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Abstract

In this paper we interpreted the decision to vote for a par-
ticular party as a process of delegation to decision makers
having a simplified system of preferences. Each person in a
population votes for the political party that place priority
on one or more issues that they consider important. More-
over, on the basis of a survey on preferences of population,
we have simulated a delegation procedure which chart the
selection process of a particular party. Finally, making use
of noncommutative harmonic analysis, we decomposed the
delegation function, and isolated the effect of a particu-
lar affinity, or a combination of either the pair of items
that characterize a party. We used noncommutative har-
monic analysis as an application of some results obtained
by Michael E. Orrison and Brian L. Lawson in relation to
spectral analysis applied in voting in political committees
(see [9], [10] and [11]). JEL Classification number: D71.
2000 Mathematics Subject Classification: 20C15, 62M15,
65T50.
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1 Introduction

Individuals facing a choice are often not able to make a full comparison be-
tween alternatives. Even if they are able to pin down their preferences for
certain characteristics of an object (for instance, a car), they would proba-
bly be able to compare only a few of them. In the case of a car, one person
would take into account room and safety, while somebody else’s order ranking
would be based on speed and acceleration. We can interpret this evaluation
imagining that our “complete” selves delegate choices to a sort of simplified
self. Competition among products will be, in this way, not directed to the
“real” population, but to the population of delegates that will choose prod-
ucts on the basis of a small subset of parameters. Car makers advertising
speed and acceleration will not be considered by families who prioritize room
and safety.
In public choices, political parties present themselves as decision makers com-
mitted to following a given preference order when faced with future choices.
Parties collect delegations from people having similar preferences: in this
way, instead of comparing all possible alternatives of the whole population,
the number of alternatives is reduced to the number of parties. Traditionally
this was intended in a similar way to the one used in economic location the-
ory (see [5]). Parties have a complete system of preferences and they collect
a delegation from the nearest people, i.e. from people having an order of
preferences “not far” from the one expressed by the party. In this paper,
instead of following this traditional path, we adopt a similar approach to the
one presented in “car choice”. We describe parties as simplified systems of
preferences and the process of delegation as giving the power of choice to
parties that correspond to this simplified preference order.
Given that parties compete to attract electors in a simplified preference space,
the distribution of preferences will depend on the way preferences are sim-
plified. If, for instance, parties simplify things proposing a couple of items
to which they attach more importance, it could be that the items chosen
complement themselves well, being able to attract a large share of voters, or
alternatively the two items could reciprocally depress their power of attrac-
tion. When facing a simplified set of options, the right combination could be
of fundamental importance.

In this paper we have a twofold goal. First, we present a general frame
to formalize delegation over simplified preference orders. Second, we illus-
trate a way to detect the “power of mixing” in a delegation procedure; this
approach is based on the so–called noncommutative harmonic analysis or
generalized spectral analysis (see [2] and [3]). Our work is an application
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of some recent results on spectral analysis of voting in committees due to
Michael E. Orrison and Brian L. Lawson (see [9], [10] and [11]); they used
the machinery of spectral analysis to detect influential coalition in the voting
procedures of the United State Supreme Court.

2 Individual preferences, parties and public

choice

We begin by introducing some notations and terminology: a party will be
defined as a simplified system of preferences, while the process of delegation
to a party will be the power of choice corresponding to a simplified preference
order.

Let X be a set of n objects. Let Λ be a set of m individuals. Λ will be
called a society and the members of Λ voters. Suppose that each indivi-
dual of Λ is asked to rank objects of X putting them in a strict order,
providing a total order on X.
Let Z be the set of all possible rankings over the elements of X; each z ∈ Z
may be viewed as a permutation of the n elements of X and each individual
of Λ is asked to choose an element of Z.

We may define a total order on Z according to the choices of individuals
of Λ, by counting the number of individuals that prefer each ranking. Let
z ∈ Z, define βz as the number of individuals of Λ choosing z. If z1, z2 ∈ Z,
we define “z1 ≤Z z2” if βz1 ≤ βz2 (where this last order “≤” is the usual
order on the natural numbers).
We call (Z,≤Z) a set of population preferences over alternative rankings,
according to the choices of individuals of Λ.

The set (Z,≤Z) encapsulates the individual preferences arising from the
society Λ; the theory of public choice allows us to define public choice func-
tions which lead to a collective choice by starting from a collection of indi-
vidual preferences. Let ZΛ = {f : Λ −→ Z} be the set of functions from Λ
to Z. Then a public choice function is a function G : ZΛ −→ X. In other
words, a public choice function associates a single ranking to each n-tuple
of rankings which defines the consent of the population, according to some
specified criterion.
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In many cases it is difficult to obtain a public choice directly from the set of
individual preferences, due to the large variety of possible preference orders.
It is worthwhile then to look at “simplified” preference sets. In some sense,
people delegate (see Vickers [20]) choices to delegates who have “similar”
preferences. In political choices this is done by voting for a party.

Let X = {A1, . . . , An} be a set of n objects. Suppose that a total order
≤X is defined on X. We do not require that elements of X are strictly or-
dered through ≤X , so obviously “=” may hold between some elements (this
is different from the initial requests, according to which individuals of Λ are
asked to order strictly the elements of X). Trivially (X,≤X) is a lattice and
may have a representation through lattice diagrams.

A party P may be defined by the preference order ≤X , so P may be iden-
tified with lattice (X,≤X).

We define P a complete party if P is associated to a lattice (X,≤X) where
≤X provides a strict order on the elements of X. An example of a complete
party is

i

i

i

i

An

A3

A2

A1

We define P an incomplete party if P is associated to a lattice (X,≤X)
where ≤X provides a not strict order on the elements of X. An example of
an incomplete party is
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i

i

Ak+1 = · · · = An

A1 = · · · = Ak

with k < n.

