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Abstract

This paper suggests a class of stochastic collective learning processes ex-
hibiting very irregular behavior. In particular, there are multimodal long
run distributions. Some of these modes may vanish as the population size
increases. This may be thought of as \bubbles" persistent for a �nite range
of population sizes but disappearing in the limit. The limit distribution
proves to be a discontinuous function of parameters determining the learn-
ing process. This gives rise to another type of \bubbles": limit outcomes
corresponding to small perturbations of parameters are di�erent.

Since an agent's decision rule involves imitation of the majority choice in
a random sample of other members of the population, the resulting collective
dynamics exhibit \herding" or \epidemic" features.

JEL Classi�cation: C72, C73, D83.
Keywords: increasing returns, birth and death Markov chain, bubbles.

1 Introduction

We address here the issue of collective learning. The model studied in Kir-
man (1993) seems to be the closest to ours both conceptually and technically.
In fact, these papers deal with a �nite pool of agents whose choice among
two competing products is a�ected by \natural" random factors (like sam-
pling variability, mutation and imitation). Both works look at the steady
state distribution of market shares and they study the asympotics of such
distribution as the population grows without bound. Moreover, our paper
suggests an approach to constructing a class of collective learning models ac-
counting for variability of an agent' decision rules and a machinery to study
the asympototic behavior of them (when �rst time goes to in�nity and then
the size of the population goes to in�nity). In formal terms, this class of mod-
els comprises birth and death Markov chains. The tool, Laplace's method for
nonstationary potentials, used to pass to the limit as the number of states
increases, is new.

Our numerical simulations illustrate the extreme irregularity of random
processes generated by the model. In fact, we have found parametrizations
where the limit market share of either product may take three distinct values,
symmetric with respect to 1=2: close to 0, 1=2 and close to 1. If all parameters
but mutation rates are kept constant and the latter decreases from 10�4 to



10�5, the support of the limit market share contains subsequently one, three
and two points. The probability assigned to 1=2 seems to be a discontinuous
function of mutation rates.

Conceptually, the processes analyzed here are similar to those studied in
Bikhchandani et al. (1998), Orle�an (1995), Banerjee (1992) and these papers
contain other relevant references.

2 Description of the model

Assume that a population of N agents chooses among two products, A and
B. The state variable i designates the number of agents using product A.
Time is discrete t = 0; 1; 2; : : :. At time t = 0 there are i0 > 0 users of A and
N � i0 > 0 users of B. We do not know how these initial numbers came to
exist and are not interested in this problem. What we are looking for is how
the population evolves driven by sequential decisions of agents.

Let us restrict ourselves to the following decision rules. At time t an
agent is picked at random. He is an A-user with probability it=N and a B-
user with probability 1� it=N , where it is the state variable at t. If the agent
is an A-user (B-user), he samples with replacement rA (rB) agents to �nd
out which of the products they are using. The number rA(rB) � 1 re
ects
how people \get around" making decisions. Larger samples may correspond
to more risk averse agents. These numbers are parameters of the model, they
are �xed through the evolution of the population.

Depending upon the content of his sample, the agent may change the
product in use. This change is driven by two motives: imitation and search
for diversity (or mutation). In fact, if the majority in the sample is using
a product di�erent from his, being driven by conformism, the agent may
choose this one. This is imitation of the majority choice. If the majority
in the population is using the same product as his, or equivalently, if the
minority in the population is using the concurrent one, the agent may change
his product. This is mutation.

The division of population on imitators and diversity seekers is common
in socio-economic theory of consumer. There it is customary to distinguish
between elitarian consumers and people who prefer to follow the behavior of
others (see, for example, Veblen (1965) or Duesenberry (1952)).

