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Modeling stylized features in default rates

Emanuele Taufer∗

Abstract

We propose a stochastic model for the probability of default based on dif-
fusions with given marginal distribution and autocorrelation function. The
model tries to capture stylized features observed in historical default rates
and is analytically tractable. Estimation procedures and expressions for
analysis and prediction are provided.

AMS classifications: 62M10, 60G35.

Keywords: Default probability; diffusion process; beta distribution; Moody’s
classes

1 Introduction

With the publication of the International Convergence of Capital Measurement and

Capital Standards: a Revised Framework 2, the efforts of the Basel Committee

on Banking Supervision (BCBS) to revise the standards governing the capital

adequacy of internationally active banks achieved a critical milestone. Among

other things, the ”Basel II” framework, or Revised Framework, as the new standard

is frequently called, is intended to promote a more forward-looking approach to

capital supervision, one that encourages banks to identify the risks they may face,

today and in the future, and to develop or improve their ability to manage those

risks.
∗Department of Computer and Management Sciences, University of Trento, Via Inama 5,

38100 Trento - Italy. emanuele.taufer@unitn.it, Ph. +39 0461 882368, Fax +39 0461 882124.
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Practical applications of risk monitoring call for models which are intuitive and

with light implementational burden. With this aim in focus, in this paper we will

discuss a relatively simple model for default rates that seeks to capture most of the

stylized features one observes in actual data while staying analytically tractable.

Recent contributions to this problem are due to Pederzoli and Torricelli (2005)

and Marcucci e Quagliariello (2005) which discuss the effect of macroeconomic in-

dicators over the defaults, Mira and Tenconi (2004) which use a logistic regression

model, or Amerio et al. (2004) which provide an interesting approach based on

Polya’s urn processes which, among other things, captures the marginal distribu-

tion of the defaults over a historical period. Another interesting contribution is

that of Keenan et al. (1999) which provide a model based on the Poisson dis-

tribution with parameter depending upon macroeconomic indices. We refer the

interested reader to the above mentioned papers and the references therein for

further details on default rates modeling literature.

In our approach to the problem we do not start form a specification of economic

fundamentals that may have effect on default risk. Instead, we specify directly a

stochastic process for the default rate itself; the postulated process will encapsulate

either the marginal and the correlation structure observed in empirical default

rates. In our model, the stochastic process for the default rate exhibits mean

reversion of the Ornstein-Uhlenbeck type and the instantaneous volatility depends

on the level of the default rate and decreases as this approaches zero. As we

will see, these empirical facts are well evident from historical data and support

the implementation of a model which is able to obtain useful information, for

prediction and analysis, from its past history. A further advantage will be given

by the simple analytical forms of the conditional variances and expectations which

can be exploited for estimation and prediction purposes.

The use of stochastic models with given autocorrelation and (non-Normal)
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marginal structure is quite recent in the literature and find its earliest contribu-

tions in the papers of Barndorff-Nielsen (1998) and Barndorff-Nielsen and Shephard

(2001), which exploit Ornstein-Uhlenbeck processes and self-decomposable distri-

butions, Bibby et al. (2005), which exploit diffusion models. Both approaches try

to produce flexible and analytically tractable models. In particular, the approach

of Bibby et al. (2005) fits quite well in our context.

Our model is closely connected to the approaches and models of De Jong et al.

(2001) which focus on exchange rates in a target zone and the celebrated one of

Cox et al. (1985) for the term structure of interest rates.

In the next Section we will analyze past history of some empirical data on

defaults and in Section 3 we will present a diffusion model with given marginal

distribution. In Section 4 we will estimate parameters of our model for the data

at hand and provide evidence on fit of the model.

2 Moody’s default rate statistics

Moody’s trailing 12-month default rates are widely monitored indicators of cor-

porate credit quality and are a good source either for theoretical and empirical

studies. For example, Amerio et al. (2005) have studied the historical distri-

butions of one-year default rates for Ba-rated, B-rated and Caa-rated defaulters

during the period 1970-1999; among other things they have found that the Beta

distribution fits quite well all the classes considered; Keenan et al. (1999) have used

either the entire Moody’s rated universe (all-corporate, AC) and a sub-grouping,

i.e. the speculative-grade (SG) monthly data from 1970 to 1999 in order to provide

a forecasting model.

In our study, in order to observe the phenomenon over a varied and long histor-

ical period, we are going to consider either AC and SG yearly data for the period
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1920-2004. The data are taken From Moody’s Investor Service -Special Comment

January 2005 and are freely available.