For example, some preference orders over five objects A,B, C, D, E are

i

i

i

i

i

E

D

C

B

A

(a)

i

i

B = C = D = E

A

(b)

i

i

C = D = E

A = B

(c)

Parties like (a) are complete and parties like (b) or (c) are incomplete.

Let P be the set of all parties over X. We define a party delegating
as a map

ξ : Z −→ P (1)

from the set of population preferences Z to the set of parties P .

We are going to investigate a party delegating map ξ empirically, in or-
der to detect particular properties. We will decompose data related to ξ into
many components, each of which will have specific meanings, according to
the mathematical framework illustrated in section (4.1).
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We observe that ξ in general does not satisfy order preservation; we recall
that ξ preserves order if

for each z1, z2 ∈ Z with z1 ≤Z z2, then ξ(z1) ≤P ξ(z2) (2)

where the order on P is defined as on Z. In general it is not meaningless
to have no order preservation: an individual may delegate a party even if it
does not preserve his order of preferences; a distance may be defined between
individual rankings arising from the choices of Λ and parties. ξ is then mea-
ningful if it minimizes this distance, even if it does not preserve order.
As mentioned in the introduction, our approach is far from the traditional
one used in economic location theory, where parties collect delegations from
individuals having similar preferences. We describe parties as “simplified”
systems of preferences and in the process of delegation an order preservation
may be required. For this reason, we assume that ξ satisfies condition (2).

3 Voting for incomplete parties and the power

of combination

Let P be a complete party. An individual of society Λ votes for party P by
the selection in Z of a complete ranking of the n objects of X.

Let X = {A1, . . . , An} be a set of objects. Consider an incomplete party
Pk of the form

i

i

Ak+1 = · · · = An

A1 = · · · = Ak

(3)

By selecting the incomplete party Pk the attention is focused on the first
k alternatives chosen by an individual of Λ. A voter of Λ does not directly
select an incomplete party, but proposes a complete ranking of preferences as
described in section (2). If, for example, a person chooses the order BACD
over four objects, then this order corresponds directly to the complete party
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i

i

i

i

D

C

A

B

But we may relate it also to the incomplete parties

i

i

A = C = D

B

or

i

i

C = D

B = A

and so on, according to which simplification we are dealing with; in this
sense we talk about “simplification”.

The approach through incomplete parties can be very useful if we suppose
it is more straightforward and meaningful for a voter to concentrate on k
alternatives, instead of n alternatives, with k < n.
In other words, by the delegation to an incomplete party as (3) the first k
alternatives of a ranking are mixed together and act as a global single first
choice, while the last (n − k) items of the same ranking are also mixed and
act as a global last choice. Obviously this interpretation of delegation to
incomplete parties can be adapted to each type of incomplete party, not only
to the example considered in (3).

4 Detecting the power of combination

In section (3) we focused our attention on simplified preference systems and
their related incomplete parties. In this way a party earns consent in a
reduced preference space and the distribution of preferences will depend on
the way they are simplified. For example, suppose that an incomplete party is
structured in such a manner that it proposes a pair of items as predominant:
it could happen that these alternatives complement themselves strongly or
alternatively they could weaken themselves reciprocally.
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In the last years, Michael E. Orrison and Brian L. Lawson (see [9], [10]
and [11]) made use of the mathematical framework of the so-called spectral
analysis to locate influential coalitions in political voting procedures.
We will use a similar machinery for detecting the “power of mixing” in dele-
gation procedures.

4.1 Noncommutative harmonic analysis

Noncommutative harmonic analysis is a generalization of classical spectral
analysis. Spectral analysis is also called discrete Fourier analysis and it is
basic for time–series analysis (see [1]) and other types of analysis in the com-
putational science, engineering and natural sciences. It is a non–model based
approach to data analysis and was formulated in a general group theoretic
setting by Diaconis (see [2] and [3]), who extended the classical spectral anal-
ysis of time series to a non–time series subject, for the analysis of discrete
data which has a noncommutative structure.
The main idea of spectral analysis is that often data has natural symmetries,
which are hidden in the existence of a symmetric group (which is obviously
non commutative and so the name of noncommutative harmonic analysis)
for the domain of the data. The leading principle of spectral analysis is the
interpretation of data through its decomposition according to these symme-
tries.

New efforts have been made in order to apply spectral analysis to a non–time
series subject in the political sciences, above all in the analysis of voting.
Recently, Michael E. Orrison and Brian L. Lawson (see [9] and also [10], [11]
with David T. Uminsky) introduced a generalization of spectral analysis as
a new instrument for political scientist; they used the powerful machinery
of spectral analysis to analyze political voting data. In particular, they ana-
lyzed votes of the nine judges of the United States Supreme Court (Warren
Court 1958– 1962, Burger Court 1967–1981, Renquist Court 1994–1998) and
detected influential coalitions.
The idea followed by Orrison and Lawson is to consider political voting data
as elements of a mathematical framework; then the features of that frame-
work can be used to work out natural interpretations of the data. The mathe-
matical framework corresponding to voting data has many components, each
of which encapsulates information on particular “coalition effects”; the de-
composition of data with respect to these components provides the identifi-
cation of influential coalitions.
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In paragraphs (4.1.1) (and related Appendix A) we will follow Orrison and
Lawson (see [9]) to explain how their setting works in relation to spectral
analysis of political voting data. In section (4.2) and (5) we will apply simi-
lar machineries to the analysis of data related to preferences expression and
delegation procedures.