Let the state variable be i. Consider the probability that a sample with
replacement of r agents from a pool of N agents contains at least s users of
product A. This may be thought of as the probability of at least s successes
in r Bernoulli trials whose probability of success equals i=N . That is,
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rX
j=s

Cj
r

�
i

N

�j �
1�

i

N

�r�j
:

Here Cj
r denotes the number of combinations formed from r in j,

Cj
r =

r!

j! (r � j)!
:

For � 2 (0; 1=2]; 
 2 [1=2; 1) and x 2 [0; 1] set

f 
r (x) =
X
j>
r

Cj
rx

j(1� x)r�j;

g�r (x) =
[�r]X
j=0

Cj
rx

j(1� x)r�j:

Here [a] denotes the integer part of a real number a. Remark that f 
r (x)
equals the probability of more than 
r successes and g�r (x) equals the prob-
ability of not more than [�r] successes in r Bernoulli trials whose probability
of success is x.

The probability that the number of A-users in the population increases
by 1, that is, the transition i! i+ 1; reads

�
1�

i

N

� �
f 1=2
rB

�
i

N � 1

�
�B + g1=2rB

�
i

N � 1

�
�B

�
: (1)

The �rst term means that the agent picked at random is a B-user. If the
majority in the sample of rB other agents are A-users, he changes to A prod-
uct with probability �B imitating the choice of the majority. If the minority
in the sample are A-users, he \mutates" to product A with probability �B.
Remark that N � 1 comes to exist here because the agent making his choice
may not be sampled.

Similary, the probability that the number of A-users in the population
decreases by 1, that is, the transition i! i� 1, reads

�
i

N

� �
f 1=2
rA

�
1�

i� 1

N � 1

�
�A + g1=2rA

�
1�

i� 1

N � 1

�
�A

�
: (2)

Here the sample sizes must be odd numbers (otherwise the majorities and
the minorities are not well de�ned) and should not exceed N � 1 (otherwise
the samples are not feasible). The mutation and imitation probabilities be-
long to [0; 1] provided that �I + �I > 0; I = A;B (to avoid the trivial cases
when transitions are unidirected or no transition takes place).
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Now let us assume that agents' threshold values di�er from 1=2. In fact,
an agent, due to risk averseness, may regard 1=2 as an insu�ciently reliable
threshold for determining the dominant product in his sample. He may
therefore use an upper 
 � 1=2 and a lower � � 1=2 threshold level. Thus,
A-users represent the 
-majority (�-minority) in a sample of r agents, if their
number exceeds 
r (does not exceed [�r]). Then expressions (1) and (2) read,

�
1�

i

N

� �
f 
BrB

�
i

N � 1

�
�B + g�BrB

�
i

N � 1

�
�B

�
(3)

and

�
i

N

� �
f 
ArA

�
1�

i� 1

N � 1

�
�A + g�ArA

�
1�

i� 1

N � 1

�
�A

�
: (4)

Here 
I 2 (1=2; 1] and �I 2 [0; 1=2); I = A;B, designate the threshold levels
for A- and B-users. If 
I = �I = 1=2 and rI are odd numbers, expressions
(3) and (4) reduce to (1) and (2).

If �I are small compared with �I , imitation of majority choice is the
dominating behavior in the population. The corresponding dynamics may
be characterized as herd behavior. In this situation one may intuitively
expect the same limit patterns as in models of stochastic increasing returns
based on urn schemes (see Arthur et al. (1987) and Dosi et al. (1994)). Our
numerical simulations show that this expectation is, in general, correct, but
the variety of outcomes is much richer than in models based on urn schemes.

3 Analysis of the Model

The random process de�ned above is a birth and death Markov chain �t; t =
0; 1; : : : ; whose state space is 0; 1; : : : ; N . The transition probabilities pij =
P f�t+1 = j j �t = ig are as follows

pij =

8>>>>><
>>>>>:

0; if jj � ij > 1;
(1� i

N
)p( i

N�1
); if j = i + 1;

i
N
q
�

i�1
N�1

�
; if j = i� 1;

1�
h�
1� i

N

�
p
�

i
N�1

�
+ i

N
q
�

i�1
N�1

�i
; if j = i:

Here p(�) and q(�) are given by the expressions in square brackets in (3) and
(4).