To begin with, we have a look at the linear plots of the two series in Figure 1.

The paths of both series appear very similar, however, note that higher risks are,

as expected, in the SG class. The series do not appear to be non-stationary, they

however show periods of higher activity which show that volatility is not constant

over the whole time horizon. The highest peak corresponds to the big crisis of the

mid- thirties while, after 1970 there are more peaks.

Figure 1. Observed proportions of defaults for Moody’s All-Rated and Speculative–Grade classes. 1920-2004. 
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Let us now investigate the marginal and the dependence structure of these

series. As far as the first of these two aspects is concerned, our yardstick is given

by the Beta distribution with parameteres α and β, i.e. a distribution having

density

f(x) =
1

B(α, β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, α, β > 0, (2.1)

where B(α, β) = Γ(α)Γ(β)Γ(α + β)−1 is the Beta function. Figure 2 depicts the

PP plots of the Beta distribution for the two investigated series. As we see, for
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this distribution, the fit is qualitatively good in both cases except for some years

with no defaults which appear on the bottom of the graphs. Analogous results

have been obtained by Amerio et al. (2004) for Ba-rated, B-rated and Caa-rated

classes. The Beta distribution seems then to be a good candidate for modeling

the marginal structure of defaults: appropriate choices of the parameters α and β

allows to obtain a large variety of shapes of the density; as a further support, we

mention that this distribution is a very common choice in Bayesian statistics when

modeling the law of a random probability over a given event.

Figure 2. Beta distribution P-P plots for All-Corporate and Speculative-Grade series. 
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By observing Figure 1 again, one can note that the actual range of default

values is well below unity and hence ask whether the fit could be improved by

choosing a distribution, such as the generalized Beta distribution, which can be

made to assume values with positive probability in an interval [0, b], with b < 1.

Our computations show that there is no substantial difference between the two

approaches if not for different values of estimated parameters.Moreover, recall that

if Y follows a generalized Beta distribution over [0, b], then X = Y/b follows a Beta

over [0,1]; for further details about the generalized Beta and Beta distribution we
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refer the reader to Johnson et al. (1994).

Next, we analyze the dependence structure of the defaults; we refer to Figure

3 where the autocorrelation and the partial autocorrelation functions are plotted

for AC and SG.

Figure 3. Empirical ACF and Partial ACF for All-Corporate and Speculative-Grade with confidence limits 
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The autocorrelation function shows a constant positive decay for both series,

indicating that an autoregressive process may be well suited for these data. The

partial autocorrelation function shows a high spike in the first lag in both cases,
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but for the AC series there is another significant negative spike at lag 3 which

has however quite a low value. Both series show the same pattern indicating that

information at time t, after conditioning at time t − 1, gains little from previous

history of the process. Overall, the form of the autocorrelation and partial auto-

correlation seems to indicate that a Markovian structure is appropriate for these

series.

Notwithstanding the amount of data is not very large (85 observations for each

series) their evidence is quite clear- cut, showing well definite structures and pat-

terns that are quite remarkable for real data. Given these facts, it seems most

appropriate to look for a model which tries to reproduce the empirical character-

istics noted above. This will be the focus of the next section.

3 A diffusion model with given marginal distri-
bution

In this section we will use a continuous stochastic process {Xt, t ≥ 0} as a generator

of the flows of defaults over the period considered. The use of continuous models

for discrete data, e.g. monthly or annual observations, is quite common given that

discrete models may not be able to capture some features of the phenomenon at

hand; indeed, there are authors that claim for its superiority over discrete models,

some references and further discussion of direct interest here can be found in Lando

and Skødeberg (2002) and Bladt and Sørensen (2005).

It is our aim to provide a stochastic model for Xt which encapsulates the stylized

features observed in the previous section. To do so we refer to Bibby et al. (2005)

which have provided a general framework for construction of diffusion processes

with given marginal distribution and autocorrelation function.