4.1.1 Mathematical background

Let X = {x1, . . . , xn} be a finite set and f : X −→ C a complex–valued
function on X. Let M be the vector space of all complex–valued functions
on X.
Let Sn be the symmetric group of order n, that is the group of permutations
of n elements. Any π ∈ Sn acts on the elements of X, but also on the elements
of M . Indeed, for any π ∈ Sn and f ∈ M , we define π(f(x)) := f(π−1(x)),
for each x ∈ X.
Let N ⊆ M be a subspace of M ; N is called invariant with respect to Sn if
π(f) ∈ N , for any f ∈ N and π ∈ Sn.
According to the terminology of group representation theory (refer to Serre
[19]), M is in particular a representation of Sn or a representation space
of Sn. A well–known result of group representation theory (see again Serre
[19]) claims that any representation space of a finite group admits a decom-
position into a direct sum of invariant subspace of the representation space.
Precisely, M may always be decomposed into a direct sum

M = M0 ⊕ · · · ⊕Mh (4)

for some positive integer h, where each Mi is an invariant subspace of M . In
particular, each function f ∈ M may be written uniquely as a sum

f = f0 + · · ·+ fh (5)

with fi ∈ Mi and π(fi) ∈ Mi, for all π ∈ S. There are many ways to decom-
pose M as the direct sum of invariant subspaces; the idea behind spectral
analysis is to choose the decomposition of M that provides invariant sub-
spaces that encapsulate important properties of the data.

Orrison and Lawson set the analysis of political voting data in the previous
framework. Suppose that X = {X1, . . . , Xn} is a set of n voters. Assume
we have the results of N non–unanimous votes and that each person casts a
ballot on each vote. They define

X(n−k,k) = the set of k-elements subsets of the voters of X (6)
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with 1 ≤ k ≤ n
2

and denote with f (n−k,k) a function on X(n−k,k) defined as

f (n−k,k)(ω) = the number of times that ω is in the minority (7)

for each ω ∈ X(n−k,k). Define also M (n−k,k) as the vector space of all complex–
valued functions on X(n−k,k).
We observed that the permutations of Sn act on X, but also on the subsets
in X(n−k,k), for each k. Then, as outlined in equation (4), M (n−k,k) may be
decomposed as a direct sum

M (n−k,k) = M0 ⊕M1 ⊕ · · · ⊕Mk (8)

where each Mi is a subspace of M (n−k,k) invariant with respect to the action
of Sn. The space M0 is said to be corresponding to the mean response,
that is the average number of times an element of M (n−k,k) is in the minority.
M1 corresponds to the so–called first order effects, whereas Mi is related
to higher order effects, called coalition effects.
Spectral analysis focuses on the computation of the decomposition of each
function f ∈ M (n−k,k) onto the components of (8), that is

f = f0 + · · ·+ fk. (9)

In Appendix A we illustrate how this setting works on an example similar to
the one suggested by Orrison and Lawson in [9].

4.2 Application to preferences combination

As explained in section (4.1.1) and Appendix A, harmonic analysis applied to
an analysis of voting allows us to detect influential coalitions between voters
of a committee. The context we are dealing with proposes a set of voters
Λ and a finite set X = {A1, . . . , An} of alternatives to rank. In this setting
it seems quite meaningless to look for influential coalitions between voters,
because the society Λ can be composed by a huge number of members or by
a sample of a population. We are interested in seeking a sort of “influential
coalition” between preferences, even if this “dual” approach seems meaning-
less at this point.

Let X = {A1, . . . , An} be a set of n alternatives and suppose people of a
society Λ is asked to rank A1, . . . An, as prescribed in section (2). We refer
to a notation of paragraph (4.1.1). Define

X(n−k,k) = the set of k-elements subsets of the alternatives of X
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with 1 ≤ k ≤ n
2
.

Let ω ∈ X(n−k,k), that is a set of k elements of X. Let P(k,ω) be the in-
complete party corresponding to the lattice

i

i “equality” on the elements of ω

“equality” on the elements of X \ ω

For example, if ω = {A1, . . . , Ak} is the set of the first k elements of X, then
P(k,ω) has the form

i

i

Ak+1 = · · · = An

A1 = · · · = Ak

Define

γP(k,ω)
:=

the number of individuals of Λ who choose A1, . . . , Ak

as their first k alternatives in their rankings (indepen-
dently of the order) and Ak+1, . . . , An as their last
n− k alternatives (independently of the order).

In other words, integer γP(k,ω)
represents the number of individuals of Λ

voting the party P(k,ω). Define a function f (n−k,k) on X(n−k,k) as

f (n−k,k) := γP(k,ω)
(10)

for each ω ∈ X(n−k,k). We are interested in the spectral expansion of f (n−k,k),
for each 1 ≤ k ≤ n

2
.

5 An application to a survey

We used the approach explained in section (4) to analyze some results of a
survey on the preferences of the Trentino population. On the basis of the
survey results, we simulated a delegation to hypothetical incomplete par-
ties as defined in section (2). Moreover, making use of noncommutative
harmonic analysis, we decomposed the resulting delegation function. In this
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way, the meaning of spectral expansion of the function defined in (10) will be-
came clearer.

The Indagine sulle preferenze della popolazione trentina (see [16]) is a sur-
vey carried out on a sample of about 2000 adults resident in the province of
Trento. One of the research’s aims was find out about the population prefe-
rences relative to some general themes of collective well–being; the knowledge
of these preferences can be advantageously used to estimate potential impacts
on the population of different types of public policies. One question in par-
ticular was useful for finding out about preferences:

Question n. 5 - collective well–being

In your opinion, what is more important between:

1. [A] full employment and [B] environment preservation?