We are interested in the long run con�guration of the population as a
consequence of the behavioral assumptions employed. Thus, we want to
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eliminate any e�ect of the initial state of the population on this con�guration.
Consequently, we have to look at the ergodic properties of the Markov chain
�t; t � 0.

Theorem 1 If the imitation and mutation rates are positive, then the Mar-

kov chain is irreducible.

Proof. It su�ces to show that

pii+1 > 0; 0 � i � N � 1; and pjj�1 > 0; 1 � j � N: (5)

Note that continuous functions f 
r (�) and g�r (�) are positive on (0; 1] and
[0; 1) correspondingly. Consequently, there are positive numbers p; P; q and Q
such that

0 < p � p(x) � P and 0 < q � q(x) � Q (6)

where 0 � x � 1;

p(x) = f 
BrB (x)�B + g�BrB (x)�B;

q(x) = f 
ArA (1� x)�A + g�ArB (1� x)�A:

Then

pii+1 �
�
1�

i

N

�
p; 0 � i � N � 1; and pjj�1 �

i

N
q; 1 � j � N:

Thus, inequalities (5) hold true.
The theorem is proved.

An irreducible Markov chain has a unique stationary distribution. For
a birth and death chain this distribution can be expressed via transition
probabilities (see, for example, Hoel et al. (1972), p.51).

Since henceforth we shall be dealing with the stationary distribution, let
us assume that the mutation and imitation rates are positive. Theorem 1
asserts the existence and uniqueness of this distribution.

We are interested in the steady state con�guration of the population as a
consequence of the behavioral assumptions formulated above. We thus want
to eliminate any e�ect of a particular population size, concentrating on the
properties invariant with respect to population size. Accordingly, we should
turn to the space of shares i

N+1
; i = 0; 1; : : :N; and look in this space at the

limit of the stationary distribution as N !1.

5



To analyze the asymptotic behavior of the stationary distribution as
N !1, let us apply the approach developed in Kaniovski and P
ug (1999).

For x 2 [0; 1] set

FN+1(x) =

8>><
>>:

pi�1i
pii�1

if [(N + 1)x] = i� 1; 1 � i � N;

pN�1N
pNN�1

if x = 1;

and

�N+1(x) =

8>>>>>>><
>>>>>>>:

0 for 0 � x < 1
N+1

;

�
1

N + 1

iX
j=1

ln
pj�1j
pjj�1

for i
N+1

� x < i+1
N+1

; 1 � i � N � 1;

�
1

N + 1

NX
j=1

ln
pj�1j
pjj�1

for 1� 1
N+1

� x � 1:

The function �N+1(�), which may be regarded as a Riemann integral
sum of FN+1(�), is called the Gibbs potential of the stationary distribution
(see, for example, Aoki (1996), p.57). This distribution assigns the highest
probabilities to the states i�=N where �N (�) attains its global minimum ��N
on [0; 1].

Let

F(x) =
(1� x)p(x)

xq(x)
; 0 < x < 1:

By Lipschitz continuity of F(�), for every � 2 (0; 1=2) there is a constant c(�)
such that

sup
��x�1��

jFN+1(x)� F(x)j � c(�)=N (7)

Consider

�(x) = �
Z x

0
F(y)dy; 0 � x � 1:

Note that

lim
x!0

xF(x) =
�A

�A
and lim

x!1

F(x)

1� x
=

�B
�A

:

Since F(�) is positive and continuous on (0; 1), these relations imply Riemann
integrability of F(�) on [0; 1]. Thus, the function �(�) exists.