For our case, we will assume that the behavior of Xt is governed by the following
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stochastic differential equation:

dXt = −λ(Xt − µ)dt +
√

v(Xt)dWt, t ≥ 0, (3.1)

where λ > 0, µ = E(Xt), v is a non negative function and Wt is a standard Wiener

process. If the distribution of X0 is a Beta with parameters α, β and

v(x) =
2λ

α + β
x(1− x) (3.2)

it follows at once from Theorem 2.3 in Bibby et al. (2005) that the diffusion

process that solves (3.1) is Markovian and ergodic with invariant density (2.1) and

autocorrelation function

Corr(Xt+h, Xt) = e−λh. (3.3)

We also note that in such a case we have that

E(X) = µ =
α

α + β
, V (X) =

αβ

(α + β)2(α + β + 1)
. (3.4)

Note that the proposed model includes all of the characteristics that have been

pointed out by the empirical analysis over the AC and SG series: in particular a

Beta marginal distribution and an exponentially decaying autocorrelation function.

Moreover, the diffusion coefficient v(x) implies a non-constant volatility which

decreases if the process Xt approaches its extremes. In actual cases the default

rate Xt will stay low with a low value of the diffusion coefficient and the auto-

regressive part −λ(Xt−µ) maintains the default rate close to its long run average.

As Xt increases towards 0.5, the volatility will correspondingly increase mimicking

what has been observed with the empirical analysis.

By using Îto formula we obtain the representation, for t, h ≥ 0,

Xt+h = e−λhXt +
α

α + β
(1− e−λh) + e−λh

∫ t+h

t

eλ(s−t)
√

v(Xs)dWs (3.5)
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which can be used to obtain the conditional moments of the process; these may be

helpful in forecasting.

As far as the conditional mean is concerned, we obtain immediately (see also

Bibby et al. (2005)),

E(Xt+h|Xt = x) = xe−λh +
α

α + β
(1− e−λh). (3.6)

An expression for the conditional variance can be obtained with some more com-

putations, note that, from (3.5) and (3.2) we can write

V ar(Xt+h|Xt = x) = e−2λh 2λ

α + β

∫ t+h

t

e2λ(s−t)E[Xs(1−Xs)|Xt = x]) ds. (3.7)

For notational convenience set V ar(Xt+h|Xt = x)e2λh = f(h), α/(α + β) = µ and

z = x − µ; then, deriving both terms of the above equation wrt h, after a few

computations, we obtain the following differential equation

d

dh
f(h) = − 2λ

α + β

[
f(h)− µ(1− µ)e2λh − z(1− 2µ)eλh + z2

]
. (3.8)

With the boundary condition f(0) = 0, this equation is solved by

f(h) = (e−
2λ

α+β h − 1)z2 + (eλh − e−
2λ

α+β h)
2(β − α)

(α + β)(α + β + 2)
z+

+ (e2λh − e−
2λ

α+β h)
αβ

(α + β)2(α + β + 1)
, (3.9)

from which we can easily obtain back V ar(Xt+h|Xt = x). Higher order conditional

moments can be obtained in a similar way. As we see, the conditional variance

depends on past values x and x2; note also that the last coefficient on the right is

the variance of the marginal Beta distribution.

4 Fitting the model

In order to fit the model to the data, we need to estimate the parameters α, β

and λ. There is quite a bit of literature about estimation of discretely observed
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continuous models, examples and theory can be found in Beskos et al. (2006),

Larsen and Sørensen (2005), Bibby et al. (2004), Aı̈t-Sahalia (2002), De Jong et

al. (2001).

Here we partly follow the approach of Bibby et al. (2005) by splitting the

problem in two parts: fitting the parameters of the marginal distribution on the

one hand and the autoregression parameter on the other hand.

To estimate the marginal structure we need to estimate the parameters α and

β of the underlying Beta distribution. On the ground of quick applicability and

simplicity, we will use a method of moments approach.

Let x1, . . . , , xT be the observed series of defaults and define the first two sample

moments by µ̂1 = T−1
∑T

t=1 xt and µ̂2 = T−1
∑T

t=1 x2
t . Then the estimates of α

and β are quickly obtained as

α̂ =
µ̂1(µ̂1 − µ̂2)

µ̂2 − µ̂2
1

, β̂ =
α̂(1− µ̂1)

µ̂1
. (4.1)

As far as the estimation of λ is concerned, we proceed by a least squares fitting of

the empirical autocorrelation function, that is, we minimize, wrt λ, the quadratic

function

f(λ) =
J∑

k=1

(ρ̂k − e−λk)2 (4.2)

where ρ̂k denotes the lag k estimated autocorrelation. We tried different values

of J obtaining estimates very close to each other. The values we report here are

based on J = 14, a value which tries to fit the empirical autocorrelation function

over a sufficiently large time span given the number of observations available.

The final estimates of the marginal and dependence parameters for the observed

All-Corporate and Speculative-Grade series are provided in Table 1.