2. [A] full employment and [C] health?

3. [A] full employment and [D] local income increase?

4. [A] full employment and [E] preservation of water and air quality?

5. [B] environment preservation and [C] health?

6. [B] environment preservation and [D] local income increase?

7. [B] environment preservation and [E] preservation of water and air quality?

8. [C] health and [D] local income increase?

9. [C] health and [E] preservation of water and air quality?

10. [D] local income increase and [E] preservation of water and air quality?

Denote with

A full employment
B environment preservation
C health
D local income increase
E preservation of water and air quality

Questions on collective well-being are structured as pairs comparisons bet-
ween alternatives; such an approach may lead to preference systems that do
not satisfy transitivity: for example, an interviewee may prefer A to B, B to
C, but C to A. For our purpose it is meaningful to concentrate our investi-
gation only on preference systems which satisfy transitivity. For this reason
we established a simple way to detect if a preference system does satisfy
transitivity or not. This method is illustrated in Appendix B and it is based
on simple considerations about matrices associated to preference systems.
We refer to preference systems satisfying transitivity as consistent prefer-
ence systems.
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We examined all the preference systems arising from question n. 5 of “Indagine”
and established that they was inconsistent for a percentage of 34,2 %. For
our analysis we used only data arising from consistent preference systems.

5.1 Spectral analysis

Let X = {A,B, C, D, E}. According to notation of paragraph (4.1.1) we
have

X(4,1) = {A,B, C, D,E}
X(3,2) = {AB, AC, AD, AE, BC, BD, BE, CD,CE, DE}

where notation AB stands for the subset {A,B}. Let f (n−k,k) be the function
defined in (10). In our context

f (4,1)(A) = γP(1,A)

that is

f (4,1)(A) = the number of people choosing the incomplete party

i

i A

B = C = D = E

We need to count the incomplete parties with 1 alternative in the first posi-
tion, arising from the data of “Indagine”. In table (7) of Appendix B we show
how the consistent preference systems from “Indagine” have been chosen by
the interviewed people. We rewrite table (7) as

A 33
B 17
C 987
D 6
E 170

Table 1: Parties with 1 predominant preference
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where the number of people choosing an order with A at the first place or B
or C and so on is pointed out . So we have

f (4,1) =




33
17
987
6

170




A
B
C
D
E

In the same way
f (3,2)(AB) = γP(2,AB)

that is

f (3,2)(AB) = the number of individuals choosing the incomplete party

i

i A = B

C = D = E

For this data, table (7) becomes

AB 1 BD 0
AC 276 BE 28
AD 3 CD 45
AE 6 CE 728
BC 117 DE 9

Table 2: Parties with 2 predominant preferences

where the number of people choosing an order with A and B at the first two
positions independently of the order, or choosing A and C and so on, is
pointed out. We have
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f (3,2) =




1
276
3
6

117
0
28
45
728
9




AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

5.1.1 First order effects

As outlined in the example of Appendix A, we may project the function f (4,1)

onto the invariant subspaces of the decomposition M (4,1) = M
(4,1)
0 ⊕M

(4,1)
1

and get the Fourier expansion of f (4,1):

f (4,1) =




33
17
987
6

170




=




121.30
121.30
121.30
121.30
121.30




+




−88.30
−104.30
865.70
−115.30
48.70




A
B
C
D
E

f
(4,1)
0 f

(4,1)
1

The function f
(4,1)
1 shows the first order effect, that is the amount which

each party of the form P(1,A) differs from the mean. In this case the inter-
pretation of the first order effects does not yield new information in relation
to the initial data f (4,1).

Parties proposing 1 alternatives first order effects
C = party: health 865.70
E = party: preservation of water and air quality 48.70
A = party: full employment -88.30
B = party: environment preservation -104.30
D = party: local income increase -115.30

Table 3: First order effects of parties with 1 alternatives
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5.1.2 Second order effects

We may project the function f (3,2) onto the invariant subspaces of the de-
composition M (3,2) = M

(3,2)
0 ⊕M

(3,2)
1 ⊕M

(3,2)
2 and get

f (3,2) =




1
276
3
6

117
0
28
45
728
9




=




121.30
121.30
121.30
121.30
121.30
121.30
121.30
121.30
121.30
121.30




+




−179.47
160.53
−209.13
28.87
113.87
−255.80
−17.80
84.20
322.20
−47.47




+




59.17
−5.83
90.83
−144.17
−118.17
134.50
−75.50
−160.50
284.50
−64.83




AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

f
(3,2)
0 f

(3,2)
1 f

(3,2)
2

The function f
(3,2)
2 represents the second order effects, that is the weight

of a party which proposes two alternatives, after removing the mean effects
and the first order effects.

Parties proposing 2 alternatives second order effects
CE = party: health + water-air 284.50
BD = party: environment + income 134.50
AD = party: employment + income 90.83
AB = party: employment + environment 59.17
AC = party: employment + health -5.83
DE = party: income + water-air -64.83
BE = party: environment + water-air -75.50
BC = party: environment + health -118.17
AE = party: employment + water-air -114.17
CD = party: health + income -160.50

Table 4: Second order effects of parties with 2 alternatives
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5.2 Interpretation

5.2.1 Mallow’s method

We use Mallow’s method (see Appendix A) to interpret the first and second

order effects f
(3,2)
1 and f

(3,2)
2 .

To interpret the first order effects we compute the inner product between
f

(3,2)
1 and the “naturally interpretable” functions defined in section Appendix

A. We get

fA fB fC fD fE

f
(3,2)
1 -199.20 -399.20 680.80 -428.20 285.80

Table 5: First order effects

Table (5) shows that the first order effect lies mostly in the direction of C and
least in the direction of D, which confirms the results for parties proposing
one alternatives of table (3).