If the set of global minima X�
N of �N (�) approaches as N ! 1 the set

X� of global minima of �N(�), every weak limit point of stationary distri-
butions belong to X� (see, for example, Proposition 2.2 in Kaniovski and
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P
ug (1999)). This convergence of sets X�
N takes place, for example, when

functions �N(�) converge uniformly to �(�). We must therefore show (see the
Appendix for the proof) that

sup
0�x�1

j�N (x)� �(x)j ! 0 as N !1: (8)

Since �
0

(�) = � lnF(�) is positive near 0 and negative near 1, we conclude
that X� � (0; 1). Then relations (7) and (8) imply that Theorem 3.1 by
Kaniovski and P
ug (1999) may be applied here yielding the following result.

Theorem 2 Let the imitation and mutation rates be positive. As the popula-

tion size increases without bound, the steady state distribution of the market

share of product A concentrates on the set of global minima of the limit Gibbs

potential �(�). If the second derivative �
00

(�) is positive at all points of global

minima ai; i = 1; 2; : : : ; K, this limit share takes the value ai with probability

1q
�00(ai)

=
KX
j=1

1q
�00(aj)

:

Note that the zeros of the derivative �
0

(�) satisfy the following equation

F(x) = 1 or xq(x) = (1� x)p(x):

Since p(�) and p(�) are polynoms, all connected components of the set of
global minima of �(�) are singletons.

Let us show that for all large enough sample sizes and su�ciently small
mutation rates the limit Gibbs potential attains minima near to 0 and 1.
Those minima are not necessarily global, as we shall demonstrate on numer-
ical examples.

If rB !1 and rA !1, the functions p(�) and q(�) are approaching the
following piesewise constant functions

p1(x) =

8><
>:

�B; 0 � x < �B;
0; �B < x < 
B;
�B; 
B < x � 1;

and

q1(x) =

8><
>:

�A; 0 � x < 1� 
A;
0; 1� 
A < x < 1� �A;
�A; 1� �A < x � 1:

This convergence is uniform on any closed interval of continuity of the limit
(see, for example, Proposition 1 in Kaniovski et al. (1997)). In particular,
for every � 2 (0; a) and every � 2 (0; 1� b)
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sup
x2[0;a��]

�����
q(x)

p(x)
�

�A
�B

����� = ~��(rA; rB)! 0 as min(rA; rB)! 0

and

sup
x2[b+�;1]

�����
q(x)

p(x)
�

�A

�B

����� = ���(rA; rB)! 0 as min(rA; rB)! 0;

where a = min(�B; 1� 
A) and b = max(
B; 1� �A). Since the equation for
the zeros of �

0

(�) can be rewritten as

q(x)

p(x)
=

1� x

x
; (9)

these estimates imply the following result.

Proposition If �A=�B > (1�a)=a , then for all su�ciently large rA and rB
there is a local minimum approaching �B=(�B+�A) as min(rA; rB)!1. If

�A=�B < (1� b)=b , then for all su�ciently large rA and rB there is a local

minimum converging to �B=(�A + �B) as min(rA; rB)!1.

Note that, if �B; 
A and �A are �xed, then, by decreasing �B one can
always satisfy the �rst inequality in Proposition. If �A; 
B and �B are �xed,
then, by decreasing �A one can always satisfy the second inequality in Propo-
sition.

Another extreme case, rA = rB = 1, implies a single minimum of the
limit Gibbs potential. Taking into account that

p(x) = (�B � �B)x+ �B and q(x) = (�A � �A)x+ �A;

this point may be detemined by equation (9).
We now turn to the numerical simulations demonstrating the variety of

limit patterns that our model can exhibit.

4 Numerical Simulations

Let all parameters for both A- and B-users be identical. Then ln[F(x)] =
� ln[F(1� x)]. Consequently, the points of minima of �(�) are located sim-
metrically with respect to 1=2. Let us vary the mutation rate in the range
[10�5; 10�4] keeping all other parameters �xed: rI = 101; �I = 0:05; 
I =
0:65; �I = 0:15.
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Figure 1 gives the limit Gibbs potential for three di�erent mutation rates.
If � = 10�4, the global minimum is attained at a single point 1=2. By Theo-
rem 2, the limit market shares of both products are deterministic. Thus the
market is evenly divided between A and B. If � = 10�5, the global minimum
is attained at two points symmetric with respect to 1=2. By simmetricity
and Theorem 2, we conclude that the limit market shares of both products
take values x10�5 = 1:9996 � 10�4 and 1� x10�5 with probabilities 1=2.