We mention that a simple fitting by J = 1, that is, just using the estimated

autocorrelation at lag 1 obtains λ = 0.30 for AC and λ = 0.35 for SG.
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Table 1 . Estimates of α, β and λ for All-Corporate and Speculative-Grade series.

All- Rated Speculative-Grade
α 0.624 0.756
β 56.265 27.239
λ 0.347 0.355

We use some graphical evidence to check how model (3.1) fits the data at hand.

First of all, the PP plots of Figure 2 have been drawn by using the estimates

of Table 1. As we have seen, the closeness of the historical distribution and the

theoretical Beta is very good. These findings are sustained also by those of Amerio

et al. (2004). As far as the correlation structure is concerned, Figure 4 reports the

empirical autocorrelations and the theoretical one based on the estimated value of

λ.

Figure 4. Empirical and fitted ACF for All-Corporate and Speculative grade. 
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As we see, in both cases, the closeness of the two curves is very good, especially

as far as the decreasing speed of the first lags which may be quite important in

analyzing mean reversion effects.

To validate further our findings we supplement the graphical model diagnostics

by formal tests of hypothesis. We use a Generalized Likelihood Ratio (GLR) test

in the form proposed by Fan and Zhang (2003) which has been found to be quite
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powerful. Model (3.1) will be tested against a non parametric alternative of the

form

dXt = µ(Xt)dt + σ(Xt)dWt, t ≥ 0, (4.3)

where the functional form of drift and diffusion coefficients is left unspecified. The

GLR is defined through the quantity

lT (h) =
T − 1

2
log

RSS0

RSS1(h)
, (4.4)

where h is a bandwidth, RSS0 and RSS1(h) are residuals sum of squares computed

under the null hypothesis and the alternative hypothesis respectively. For more

details about the testing procedure, as well as the construction of non parametric

estimators for (4.3) we refer the interested reader to Fan and Zhang (2003).

As a starting point we test H0 : dXt = −λ(Xt−µ)dt+σ(Xt)dWt, against model

(4.3), i.e. linearity of the drift. In H0 we use the estimates of λ, α and β given

in Table 1, while we use local linear regression (see, for example, Fan and Gijbels,

1996) to estimate µ(Xt) and σ(Xt); in the computations of the non-parametric

estimates we use the Epanechnikov kernel defined by K(u) = 0.75(1−u2)I(|u| ≤ 1),

where I(·) stands for the indicator function; as far as the choice of the bandwidth

is concerned, we use h = s6T−2/9, where s is the standard deviation of x1, . . . , xT ;

this bandwidth is roughly viewed as ”just right”.

We now turn to numerical results. For the AC series we obtain lT (h) = 16.49

and for the SG series the value is lT (h) = 3.90. As far as critical points are con-

cerned, we note that by heuristic arguments and Monte-Carlo simulations, Fan and

Zhang (2003) argue that these do not depend sensitively on the true parameter val-

ues although they should depend on bandwidth and significance level. The values

we have obtained for our test statistics are far beyond the critical values indicated

in Table 3 of Fan and Zhang (2003) hence there is no evidence of departure from
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the null hypothesis. As a further check, we set up a bootstrap procedure which

provides, in all the above cases, bootstrap p-values which show again that there is

no evidence against the null hypothesis.

Next, we test model (3.1) against model (4.3) obtaining the values lT (h) = 41.31

for the AC series and lT (h) = 33.87 for the SG series. Although values are larger

than in the previous test, the values obtained are well beyond the critical values

provided by Fan and Zhang (2003), again, bootstrap p-values do not show evidence

against the null model.

5 Discussion

We have observed some of the empirical features of Moody’s default AC and SG

series from 1920 to 2004. The series appears to be stationary, with non constant

volatility and autoregressive features of the first order, moreover the historical

distribution is fitted quite well by a Beta distribution.

Starting from these consideration we propose to model the behavior of the

series by a diffusion process with given marginal distribution and autocorrelation

function. The model is relatively simple and analytically tractable. Its intuitive

interpretation may be appealing also to practitioners which may wish to analyze

dynamics and structures of defaults based on freely available data. Also with this

in mind we have fitted the model with simple estimation methods which can be

implemented easily with standard computer packages. The main aim of the model

is to help in understanding dynamics and relations of the phenomenon examined.

We recall also that the transition density is not known explicitly, we have pro-

vided expressions for conditional mean and variance which will help in evaluating

the system.
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