To interpret the second order effects we compute the inner product between
f

(3,2)
2 and the related “naturally interpretable” functions and get

fAB fAC fAD fAE fBC

f
(3,2)
2 59.17 -5.83 90.83 -144.17 -118.17

fBD fBE fCD fCE fDE

134.50 -75.50 -160.50 284.50 -64.83

Table 6: Second order effects

which is exactly the vector f
(3,2)
2 . We observe that the second order effect

lies in the direction of pairs

CE = party: health + water/air preservation
BD = party: environment + income
AD = party: employment + income

This means that there is an intrinsic affinity between pairs for which the
second order effect is high. We try to explain this concept. According to the
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first order effects of f (4,1) of table (3), two items have a particular value, C
and E respectively, which correspond to the incomplete parties

i

i

A = B = D = E

C

(a1)

and i

i

A = B = C = D

E

(a2)

According to the second order effects of f (3,2) of table (6), the powerful pairs
are CE, BD and AD respectively, that is the incomplete parties

i

i

A = B = D

C = E

(a3)

, i

i

A = C = E

B = D

(a4)

and i

i

B = C = E

A = D

(a5)

are winning. This means that C and E are powerful items either alone (that
is when a party proposes one predominant alternative) or together (that is
when a party proposes two predominant alternatives). This is not the case
of parties (a4) and (a5); for example, B and D are weak alone, but they get
stronger in a pair. The same for A and D.
The analysis of second order effects allows to understand if there are “intrin-
sic affinities” between items and if coupling items contributes to weaken or
strengthen them.

Orrison and Lawson, in their spectral analysis of voting data of the United
State Supreme Court (see [10]), suggest to display the results of the second
order effects analysis in a graphical way which helps to single out particular
“coalition effects”.
This approach can be applied in our context. Figure (1) displays informa-
tion of table (6) in a way that makes it easy to identify the “coalition effects”
arising from the second order effects analysis.
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Figure 1: Second order effects

Two items are joined by a line when a positive second order effect exists
between them; the absence of a line means that the second order effect of
the pairs is negative.

5.2.2 Significance

One of the main idea of harmonic analysis (both commutative, that is the
classical spectral analysis, or noncommutative) is to find subspaces into which
data can be decomposed, while preserving the most important structure of
the data, as explained in section (4.1.1), but also to see which subspaces
contain the largest amount of the data. This is done by considering the
“length” of the vectors arising from the decomposition, in order to determine
which vector is significant.
The traditional method for determining significance is to compare the norm
squared of the fi vectors divided by the dimension of the subspaces Mi. As
suggested by Diaconis (see Diaconis [3] pag. 954 and also Orrison and Lawson
[9]), for the type of data we are examining this may be misleading; it is better
to consider the norm squared of the vectors. In our situation we have

||f (3,2)
1 ||2 = 294420.94

||f (3,2)
2 ||2 = 173074.77

Comparing these two values suggests that the first order effects are more
significant than the second order effects.
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6 Conclusions

In this paper we have interpreted the way people vote for parties as a process
of delegation to decision makers using a simplified system of preferences.
Moreover, on the basis of a survey on preferences of the population, we
have simulated a delegation procedure to parties. Finally, making use of
noncommutative harmonic analysis, we decomposed the delegation function,
and isolated the effect of affinity, or mixing, between the pair of items that
characterize a party.

This approach appears to be promising both to understand how people,
with limited rationality, act given a simplified set of options, and to em-
pirically study the best way to simplify a preference set, in order to gain
from complementarity among objects over which people express an order of
preference.

Further studies should be devoted to enlarge the model. A first approach
could be an extension of the voting model to a general choice among ob-
jects, in the line of the introductory example. As it was stated by [18], “if
one replace the term ‘individual i ’ with ‘property i ’, social choice theory is
transformed from a theory of social decision into a theory of formation of in-
dividualistic preferences” (p. 58). In this direction, we argue that our frame
could be used to model a process of choice under limited rationality assump-
tions, where agents are unable to evaluate all the characteristics of goods,
defined as in [8], and to compare them with their complete preferences.

A second approach could be directed to refine the supply side of the
model. In our model we assumed parties as given; but in fact there could
be a competitive formation of parties. They could in fact choose to be more
or less specialized, proposing a shorter or longer list of characterizing items.
An empirical analysis of the kind we described in this paper could help to ex
ante define the best positioning of parties.

Appendix A - Example of spectral analysis of

voting data

In [9] Orrison and Lawson suggest an example to show how generalized spec-
tral analysis can be applied to analysis of voting data. The following is
similar. Let X = {A,B, C, D, E} be a committee of five people and suppose
we have the results of 128 non–unanimous votes. Data is viewed as a function
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f defined on the subsets of X; in particular we have

f (4,1) = the number of times one person of X is in the minority.

f (3,2) = the number of times two people of X are in the minority.

Suppose

f (4,1) =




10
9
3
2
1




A
B
C
D
E

and f (3,2) =




22
21
24
11
5
2
10
2
1
5




AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

This means that, in this example, A is in the minority against the other four
people for 10 times, whereas AB are in the minority against the other three
for 22 times, and so on.