-0.5

0

0.5

1

1.5

0 0.5 1

�I = 2:8787�10�5

�I = 10�5

�I = 10�4

Figure 1: Limit Gibbs potential for di�erent values of mutation rate.

Let G(�I) = �(1=2) � �(�x�I ), where �x�I = minx : �
0

(x) = 0. In our
case this is a continuous function of the mutation rate �I . Since G(10

�4) < 0
and G(10�5) > 0, we conclude that there is an ��I 2 (10�5; 10�4) such that
G(��I) = 0. Thus, there is a value for the mutation rates for which the global
minimum is attained at three points: �x��

I
; 1=2 and 1 � �x��

I
. Using an argu-

ment exploiting implicit functions, we can prove that such a value is unique.
We have found that ��I = 2:8787 � 10�5. The corresponding Gibbs potential
is given in Figure 1. In this case �x��

I
' 5:7541 � 10�4, �(�x��

I
) ' 5:7558 � 10�4,

�(1=2) ' �5:7751 � 10�4, �(1 � �x��
I
) ' �5:7311 � 10�4, �

00

(�x��
I
) ' 1738:8,

�
00

(1=2) ' 135:51, �
00

(1 � �x��
I
) ' 1738:8. By Theorem 2 the limit market

share of A takes each of the values �x��
I
and 1� �x��

I
, with probability approxi-

mately equal 0.17914. The value 1=2 is taken with probability approximately
0.64171 . Let p(�I) be the probability that the limit market share of A takes
the value 1=2. Then p(�) is a discontinuous function of the mutation rates in
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a neighborhood of ��I . Indeed, p(�I) = 0 for �I < ��I , p(�
�
I) ' 0:64171 and

p(�I) = 1 for �I > ��I .
Figure 2 demonstrates the \bubbles": close to 0 and 1. Here �I = 2:88 �

10�5. The limit Gibbs potential attains the global minimum at 1=2. There
are two equal local minima. Since the di�erence between the global minimum
and the local one is small, the modes of the stationary distribution near 0
and 1 persist even for N = 5000.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a) N=500

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(b) N=5000

Figure 2: Stationary distribution with two \bubbles", ��I = 2:88 � 10�5

Figure 3 shows a single \bubble" at 1=2. Here �I = 2:875�10�5. The limit
Gibbs potential attains the global minimum at two points: close to 0 and
1. There is a local minimum at 1=2. Since the di�erence between the global
minimum and the local one is larger than in the case depicted in Figure 2,
this \bubble" disappears faster.

Thus, as the rate of mutation decreases, the collective outcome evolves
from deterministic market even sharing to the outcome when either product
monopolizes the market with probability 1=2. But there is an interesting
intermediate con�guration that has no analog in models of increasing returns
based on urn schemes. In fact, for an intermediate value of mutation rates
there is an outcome when monopolies and market sharing take place with
positive probabilities.

An even richer variety of limit patterns is generated by the generalization
of the basic setting following next.
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a) N=500

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(b) N=5000

Figure 3: Stationary distribution with one \bubble", ��I = 2:875 � 10�5

5 A Generalization of the Model

We may assume that an agent's risk aversion is not constant over time. In
fact, as the same agent makes his decision several times, he may use di�erent
sample sizes and threshold levels. Also, he may imitate or mutate with
di�erent rates. In particular, on some occasions the agent may not imitate
or may not mutate on others.

