.742 0.698 0.506 1.000 -
logistics (0.000) (0.000) (0.000)

Course 0.124 0.122 0.193 0.094 1.000
workload (0.060) (0.064) (0.003) (0.153)
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Figure A-2: Economics and Management common courses - Benchmark teacher effectiveness
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