Let M be the vector space of the complex–valued functions on X(4,1) and
X(3,2); M may be naturally decomposed as M = M (4,1) ⊕ M (3,2), where
M (4,1) is the subspace of the functions on X(4,1) and M (3,2) on X(3,2). These
two subspaces may be again decomposed into invariant subspaces

M (4,1) = M
(4,1)
0 ⊕M

(4,1)
1 (11)

M (3,2) = M
(3,2)
0 ⊕M

(3,2)
1 ⊕M

(3,2)
2 . (12)

We may project the functions f (4,1) and f (3,2) onto these invariant subspaces
and obtain

f (4,1) = f
(4,1)
0 + f

(4,1)
1 (13)

f (3,2) = f
(3,2)
0 + f

(3,2)
1 + f

(3,2)
2 . (14)
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One person in the minority.

Going back to the example, according to decomposition (13), we get

f (4,1) =




10
9
3
2
1




=




5
5
5
5
5




+




5
4
−2
−3
−4




A
B
C
D
E

f
(4,1)
0 f

(4,1)
1

The number of votes in which one person is in the minority is 25, so the av-
erage of the individual minority is 5 = 25/5; then f

(4,1)
0 is the mean response

function. The function f
(4,1)
1 shows the first order effect, which counts the

number of votes in which each person differs from the mean. In this case
the interpretation of the first order effects doesn’t yield new information in
relation to the initial data; the largest value is for A, that is most often in the
minority, and the smallest value is for E, that is less often in the minority.

Two people in the minority.

We can appreciate the power of spectral analysis in the analysis of higher
order effects. According to decomposition (14), we obtain

f (3,2) =




22
21
24
11
5
2
10
2
1
5




=




10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3




+




11.53
8.20
9.53
7.53
−4.80
−3.47
−5.47
−6.80
−8.80
−7.47




+




0.17
2.50
4.17
−6.83
−0.50
−4.83
5.17
−1.50
−0.50
2.17




AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

f
(3,2)
0 f

(3,2)
1 f

(3,2)
2

The function f
(3,2)
0 is the mean response function; the number of votes in

which two people are in the minority is 103, then the average of the minority
of pairs is 10.3 = 103/10. The functions f

(3,2)
1 and f

(3,2)
2 capture the first

order and second order effects. In order to interpret these effects, Orri-
son and Lawson [9] suggest to use Mallow’s method (see [12]).
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To interpret the first order effects, for each subset of voters H, define a
function fH ∈ M (3,2) which identifies the elements of f (3,2) “containing” H
with 1 and those “not containing” H with 0. In particular,

fA = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

fB = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0)

fC = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0)

fD = (0, 0, 1, 0, 1, 0, 0, 1, 0, 1)

fE = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1)

The inner product between f
(3,2)
1 and fH describes how much f

(3,2)
1 lies in

the direction of H. Computing the inner products we get

fA fB fC fD fE

f
(3,2)
1 36.79 -2.21 -12.20 -8.21 -14.21

We observe that the first order effect lies most in the direction of A, being
often in the minority with other voters, but lies least in the direction of E,
being only occasionally in the minority of the pairs.

To interpret the second order effects, for each pair HK of X, define functions
according to the criterion already explained, that is fHK ∈ M (3,2) identifies
the elements of f (3,2) which “contain” HK with 1 and the others with 0. So

fAB = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

fAC = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

fAD = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0) etc.

fAE = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

fBC = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

Computing the inner products between f
(3,2)
2 and fHK we get the exact data

vector f
(3,2)
2

fAB fAC fAD fAE fBC fBD fBE fCD fCE fDE

f
(3,2)
2 0.17 2.50 4.17 -6.83 -0.50 -4.83 5.17 -1.50 -0.50 2.17

These results represents the pure second order effects, namely the pair’s
weight in the minority, after removing the mean effects and the effects of the
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individual. The values of

f
(3,2)
2 =




0.17
2.50
4.17
−6.83
−0.50
−4.83
5.17
−1.50
−0.50
2.17




AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

represent the pair’s weight in the voting process. We observe that the second
order effect lies most in the direction of BE and least in the direction of AE.
Through this analysis we may point out particular coalition effects that do
not arise from a direct analysis of data; for example, the pair DE has a quite
high second order effect, whereas D and E have low values in the first order
effects of the minority related to the individual (f

(4,1)
1 ). This means that

D and E are seldom in the minority alone, while they are often in
the minority of the pairs.

Appendix B - Transitivity of preferences

Let X = {A,B, C, D,E} be the set of five alternatives investigated in que-
stion n. 5 of “Indagine”. Each interviewee’s answer can be realized as a table
of the following type

Questions 1 2 3 4 5 6 7 8 9 10
Answers B C A A C D B C C D

where answer n. 1 stands for the choice between A and B, answer n. 2 for
the choice between A and C and so on.

In general, the pairwise comparison adopted by the investigation of question
n. 5 does not lead to a consistent ordering of all feasible alternatives. To
make choices one needs only a choice function that allows one to select a best
alternative from a set of possible alternatives. For example, an answer of type
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Questions 1 2 3 4 5 6 7 8 9 10
Answers B C A A C D B C C D

does not lead to a total order of preferences, because a cycle between A,B
and D exists, indeed B is preferred to A, A is preferred to D, but D is pre-
ferred to B. Conversely, an answer of type

Questions 1 2 3 4 5 6 7 8 9 10
Answers A A A A C D E C D D

satisfies transitivity and leads to the total preference order CDEAB.

6.1 Total orders

Let us recall some notations and terminology. Let X = {A1, . . . , An} be a set
of n elements. Define on X a relation “≤X” (if there is no misunderstanding,
we will use notation ≤) satisfying:

(A) reflexivity: Ai ≤ Ai, ∀i = 1, . . . , n

(B) antisymmetry: if Ai ≤ Aj and Aj ≤ Ai, then Ai = Aj, ∀i, j = 1, . . . , n

(C) comparability: for any Ai, Aj ∈ Ω, either Ai ≤ Aj or Aj ≤ Ai.