Since the total numer of parameters governing an agent's choice is ten
(�ve for A-users and �ve forB-users), let us consider a ten-dimensional vector
~R = (R1; R2; : : : ; R10) taking a �nite number of values ~R(j); j = 1; 2; : : : ; K,
such that

P
n
~R = ~R(j)

o
= pj > 0;

KX
j=1

pj = 1:

The �rst �ve coordinates of ~R are allocated to the parameters governing
the decisions of A-users, the other �ve coordinates are allocated for the pa-
rameters governing the decisions of B-users. In fact, R1 and R6 give the ma-
jority threshold levels, so R

(j)
1 and R

(j)
6 are reals belonging to [1=2; 1); R2 and

R7 correspond to the minority threshold levels, so R
(j)
2 and R

(j)
7 are reals from

(0; 1=2]; R3 and R8 give sample sizes, so R
(j)
3 and R

(j)
8 are su�ciently large

integers (but not exceeding N), if R
(j)
1 and R

(j)
2 (R

(j)
6 and R

(j)
7 ) equal 1=2,

then R(j)
3 (R(j)

8 ) is an odd number; R4 and R9 (R5 and R10) denote the imita-

tion (mutation) rates, so these are real numbers, R
(j)
i 2 [0; 1]; i = 4; 5; 9; 10,

such that R
(j)
4 +R

(j)
5 > 0 and R

(j)
9 +R

(j)
10 > 0.

Each time instant t � 0 an independent realization R(t) of the random

vector ~R is observed. This realization determines the parameters for the
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agent making his decision at t. Let us use the term \scenarios" for the
possible realizations ~R(j); j = 1; 2; : : : ; K, of the random vector ~R. Then
~R(t) determines the scenario of the decision making process at t.

For this setting formulae (3) and (4) become as follows

�
1�

i

N

� KX
j=1

pj

�
f
R
(j)
6

R
(j)
8

�
i

N � 1

�
R

(j)
9 + g

R
(j)
7

R
(j)
8

�
i

N � 1

�
R

(j)
10

�
(10)

and

i

N

KX
j=1

pj

�
f
R
(j)
1

R
(j)
3

�
1�

i� 1

N � 1

�
R

(j)
4 + g

R
(j)
2

R
(j)
3

�
1�

i� 1

N � 1

�
R

(j)
5

�
: (11)

If K = 1, then (10) and (11) reduce to (3) and (4). Consequently we
henceforth assume that K > 1.

The next result is a counterpart of Theorem 1 for K > 1.

Theorem 3 If for A-users as well as for B-users there are scenarios with

positive imitation rate and a scenario with positive mutation rate, then the

Markov chain is irreducible for all su�ciently large populations.

Proof. Let Rj1
4 > 0; Rj2

5 > 0; Rj3
9 > 0; and Rj4

10 > 0 for some, not
necessarily distinct, ji 2 f1; 2; : : : ; Kg. That is, for A-users (B-users) the

scenario ~Rj1 (~Rj3) prescribes a positive imitation rate, while the scenario
~Rj2 (~Rj4) prescribes a positive mutation rate. Expressions (10) and (11) are
minorated by the following

�
1�

i

N

� �
pj1f

R
(j1)
6

R
(j1)
8

�
i

N � 1

�
R

(j1)
9 + pj2g

R
(j2)
7

R
(j2)
8

�
i

N � 1

�
R

(j2)
10

�

and

i

N

�
pj3f

R
(j3)
1

R
(j3)
3

�
1�

i� 1

N � 1

�
R

(j3)
4 + pj4g

R
(j4)
2

R
(j4)
3

�
1�

i� 1

N � 1

�
R

(j4)
5

�
:

These estimates for the probabilities of transitions i! i�1 and i! i+1
allow application of the argument used in the proof of Theorem 1.

The theorem is proved.

To derive an analog of Theorem 2, set

pG(x) = (1� x)
KX
j=1

pj

�
f
R
(j)
6

R
(j)
8

(x)R(j)
9 + g

R
(j)
7

R
(j)
8

(x)R(j)
10

�
;
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gG(x) = x
KX
j=1

pj

�
f
R
(j)
1

R
(j)
3

(1� x)R
(j)
4 + g

R
(j)
2

R
(j)
3

(1� x)R
(j)
5

�
;

�G(x) = �
Z x

0
ln
(1� y)pG(y)

yqG(y)
dy;

where 0 � x � 1. A minor modi�cation to the argument lead to Theorem 2,
yields the following statement.