If “≤” satisfies also

(D) transitivity: if Ai ≤ Aj and Aj ≤ Ak, then Ai ≤ Ak ∀i, j, k = 1, . . . , n

“≤” is called a total order on X.

We associate to (X,≤) a matrix which encapsulates the relation on X. Define
M(X,≤) := (mij) where

mij =

{
1 if Ai ≤ Aj

0 otherwise
i, j = 1, . . . , n (15)

We observe that M(X,≤) satisfies the properties

i)
n∑

i,j=1

mij =
n(n + 1)

2

ii) mij =

{
1 if mji = 0
0 if mji = 1

∀i 6= j, i, j = 1, . . . , n
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Property ii) is an obvious consequence of the definition of M(X,≤). Property
i) is a consequence of counting the number of 1 in the diagonal of M(X,≤) plus
the number of 1 appearing in the rest of the matrix, which is the number of
possible unordered pairs of n elements.

PROPOSITION 6.1 Let X = {A1, . . . , An} be a set of n elements with a
relation “≤” satisfiyng (A), (B) and (C). Let M(X,≤) be the matrix defined
in (15). Then “≤” satisfies transitivity (and in particular is a total order) if
and only if, up to re-ordering the indexes of the elements of X, the matrix
M(X,≤) satisfies

mij =

{
1 if i ≤ j
0 otherwise

(16)

for all i, j = 1, . . . , n, that is M(X,≤) is strictly lower triangular of the form




1 0 · · · 0

1
. . .

...
...

. . . . . . 0
1 · · · 1 1


 .

Proof. Suppose that “≤” satisfies transitivity; in particular, it is a total
order on X, so we may re-order the indexes of the elements of X so that
An ≤ · · · ≤ A2 ≤ A1. Consequently:

1 = m11 = m21 = m31 = · · · · · · = mn1

1 = m22 = m32 = m42 = · · · = mn2

1 = mnn

and so M(X,≤) has the desired form.
Conversely, suppose that M(X,≤) satisfies (16). We want to prove that An ≤
· · · ≤ A1, so “≤” is a total order on X and in particular satisfies transitivity.
We proceed by induction on n. For n = 1 there is nothing to prove. Suppose
that Aj−1 ≤ · · · ≤ A1. By hypothesis mij = 0 for each i < j. Then Aj ≤ A1,
Aj ≤ A2, . . . , Aj ≤ Aj−1, for each j = 1, . . . , n; by inductive hypothesis
Aj−1 ≤ · · · ≤ A1, then also Aj ≤ Aj−1 ≤ · · · ≤ A1. By induction we get
An ≤ · · · ≤ A1. ¤

Proposition (6.1) does not provide a direct method to check if M(X,≤) corre-
sponds to a transitive relation. Nevertheless, an operative procedure can be
easily found. Let M(X,≤) = (mij) be the matrix associated to (X,≤). Let
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M1, . . . , ,Mn be the column–vectors of M(X,≤); obviously M i ∈M(n×1,R).
Define

αj :=
n∑

i=1

mij ∀j = 1, . . . , n, (17)

in other words αj is the sum of the elements of column M j in M(X,≤). Ob-
serve that αj ∈ N and 0 < αj ≤ n, for each j = 1, . . . , n. The following
corollary is a different interpretation of proposition (6.1).

COROLLARY 6.1 Let X = {A1, . . . , An} be a set of n elements with a
relation “≤” satisfiyng (A), (B) and (C). Let M(X,≤) be the matrix associated
to (X,≤). Then “≤” satisfies transitivity if and only if α1, . . . , αn can be
“strictly” ordered.

Proof. Suppose that “≤” satisfies transitivity. Then according to proposi-
tion (6.1)

M(X,≤) =




1 0 · · · 0

1
. . .

...
...

. . . . . . 0
1 · · · 1 1


 ,

so α1 = n, α2 = n− 1, . . . , αn = 1 and α1 > · · · > αn.
Conversely, suppose that α1, . . . , αn can be strictly ordered. Suppose that, af-
ter re-ordering the indexes, α1 > α2 > · · · > αn. Necessarily αn = 1, αn−1 =
2, . . . , α2 = n− 1, α1 = n, so

M(X,≤) =




1 0 · · · 0

1
. . .

...
...

. . . . . . 0
1 · · · 1 1




and by proposition (6.1) “≤” is transitive. ¤

EXAMPLE 6.1 Let X = {A1, A2, A3, A4} and

M(X,≤) =




1 0 0 1
1 1 1 1
1 0 1 1
0 0 0 1


 .
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We can see that α1 = 3, α2 = 1, α3 = 2, α4 = 4. We may associate to the αjs
a vector α(X,≤) := (α1, α2, α3, α4) = (3, 1, 2, 4) whose entries can be strictly
ordered, so ≤ is a total order on Ω. In this case vector α(X,≤) provides also
the order which is A2 ≤ A3 ≤ A1 ≤ A4.

EXAMPLE 6.2 Let X = {A1, A2, A3, A4} and

M(X,≤) =




1 1 0 0
0 1 1 1
1 0 1 0
1 0 1 1


 .

We see that α1 = 3, α2 = 2, α3 = 3, α4 = 2. The entries of α(X,≤) = (3, 2, 3, 2)
cannot be strictly ordered, because some values are equal. According to
corollary (6.1), ≤ does not satisfy transitivity. Actually, there is at least the
cycle A1 ≤ A2, A2 ≤ A4, A4 ≤ A1.

6.1.1 Consistent preference systems

The preferences expressed by the answers to question n. 5 define relations
“≤” on X = {A,B,C,D,E} which satisfies reflexivity, antisymmetry, com-
parability, but not necessarily transitivity. Let M(X,≤i) be the 5 × 5 ma-
trix associated to X and relation ≤i arising from the i-interviewee’s answer.
M(X,≤i) corresponds to a total order of preferences if and only if it satisfies
the conditions of proposition (6.1) or equivalently of corollary (6.1).

Regarding question no. 5, the “Indagine” provided answers from the 1.898
people interviewed, but 54 of them gave incomplete answers; we are omit-
ting such set of answers considering only 1.844 interviews. We associated
a matrix M(X,≤i) to each i-interviewee’s answer and analyzed the results of
“Indagine” using techniques of corollary (6.1), seeking consistent prefer-
ence systems, that is, preference systems which satisfy transitivity. We
found out that 1.213 preference systems are consistent, against 631 which
are not, for a percentage of 34,2 % of inconsistent systems. Among the
consistent systems, we found the distribution of orders illustrated in table
(7), in which the number of people who choose some order is associated to
each chosen order.
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ABEDC 1 CADBE 18 CEABD 189 EADCB 1
ACBDE 1 CADEB 35 CEADB 90 EBACD 1
ACBED 5 CAEBD 97 CEBAD 210 EBCAD 14
ACDBE 1 CAEDB 48 CEBDA 49 EBCDA 4
ACDEB 9 CBADE 4 CEDAB 28 ECABD 43
ACEBD 7 CBAED 20 CEDBA 24 ECADB 19
ACEDB 7 CBDEA 4 DABEC 1 ECBAD 49
ADCBE 1 CBEAD 64 DCABE 1 ECBDA 15
ADCEB 1 CBEDA 17 DCAEB 1 ECDAB 6
BCAED 1 CDABE 8 DCEAB 1 ECDBA 6
BCDAE 1 CDAEB 17 DEACB 1 EDABC 1
BCEAD 6 CDBAE 2 DECBA 1 EDBAC 1
BECAD 7 CDBEA 2 EABCD 2 EDBCA 1
BECDA 2 CDEAB 7 EACBD 2 EDCAB 1
CABDE 18 CDEBA 6 EACDB 1 EDCBA 3
CABED 30

Table 7: Consistent preferences systems

We observe that not all the possible orders on the five elements A, B, C,
D, E have been chosen; the possible consistent preferences systems on 5
alternatives are 120 = 5! whereas only 61 have been selected.

30



References

[1] C. Chatfield, The analysis of time series. An introduction, Chapman
and Hall, London, 1975.

[2] P. Diaconis, Group representations in probability and statistics, IMS,
Hayward, CA, 1988.

[3] P. Diaconis, A generalization of spectral analysis with application to
ranked data, The 1987 Wald Memorial Lectures, The Annals of Statis-
tics, 17 no. 3, (1989), 949–979.

[4] P. Diaconis and D. N. Rockmore, Efficient computation of the
Fourier Transform on finite groups, J. Amer. Math. Soc., 3 no. 2, (1990),
297–332.

[5] J. J. Gabszewicz, J. F. Thisse, M. Fujita and U. Schweizer,
Location theory, Harwood Academic Publishers, Chur, 1986.

[6] G. D. James, The representation theory of the symmetric groups,
Springer–Verlag, Berlin, 1978.

[7] G. D. James and A. Kerber, The representation theory of the sym-
metric group, Addison–Wesley, Reading, Massachusetts, 1981.

[8] K. J. Lancaster, A New Approach to Consumer Theory, Journal of
Political Economy, 74 no. 2, (1966), 132–157.

[9] B. L. Lawson and M. E. Orrison, Analyzing voting from a new
perspective: Applying spectral analysis to the U.S. Supreme Court, Pre-
sented at the annual meeting of the American Political Science Associ-
ation, Boston, August 29, 2002.

[10] B. L. Lawson, M. E. Orrison and D. T. Uminsky, Discrete Anal-
ysis of Voting in Committees, Presented at the annual meeting of the
Midwest Political Science Association, Chicago, April 3–6, 2003.

[11] B. L. Lawson, M. E. Orrison and D. T. Uminsky, Noncommu-
tative Harmonic Analysis of Voting in Small Committees, July, 2003.

[12] C. Mallows, Non–null rankings models I, Biometrika, 44, (1957), 114–
130.

31



[13] D. K. Maslen, M. E. Orrison and D. N. Rockmore, Comput-
ing the isotypic projections with the Lanczos iteration, SIAM J. Matrix
Analysis and Application, 25 no. 3, (2004), 784–803.

[14] D. C. Mueller, Public choice II. A revised edition of Public choice.
Cambridge University Press, Cambridge, 1989.

[15] M. E. Orrison, An eigenspace approach to decomposition representa-
tions of finite group, Ph.D. Thesis, Dartmouth College, 2001.

[16] M. Pisati, Benessere collettivo e preferenze della popolazione:
un’analisi empirica, Quaderni della programmazione PAT, Metodi e ap-
plicazioni di ricerca valutativa per la pubblica amministrazione, Trento,
2004.

[17] D. N. Rockmore, Some applications of generalized FFTs, in Groups
and computation II, eds. L. Finkelstein and W. M. Kantor, DIMACS
Series in Discrete Math. and Theoret. Comput. Sci., AMS, Providence,
RI, 28, (1997), 329–369.

[18] A. Rubinstein, Economics and Language. Five essays, Cambridge Uni-
versity Press, Cambridge, 2000.

[19] J. P. Serre, Linear representations of finite groups, Springer–Verlag,
New York, 1977.

[20] J. Vickers, Delegation and the theory of the firm, Economic Journal,
95, (1985), 138–147.

32