Theorem 4 Let for A-users as well as for B-users there be a scenario with

positive imitation rate and a scenario with positive mutation rate. As the

population size increases without bound, the steady state distribution of the

market share of product A concentrates on the set of global minima of the

limit Gibbs potential �G(�). If the second derivative �
00

G(�) of this potential is
positive at all points of global minima aj; i = 1; 2; : : : ; l, then the limit share

of product A takes the value ai with probability

1q
�

00

G(ai)
=

lX
j=1

1q
�

00

G(aj)
:

6 Conclusions

We have considered a class of stochastic collective learning models generating
\herd" or \epidemic" dynamics of a �nite pool of agents. Unlike conceptually
similar models exploiting the machinery of urn schemes, these dynamics do
not exhibit path dependence. In fact, they always generate ergodic Markov
chains and, consequently, possess unique stationary distributions.

The most interesting phenomena occur when the population grows with-
out bound. While the stationary distribution converges to a limit, the dy-
namics generate \bubbles": that is, some states that are more likely than
the neighboring ones for a wide range of population sizes vanish in the limit.
This limit exhibits extremely irregular behavior as a function of parameters
determining the learning process.

Unlike in models of stochastic increasing returns based on urn schemes,
a �nite population of agents dominated by imitators may end up with a
monopoly of either product as well as with sharing the market. In one of our
simulations, where the imitation rates are more than 1700 times higher than
the mutation rates, these outcomes coexist and the probability of sharing
the market is 3.6 times higher than the probability of monopoly of either
product. In another simulation the market is shared with probability one.
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If samples are without replacement, then small terms have to be added
in the expresions for p(�) and q(�). The correction comes to exist because
the probability of success changes during sampling. These terms vanish as
const=N for N !1, so they do not a�ect our results. Thus, all conceptual
conclusions remain valid for the case of samples without replacement.

Appendix

Let us prove relation (8). By (7) it would hold if

lim
�!0

[j�(�)j+ j�(1)� �(1� �)j] = 0

and

lim
�!0

lim sup
N!1

[j�N (�)j+ j�N (1)� �N (1� �)j] = 0:

The �rst equality holds by continuity of Riemann integral. Let us prove
the second equality.

Since both terms here are analyzed by the same argument, we shall deal
only with �N(�). One has

j�N (�)j �
1

N + 1

[(N+1)�]X
j=1

[jln pjj�1j+ jln pj�1jj] ;

ln pjj�1 = ln
j

N
+ ln q

�
j � 1

N � 1

�
;

ln pj�1j = ln
�
1�

j � 1

N

�
+ ln p

�
j � 1

N � 1

�
:

Since ln(1+x)
x

! 1 as x ! 0,
���ln(1� j�1

N
)
��� is uniformly bounded for 1 �

j � [(N + 1)�]: Consequently, by (6) there is a constant C (independent of
�) such that

j�N (�)j �
1

N + 1

[(N+1)�]X
j=1

�
C � ln

j

N

�
:

Since lnx is an increasing function, by regarding

1

N

[(N+1)�]X
j=2

ln
j

N

as an integral sum, one gets
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�
1

N

[(N+1)�]X
j=2

ln
j

N
� �

Z [(N+1)�]�1
N

1
N

lnx dx = �x(ln x� 1)
����
[(N+1)��1]

N
1
N

:

Taking into account that lim
x!0

x lnx = 0, one obtains

lim sup
N!1

0
@� 1

N + 1

[(N+1)�]X
j=1

ln
j

N

1
A � �(1� ln �)

and

lim
�!0

lim sup
N!1

j�N (�)j � lim
�!0

�(C + 1� ln �) = 0:

In sum, relation(8) holds true.
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